libMesh
Public Member Functions | Static Public Member Functions | Public Attributes | Protected Types | Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Member Functions | List of all members
libMesh::QNodal Class Reference

This class implements nodal quadrature rules for various element types. More...

#include <quadrature_nodal.h>

Inheritance diagram for libMesh::QNodal:
[legend]

Public Member Functions

 QNodal (unsigned int dim, Order order=FIRST)
 Constructor. More...
 
 QNodal (const QNodal &)=default
 Copy/move ctor, copy/move assignment operator, and destructor are all explicitly defaulted for this simple class. More...
 
 QNodal (QNodal &&)=default
 
QNodaloperator= (const QNodal &)=default
 
QNodaloperator= (QNodal &&)=default
 
virtual ~QNodal ()=default
 
virtual QuadratureType type () const override
 
virtual std::unique_ptr< QBaseclone () const override
 
ElemType get_elem_type () const
 
unsigned int get_p_level () const
 
unsigned int n_points () const
 
unsigned int size () const
 Alias for n_points() to enable use in index_range. More...
 
unsigned int get_dim () const
 
const std::vector< Point > & get_points () const
 
std::vector< Point > & get_points ()
 
const std::vector< Real > & get_weights () const
 
std::vector< Real > & get_weights ()
 
Point qp (const unsigned int i) const
 
Real w (const unsigned int i) const
 
virtual void init (const Elem &e, unsigned int p_level=invalid_uint)
 Initializes the data structures for a quadrature rule for the element e. More...
 
virtual void init (const ElemType type=INVALID_ELEM, unsigned int p_level=0, bool simple_type_only=false)
 Initializes the data structures for a quadrature rule for an element of type type. More...
 
virtual void init (const QBase &other_rule)
 Initializes the data structures for a quadrature rule based on the element, element type, and p_level settings of other_rule. More...
 
virtual void init (const Elem &elem, const std::vector< Real > &vertex_distance_func, unsigned int p_level=0)
 Initializes the data structures for an element potentially "cut" by a signed distance function. More...
 
Order get_order () const
 
Order get_base_order () const
 
void print_info (std::ostream &os=libMesh::out) const
 Prints information relevant to the quadrature rule, by default to libMesh::out. More...
 
void scale (std::pair< Real, Real > old_range, std::pair< Real, Real > new_range)
 Maps the points of a 1D quadrature rule defined by "old_range" to another 1D interval defined by "new_range" and scales the weights accordingly. More...
 
virtual bool shapes_need_reinit ()
 

Static Public Member Functions

static std::unique_ptr< QBasebuild (std::string_view name, const unsigned int dim, const Order order=INVALID_ORDER)
 Builds a specific quadrature rule based on the name string. More...
 
static std::unique_ptr< QBasebuild (const QuadratureType qt, const unsigned int dim, const Order order=INVALID_ORDER)
 Builds a specific quadrature rule based on the QuadratureType. More...
 
static void print_info (std::ostream &out_stream=libMesh::out)
 Prints the reference information, by default to libMesh::out. More...
 
static std::string get_info ()
 Gets a string containing the reference information. More...
 
static unsigned int n_objects ()
 Prints the number of outstanding (created, but not yet destroyed) objects. More...
 
static void enable_print_counter_info ()
 Methods to enable/disable the reference counter output from print_info() More...
 
static void disable_print_counter_info ()
 

Public Attributes

bool allow_rules_with_negative_weights
 Flag (default true) controlling the use of quadrature rules with negative weights. More...
 
bool allow_nodal_pyramid_quadrature
 The flag's value defaults to false so that one does not accidentally use a nodal quadrature rule on Pyramid elements, since evaluating the inverse element Jacobian (e.g. More...
 

Protected Types

typedef std::map< std::string, std::pair< unsigned int, unsigned int > > Counts
 Data structure to log the information. More...
 

Protected Member Functions

virtual void init_0D ()
 Initializes the 0D quadrature rule by filling the points and weights vectors with the appropriate values. More...
 
void tensor_product_quad (const QBase &q1D)
 Constructs a 2D rule from the tensor product of q1D with itself. More...
 
void tensor_product_hex (const QBase &q1D)
 Computes the tensor product quadrature rule [q1D x q1D x q1D] from the 1D rule q1D. More...
 
void tensor_product_prism (const QBase &q1D, const QBase &q2D)
 Computes the tensor product of a 1D quadrature rule and a 2D quadrature rule. More...
 
void increment_constructor_count (const std::string &name) noexcept
 Increments the construction counter. More...
 
void increment_destructor_count (const std::string &name) noexcept
 Increments the destruction counter. More...
 

Protected Attributes

unsigned int _dim
 The spatial dimension of the quadrature rule. More...
 
Order _order
 The polynomial order which the quadrature rule is capable of integrating exactly. More...
 
ElemType _type
 The type of element for which the current values have been computed. More...
 
const Elem_elem
 The element for which the current values were computed, or nullptr if values were computed without a specific element. More...
 
unsigned int _p_level
 The p-level of the element for which the current values have been computed. More...
 
std::vector< Point_points
 The locations of the quadrature points in reference element space. More...
 
std::vector< Real_weights
 The quadrature weights. More...
 

Static Protected Attributes

static Counts _counts
 Actually holds the data. More...
 
static Threads::atomic< unsigned int_n_objects
 The number of objects. More...
 
static Threads::spin_mutex _mutex
 Mutual exclusion object to enable thread-safe reference counting. More...
 
static bool _enable_print_counter = true
 Flag to control whether reference count information is printed when print_info is called. More...
 

Private Member Functions

virtual void init_1D () override
 Initializes the 1D quadrature rule by filling the points and weights vectors with the appropriate values. More...
 
virtual void init_2D () override
 Initializes the 2D quadrature rule by filling the points and weights vectors with the appropriate values. More...
 
virtual void init_3D () override
 Initializes the 3D quadrature rule by filling the points and weights vectors with the appropriate values. More...
 

Detailed Description

This class implements nodal quadrature rules for various element types.

For some element types, this corresponds to well-known quadratures such as the trapezoidal rule and Simpson's rule. For other element types (e.g. the serendipity QUAD8/HEX20/PRISM15) it implements a lower-order-accurate nodal quadrature which still generates a strictly positive definite (diagonal) mass matrix. Since the main purpose of this class is provide appropriate nodal quadrature rules, "order" arguments passed during initialization are ignored.

Author
John W. Peterson
Date
2019 Implements nodal quadrature for various element types.

Definition at line 44 of file quadrature_nodal.h.

Member Typedef Documentation

◆ Counts

typedef std::map<std::string, std::pair<unsigned int, unsigned int> > libMesh::ReferenceCounter::Counts
protectedinherited

Data structure to log the information.

The log is identified by the class name.

Definition at line 119 of file reference_counter.h.

Constructor & Destructor Documentation

◆ QNodal() [1/3]

libMesh::QNodal::QNodal ( unsigned int  dim,
Order  order = FIRST 
)
inlineexplicit

Constructor.

Declares the order of the quadrature rule. We explicitly call the init function in 1D since the other tensor-product rules require this one.

Note
The element type, EDGE2, will not be used internally, however if we called the function with INVALID_ELEM it would try to be smart and return, thinking it had already done the work.

Definition at line 58 of file quadrature_nodal.h.

References dim, libMesh::EDGE2, and libMesh::QBase::init().

59  :
60  QBase(dim,order)
61  {
62  if (dim == 1)
63  init(EDGE2);
64  }
unsigned int dim
QBase(unsigned int dim, Order order=INVALID_ORDER)
Constructor.
Definition: quadrature.C:27
virtual void init(const Elem &e, unsigned int p_level=invalid_uint)
Initializes the data structures for a quadrature rule for the element e.
Definition: quadrature.C:65

◆ QNodal() [2/3]

libMesh::QNodal::QNodal ( const QNodal )
default

Copy/move ctor, copy/move assignment operator, and destructor are all explicitly defaulted for this simple class.

◆ QNodal() [3/3]

libMesh::QNodal::QNodal ( QNodal &&  )
default

◆ ~QNodal()

virtual libMesh::QNodal::~QNodal ( )
virtualdefault

Member Function Documentation

◆ build() [1/2]

std::unique_ptr< QBase > libMesh::QBase::build ( std::string_view  name,
const unsigned int  dim,
const Order  order = INVALID_ORDER 
)
staticinherited

Builds a specific quadrature rule based on the name string.

This enables selection of the quadrature rule at run-time. The input parameter name must be mappable through the Utility::string_to_enum<>() function.

This function allocates memory, therefore a std::unique_ptr<QBase> is returned so that the user does not accidentally leak it.

Definition at line 43 of file quadrature_build.C.

References libMesh::QBase::_dim, libMesh::QBase::_order, and libMesh::QBase::type().

Referenced by assemble_poisson(), libMesh::InfFE< Dim, T_radial, T_map >::attach_quadrature_rule(), libMesh::QBase::clone(), main(), libMesh::OverlapCoupling::OverlapCoupling(), libMesh::InfFE< Dim, T_radial, T_map >::reinit(), QuadratureTest::testBuild(), QuadratureTest::testJacobi(), and QuadratureTest::testPolynomials().

46 {
47  return QBase::build (Utility::string_to_enum<QuadratureType> (type),
48  _dim,
49  _order);
50 }
unsigned int _dim
The spatial dimension of the quadrature rule.
Definition: quadrature.h:379
virtual QuadratureType type() const =0
Order _order
The polynomial order which the quadrature rule is capable of integrating exactly. ...
Definition: quadrature.h:385
static std::unique_ptr< QBase > build(std::string_view name, const unsigned int dim, const Order order=INVALID_ORDER)
Builds a specific quadrature rule based on the name string.

◆ build() [2/2]

std::unique_ptr< QBase > libMesh::QBase::build ( const QuadratureType  qt,
const unsigned int  dim,
const Order  order = INVALID_ORDER 
)
staticinherited

Builds a specific quadrature rule based on the QuadratureType.

This enables selection of the quadrature rule at run-time.

This function allocates memory, therefore a std::unique_ptr<QBase> is returned so that the user does not accidentally leak it.

Definition at line 54 of file quadrature_build.C.

References libMesh::QBase::_dim, libMesh::QBase::_order, libMesh::FIRST, libMesh::FORTYTHIRD, libMesh::out, libMesh::QCLOUGH, libMesh::QCONICAL, libMesh::QGAUSS, libMesh::QGAUSS_LOBATTO, libMesh::QGRID, libMesh::QGRUNDMANN_MOLLER, libMesh::QJACOBI_1_0, libMesh::QJACOBI_2_0, libMesh::QMONOMIAL, libMesh::QNODAL, libMesh::QSIMPSON, libMesh::QTRAP, libMesh::THIRD, and libMesh::TWENTYTHIRD.

57 {
58  switch (_qt)
59  {
60 
61  case QCLOUGH:
62  {
63 #ifdef DEBUG
64  if (_order > TWENTYTHIRD)
65  {
66  libMesh::out << "WARNING: Clough quadrature implemented" << std::endl
67  << " up to TWENTYTHIRD order." << std::endl;
68  }
69 #endif
70 
71  return std::make_unique<QClough>(_dim, _order);
72  }
73 
74  case QGAUSS:
75  {
76 
77 #ifdef DEBUG
78  if (_order > FORTYTHIRD)
79  {
80  libMesh::out << "WARNING: Gauss quadrature implemented" << std::endl
81  << " up to FORTYTHIRD order." << std::endl;
82  }
83 #endif
84 
85  return std::make_unique<QGauss>(_dim, _order);
86  }
87 
88  case QJACOBI_1_0:
89  {
90 
91 #ifdef DEBUG
92  if (_order > FORTYTHIRD)
93  {
94  libMesh::out << "WARNING: Jacobi(1,0) quadrature implemented" << std::endl
95  << " up to FORTYTHIRD order." << std::endl;
96  }
97 
98  if (_dim > 1)
99  {
100  libMesh::out << "WARNING: Jacobi(1,0) quadrature implemented" << std::endl
101  << " in 1D only." << std::endl;
102  }
103 #endif
104 
105  return std::make_unique<QJacobi>(_dim, _order, 1, 0);
106  }
107 
108  case QJACOBI_2_0:
109  {
110 
111 #ifdef DEBUG
112  if (_order > FORTYTHIRD)
113  {
114  libMesh::out << "WARNING: Jacobi(2,0) quadrature implemented" << std::endl
115  << " up to FORTYTHIRD order." << std::endl;
116  }
117 
118  if (_dim > 1)
119  {
120  libMesh::out << "WARNING: Jacobi(2,0) quadrature implemented" << std::endl
121  << " in 1D only." << std::endl;
122  }
123 #endif
124 
125  return std::make_unique<QJacobi>(_dim, _order, 2, 0);
126  }
127 
128  case QSIMPSON:
129  {
130 
131 #ifdef DEBUG
132  if (_order > THIRD)
133  {
134  libMesh::out << "WARNING: Simpson rule provides only" << std::endl
135  << " THIRD order!" << std::endl;
136  }
137 #endif
138 
139  return std::make_unique<QSimpson>(_dim);
140  }
141 
142  case QTRAP:
143  {
144 
145 #ifdef DEBUG
146  if (_order > FIRST)
147  {
148  libMesh::out << "WARNING: Trapezoidal rule provides only" << std::endl
149  << " FIRST order!" << std::endl;
150  }
151 #endif
152 
153  return std::make_unique<QTrap>(_dim);
154  }
155 
156  case QGRID:
157  return std::make_unique<QGrid>(_dim, _order);
158 
159  case QGRUNDMANN_MOLLER:
160  return std::make_unique<QGrundmann_Moller>(_dim, _order);
161 
162  case QMONOMIAL:
163  return std::make_unique<QMonomial>(_dim, _order);
164 
165  case QGAUSS_LOBATTO:
166  return std::make_unique<QGaussLobatto>(_dim, _order);
167 
168  case QCONICAL:
169  return std::make_unique<QConical>(_dim, _order);
170 
171  case QNODAL:
172  return std::make_unique<QNodal>(_dim, _order);
173 
174  default:
175  libmesh_error_msg("ERROR: Bad qt=" << _qt);
176  }
177 }
unsigned int _dim
The spatial dimension of the quadrature rule.
Definition: quadrature.h:379
Order _order
The polynomial order which the quadrature rule is capable of integrating exactly. ...
Definition: quadrature.h:385
OStreamProxy out

◆ clone()

std::unique_ptr< QBase > libMesh::QNodal::clone ( ) const
overridevirtual
Returns
A copy of this quadrature rule wrapped in a smart pointer.

Reimplemented from libMesh::QBase.

Definition at line 31 of file quadrature_nodal.C.

32 {
33  return std::make_unique<QNodal>(*this);
34 }

◆ disable_print_counter_info()

void libMesh::ReferenceCounter::disable_print_counter_info ( )
staticinherited

Definition at line 100 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

101 {
102  _enable_print_counter = false;
103  return;
104 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ enable_print_counter_info()

void libMesh::ReferenceCounter::enable_print_counter_info ( )
staticinherited

Methods to enable/disable the reference counter output from print_info()

Definition at line 94 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter.

95 {
96  _enable_print_counter = true;
97  return;
98 }
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ get_base_order()

Order libMesh::QBase::get_base_order ( ) const
inlineinherited
Returns
The "base" order of the quadrature rule, independent of element.

This function should be used when comparing quadrature objects independently of their last initialization.

Definition at line 258 of file quadrature.h.

References libMesh::QBase::_order.

258 { return static_cast<Order>(_order); }
Order
defines an enum for polynomial orders.
Definition: enum_order.h:40
Order _order
The polynomial order which the quadrature rule is capable of integrating exactly. ...
Definition: quadrature.h:385

◆ get_dim()

unsigned int libMesh::QBase::get_dim ( ) const
inlineinherited
Returns
The spatial dimension of the quadrature rule.

Definition at line 150 of file quadrature.h.

References libMesh::QBase::_dim.

Referenced by libMesh::InfFE< Dim, T_radial, T_map >::attach_quadrature_rule(), libMesh::QBase::clone(), libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), and QuadratureTest::testPolynomial().

150 { return _dim; }
unsigned int _dim
The spatial dimension of the quadrature rule.
Definition: quadrature.h:379

◆ get_elem_type()

ElemType libMesh::QBase::get_elem_type ( ) const
inlineinherited
Returns
The element type we're currently using.

Definition at line 121 of file quadrature.h.

References libMesh::QBase::_type.

121 { return _type; }
ElemType _type
The type of element for which the current values have been computed.
Definition: quadrature.h:391

◆ get_info()

std::string libMesh::ReferenceCounter::get_info ( )
staticinherited

Gets a string containing the reference information.

Definition at line 47 of file reference_counter.C.

References libMesh::ReferenceCounter::_counts, and libMesh::Quality::name().

Referenced by libMesh::ReferenceCounter::print_info().

48 {
49 #if defined(LIBMESH_ENABLE_REFERENCE_COUNTING) && defined(DEBUG)
50 
51  std::ostringstream oss;
52 
53  oss << '\n'
54  << " ---------------------------------------------------------------------------- \n"
55  << "| Reference count information |\n"
56  << " ---------------------------------------------------------------------------- \n";
57 
58  for (const auto & [name, cd] : _counts)
59  oss << "| " << name << " reference count information:\n"
60  << "| Creations: " << cd.first << '\n'
61  << "| Destructions: " << cd.second << '\n';
62 
63  oss << " ---------------------------------------------------------------------------- \n";
64 
65  return oss.str();
66 
67 #else
68 
69  return "";
70 
71 #endif
72 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
static Counts _counts
Actually holds the data.

◆ get_order()

Order libMesh::QBase::get_order ( ) const
inlineinherited
Returns
The current "total" order of the quadrature rule which can vary element by element, depending on the Elem::p_level(), which gets passed to us during init().

Each additional power of p increases the quadrature order required to integrate the mass matrix by 2, hence the formula below.

Todo:
This function should also be used in all of the Order switch statements in the rules themselves.

Definition at line 249 of file quadrature.h.

References libMesh::QBase::_order, and libMesh::QBase::_p_level.

Referenced by libMesh::InfFE< Dim, T_radial, T_map >::attach_quadrature_rule(), libMesh::QBase::clone(), libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::RBEIMConstruction::enrich_eim_approximation_on_interiors(), libMesh::QGaussLobatto::init_1D(), libMesh::QGauss::init_1D(), libMesh::QConical::init_1D(), libMesh::QJacobi::init_1D(), libMesh::QGrundmann_Moller::init_1D(), libMesh::QGaussLobatto::init_2D(), libMesh::QGauss::init_2D(), libMesh::QMonomial::init_2D(), libMesh::QGrundmann_Moller::init_2D(), libMesh::QGaussLobatto::init_3D(), libMesh::QGauss::init_3D(), libMesh::QMonomial::init_3D(), libMesh::QGrundmann_Moller::init_3D(), and libMesh::RBParametrizedFunction::preevaluate_parametrized_function_on_mesh().

249 { return static_cast<Order>(_order + 2 * _p_level); }
Order
defines an enum for polynomial orders.
Definition: enum_order.h:40
unsigned int _p_level
The p-level of the element for which the current values have been computed.
Definition: quadrature.h:403
Order _order
The polynomial order which the quadrature rule is capable of integrating exactly. ...
Definition: quadrature.h:385

◆ get_p_level()

unsigned int libMesh::QBase::get_p_level ( ) const
inlineinherited
Returns
The p-refinement level we're currently using.

Definition at line 126 of file quadrature.h.

References libMesh::QBase::_p_level.

126 { return _p_level; }
unsigned int _p_level
The p-level of the element for which the current values have been computed.
Definition: quadrature.h:403

◆ get_points() [1/2]

const std::vector<Point>& libMesh::QBase::get_points ( ) const
inlineinherited

◆ get_points() [2/2]

std::vector<Point>& libMesh::QBase::get_points ( )
inlineinherited
Returns
A std::vector containing the quadrature point locations in reference element space as a writable reference.

Definition at line 162 of file quadrature.h.

References libMesh::QBase::_points.

162 { return _points; }
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409

◆ get_weights() [1/2]

const std::vector<Real>& libMesh::QBase::get_weights ( ) const
inlineinherited

◆ get_weights() [2/2]

std::vector<Real>& libMesh::QBase::get_weights ( )
inlineinherited
Returns
A writable references to a std::vector containing the quadrature weights.

Definition at line 174 of file quadrature.h.

References libMesh::QBase::_weights.

174 { return _weights; }
std::vector< Real > _weights
The quadrature weights.
Definition: quadrature.h:415

◆ increment_constructor_count()

void libMesh::ReferenceCounter::increment_constructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the construction counter.

Should be called in the constructor of any derived class that will be reference counted.

Definition at line 183 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::ReferenceCountedObject().

184 {
185  libmesh_try
186  {
187  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
188  std::pair<unsigned int, unsigned int> & p = _counts[name];
189  p.first++;
190  }
191  libmesh_catch (...)
192  {
193  auto stream = libMesh::err.get();
194  stream->exceptions(stream->goodbit); // stream must not throw
195  libMesh::err << "Encountered unrecoverable error while calling "
196  << "ReferenceCounter::increment_constructor_count() "
197  << "for a(n) " << name << " object." << std::endl;
198  std::terminate();
199  }
200 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ increment_destructor_count()

void libMesh::ReferenceCounter::increment_destructor_count ( const std::string &  name)
inlineprotectednoexceptinherited

Increments the destruction counter.

Should be called in the destructor of any derived class that will be reference counted.

Definition at line 207 of file reference_counter.h.

References libMesh::err, libMesh::BasicOStreamProxy< charT, traits >::get(), libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::~ReferenceCountedObject().

208 {
209  libmesh_try
210  {
211  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
212  std::pair<unsigned int, unsigned int> & p = _counts[name];
213  p.second++;
214  }
215  libmesh_catch (...)
216  {
217  auto stream = libMesh::err.get();
218  stream->exceptions(stream->goodbit); // stream must not throw
219  libMesh::err << "Encountered unrecoverable error while calling "
220  << "ReferenceCounter::increment_destructor_count() "
221  << "for a(n) " << name << " object." << std::endl;
222  std::terminate();
223  }
224 }
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
OStreamProxy err
static Counts _counts
Actually holds the data.
streamT * get()
Rather than implement every ostream/ios/ios_base function, we&#39;ll be lazy and make esoteric uses go th...
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:30

◆ init() [1/4]

void libMesh::QBase::init ( const Elem e,
unsigned int  p_level = invalid_uint 
)
virtualinherited

Initializes the data structures for a quadrature rule for the element e.

If p_level is specified it overrides the element p_level() elevation to use.

Definition at line 65 of file quadrature.C.

References libMesh::QBase::_dim, libMesh::QBase::_elem, libMesh::QBase::_p_level, libMesh::QBase::_type, libMesh::Elem::dim(), libMesh::QBase::init_0D(), libMesh::QBase::init_1D(), libMesh::QBase::init_2D(), libMesh::QBase::init_3D(), libMesh::invalid_uint, libMesh::Elem::p_level(), libMesh::Elem::runtime_topology(), and libMesh::Elem::type().

Referenced by libMesh::QBase::init(), libMesh::QClough::init_1D(), libMesh::QConical::init_1D(), init_1D(), libMesh::QMonomial::init_1D(), libMesh::QGaussLobatto::init_2D(), libMesh::QClough::init_2D(), libMesh::QGauss::init_2D(), init_2D(), libMesh::QMonomial::init_2D(), libMesh::QGaussLobatto::init_3D(), libMesh::QGauss::init_3D(), libMesh::QSimpson::init_3D(), libMesh::QTrap::init_3D(), libMesh::QGrid::init_3D(), init_3D(), libMesh::QMonomial::init_3D(), libMesh::OverlapCoupling::operator()(), libMesh::QClough::QClough(), libMesh::QConical::QConical(), libMesh::QGauss::QGauss(), libMesh::QGaussLobatto::QGaussLobatto(), libMesh::QGrid::QGrid(), libMesh::QGrundmann_Moller::QGrundmann_Moller(), libMesh::QJacobi::QJacobi(), libMesh::QMonomial::QMonomial(), QNodal(), libMesh::QSimpson::QSimpson(), libMesh::QTrap::QTrap(), and libMesh::FE< Dim, LAGRANGE_VEC >::reinit_default_dual_shape_coeffs().

67 {
68  libmesh_assert_equal_to(elem.dim(), _dim);
69 
70  // Default to the element p_level() value
71  if (p == invalid_uint)
72  p = elem.p_level();
73 
74  ElemType t = elem.type();
75 
76  // check to see if we have already
77  // done the work for this quadrature rule
78  //
79  // If we have something like a Polygon subclass then we're going to
80  // need to recompute to be safe; even if we're using the same
81  // element, it might have been distorted enough that its subtriangle
82  // triangulation has been changed.
83  if (t == _type && p == _p_level && !elem.runtime_topology())
84  return;
85  else
86  {
87  _elem = &elem;
88  _type = t;
89  _p_level = p;
90  }
91 
92  switch(_elem->dim())
93  {
94  case 0:
95  this->init_0D();
96 
97  return;
98 
99  case 1:
100  this->init_1D();
101 
102  return;
103 
104  case 2:
105  this->init_2D();
106 
107  return;
108 
109  case 3:
110  this->init_3D();
111 
112  return;
113 
114  default:
115  libmesh_error_msg("Invalid dimension _dim = " << _dim);
116  }
117 }
ElemType
Defines an enum for geometric element types.
const unsigned int invalid_uint
A number which is used quite often to represent an invalid or uninitialized value for an unsigned int...
Definition: libmesh.h:310
virtual void init_2D()
Initializes the 2D quadrature rule by filling the points and weights vectors with the appropriate val...
Definition: quadrature.C:208
ElemType _type
The type of element for which the current values have been computed.
Definition: quadrature.h:391
unsigned int _dim
The spatial dimension of the quadrature rule.
Definition: quadrature.h:379
const Elem * _elem
The element for which the current values were computed, or nullptr if values were computed without a ...
Definition: quadrature.h:397
unsigned int _p_level
The p-level of the element for which the current values have been computed.
Definition: quadrature.h:403
virtual void init_0D()
Initializes the 0D quadrature rule by filling the points and weights vectors with the appropriate val...
Definition: quadrature.C:198
virtual void init_1D()=0
Initializes the 1D quadrature rule by filling the points and weights vectors with the appropriate val...
virtual unsigned short dim() const =0
virtual void init_3D()
Initializes the 3D quadrature rule by filling the points and weights vectors with the appropriate val...
Definition: quadrature.C:215

◆ init() [2/4]

void libMesh::QBase::init ( const ElemType  type = INVALID_ELEM,
unsigned int  p_level = 0,
bool  simple_type_only = false 
)
virtualinherited

Initializes the data structures for a quadrature rule for an element of type type.

Some types, such as Polygon subclasses, might require more detailed element information and so might not be compatible with this API.

New code should use the Elem-based API for most use cases, but some code may initialize quadrature rules with simple ElemType values like triangles and edges for use in tensor product or conical product constructions; this code can set the simple_type_only flag to avoid being identified as deprecated.

Definition at line 121 of file quadrature.C.

References libMesh::QBase::_dim, libMesh::QBase::_elem, libMesh::QBase::_p_level, libMesh::QBase::_type, libMesh::C0POLYGON, libMesh::C0POLYHEDRON, libMesh::EDGE2, libMesh::QBase::init_0D(), libMesh::QBase::init_1D(), libMesh::QBase::init_2D(), and libMesh::QBase::init_3D().

124 {
125  // Some element types require data from a specific element, so can
126  // only be used with newer APIs.
127  if (t == C0POLYGON || t == C0POLYHEDRON)
128  libmesh_error_msg("Code (see stack trace) used an outdated quadrature function overload.\n"
129  "Quadrature rules on a C0Polygon are not defined by its ElemType alone.");
130 
131  // This API is dangerous to use on general meshes, which may include
132  // element types where the desired quadrature depends on the
133  // physical element, but we still want to be able to initialize
134  // based on only a type for certain simple cases
135  if (t != EDGE2 && !simple_type_only)
136  libmesh_deprecated();
137 
138  // check to see if we have already
139  // done the work for this quadrature rule
140  if (t == _type && p == _p_level)
141  return;
142  else
143  {
144  _elem = nullptr;
145  _type = t;
146  _p_level = p;
147  }
148 
149  switch(_dim)
150  {
151  case 0:
152  this->init_0D();
153 
154  return;
155 
156  case 1:
157  this->init_1D();
158 
159  return;
160 
161  case 2:
162  this->init_2D();
163 
164  return;
165 
166  case 3:
167  this->init_3D();
168 
169  return;
170 
171  default:
172  libmesh_error_msg("Invalid dimension _dim = " << _dim);
173  }
174 }
virtual void init_2D()
Initializes the 2D quadrature rule by filling the points and weights vectors with the appropriate val...
Definition: quadrature.C:208
ElemType _type
The type of element for which the current values have been computed.
Definition: quadrature.h:391
unsigned int _dim
The spatial dimension of the quadrature rule.
Definition: quadrature.h:379
const Elem * _elem
The element for which the current values were computed, or nullptr if values were computed without a ...
Definition: quadrature.h:397
unsigned int _p_level
The p-level of the element for which the current values have been computed.
Definition: quadrature.h:403
virtual void init_0D()
Initializes the 0D quadrature rule by filling the points and weights vectors with the appropriate val...
Definition: quadrature.C:198
virtual void init_1D()=0
Initializes the 1D quadrature rule by filling the points and weights vectors with the appropriate val...
virtual void init_3D()
Initializes the 3D quadrature rule by filling the points and weights vectors with the appropriate val...
Definition: quadrature.C:215

◆ init() [3/4]

void libMesh::QBase::init ( const QBase other_rule)
virtualinherited

Initializes the data structures for a quadrature rule based on the element, element type, and p_level settings of other_rule.

Definition at line 178 of file quadrature.C.

References libMesh::QBase::_elem, libMesh::QBase::_p_level, libMesh::QBase::_type, and libMesh::QBase::init().

179 {
180  if (other_rule._elem)
181  this->init(*other_rule._elem, other_rule._p_level);
182  else
183  this->init(other_rule._type, other_rule._p_level, true);
184 }
virtual void init(const Elem &e, unsigned int p_level=invalid_uint)
Initializes the data structures for a quadrature rule for the element e.
Definition: quadrature.C:65

◆ init() [4/4]

void libMesh::QBase::init ( const Elem elem,
const std::vector< Real > &  vertex_distance_func,
unsigned int  p_level = 0 
)
virtualinherited

Initializes the data structures for an element potentially "cut" by a signed distance function.

The array vertex_distance_func contains vertex values of the signed distance function. If the signed distance function changes sign on the vertices, then the element is considered to be cut.) This interface can be extended by derived classes in order to subdivide the element and construct a composite quadrature rule.

Definition at line 188 of file quadrature.C.

References libMesh::QBase::init(), and libMesh::Elem::type().

191 {
192  // dispatch generic implementation
193  this->init(elem.type(), p_level);
194 }
virtual void init(const Elem &e, unsigned int p_level=invalid_uint)
Initializes the data structures for a quadrature rule for the element e.
Definition: quadrature.C:65

◆ init_0D()

void libMesh::QBase::init_0D ( )
protectedvirtualinherited

Initializes the 0D quadrature rule by filling the points and weights vectors with the appropriate values.

Generally this is just one point with weight 1.

Definition at line 198 of file quadrature.C.

References libMesh::QBase::_points, and libMesh::QBase::_weights.

Referenced by libMesh::QBase::init().

199 {
200  _points.resize(1);
201  _weights.resize(1);
202  _points[0] = Point(0.);
203  _weights[0] = 1.0;
204 }
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409
std::vector< Real > _weights
The quadrature weights.
Definition: quadrature.h:415

◆ init_1D()

void libMesh::QNodal::init_1D ( )
overrideprivatevirtual

Initializes the 1D quadrature rule by filling the points and weights vectors with the appropriate values.

The order of the rule will be defined by the implementing class. It is assumed that derived quadrature rules will at least define the init_1D function, therefore it is pure virtual.

Implements libMesh::QBase.

Definition at line 29 of file quadrature_nodal_1D.C.

References libMesh::QBase::_order, libMesh::QBase::_points, libMesh::QBase::_type, libMesh::QBase::_weights, libMesh::EDGE2, libMesh::EDGE3, libMesh::EDGE4, libMesh::Utility::enum_to_string(), libMesh::QBase::get_points(), libMesh::QBase::get_weights(), libMesh::QBase::init(), and libMesh::Real.

30 {
31  switch (_type)
32  {
33  case EDGE2:
34  {
35  // Nodal quadrature on an Edge2 is QTrap
36  QTrap rule(/*dim=*/1, /*ignored*/_order);
37  rule.init(*this);
38  _points.swap (rule.get_points());
39  _weights.swap(rule.get_weights());
40  return;
41  }
42  case EDGE3:
43  {
44  // Nodal quadrature on an Edge3 is QSimpson
45  QSimpson rule(/*dim=*/1, /*ignored*/_order);
46  rule.init(*this);
47  _points.swap (rule.get_points());
48  _weights.swap(rule.get_weights());
49  return;
50  }
51  case EDGE4:
52  {
53  // The 4-point variant of Simpson's rule. The quadrature
54  // points are in the same order as the reference element
55  // nodes.
56  _points = {Point(-1,0.,0.), Point(+1,0.,0.),
57  Point(-Real(1)/3,0.,0.), Point(Real(1)/3,0.,0.)};
58  _weights = {0.25, 0.25, 0.75, 0.75};
59  return;
60  }
61  default:
62  libmesh_error_msg("Element type not supported:" << Utility::enum_to_string(_type));
63  }
64 }
ElemType _type
The type of element for which the current values have been computed.
Definition: quadrature.h:391
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409
std::vector< Real > _weights
The quadrature weights.
Definition: quadrature.h:415
std::string enum_to_string(const T e)
Order _order
The polynomial order which the quadrature rule is capable of integrating exactly. ...
Definition: quadrature.h:385
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ init_2D()

void libMesh::QNodal::init_2D ( )
overrideprivatevirtual

Initializes the 2D quadrature rule by filling the points and weights vectors with the appropriate values.

The order of the rule will be defined by the implementing class. Should not be pure virtual since a derived quadrature rule may only be defined in 1D. If not overridden, throws an error.

Reimplemented from libMesh::QBase.

Definition at line 31 of file quadrature_nodal_2D.C.

References libMesh::QBase::_elem, libMesh::QBase::_order, libMesh::QBase::_points, libMesh::QBase::_type, libMesh::QBase::_weights, libMesh::C0POLYGON, libMesh::Utility::enum_to_string(), libMesh::QBase::get_points(), libMesh::QBase::get_weights(), libMesh::QBase::init(), libMesh::libmesh_assert(), libMesh::make_range(), libMesh::Polygon::n_sides(), libMesh::pi, libMesh::QUAD4, libMesh::QUAD8, libMesh::QUAD9, libMesh::QUADSHELL4, libMesh::QUADSHELL8, libMesh::QUADSHELL9, libMesh::Real, libMesh::TRI3, libMesh::TRI6, libMesh::TRI7, libMesh::TRISHELL3, libMesh::Elem::type(), and libMesh::MeshTools::weight().

32 {
33 #if LIBMESH_DIM > 1
34 
35  switch (_type)
36  {
37 
38  case QUAD4:
39  case QUADSHELL4:
40  case TRI3:
41  case TRISHELL3:
42  {
43  QTrap rule(/*dim=*/2, /*ignored*/_order);
44  rule.init(*this);
45  _points.swap (rule.get_points());
46  _weights.swap(rule.get_weights());
47  return;
48  }
49 
50  case QUAD8:
51  case QUADSHELL8:
52  {
53  // A rule with 8 points which is exact for linears, and
54  // naturally produces a lumped approximation to the mass
55  // matrix. The quadrature points are numbered the same way as
56  // the reference element nodes.
57  _points =
58  {
59  Point(-1,-1), Point(+1,-1), Point(+1,+1), Point(-1,+1),
60  Point(0.,-1), Point(+1,0.), Point(0.,+1), Point(-1,0.)
61  };
62 
63  // The weights for the Quad8 nodal quadrature rule are
64  // obtained from the following specific steps. Other
65  // "serendipity" type rules are obtained similarly.
66  //
67  // 1.) Due to the symmetry of the bi-unit square domain, we
68  // first note that there are only two "classes" of node in the
69  // Quad8: vertices (with associated weight wv) and edges (with
70  // associated weight we).
71  //
72  // 2.) In order for such a nodal quadrature rule to be exact
73  // for constants, the weights must sum to the area of the
74  // reference element, and therefore we must have:
75  // 4*wv + 4*we = 4 --> wv + we = 1
76  //
77  // 3.) Due to symmetry (once again), such a rule is then
78  // automatically exact for the linear polynomials "x" and "y",
79  // regardless of the values of wv and we.
80  //
81  // 4.) We therefore still have two unknowns and one equation.
82  // Attempting to additionally make the nodal quadrature rule
83  // exact for the quadratic polynomials "x^2" and "y^2" leads
84  // to a rule with negative weights, namely:
85  // wv = -1/3
86  // we = 4/3
87  // Note: these are the same values one obtains by integrating
88  // the corresponding Quad8 Lagrange basis functions over the
89  // reference element.
90  //
91  // Since the weights appear on the diagonal of the nodal
92  // quadrature rule's approximation to the mass matrix, rules
93  // with negative weights yield an indefinite mass matrix,
94  // i.e. one with both positive and negative eigenvalues. Rules
95  // with negative weights can also produce a negative integral
96  // approximation to a strictly positive integrand, which may
97  // be unacceptable in some situations.
98  //
99  // 5.) Requiring all positive weights therefore restricts the
100  // nodal quadrature rule to only be exact for linears. But
101  // there is still one free parameter remaining, and thus we
102  // need some other criterion in order to complete the
103  // description of the rule.
104  //
105  // Here, we have decided to choose the quadrature weights in
106  // such a way that the resulting nodal quadrature mass matrix
107  // approximation is "proportional" to the true mass matrix's
108  // diagonal entries for the reference element. We therefore
109  // pose the following constrained optimization problem:
110  //
111  // { min_{wv, we} |diag(M) - C*diag(W)|^2
112  // (O) {
113  // { subject to wv + we = 1
114  //
115  // where:
116  // * M is the true mass matrix
117  // * W is the nodal quadrature approximation to the mass
118  // matrix. In this particular case:
119  // diag(W) = [wv,wv,wv,wv,we,we,we,we]
120  // * C = tr(M) / vol(E) is the ratio between the trace of the
121  // true mass matrix and the volume of the reference
122  // element. For all Lagrange finite elements, we have C<1.
123  //
124  // 6.) The optimization problem (O) is solved directly by
125  // substituting the algebraic constraint into the functional
126  // which is to be minimized, then setting the derivative with
127  // respect to the remaining parameter equal to zero and
128  // solving. In the Quad8 and Hex20 cases, there is only one
129  // free parameter, while in the Prism15 case there are two
130  // free parameters, so a 2x2 system of linear equations must
131  // be solved.
132  Real wv = Real(12) / 79;
133  Real we = Real(67) / 79;
134 
135  _weights = {wv, wv, wv, wv, we, we, we, we};
136 
137  return;
138  }
139 
140  case QUAD9:
141  case QUADSHELL9:
142  case TRI6:
143  {
144  QSimpson rule(/*dim=*/2, /*ignored*/_order);
145  rule.init(*this);
146  _points.swap (rule.get_points());
147  _weights.swap(rule.get_weights());
148  return;
149  }
150 
151  case TRI7:
152  {
153  // We can't exactly represent cubics with only seven nodes,
154  // but with w_i = integral(phi_i) for Lagrange shape functions
155  // phi_i, we not only get exact integrals of every Lagrange
156  // shape function, including the cubic bubble, we also get
157  // exact integrals of the rest of P^3 too.
158  _points =
159  {
160  Point(0.,0.), Point(+1,0.), Point(0.,+1), Point(.5,0.),
161  Point(.5,.5), Point(0.,.5), Point(1/Real(3),1/Real(3))
162  };
163 
164  Real wv = Real(1)/40;
165  Real we = Real(1)/15;
166  _weights = {wv, wv, wv, we, we, we, Real(9)/40};
167  return;
168  }
169 
170  //---------------------------------------------
171  // Arbitrary polygon quadrature rules
172  case C0POLYGON:
173  {
174  // C0Polygon requires the newer Quadrature API
175  if (!_elem)
176  libmesh_error();
177 
179 
180  const C0Polygon & poly = *cast_ptr<const C0Polygon *>(_elem);
181 
182  const unsigned int ns = poly.n_sides();
183  const Real pi_over_ns = libMesh::pi / ns;
184  const Real master_poly_area = ns * 0.25 / tan(pi_over_ns);
185 
186  const unsigned int nn = poly.n_nodes();
187  const Real weight = master_poly_area / nn;
188  _weights.resize(nn, weight);
189 
190  _points.resize(poly.n_nodes());
191  for (auto n : make_range(nn))
192  _points[n] = poly.master_point(n);
193 
194  return;
195  }
196 
197  default:
198  libmesh_error_msg("Element type not supported!:" << Utility::enum_to_string(_type));
199  }
200 #endif
201 }
ElemType _type
The type of element for which the current values have been computed.
Definition: quadrature.h:391
const Elem * _elem
The element for which the current values were computed, or nullptr if values were computed without a ...
Definition: quadrature.h:397
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409
std::vector< Real > _weights
The quadrature weights.
Definition: quadrature.h:415
dof_id_type weight(const MeshBase &mesh, const processor_id_type pid)
Definition: mesh_tools.C:437
libmesh_assert(ctx)
std::string enum_to_string(const T e)
Order _order
The polynomial order which the quadrature rule is capable of integrating exactly. ...
Definition: quadrature.h:385
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:140
virtual ElemType type() const =0
const Real pi
.
Definition: libmesh.h:299

◆ init_3D()

void libMesh::QNodal::init_3D ( )
overrideprivatevirtual

Initializes the 3D quadrature rule by filling the points and weights vectors with the appropriate values.

The order of the rule will be defined by the implementing class. Should not be pure virtual since a derived quadrature rule may only be defined in 1D. If not overridden, throws an error.

Reimplemented from libMesh::QBase.

Definition at line 30 of file quadrature_nodal_3D.C.

References libMesh::QBase::_elem, libMesh::QBase::_order, libMesh::QBase::_points, libMesh::QBase::_type, libMesh::QBase::_weights, libMesh::QBase::allow_nodal_pyramid_quadrature, libMesh::C0POLYHEDRON, libMesh::Utility::enum_to_string(), libMesh::QBase::get_points(), libMesh::QBase::get_weights(), libMesh::HEX20, libMesh::HEX27, libMesh::HEX8, libMesh::QBase::init(), libMesh::libmesh_assert(), libMesh::make_range(), libMesh::PRISM15, libMesh::PRISM18, libMesh::PRISM20, libMesh::PRISM21, libMesh::PRISM6, libMesh::PYRAMID13, libMesh::PYRAMID14, libMesh::PYRAMID18, libMesh::PYRAMID5, libMesh::Real, libMesh::TET10, libMesh::TET14, libMesh::TET4, libMesh::Elem::type(), libMesh::Elem::volume(), and libMesh::MeshTools::weight().

31 {
32 #if LIBMESH_DIM == 3
33 
34  switch (_type)
35  {
36  case TET4:
37  case PRISM6:
38  case HEX8:
39  case PYRAMID5:
40  {
41  // Construct QTrap rule that matches our own nodal pyramid quadrature permissions
42  QTrap rule(/*dim=*/3, /*ignored*/_order);
43  rule.allow_nodal_pyramid_quadrature = this->allow_nodal_pyramid_quadrature;
44  rule.init(*this);
45  _points.swap (rule.get_points());
46  _weights.swap(rule.get_weights());
47  return;
48  }
49 
50  case PRISM15:
51  {
52  // A rule with 15 points which is exact for linears, and
53  // naturally produces a lumped approximation to the mass
54  // matrix. The quadrature points are numbered the same way as
55  // the reference element nodes.
56  _points =
57  {
58  Point(0.,0.,-1), Point(+1,0.,-1), Point(0.,+1,-1),
59  Point(0.,0.,+1), Point(+1,0.,+1), Point(0.,+1,+1),
60  Point(.5,0.,-1), Point(.5,.5,-1), Point(0.,.5,-1),
61  Point(0.,0.,0.), Point(+1,0.,0.), Point(0.,+1,0.),
62  Point(.5,0.,+1), Point(.5,.5,+1), Point(0.,.5,+1),
63  };
64 
65  // vertex (wv), tri edge (wt), and quad edge (wq) weights are
66  // obtained using the same approach that was used for the Quad8,
67  // see quadrature_nodal_2D.C for details.
68  Real wv = Real(1) / 34;
69  Real wt = Real(4) / 51;
70  Real wq = Real(2) / 17;
71 
72  _weights = {wv, wv, wv, wv, wv, wv,
73  wt, wt, wt,
74  wq, wq, wq,
75  wt, wt, wt};
76 
77  return;
78  }
79 
80  case HEX20:
81  {
82  // A rule with 20 points which is exact for linears, and
83  // naturally produces a lumped approximation to the mass
84  // matrix. The quadrature points are numbered the same way as
85  // the reference element nodes.
86  _points =
87  {
88  Point(-1,-1,-1), Point(+1,-1,-1), Point(+1,+1,-1), Point(-1,+1,-1),
89  Point(-1,-1,+1), Point(+1,-1,+1), Point(+1,+1,+1), Point(-1,+1,+1),
90  Point(0.,-1,-1), Point(+1,0.,-1), Point(0.,+1,-1), Point(-1,0.,-1),
91  Point(-1,-1,0.), Point(+1,-1,0.), Point(+1,+1,0.), Point(-1,+1,0.),
92  Point(0.,-1,+1), Point(+1,0.,+1), Point(0.,+1,+1), Point(-1,0.,+1)
93  };
94 
95  // vertex (wv), and edge (we) weights are obtained using the
96  // same approach that was used for the Quad8, see
97  // quadrature_nodal_2D.C for details.
98  Real wv = Real(7) / 31;
99  Real we = Real(16) / 31;
100 
101  _weights = {wv, wv, wv, wv, wv, wv, wv, wv,
102  we, we, we, we, we, we, we, we, we, we, we, we};
103 
104  return;
105  }
106 
107  case TET10:
108  case PRISM18:
109  case HEX27:
110  case PYRAMID13:
111  case PYRAMID14:
112  {
113  // Construct QSimpson rule that matches our own nodal pyramid quadrature permissions
114  QSimpson rule(/*dim=*/3, /*ignored*/_order);
115  rule.allow_nodal_pyramid_quadrature = this->allow_nodal_pyramid_quadrature;
116  rule.init(*this);
117  _points.swap (rule.get_points());
118  _weights.swap(rule.get_weights());
119 
120  // We can't do a proper Simpson rule for pyramids regardless
121  if (_type == PYRAMID13)
122  {
123  _points.resize(13);
124  _weights.resize(13);
125  }
126 
127  return;
128  }
129 
130  case PRISM20:
131  {
132  _points =
133  {
134  Point(0.,0.,-1), Point(+1,0.,-1), Point(0.,+1,-1),
135  Point(0.,0.,+1), Point(+1,0.,+1), Point(0.,+1,+1),
136  Point(.5,0.,-1), Point(.5,.5,-1), Point(0.,.5,-1),
137  Point(0.,0.,0.), Point(+1,0.,0.), Point(0.,+1,0.),
138  Point(.5,0.,+1), Point(.5,.5,+1), Point(0.,.5,+1),
139  Point(.5,0.,0.), Point(.5,.5,0.), Point(0.,.5,0.),
140  Point(1/Real(3),1/Real(3),-1), Point(1/Real(3),1/Real(3),+1)
141  };
142 
143  // Symmetry gives us identical weights on vertices, triangle
144  // edges, square edges, triangle faces, square faces; then we
145  // have the midnode. Solving for weights which exactly
146  // integrate cubics and xi^2*zeta^2 would give a unique answer
147  // ... with wse=0 and wte<0. See Quad8 in
148  // quadrature_nodal_2D.C for discussion of this problem.
149  //
150  // Dropping the xi^2 zeta^2 constraint gives us a rank-1 null
151  // space to play with ... but adding anything from that null
152  // space to push wte closer to positive just pushes wse
153  // negative.
154  //
155  // Dropping exact integration of xi^3 type terms gives us a
156  // rank-2 null space. I just found the max(min(weight)) from
157  // that solution space using Octave. Someone who cares more
158  // than me might want to repeat this exercise with better than
159  // double precision...
160 
161  constexpr Real wv = 8.546754839782711e-03;
162  constexpr Real wte = 8.548403936750599e-03;
163  constexpr Real wse = wv; // here's our min(weight) constraint...
164  constexpr Real wtf = 1.153811903370667e-01;
165  constexpr Real wsf = 2.136754673824396e-01;
166 
167  _weights = {wv, wv, wv, wv, wv, wv,
168  wte, wte, wte, wse, wse, wse, wte, wte, wte,
169  wsf, wsf, wsf, wtf, wtf};
170 
171  return;
172  }
173 
174  case PRISM21:
175  {
176  _points =
177  {
178  Point(0.,0.,-1), Point(+1,0.,-1), Point(0.,+1,-1),
179  Point(0.,0.,+1), Point(+1,0.,+1), Point(0.,+1,+1),
180  Point(.5,0.,-1), Point(.5,.5,-1), Point(0.,.5,-1),
181  Point(0.,0.,0.), Point(+1,0.,0.), Point(0.,+1,0.),
182  Point(.5,0.,+1), Point(.5,.5,+1), Point(0.,.5,+1),
183  Point(.5,0.,0.), Point(.5,.5,0.), Point(0.,.5,0.),
184  Point(1/Real(3),1/Real(3),-1), Point(1/Real(3),1/Real(3),+1),
185  Point(1/Real(3),1/Real(3),0.)
186  };
187 
188  // Symmetry gives us identical weights on vertices, triangle
189  // edges, square edges, triangle faces, square faces; then we
190  // have the midnode. Solving for weights which exactly
191  // integrate cubics, xi^2*zeta^2, and xi^3*zeta^2, gives a
192  // unique answer:
193  constexpr Real wv = Real(1)/120;
194  constexpr Real wte = Real(1)/45;
195  constexpr Real wse = Real(1)/30;
196  constexpr Real wtf = Real(3)/40;
197  constexpr Real wsf = Real(4)/45;
198 
199  _weights = {wv, wv, wv, wv, wv, wv,
200  wte, wte, wte, wse, wse, wse, wte, wte, wte,
201  wsf, wsf, wsf, wtf, wtf, Real(3)/10};
202 
203  return;
204  }
205 
206  case PYRAMID18:
207  {
208  libmesh_error_msg_if(!allow_nodal_pyramid_quadrature,
209  "Nodal quadrature on Pyramid elements is not allowed by default since\n"
210  "the Jacobian of the inverse element map is not well-defined at the Pyramid apex.\n"
211  "Set the QBase::allow_nodal_pyramid_quadrature flag to true to ignore skip this check.");
212 
213  _points =
214  {
215  Point(-1,-1,0.), Point(+1,-1,0.), Point(+1,+1,0.),
216  Point(-1,+1,0.), Point(0.,0.,+1), Point(0.,-1,0.),
217  Point(+1,0.,0.), Point(0.,+1,0.), Point(-1,0.,0.),
218  Point(-.5,-.5,.5), Point(-.5,.5,.5), Point(.5,.5,.5),
219  Point(-.5,.5,.5), Point(0.,0.,0.), Point(0.,-2/Real(3),1/Real(3)),
220  Point(2/Real(3),0.,1/Real(3)), Point(0.,2/Real(3),1/Real(3)),
221  Point(-2/Real(3),0.,1/Real(3))
222  };
223 
224  // Even with triangle faces to play with, I can't seem to get
225  // exact integrals of any higher order functions without
226  // negative weights. So I punt and just use QTrap weights.
227  _weights = {1/Real(4), 1/Real(4), 1/Real(4), 1/Real(4), 1/Real(3),
228  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
229 
230  return;
231  }
232 
233  case TET14:
234  {
235  _points.resize(14);
236  _weights.resize(14);
237 
238  _points[0](0) = 0.; _points[5](0) = .5;
239  _points[0](1) = 0.; _points[5](1) = .5;
240  _points[0](2) = 0.; _points[5](2) = 0.;
241 
242  _points[1](0) = 1.; _points[6](0) = 0.;
243  _points[1](1) = 0.; _points[6](1) = .5;
244  _points[1](2) = 0.; _points[6](2) = 0.;
245 
246  _points[2](0) = 0.; _points[7](0) = 0.;
247  _points[2](1) = 1.; _points[7](1) = 0.;
248  _points[2](2) = 0.; _points[7](2) = .5;
249 
250  _points[3](0) = 0.; _points[8](0) = .5;
251  _points[3](1) = 0.; _points[8](1) = 0.;
252  _points[3](2) = 1.; _points[8](2) = .5;
253 
254  _points[4](0) = .5; _points[9](0) = 0.;
255  _points[4](1) = 0.; _points[9](1) = .5;
256  _points[4](2) = 0.; _points[9](2) = .5;
257 
258 
259  _points[10](0) = 1/Real(3); _points[11](0) = 1/Real(3);
260  _points[10](1) = 1/Real(3); _points[11](1) = 0.;
261  _points[10](2) = 0.; _points[11](2) = 1/Real(3);
262 
263  _points[12](0) = 1/Real(3); _points[13](0) = 0.;
264  _points[12](1) = 1/Real(3); _points[13](1) = 1/Real(3);
265  _points[12](2) = 1/Real(3); _points[13](2) = 1/Real(3);
266 
267  // RHS:
268  //
269  // The ``optimal'' nodal quadrature here, the one that
270  // integrates every Lagrange polynomial on these nodes
271  // exactly, produces an indefinite mass matrix ...
272  //
273  // const Real wv = 1/Real(240);
274  // const Real we = 0;
275  // const Real wf = 3/Real(80);
276 
277  // We could average that with our Tet10 rule and get:
278  //
279  // const Real wv = (1/Real(240)+1/Real(192))/2;
280  // const Real we = Real(14)/576/2;
281  // const Real wf = 3/Real(80)/2;
282  //
283  // Except our Tet10 rule won't actually exactly integrate
284  // quadratics! (exactly integrating quadratics wouldn't even
285  // have given a positive semidefinite mass matrix there...)
286  //
287  // John derived equations for wv and we based on symmetry and
288  // the requirement to exactly integrate quadratics; within
289  // those constraints we might pick the wf that maximizes the
290  // minimum nodal weight:
291  // const Real wf = Real(15)/440;
292  // const Real wv = -1/Real(120) + wf/3;
293  // const Real we = 1/Real(30) - wf*(Real(8)/9);
294  //
295  // But John also did the same clever optimization trick that
296  // quadrature_nodal_2D.C discusses in the context of Quad8 and
297  // Hex20 outputs, and for Tet14 that gives us:
298  const Real wv = Real(87)/47120;
299  const Real we = Real(164)/26505;
300  const Real wf = Real(1439)/47120;
301 
302  _weights = {wv, wv, wv, wv, we, we, we, we, we, we, wf, wf, wf, wf};
303  return;
304  }
305 
306  //---------------------------------------------
307  // Arbitrary polygon quadrature rules
308  case C0POLYHEDRON:
309  {
310  // Polyhedra require the newer Quadrature API
311  if (!_elem)
312  libmesh_error();
313 
315 
316  const C0Polyhedron & poly = *cast_ptr<const C0Polyhedron *>(_elem);
317 
318  const Real master_poly_volume = _elem->volume();
319 
320  // For polyhedra the master element is the physical element.
321  //
322  // Using even weights is not the most effective nodal rule for
323  // that case, but users who want an effective rule probably
324  // want a non-nodal rule anyway.
325  const unsigned int nn = poly.n_nodes();
326  const Real weight = master_poly_volume / nn;
327  _weights.resize(nn, weight);
328 
329  _points.resize(poly.n_nodes());
330  for (auto n : make_range(nn))
331  _points[n] = poly.master_point(n);
332 
333  return;
334  }
335 
336 
337  default:
338  libmesh_error_msg("ERROR: Unsupported type: " << Utility::enum_to_string(_type));
339  }
340 #endif
341 }
ElemType _type
The type of element for which the current values have been computed.
Definition: quadrature.h:391
const Elem * _elem
The element for which the current values were computed, or nullptr if values were computed without a ...
Definition: quadrature.h:397
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409
std::vector< Real > _weights
The quadrature weights.
Definition: quadrature.h:415
dof_id_type weight(const MeshBase &mesh, const processor_id_type pid)
Definition: mesh_tools.C:437
libmesh_assert(ctx)
std::string enum_to_string(const T e)
Order _order
The polynomial order which the quadrature rule is capable of integrating exactly. ...
Definition: quadrature.h:385
bool allow_nodal_pyramid_quadrature
The flag&#39;s value defaults to false so that one does not accidentally use a nodal quadrature rule on P...
Definition: quadrature.h:314
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual Real volume() const
Definition: elem.C:3429
IntRange< T > make_range(T beg, T end)
The 2-parameter make_range() helper function returns an IntRange<T> when both input parameters are of...
Definition: int_range.h:140
virtual ElemType type() const =0

◆ n_objects()

static unsigned int libMesh::ReferenceCounter::n_objects ( )
inlinestaticinherited

Prints the number of outstanding (created, but not yet destroyed) objects.

Definition at line 85 of file reference_counter.h.

References libMesh::ReferenceCounter::_n_objects.

Referenced by libMesh::LibMeshInit::~LibMeshInit().

86  { return _n_objects; }
static Threads::atomic< unsigned int > _n_objects
The number of objects.

◆ n_points()

unsigned int libMesh::QBase::n_points ( ) const
inlineinherited
Returns
The number of points associated with the quadrature rule.

Definition at line 131 of file quadrature.h.

References libMesh::QBase::_points, and libMesh::libmesh_assert().

Referenced by libMesh::ExactSolution::_compute_error(), assemble(), assemble_1D(), assemble_ellipticdg(), assemble_helmholtz(), assemble_poisson(), assemble_shell(), assemble_wave(), assembly_with_dg_fem_context(), AssemblyA0::boundary_assembly(), AssemblyA1::boundary_assembly(), AssemblyF0::boundary_assembly(), AssemblyF1::boundary_assembly(), AssemblyA2::boundary_assembly(), AssemblyF2::boundary_assembly(), A2::boundary_assembly(), A3::boundary_assembly(), F0::boundary_assembly(), Output0::boundary_assembly(), compute_enriched_soln(), libMesh::FirstOrderUnsteadySolver::compute_second_order_eqns(), libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::HDGProblem::create_identity_jacobian(), libMesh::HDGProblem::create_identity_residual(), SecondOrderScalarSystemSecondOrderTimeSolverBase::damping_residual(), SecondOrderScalarSystemFirstOrderTimeSolverBase::damping_residual(), NavierSystem::element_constraint(), CoupledSystem::element_constraint(), PoissonSystem::element_postprocess(), LaplaceSystem::element_postprocess(), LaplaceQoI::element_qoi(), HeatSystem::element_qoi(), LaplaceQoI::element_qoi_derivative(), LaplaceSystem::element_qoi_derivative(), HeatSystem::element_qoi_derivative(), NavierSystem::element_time_derivative(), SolidSystem::element_time_derivative(), PoissonSystem::element_time_derivative(), LaplaceSystem::element_time_derivative(), CurlCurlSystem::element_time_derivative(), ElasticitySystem::element_time_derivative(), CoupledSystem::element_time_derivative(), HilbertSystem::element_time_derivative(), HeatSystem::element_time_derivative(), FirstOrderScalarSystemBase::element_time_derivative(), SecondOrderScalarSystemFirstOrderTimeSolverBase::element_time_derivative(), fe_assembly(), A0::interior_assembly(), B::interior_assembly(), M0::interior_assembly(), A1::interior_assembly(), AssemblyA0::interior_assembly(), AcousticsInnerProduct::interior_assembly(), AssemblyA1::interior_assembly(), A2::interior_assembly(), AssemblyA2::interior_assembly(), F0::interior_assembly(), OutputAssembly::interior_assembly(), EIM_IP_assembly::interior_assembly(), EIM_F::interior_assembly(), AssemblyEIM::interior_assembly(), InnerProductAssembly::interior_assembly(), AssemblyF0::interior_assembly(), AssemblyF1::interior_assembly(), Ex6InnerProduct::interior_assembly(), LaplaceYoung::jacobian(), NavierSystem::mass_residual(), ElasticitySystem::mass_residual(), libMesh::FEMPhysics::mass_residual(), FirstOrderScalarSystemBase::mass_residual(), SecondOrderScalarSystemSecondOrderTimeSolverBase::mass_residual(), SecondOrderScalarSystemFirstOrderTimeSolverBase::mass_residual(), libMesh::FEAbstract::n_quadrature_points(), libMesh::QBase::print_info(), LaplaceYoung::residual(), LaplaceSystem::side_constraint(), LaplaceSystem::side_postprocess(), CoupledSystemQoI::side_qoi(), CoupledSystemQoI::side_qoi_derivative(), LaplaceSystem::side_qoi_derivative(), SolidSystem::side_time_derivative(), CurlCurlSystem::side_time_derivative(), ElasticitySystem::side_time_derivative(), libMesh::QBase::size(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), libMesh::QBase::tensor_product_quad(), and QuadratureTest::testPolynomial().

132  {
133  libmesh_assert (!_points.empty());
134  return cast_int<unsigned int>(_points.size());
135  }
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409
libmesh_assert(ctx)

◆ operator=() [1/2]

QNodal& libMesh::QNodal::operator= ( const QNodal )
default

◆ operator=() [2/2]

QNodal& libMesh::QNodal::operator= ( QNodal &&  )
default

◆ print_info() [1/2]

void libMesh::ReferenceCounter::print_info ( std::ostream &  out_stream = libMesh::out)
staticinherited

Prints the reference information, by default to libMesh::out.

Definition at line 81 of file reference_counter.C.

References libMesh::ReferenceCounter::_enable_print_counter, and libMesh::ReferenceCounter::get_info().

Referenced by libMesh::LibMeshInit::~LibMeshInit().

82 {
84  out_stream << ReferenceCounter::get_info();
85 }
static std::string get_info()
Gets a string containing the reference information.
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called...

◆ print_info() [2/2]

void libMesh::QBase::print_info ( std::ostream &  os = libMesh::out) const
inherited

Prints information relevant to the quadrature rule, by default to libMesh::out.

Definition at line 43 of file quadrature.C.

References libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::index_range(), libMesh::libmesh_assert(), libMesh::QBase::n_points(), and libMesh::Real.

Referenced by libMesh::operator<<().

44 {
45  libmesh_assert(!_points.empty());
46  libmesh_assert(!_weights.empty());
47 
48  Real summed_weights=0;
49  os << "N_Q_Points=" << this->n_points() << std::endl << std::endl;
50  for (auto qpoint: index_range(_points))
51  {
52  os << " Point " << qpoint << ":\n"
53  << " "
54  << _points[qpoint]
55  << "\n Weight:\n "
56  << " w=" << _weights[qpoint] << "\n" << std::endl;
57 
58  summed_weights += _weights[qpoint];
59  }
60  os << "Summed Weights: " << summed_weights << std::endl;
61 }
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409
std::vector< Real > _weights
The quadrature weights.
Definition: quadrature.h:415
libmesh_assert(ctx)
unsigned int n_points() const
Definition: quadrature.h:131
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
auto index_range(const T &sizable)
Helper function that returns an IntRange<std::size_t> representing all the indices of the passed-in v...
Definition: int_range.h:117

◆ qp()

Point libMesh::QBase::qp ( const unsigned int  i) const
inlineinherited
Returns
The \( i^{th} \) quadrature point in reference element space.

Definition at line 179 of file quadrature.h.

References libMesh::QBase::_points.

Referenced by libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), libMesh::QBase::tensor_product_quad(), and QuadratureTest::testPolynomial().

180  {
181  libmesh_assert_less (i, _points.size());
182  return _points[i];
183  }
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409

◆ scale()

void libMesh::QBase::scale ( std::pair< Real, Real old_range,
std::pair< Real, Real new_range 
)
inherited

Maps the points of a 1D quadrature rule defined by "old_range" to another 1D interval defined by "new_range" and scales the weights accordingly.

Definition at line 222 of file quadrature.C.

References libMesh::QBase::_dim, libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::index_range(), and libMesh::Real.

Referenced by libMesh::QConical::conical_product_tet(), and libMesh::QConical::conical_product_tri().

224 {
225  // Make sure we are in 1D
226  libmesh_assert_equal_to (_dim, 1);
227 
228  Real
229  h_new = new_range.second - new_range.first,
230  h_old = old_range.second - old_range.first;
231 
232  // Make sure that we have sane ranges
233  libmesh_assert_greater (h_new, 0.);
234  libmesh_assert_greater (h_old, 0.);
235 
236  // Make sure there are some points
237  libmesh_assert_greater (_points.size(), 0);
238 
239  // Compute the scale factor
240  Real scfact = h_new/h_old;
241 
242  // We're mapping from old_range -> new_range
243  for (auto i : index_range(_points))
244  {
245  _points[i](0) = new_range.first +
246  (_points[i](0) - old_range.first) * scfact;
247 
248  // Scale the weights
249  _weights[i] *= scfact;
250  }
251 }
unsigned int _dim
The spatial dimension of the quadrature rule.
Definition: quadrature.h:379
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409
std::vector< Real > _weights
The quadrature weights.
Definition: quadrature.h:415
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
auto index_range(const T &sizable)
Helper function that returns an IntRange<std::size_t> representing all the indices of the passed-in v...
Definition: int_range.h:117

◆ shapes_need_reinit()

virtual bool libMesh::QBase::shapes_need_reinit ( )
inlinevirtualinherited
Returns
true if the shape functions need to be recalculated, false otherwise.

This may be required if the number of quadrature points or their position changes.

Definition at line 286 of file quadrature.h.

286 { return false; }

◆ size()

unsigned int libMesh::QBase::size ( ) const
inlineinherited

Alias for n_points() to enable use in index_range.

Returns
The number of points associated with the quadrature rule.

Definition at line 142 of file quadrature.h.

References libMesh::QBase::n_points().

Referenced by libMesh::Elem::true_centroid().

143  {
144  return n_points();
145  }
unsigned int n_points() const
Definition: quadrature.h:131

◆ tensor_product_hex()

void libMesh::QBase::tensor_product_hex ( const QBase q1D)
protectedinherited

Computes the tensor product quadrature rule [q1D x q1D x q1D] from the 1D rule q1D.

Used in the init_3D routines for hexahedral element types.

Definition at line 283 of file quadrature.C.

References libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::n_points(), libMesh::QBase::qp(), and libMesh::QBase::w().

Referenced by libMesh::QGaussLobatto::init_3D(), libMesh::QTrap::init_3D(), libMesh::QGauss::init_3D(), libMesh::QSimpson::init_3D(), and libMesh::QGrid::init_3D().

284 {
285  const unsigned int np = q1D.n_points();
286 
287  _points.resize(np * np * np);
288 
289  _weights.resize(np * np * np);
290 
291  unsigned int q=0;
292 
293  for (unsigned int k=0; k<np; k++)
294  for (unsigned int j=0; j<np; j++)
295  for (unsigned int i=0; i<np; i++)
296  {
297  _points[q](0) = q1D.qp(i)(0);
298  _points[q](1) = q1D.qp(j)(0);
299  _points[q](2) = q1D.qp(k)(0);
300 
301  _weights[q] = q1D.w(i) * q1D.w(j) * q1D.w(k);
302 
303  q++;
304  }
305 }
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409
std::vector< Real > _weights
The quadrature weights.
Definition: quadrature.h:415

◆ tensor_product_prism()

void libMesh::QBase::tensor_product_prism ( const QBase q1D,
const QBase q2D 
)
protectedinherited

Computes the tensor product of a 1D quadrature rule and a 2D quadrature rule.

Used in the init_3D routines for prismatic element types.

Definition at line 310 of file quadrature.C.

References libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::n_points(), libMesh::QBase::qp(), and libMesh::QBase::w().

Referenced by libMesh::QGauss::init_3D(), libMesh::QTrap::init_3D(), libMesh::QSimpson::init_3D(), and libMesh::QGrid::init_3D().

311 {
312  const unsigned int n_points1D = q1D.n_points();
313  const unsigned int n_points2D = q2D.n_points();
314 
315  _points.resize (n_points1D * n_points2D);
316  _weights.resize (n_points1D * n_points2D);
317 
318  unsigned int q=0;
319 
320  for (unsigned int j=0; j<n_points1D; j++)
321  for (unsigned int i=0; i<n_points2D; i++)
322  {
323  _points[q](0) = q2D.qp(i)(0);
324  _points[q](1) = q2D.qp(i)(1);
325  _points[q](2) = q1D.qp(j)(0);
326 
327  _weights[q] = q2D.w(i) * q1D.w(j);
328 
329  q++;
330  }
331 
332 }
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409
std::vector< Real > _weights
The quadrature weights.
Definition: quadrature.h:415

◆ tensor_product_quad()

void libMesh::QBase::tensor_product_quad ( const QBase q1D)
protectedinherited

Constructs a 2D rule from the tensor product of q1D with itself.

Used in the init_2D() routines for quadrilateral element types.

Definition at line 256 of file quadrature.C.

References libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::n_points(), libMesh::QBase::qp(), and libMesh::QBase::w().

Referenced by libMesh::QGaussLobatto::init_2D(), libMesh::QTrap::init_2D(), libMesh::QGauss::init_2D(), libMesh::QSimpson::init_2D(), and libMesh::QGrid::init_2D().

257 {
258 
259  const unsigned int np = q1D.n_points();
260 
261  _points.resize(np * np);
262 
263  _weights.resize(np * np);
264 
265  unsigned int q=0;
266 
267  for (unsigned int j=0; j<np; j++)
268  for (unsigned int i=0; i<np; i++)
269  {
270  _points[q](0) = q1D.qp(i)(0);
271  _points[q](1) = q1D.qp(j)(0);
272 
273  _weights[q] = q1D.w(i)*q1D.w(j);
274 
275  q++;
276  }
277 }
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409
std::vector< Real > _weights
The quadrature weights.
Definition: quadrature.h:415

◆ type()

QuadratureType libMesh::QNodal::type ( ) const
overridevirtual
Returns
QNODAL.

Implements libMesh::QBase.

Definition at line 26 of file quadrature_nodal.C.

References libMesh::QNODAL.

27 {
28  return QNODAL;
29 }

◆ w()

Real libMesh::QBase::w ( const unsigned int  i) const
inlineinherited
Returns
The \( i^{th} \) quadrature weight.

Definition at line 188 of file quadrature.h.

References libMesh::QBase::_weights.

Referenced by libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), libMesh::QBase::tensor_product_quad(), and QuadratureTest::testPolynomial().

189  {
190  libmesh_assert_less (i, _weights.size());
191  return _weights[i];
192  }
std::vector< Real > _weights
The quadrature weights.
Definition: quadrature.h:415

Member Data Documentation

◆ _counts

ReferenceCounter::Counts libMesh::ReferenceCounter::_counts
staticprotectedinherited

Actually holds the data.

Definition at line 124 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::get_info().

◆ _dim

unsigned int libMesh::QBase::_dim
protectedinherited

◆ _elem

const Elem* libMesh::QBase::_elem
protectedinherited

The element for which the current values were computed, or nullptr if values were computed without a specific element.

Definition at line 397 of file quadrature.h.

Referenced by libMesh::QBase::init(), libMesh::QGauss::init_2D(), init_2D(), libMesh::QGauss::init_3D(), and init_3D().

◆ _enable_print_counter

bool libMesh::ReferenceCounter::_enable_print_counter = true
staticprotectedinherited

Flag to control whether reference count information is printed when print_info is called.

Definition at line 143 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::disable_print_counter_info(), libMesh::ReferenceCounter::enable_print_counter_info(), and libMesh::ReferenceCounter::print_info().

◆ _mutex

Threads::spin_mutex libMesh::ReferenceCounter::_mutex
staticprotectedinherited

Mutual exclusion object to enable thread-safe reference counting.

Definition at line 137 of file reference_counter.h.

◆ _n_objects

Threads::atomic< unsigned int > libMesh::ReferenceCounter::_n_objects
staticprotectedinherited

The number of objects.

Print the reference count information when the number returns to 0.

Definition at line 132 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::n_objects(), libMesh::ReferenceCounter::ReferenceCounter(), and libMesh::ReferenceCounter::~ReferenceCounter().

◆ _order

Order libMesh::QBase::_order
protectedinherited

◆ _p_level

unsigned int libMesh::QBase::_p_level
protectedinherited

◆ _points

std::vector<Point> libMesh::QBase::_points
protectedinherited

The locations of the quadrature points in reference element space.

Definition at line 409 of file quadrature.h.

Referenced by libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QGauss::dunavant_rule(), libMesh::QGauss::dunavant_rule2(), libMesh::QBase::get_points(), libMesh::QGrundmann_Moller::gm_rule(), libMesh::QBase::init_0D(), libMesh::QGaussLobatto::init_1D(), libMesh::QClough::init_1D(), libMesh::QGauss::init_1D(), libMesh::QSimpson::init_1D(), libMesh::QTrap::init_1D(), libMesh::QGrid::init_1D(), libMesh::QConical::init_1D(), init_1D(), libMesh::QJacobi::init_1D(), libMesh::QMonomial::init_1D(), libMesh::QGrundmann_Moller::init_1D(), libMesh::QGaussLobatto::init_2D(), libMesh::QClough::init_2D(), libMesh::QGauss::init_2D(), libMesh::QSimpson::init_2D(), libMesh::QTrap::init_2D(), libMesh::QGrid::init_2D(), init_2D(), libMesh::QMonomial::init_2D(), libMesh::QGaussLobatto::init_3D(), libMesh::QSimpson::init_3D(), libMesh::QGauss::init_3D(), libMesh::QTrap::init_3D(), libMesh::QGrid::init_3D(), init_3D(), libMesh::QMonomial::init_3D(), libMesh::QGrundmann_Moller::init_3D(), libMesh::QGauss::keast_rule(), libMesh::QMonomial::kim_rule(), libMesh::QBase::n_points(), libMesh::QBase::print_info(), libMesh::QBase::qp(), libMesh::QBase::scale(), libMesh::QMonomial::stroud_rule(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), libMesh::QBase::tensor_product_quad(), and libMesh::QMonomial::wissmann_rule().

◆ _type

ElemType libMesh::QBase::_type
protectedinherited

◆ _weights

std::vector<Real> libMesh::QBase::_weights
protectedinherited

The quadrature weights.

The order of the weights matches the ordering of the _points vector.

Definition at line 415 of file quadrature.h.

Referenced by libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QGauss::dunavant_rule(), libMesh::QGauss::dunavant_rule2(), libMesh::QBase::get_weights(), libMesh::QGrundmann_Moller::gm_rule(), libMesh::QBase::init_0D(), libMesh::QGaussLobatto::init_1D(), libMesh::QClough::init_1D(), libMesh::QGauss::init_1D(), libMesh::QSimpson::init_1D(), libMesh::QTrap::init_1D(), libMesh::QGrid::init_1D(), libMesh::QConical::init_1D(), init_1D(), libMesh::QJacobi::init_1D(), libMesh::QMonomial::init_1D(), libMesh::QGrundmann_Moller::init_1D(), libMesh::QGaussLobatto::init_2D(), libMesh::QClough::init_2D(), libMesh::QGauss::init_2D(), libMesh::QTrap::init_2D(), libMesh::QSimpson::init_2D(), libMesh::QGrid::init_2D(), init_2D(), libMesh::QMonomial::init_2D(), libMesh::QGaussLobatto::init_3D(), libMesh::QSimpson::init_3D(), libMesh::QGauss::init_3D(), libMesh::QTrap::init_3D(), libMesh::QGrid::init_3D(), init_3D(), libMesh::QMonomial::init_3D(), libMesh::QGrundmann_Moller::init_3D(), libMesh::QGauss::keast_rule(), libMesh::QMonomial::kim_rule(), libMesh::QBase::print_info(), libMesh::QBase::scale(), libMesh::QMonomial::stroud_rule(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), libMesh::QBase::tensor_product_quad(), libMesh::QBase::w(), and libMesh::QMonomial::wissmann_rule().

◆ allow_nodal_pyramid_quadrature

bool libMesh::QBase::allow_nodal_pyramid_quadrature
inherited

The flag's value defaults to false so that one does not accidentally use a nodal quadrature rule on Pyramid elements, since evaluating the inverse element Jacobian (e.g.

dphi) is not well-defined at the Pyramid apex because the element Jacobian is zero there.

We do not want to completely prevent someone from using a nodal quadrature rule on Pyramids, however, since there are legitimate use cases (lumped mass matrix) so the flag can be set to true to override this behavior.

Definition at line 314 of file quadrature.h.

Referenced by libMesh::QSimpson::init_3D(), libMesh::QTrap::init_3D(), and init_3D().

◆ allow_rules_with_negative_weights

bool libMesh::QBase::allow_rules_with_negative_weights
inherited

Flag (default true) controlling the use of quadrature rules with negative weights.

Set this to false to require rules with all positive weights.

Rules with negative weights can be unsuitable for some problems. For example, it is possible for a rule with negative weights to obtain a negative result when integrating a positive function.

A particular example: if rules with negative weights are not allowed, a request for TET,THIRD (5 points) will return the TET,FIFTH (14 points) rule instead, nearly tripling the computational effort required!

Definition at line 301 of file quadrature.h.

Referenced by libMesh::QGrundmann_Moller::init_2D(), libMesh::QGauss::init_3D(), libMesh::QMonomial::init_3D(), and libMesh::QGrundmann_Moller::init_3D().


The documentation for this class was generated from the following files: