libMesh
quadrature_monomial_2D.C
Go to the documentation of this file.
1 // The libMesh Finite Element Library.
2 // Copyright (C) 2002-2025 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
3 
4 // This library is free software; you can redistribute it and/or
5 // modify it under the terms of the GNU Lesser General Public
6 // License as published by the Free Software Foundation; either
7 // version 2.1 of the License, or (at your option) any later version.
8 
9 // This library is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 // Lesser General Public License for more details.
13 
14 // You should have received a copy of the GNU Lesser General Public
15 // License along with this library; if not, write to the Free Software
16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 
18 
19 
20 // Local includes
21 #include "libmesh/quadrature_monomial.h"
22 #include "libmesh/quadrature_gauss.h"
23 
24 namespace libMesh
25 {
26 
27 
29 {
30 
31  switch (_type)
32  {
33  //---------------------------------------------
34  // Quadrilateral quadrature rules
35  case QUAD4:
36  case QUADSHELL4:
37  case QUAD8:
38  case QUADSHELL8:
39  case QUAD9:
40  case QUADSHELL9:
41  {
42  switch(get_order())
43  {
44  case SECOND:
45  {
46  // A degree=2 rule for the QUAD with 3 points.
47  // A tensor product degree-2 Gauss would have 4 points.
48  // This rule (or a variation on it) is probably available in
49  //
50  // A.H. Stroud, Approximate calculation of multiple integrals,
51  // Prentice-Hall, Englewood Cliffs, N.J., 1971.
52  //
53  // though I have never actually seen a reference for it.
54  // Luckily it's fairly easy to derive, which is what I've done
55  // here [JWP].
56  const Real
57  s=std::sqrt(Real(1)/3), // ~0.57735026919
58  t=std::sqrt(Real(2)/3); // ~0.81649658092
59 
60  const Real data[2][3] =
61  {
62  {0.0, s, 2.0},
63  { t, -s, 1.0}
64  };
65 
66  _points.resize(3);
67  _weights.resize(3);
68 
69  wissmann_rule(data, 2);
70 
71  return;
72  } // end case SECOND
73 
74 
75 
76  // For third-order, fall through to default case, use 2x2 Gauss product rule.
77  // case THIRD:
78  // {
79  // } // end case THIRD
80 
81  // Tabulated-in-double-precision rules aren't accurate enough for
82  // higher precision, so fall back on Gauss
83 #if !defined(LIBMESH_DEFAULT_TRIPLE_PRECISION) && !defined(LIBMESH_DEFAULT_QUADRUPLE_PRECISION)
84  case FOURTH:
85  {
86  // A pair of degree=4 rules for the QUAD "C2" due to
87  // Wissmann and Becker. These rules both have six points.
88  // A tensor product degree-4 Gauss would have 9 points.
89  //
90  // J. W. Wissmann and T. Becker, Partially symmetric cubature
91  // formulas for even degrees of exactness, SIAM J. Numer. Anal. 23
92  // (1986), 676--685.
93  const Real data[4][3] =
94  {
95  // First of 2 degree-4 rules given by Wissmann
96  {Real(0.0000000000000000e+00), Real(0.0000000000000000e+00), Real(1.1428571428571428e+00)},
97  {Real(0.0000000000000000e+00), Real(9.6609178307929590e-01), Real(4.3956043956043956e-01)},
98  {Real(8.5191465330460049e-01), Real(4.5560372783619284e-01), Real(5.6607220700753210e-01)},
99  {Real(6.3091278897675402e-01), Real(-7.3162995157313452e-01), Real(6.4271900178367668e-01)}
100  //
101  // Second of 2 degree-4 rules given by Wissmann. These both
102  // yield 4th-order accurate rules, I just chose the one that
103  // happened to contain the origin.
104  // {0.000000000000000, -0.356822089773090, 1.286412084888852},
105  // {0.000000000000000, 0.934172358962716, 0.491365692888926},
106  // {0.774596669241483, 0.390885162530071, 0.761883709085613},
107  // {0.774596669241483, -0.852765377881771, 0.349227402025498}
108  };
109 
110  _points.resize(6);
111  _weights.resize(6);
112 
113  wissmann_rule(data, 4);
114 
115  return;
116  } // end case FOURTH
117 #endif
118 
119 
120 
121 
122  case FIFTH:
123  {
124  // A degree 5, 7-point rule due to Stroud.
125  //
126  // A.H. Stroud, Approximate calculation of multiple integrals,
127  // Prentice-Hall, Englewood Cliffs, N.J., 1971.
128  //
129  // This rule is provably minimal in the number of points.
130  // A tensor-product rule accurate for "bi-quintic" polynomials would have 9 points.
131  // 0, 0, ~1.14285714286
132  // 0, ~0.96609178307, ~0.31746031746
133  // ~0.77459666924, ~0.57735026919, ~0.55555555555
134  const Real data[3][3] =
135  {
136  { 0, 0, Real(8)/7 }, // 1
137  { 0, std::sqrt(Real(14)/15), Real(20)/63}, // 2
138  {std::sqrt(Real(3)/5), std::sqrt(Real(1)/3), Real(20)/36} // 4
139  };
140 
141  const unsigned int symmetry[3] = {
142  0, // Origin
143  7, // Central Symmetry
144  6 // Rectangular
145  };
146 
147  _points.resize (7);
148  _weights.resize(7);
149 
150  stroud_rule(data, symmetry, 3);
151 
152  return;
153  } // end case FIFTH
154 
155 
156 
157 
158  // Tabulated-in-double-precision rules aren't accurate enough for
159  // higher precision, so fall back on Gauss
160 #if !defined(LIBMESH_DEFAULT_TRIPLE_PRECISION) && !defined(LIBMESH_DEFAULT_QUADRUPLE_PRECISION)
161  case SIXTH:
162  {
163  // A pair of degree=6 rules for the QUAD "C2" due to
164  // Wissmann and Becker. These rules both have 10 points.
165  // A tensor product degree-6 Gauss would have 16 points.
166  //
167  // J. W. Wissmann and T. Becker, Partially symmetric cubature
168  // formulas for even degrees of exactness, SIAM J. Numer. Anal. 23
169  // (1986), 676--685.
170  const Real data[6][3] =
171  {
172  // First of 2 degree-6, 10 point rules given by Wissmann
173  // {0.000000000000000, 0.836405633697626, 0.455343245714174},
174  // {0.000000000000000, -0.357460165391307, 0.827395973202966},
175  // {0.888764014654765, 0.872101531193131, 0.144000884599645},
176  // {0.604857639464685, 0.305985162155427, 0.668259104262665},
177  // {0.955447506641064, -0.410270899466658, 0.225474004890679},
178  // {0.565459993438754, -0.872869311156879, 0.320896396788441}
179  //
180  // Second of 2 degree-6, 10 point rules given by Wissmann.
181  // Either of these will work, I just chose the one with points
182  // slightly further into the element interior.
183  {Real(0.0000000000000000e+00), Real(8.6983337525005900e-01), Real(3.9275059096434794e-01)},
184  {Real(0.0000000000000000e+00), Real(-4.7940635161211124e-01), Real(7.5476288124261053e-01)},
185  {Real(8.6374282634615388e-01), Real(8.0283751620765670e-01), Real(2.0616605058827902e-01)},
186  {Real(5.1869052139258234e-01), Real(2.6214366550805818e-01), Real(6.8999213848986375e-01)},
187  {Real(9.3397254497284950e-01), Real(-3.6309658314806653e-01), Real(2.6051748873231697e-01)},
188  {Real(6.0897753601635630e-01), Real(-8.9660863276245265e-01), Real(2.6956758608606100e-01)}
189  };
190 
191  _points.resize(10);
192  _weights.resize(10);
193 
194  wissmann_rule(data, 6);
195 
196  return;
197  } // end case SIXTH
198 #endif
199 
200 
201 
202 
203  case SEVENTH:
204  {
205  // A degree 7, 12-point rule due to Tyler, can be found in Stroud's book
206  //
207  // A.H. Stroud, Approximate calculation of multiple integrals,
208  // Prentice-Hall, Englewood Cliffs, N.J., 1971.
209  //
210  // This rule is fully-symmetric and provably minimal in the number of points.
211  // A tensor-product rule accurate for "bi-septic" polynomials would have 16 points.
212  const Real
213  r = std::sqrt(Real(6)/7), // ~0.92582009977
214  s = std::sqrt( (Real(114) - 3*std::sqrt(Real(583))) / 287 ), // ~0.38055443320
215  t = std::sqrt( (Real(114) + 3*std::sqrt(Real(583))) / 287 ), // ~0.80597978291
216  B1 = Real(196)/810, // ~0.24197530864
217  B2 = 4 * (178981 + 2769*std::sqrt(Real(583))) / 1888920, // ~0.52059291666
218  B3 = 4 * (178981 - 2769*std::sqrt(Real(583))) / 1888920; // ~0.23743177469
219 
220  const Real data[3][3] =
221  {
222  {r, 0.0, B1}, // 4
223  {s, 0.0, B2}, // 4
224  {t, 0.0, B3} // 4
225  };
226 
227  const unsigned int symmetry[3] = {
228  3, // Full Symmetry, (x,0)
229  2, // Full Symmetry, (x,x)
230  2 // Full Symmetry, (x,x)
231  };
232 
233  _points.resize (12);
234  _weights.resize(12);
235 
236  stroud_rule(data, symmetry, 3);
237 
238  return;
239  } // end case SEVENTH
240 
241 
242 
243 
244  // Tabulated-in-double-precision rules aren't accurate enough for
245  // higher precision, so fall back on Gauss
246 #if !defined(LIBMESH_DEFAULT_TRIPLE_PRECISION) && !defined(LIBMESH_DEFAULT_QUADRUPLE_PRECISION)
247  case EIGHTH:
248  {
249  // A pair of degree=8 rules for the QUAD "C2" due to
250  // Wissmann and Becker. These rules both have 16 points.
251  // A tensor product degree-6 Gauss would have 25 points.
252  //
253  // J. W. Wissmann and T. Becker, Partially symmetric cubature
254  // formulas for even degrees of exactness, SIAM J. Numer. Anal. 23
255  // (1986), 676--685.
256  const Real data[10][3] =
257  {
258  // First of 2 degree-8, 16 point rules given by Wissmann
259  // {0.000000000000000, 0.000000000000000, 0.055364705621440},
260  // {0.000000000000000, 0.757629177660505, 0.404389368726076},
261  // {0.000000000000000, -0.236871842255702, 0.533546604952635},
262  // {0.000000000000000, -0.989717929044527, 0.117054188786739},
263  // {0.639091304900370, 0.950520955645667, 0.125614417613747},
264  // {0.937069076924990, 0.663882736885633, 0.136544584733588},
265  // {0.537083530541494, 0.304210681724104, 0.483408479211257},
266  // {0.887188506449625, -0.236496718536120, 0.252528506429544},
267  // {0.494698820670197, -0.698953476086564, 0.361262323882172},
268  // {0.897495818279768, -0.900390774211580, 0.085464254086247}
269  //
270  // Second of 2 degree-8, 16 point rules given by Wissmann.
271  // Either of these will work, I just chose the one with points
272  // further into the element interior.
273  {Real(0.0000000000000000e+00), Real(6.5956013196034176e-01), Real(4.5027677630559029e-01)},
274  {Real(0.0000000000000000e+00), Real(-9.4914292304312538e-01), Real(1.6657042677781274e-01)},
275  {Real(9.5250946607156228e-01), Real(7.6505181955768362e-01), Real(9.8869459933431422e-02)},
276  {Real(5.3232745407420624e-01), Real(9.3697598108841598e-01), Real(1.5369674714081197e-01)},
277  {Real(6.8473629795173504e-01), Real(3.3365671773574759e-01), Real(3.9668697607290278e-01)},
278  {Real(2.3314324080140552e-01), Real(-7.9583272377396852e-02), Real(3.5201436794569501e-01)},
279  {Real(9.2768331930611748e-01), Real(-2.7224008061253425e-01), Real(1.8958905457779799e-01)},
280  {Real(4.5312068740374942e-01), Real(-6.1373535339802760e-01), Real(3.7510100114758727e-01)},
281  {Real(8.3750364042281223e-01), Real(-8.8847765053597136e-01), Real(1.2561879164007201e-01)}
282  };
283 
284  _points.resize(16);
285  _weights.resize(16);
286 
287  wissmann_rule(data, /*10*/ 9);
288 
289  return;
290  } // end case EIGHTH
291 
292 
293 
294 
295  case NINTH:
296  {
297  // A degree 9, 17-point rule due to Moller.
298  //
299  // H.M. Moller, Kubaturformeln mit minimaler Knotenzahl,
300  // Numer. Math. 25 (1976), 185--200.
301  //
302  // This rule is provably minimal in the number of points.
303  // A tensor-product rule accurate for "bi-ninth" degree polynomials would have 25 points.
304  const Real data[5][3] =
305  {
306  {Real(0.0000000000000000e+00), Real(0.0000000000000000e+00), Real(5.2674897119341563e-01)}, // 1
307  {Real(6.3068011973166885e-01), Real(9.6884996636197772e-01), Real(8.8879378170198706e-02)}, // 4
308  {Real(9.2796164595956966e-01), Real(7.5027709997890053e-01), Real(1.1209960212959648e-01)}, // 4
309  {Real(4.5333982113564719e-01), Real(5.2373582021442933e-01), Real(3.9828243926207009e-01)}, // 4
310  {Real(8.5261572933366230e-01), Real(7.6208328192617173e-02), Real(2.6905133763978080e-01)} // 4
311  };
312 
313  const unsigned int symmetry[5] = {
314  0, // Single point
315  4, // Rotational Invariant
316  4, // Rotational Invariant
317  4, // Rotational Invariant
318  4 // Rotational Invariant
319  };
320 
321  _points.resize (17);
322  _weights.resize(17);
323 
324  stroud_rule(data, symmetry, 5);
325 
326  return;
327  } // end case NINTH
328 
329 
330 
331 
332  case TENTH:
333  case ELEVENTH:
334  {
335  // A degree 11, 24-point rule due to Cools and Haegemans.
336  //
337  // R. Cools and A. Haegemans, Another step forward in searching for
338  // cubature formulae with a minimal number of knots for the square,
339  // Computing 40 (1988), 139--146.
340  //
341  // P. Verlinden and R. Cools, The algebraic construction of a minimal
342  // cubature formula of degree 11 for the square, Cubature Formulas
343  // and their Applications (Russian) (Krasnoyarsk) (M.V. Noskov, ed.),
344  // 1994, pp. 13--23.
345  //
346  // This rule is provably minimal in the number of points.
347  // A tensor-product rule accurate for "bi-tenth" or "bi-eleventh" degree polynomials would have 36 points.
348  const Real data[6][3] =
349  {
350  {Real(6.9807610454956756e-01), Real(9.8263922354085547e-01), Real(4.8020763350723814e-02)}, // 4
351  {Real(9.3948638281673690e-01), Real(8.2577583590296393e-01), Real(6.6071329164550595e-02)}, // 4
352  {Real(9.5353952820153201e-01), Real(1.8858613871864195e-01), Real(9.7386777358668164e-02)}, // 4
353  {Real(3.1562343291525419e-01), Real(8.1252054830481310e-01), Real(2.1173634999894860e-01)}, // 4
354  {Real(7.1200191307533630e-01), Real(5.2532025036454776e-01), Real(2.2562606172886338e-01)}, // 4
355  {Real(4.2484724884866925e-01), Real(4.1658071912022368e-02), Real(3.5115871839824543e-01)} // 4
356  };
357 
358  const unsigned int symmetry[6] = {
359  4, // Rotational Invariant
360  4, // Rotational Invariant
361  4, // Rotational Invariant
362  4, // Rotational Invariant
363  4, // Rotational Invariant
364  4 // Rotational Invariant
365  };
366 
367  _points.resize (24);
368  _weights.resize(24);
369 
370  stroud_rule(data, symmetry, 6);
371 
372  return;
373  } // end case TENTH,ELEVENTH
374 
375 
376 
377 
378  case TWELFTH:
379  case THIRTEENTH:
380  {
381  // A degree 13, 33-point rule due to Cools and Haegemans.
382  //
383  // R. Cools and A. Haegemans, Another step forward in searching for
384  // cubature formulae with a minimal number of knots for the square,
385  // Computing 40 (1988), 139--146.
386  //
387  // A tensor-product rule accurate for "bi-12" or "bi-13" degree polynomials would have 49 points.
388  const Real data[9][3] =
389  {
390  {Real(0.0000000000000000e+00), Real(0.0000000000000000e+00), Real(3.0038211543122536e-01)}, // 1
391  {Real(9.8348668243987226e-01), Real(7.7880971155441942e-01), Real(2.9991838864499131e-02)}, // 4
392  {Real(8.5955600564163892e-01), Real(9.5729769978630736e-01), Real(3.8174421317083669e-02)}, // 4
393  {Real(9.5892517028753485e-01), Real(1.3818345986246535e-01), Real(6.0424923817749980e-02)}, // 4
394  {Real(3.9073621612946100e-01), Real(9.4132722587292523e-01), Real(7.7492738533105339e-02)}, // 4
395  {Real(8.5007667369974857e-01), Real(4.7580862521827590e-01), Real(1.1884466730059560e-01)}, // 4
396  {Real(6.4782163718701073e-01), Real(7.5580535657208143e-01), Real(1.2976355037000271e-01)}, // 4
397  {Real(7.0741508996444936e-02), Real(6.9625007849174941e-01), Real(2.1334158145718938e-01)}, // 4
398  {Real(4.0930456169403884e-01), Real(3.4271655604040678e-01), Real(2.5687074948196783e-01)} // 4
399  };
400 
401  const unsigned int symmetry[9] = {
402  0, // Single point
403  4, // Rotational Invariant
404  4, // Rotational Invariant
405  4, // Rotational Invariant
406  4, // Rotational Invariant
407  4, // Rotational Invariant
408  4, // Rotational Invariant
409  4, // Rotational Invariant
410  4 // Rotational Invariant
411  };
412 
413  _points.resize (33);
414  _weights.resize(33);
415 
416  stroud_rule(data, symmetry, 9);
417 
418  return;
419  } // end case TWELFTH,THIRTEENTH
420 
421 
422 
423 
424  case FOURTEENTH:
425  case FIFTEENTH:
426  {
427  // A degree-15, 48 point rule originally due to Rabinowitz and Richter,
428  // can be found in Cools' 1971 book.
429  //
430  // A.H. Stroud, Approximate calculation of multiple integrals,
431  // Prentice-Hall, Englewood Cliffs, N.J., 1971.
432  //
433  // The product Gauss rule for this order has 8^2=64 points.
434  const Real data[9][3] =
435  {
436  {9.915377816777667e-01_R, 0.0000000000000000e+00 , 3.01245207981210e-02_R}, // 4
437  {8.020163879230440e-01_R, 0.0000000000000000e+00 , 8.71146840209092e-02_R}, // 4
438  {5.648674875232742e-01_R, 0.0000000000000000e+00 , 1.250080294351494e-01_R}, // 4
439  {9.354392392539896e-01_R, 0.0000000000000000e+00 , 2.67651407861666e-02_R}, // 4
440  {7.624563338825799e-01_R, 0.0000000000000000e+00 , 9.59651863624437e-02_R}, // 4
441  {2.156164241427213e-01_R, 0.0000000000000000e+00 , 1.750832998343375e-01_R}, // 4
442  {9.769662659711761e-01_R, 6.684480048977932e-01_R, 2.83136372033274e-02_R}, // 4
443  {8.937128379503403e-01_R, 3.735205277617582e-01_R, 8.66414716025093e-02_R}, // 4
444  {6.122485619312083e-01_R, 4.078983303613935e-01_R, 1.150144605755996e-01_R} // 4
445  };
446 
447  const unsigned int symmetry[9] = {
448  3, // Full Symmetry, (x,0)
449  3, // Full Symmetry, (x,0)
450  3, // Full Symmetry, (x,0)
451  2, // Full Symmetry, (x,x)
452  2, // Full Symmetry, (x,x)
453  2, // Full Symmetry, (x,x)
454  1, // Full Symmetry, (x,y)
455  1, // Full Symmetry, (x,y)
456  1, // Full Symmetry, (x,y)
457  };
458 
459  _points.resize (48);
460  _weights.resize(48);
461 
462  stroud_rule(data, symmetry, 9);
463 
464  return;
465  } // case FOURTEENTH, FIFTEENTH:
466 
467 
468 
469 
470  case SIXTEENTH:
471  case SEVENTEENTH:
472  {
473  // A degree 17, 60-point rule due to Cools and Haegemans.
474  //
475  // R. Cools and A. Haegemans, Another step forward in searching for
476  // cubature formulae with a minimal number of knots for the square,
477  // Computing 40 (1988), 139--146.
478  //
479  // A tensor-product rule accurate for "bi-14" or "bi-15" degree polynomials would have 64 points.
480  // A tensor-product rule accurate for "bi-16" or "bi-17" degree polynomials would have 81 points.
481  const Real data[10][3] =
482  {
483  {Real(9.8935307451260049e-01), Real(0.0000000000000000e+00), Real(2.0614915919990959e-02)}, // 4
484  {Real(3.7628520715797329e-01), Real(0.0000000000000000e+00), Real(1.2802571617990983e-01)}, // 4
485  {Real(9.7884827926223311e-01), Real(0.0000000000000000e+00), Real(5.5117395340318905e-03)}, // 4
486  {Real(8.8579472916411612e-01), Real(0.0000000000000000e+00), Real(3.9207712457141880e-02)}, // 4
487  {Real(1.7175612383834817e-01), Real(0.0000000000000000e+00), Real(7.6396945079863302e-02)}, // 4
488  {Real(5.9049927380600241e-01), Real(3.1950503663457394e-01), Real(1.4151372994997245e-01)}, // 8
489  {Real(7.9907913191686325e-01), Real(5.9797245192945738e-01), Real(8.3903279363797602e-02)}, // 8
490  {Real(8.0374396295874471e-01), Real(5.8344481776550529e-02), Real(6.0394163649684546e-02)}, // 8
491  {Real(9.3650627612749478e-01), Real(3.4738631616620267e-01), Real(5.7387752969212695e-02)}, // 8
492  {Real(9.8132117980545229e-01), Real(7.0600028779864611e-01), Real(2.1922559481863763e-02)}, // 8
493  };
494 
495  const unsigned int symmetry[10] = {
496  3, // Fully symmetric (x,0)
497  3, // Fully symmetric (x,0)
498  2, // Fully symmetric (x,x)
499  2, // Fully symmetric (x,x)
500  2, // Fully symmetric (x,x)
501  1, // Fully symmetric (x,y)
502  1, // Fully symmetric (x,y)
503  1, // Fully symmetric (x,y)
504  1, // Fully symmetric (x,y)
505  1 // Fully symmetric (x,y)
506  };
507 
508  _points.resize (60);
509  _weights.resize(60);
510 
511  stroud_rule(data, symmetry, 10);
512 
513  return;
514  } // end case FOURTEENTH through SEVENTEENTH
515 #endif
516 
517 
518 
519  // By default: construct and use a Gauss quadrature rule
520  default:
521  {
522  // Break out and fall down into the default: case for the
523  // outer switch statement.
524  break;
525  }
526 
527  } // end switch(_order + 2*p)
528  } // end case QUAD4/8/9
529 
530  libmesh_fallthrough();
531 
532  // By default: construct and use a Gauss quadrature rule
533  default:
534  {
535  QGauss gauss_rule(2, _order);
536  gauss_rule.init(*this);
537 
538  // Swap points and weights with the about-to-be destroyed rule.
539  _points.swap (gauss_rule.get_points() );
540  _weights.swap(gauss_rule.get_weights());
541 
542  return;
543  }
544  } // end switch (_type)
545 }
546 
547 } // namespace libMesh
void wissmann_rule(const Real rule_data[][3], const unsigned int n_pts)
Wissmann published three interesting "partially symmetric" rules for integrating degree 4...
ElemType _type
The type of element for which the current values have been computed.
Definition: quadrature.h:391
const std::vector< Real > & get_weights() const
Definition: quadrature.h:168
The libMesh namespace provides an interface to certain functionality in the library.
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409
std::vector< Real > _weights
The quadrature weights.
Definition: quadrature.h:415
virtual void init_2D() override
Initializes the 2D quadrature rule by filling the points and weights vectors with the appropriate val...
Order get_order() const
Definition: quadrature.h:249
void stroud_rule(const Real rule_data[][3], const unsigned int *rule_symmetry, const unsigned int n_pts)
Stroud&#39;s rules for quads and hexes can have one of several different types of symmetry.
Order _order
The polynomial order which the quadrature rule is capable of integrating exactly. ...
Definition: quadrature.h:385
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const std::vector< Point > & get_points() const
Definition: quadrature.h:156
This class implements specific orders of Gauss quadrature.
virtual void init(const Elem &e, unsigned int p_level=invalid_uint)
Initializes the data structures for a quadrature rule for the element e.
Definition: quadrature.C:65