libMesh
miscellaneous_ex2.C
Go to the documentation of this file.
1 // The libMesh Finite Element Library.
2 // Copyright (C) 2002-2025 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
3 
4 // This library is free software; you can redistribute it and/or
5 // modify it under the terms of the GNU Lesser General Public
6 // License as published by the Free Software Foundation; either
7 // version 2.1 of the License, or (at your option) any later version.
8 
9 // This library is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 // Lesser General Public License for more details.
13 
14 // You should have received a copy of the GNU Lesser General Public
15 // License along with this library; if not, write to the Free Software
16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 
18 
19 
20 
21 // <h1>Miscellaneous Example 2 - Complex Numbers and the "FrequencySystem"</h1>
22 // \author Steffen Petersen
23 // \date 2003
24 //
25 // This example program introduces complex numbers and the
26 // FrequencySystem class to solve a simple Helmholtz equation,
27 // Laplacian(p) + (omega/c)^2*p = 0,
28 // for multiple frequencies rather efficiently.
29 //
30 // The FrequencySystem class offers two solution styles:
31 // 1.) Solve large systems once, and
32 // 2.) Solve moderately-sized systems for multiple frequencies.
33 // The latter approach is implemented here.
34 //
35 // This example uses an L-shaped domain and nodal boundary data given
36 // in the files lshape.unv and lshape_data.unv. For this example, the
37 // library has to be compiled with complex numbers enabled.
38 
39 // C++ include files that we need
40 #include <iostream>
41 #include <algorithm>
42 #include <stdio.h>
43 
44 // Basic include files needed for overall functionality.
45 #include "libmesh/libmesh.h"
46 #include "libmesh/libmesh_logging.h"
47 #include "libmesh/mesh.h"
48 #include "libmesh/mesh_generation.h"
49 #include "libmesh/exodusII_io.h"
50 #include "libmesh/unv_io.h"
51 #include "libmesh/equation_systems.h"
52 #include "libmesh/elem.h"
53 #include "libmesh/enum_xdr_mode.h"
54 
55 // Include FrequencySystem. This class offers added functionality for
56 // the solution of frequency-dependent systems.
57 #include "libmesh/frequency_system.h"
58 
59 // Define the FE object.
60 #include "libmesh/fe.h"
61 
62 // Define the QGauss quadrature rule objects.
63 #include "libmesh/quadrature_gauss.h"
64 
65 // Useful datatypes for finite element assembly.
66 #include "libmesh/dense_matrix.h"
67 #include "libmesh/dense_vector.h"
68 
69 // Sparse matrix and vector data types for parallel linear algebra.
70 #include "libmesh/sparse_matrix.h"
71 #include "libmesh/numeric_vector.h"
72 
73 // Define the DofMap, which handles degree of freedom indexing.
74 #include "libmesh/dof_map.h"
75 
76 // Bring in everything from the libMesh namespace
77 using namespace libMesh;
78 
79 // This problem is only defined on complex-valued fields, for
80 // which libMesh must be configured with Number == Complex.
81 #ifdef LIBMESH_USE_COMPLEX_NUMBERS
82 
83 // Function prototype. This is the function that will assemble
84 // the mass, damping and stiffness matrices. It will not
85 // form an overall system matrix ready for solution.
87  const std::string & system_name);
88 
89 // Function prototype. This is the function that will combine
90 // the previously-assembled mass, damping and stiffness matrices
91 // to the overall matrix, which then renders ready for solution.
93  const std::string & system_name);
94 #endif
95 
96 // This example only works correctly if libmesh has been configured
97 // with --enable-complex. If you wish to use PETSc, you must also
98 // build PETSc with complex number support by configuring with
99 // --with-scalar-type=complex --with-clanguage=cxx, and using the same
100 // C++ compiler to build both PETSc and libmesh. This example also
101 // works with the Eigen sparse linear solvers which are provided in
102 // libmesh's contrib directory.
103 int main (int argc, char ** argv)
104 {
105  // The libMeshInit object initializes MPI, PETSc, etc, and must be
106  // constructed before all other objects.
107  LibMeshInit init (argc, argv);
108 
109  // This example is designed for complex numbers.
110 #ifndef LIBMESH_USE_COMPLEX_NUMBERS
111  libmesh_example_requires(false, "--enable-complex");
112 #else
113 
114  // This example requires at least 2D support.
115  libmesh_example_requires(2 <= LIBMESH_DIM, "2D support");
116 
117  // Check for proper usage. frequency has two terms:
118  libmesh_error_msg_if(argc < 4, "Usage: " << argv[0] << " -f [real_frequency imag_frequency]");
119 
120  if (init.comm().size() > 1)
121  {
122  if (init.comm().rank() == 0)
123  {
124  libMesh::err << "TODO: This example should be able to run in parallel."
125  << std::endl;
126  }
127  return 0;
128  }
129 
130  // Tell the user what we are doing.
131  else
132  {
133  libMesh::out << "Running " << argv[0];
134 
135  for (int i=1; i<argc; i++)
136  libMesh::out << " " << argv[i];
137 
138  libMesh::out << std::endl << std::endl;
139  }
140 
141  // Get the frequency from argv[2] as a float, solve for 1/3rd, 2/3rd
142  // and 1/1th of the given frequency.
143 
144  const Number frequency_in (atof(argv[2]), atof(argv[3]));
145 
146  // this must work as well, but is deprecated.
147  // const Real frequency_in = atof(argv[2]);
148 
149  const unsigned int n_frequencies = 3;
150 
151  // Create a mesh, with dimension to be overridden later, distributed
152  // across the default MPI communicator.
153  Mesh mesh(init.comm());
154 
155  // Read the mesh file. Here the file lshape.unv contains
156  // an L-shaped domain in .unv format.
157  UNVIO unvio(mesh);
158  unvio.read("lshape.unv");
159 
160  // Manually prepare the mesh for use, this is not done automatically
161  // by the UNVIO reader, so we have to do it here. Note that calling
162  // this function renumbers the nodes and elements of the Mesh, but
163  // the original numbering is still stored in the UNVIO object for
164  // correctly mapping dataset values (see below) to the correct nodes.
166 
167  // Read the dataset accompanying this problem. The load on the
168  // boundary of the domain is stored in the .unv data file
169  // lshape_data.unv. The data are given as complex-valued normal
170  // velocities.
171  unvio.read_dataset("lshape_data.unv");
172 
173  // Print information about the mesh to the screen.
174  mesh.print_info();
175 
176  // Create an EquationSystems object.
177  EquationSystems equation_systems (mesh);
178 
179  // Create a FrequencySystem named "Helmholtz" and store a
180  // reference to it.
181  FrequencySystem & f_system =
182  equation_systems.add_system<FrequencySystem> ("Helmholtz");
183 
184  // Add the variable "p" to the "Helmholtz" system. "p"
185  // will be approximated using second-order approximation.
186  f_system.add_variable("p", SECOND);
187 
188  // The FrequencySystem requires two user-provided functions: one for
189  // assembling the different operators and another that specifies how
190  // to combine them before the solve.
193 
194  // To enable the fast solution scheme, additional sparse matrices
195  // and one vector have to be added. The FrequencySystem object
196  // takes care of sizing the additional objects. The user should
197  // still set the sparsity structure of the f_system.matrix, so that
198  // the fast matrix addition method can be used. The procedure for
199  // this is shown in detail in the assembly function.
200  f_system.add_matrix ("stiffness");
201  f_system.add_matrix ("damping");
202  f_system.add_matrix ("mass");
203  f_system.add_vector ("rhs");
204 
205  // Communicate the frequencies to the system. Note that the
206  // frequency system stores the frequencies as parameters in the
207  // EquationSystems object, so that our assemble and solve functions
208  // may directly access them. Must be called before the
209  // EquationSystems object is initialized. Will solve for 1/3,
210  // 2/3, and 1 times the given frequency.
211  f_system.set_frequencies_by_steps (frequency_in/static_cast<Number>(n_frequencies),
212  frequency_in,
213  n_frequencies);
214 
215  // Set the wave velocity and fluid density parameter values,
216  // otherwise default values will be used.
217  equation_systems.parameters.set<Real> ("wave speed") = 1.;
218  equation_systems.parameters.set<Real> ("rho") = 1.;
219 
220  // Initialize the EquationSystems object.
221  equation_systems.init ();
222 
223  // Set values in the "rhs" vector based on the entries stored in the
224  // UNVIO object from the dataset we read in. These values only need
225  // to be set once, as they are the same for every frequency. We can
226  // only do this once equation_systems.init() has been called...
227  {
228  NumericVector<Number> & freq_indep_rhs = f_system.get_vector("rhs");
229 
230  for (const auto & node : mesh.node_ptr_range())
231  {
232  // Get the data read in from the dataset for the current Node, if any.
233  const std::vector<Number> * nodal_data = unvio.get_data(node);
234 
235  // Set the rhs value based on values read in from the dataset.
236  if (nodal_data)
237  {
238  unsigned int dn = node->dof_number(/*system=*/0,
239  /*variable=*/0,
240  /*component=*/0);
241  freq_indep_rhs.set(dn, (*nodal_data)[0]);
242  }
243  }
244  }
245 
246  // Print information about the system to the screen.
247  equation_systems.print_info ();
248 
249  for (unsigned int n=0; n < n_frequencies; n++)
250  {
251  // Solve the "Helmholtz" system for the n-th frequency.
252  // Since we attached an assemble() function to the system,
253  // the mass, damping, and stiffness contributions will only
254  // be assembled once. Then, the system is solved for the
255  // given frequencies. Note that solve() may also solve
256  // the system only for specific frequencies.
257  f_system.solve (n, n);
258 
259  // After solving the system, write the solution to an ExodusII
260  // file for every frequency.
261 #ifdef LIBMESH_HAVE_EXODUS_API
262  std::ostringstream file_name;
263 
264  file_name << "out_"
265  << std::setw(4)
266  << std::setfill('0')
267  << std::right
268  << n
269  << ".e";
270 
271  ExodusII_IO(mesh).write_equation_systems (file_name.str(),
272  equation_systems);
273 #endif
274  }
275 
276  // Alternatively, the whole EquationSystems object can be
277  // written to disk. By default, the additional vectors are also
278  // saved.
279  equation_systems.write ("eqn_sys.dat", WRITE);
280 
281  // All done.
282  return 0;
283 
284 #endif
285 }
286 
287 
288 #ifdef LIBMESH_USE_COMPLEX_NUMBERS
289 // Here we define the matrix assembly routine for
290 // the Helmholtz system. This function will be
291 // called to form the stiffness matrix and right-hand side.
293  const std::string & system_name)
294 {
295  LOG_SCOPE("assemble_helmholtz", "misc_ex2");
296 
297  // It is a good idea to make sure we are assembling
298  // the proper system.
299  libmesh_assert_equal_to (system_name, "Helmholtz");
300 
301  // Get a constant reference to the mesh object.
302  const MeshBase & mesh = es.get_mesh();
303 
304  // The maximum dimension of the elements stored in the mesh.
305  const unsigned int dim = mesh.mesh_dimension();
306 
307  // Get a reference to our system, as before
308  FrequencySystem & f_system =
309  es.get_system<FrequencySystem> (system_name);
310 
311  // A const reference to the DofMap object for this system. The DofMap
312  // object handles the index translation from node and element numbers
313  // to degree of freedom numbers.
314  const DofMap & dof_map = f_system.get_dof_map();
315 
316  // Get a constant reference to the finite element type
317  // for the first (and only) variable in the system.
318  const FEType & fe_type = dof_map.variable_type(0);
319 
320  // The fluid density is used by the admittance boundary condition.
321  const Real rho = es.parameters.get<Real>("rho");
322 
323  // In this example, we assemble the element matrices into the
324  // additional matrices "stiffness_mass", "damping", and the element
325  // vectors into "rhs". We get writable references to these objects
326  // now.
327  SparseMatrix<Number> & stiffness = f_system.get_matrix("stiffness");
328  SparseMatrix<Number> & damping = f_system.get_matrix("damping");
329  SparseMatrix<Number> & mass = f_system.get_matrix("mass");
330 
331  // Build a finite element object of the specified type. Since the
332  // FEBase::build() member dynamically creates memory we will
333  // store the object as a std::unique_ptr<FEBase>. This can be thought
334  // of as a pointer that will clean up after itself.
335  std::unique_ptr<FEBase> fe (FEBase::build(dim, fe_type));
336 
337  // A 5th-order Gauss quadrature rule for numerical integration.
338  QGauss qrule (dim, FIFTH);
339 
340  // Tell the finite element object to use our quadrature rule.
341  fe->attach_quadrature_rule (&qrule);
342 
343  // The element Jacobian times the quadrature weight at each integration point.
344  const std::vector<Real> & JxW = fe->get_JxW();
345 
346  // The element shape functions evaluated at the quadrature points.
347  const std::vector<std::vector<Real>> & phi = fe->get_phi();
348 
349  // The element shape function gradients evaluated at the quadrature
350  // points.
351  const std::vector<std::vector<RealGradient>> & dphi = fe->get_dphi();
352 
353  // Here we do not assemble directly in the System matrix, but to the
354  // additional matrices "stiffness_mass" and "damping". The same
355  // approach is followed for the right-hand-side vector Fe, which we
356  // will later on store in the additional vector "rhs".
357  // The zero_matrix is used to explicitly induce the same sparsity
358  // structure in the overall matrix. The mass and stiffness matrices
359  // are real-valued. Therefore, it would be possible to store them
360  // as a single complex-valued matrix to save on memory, but we do
361  // not follow this approach here.
362  DenseMatrix<Number> Ke, Ce, Me, zero_matrix;
364 
365  // This vector will hold the degree of freedom indices for
366  // the element. These define where in the global system
367  // the element degrees of freedom get mapped.
368  std::vector<dof_id_type> dof_indices;
369 
370  // The global system matrix
371  SparseMatrix<Number> & matrix = f_system.get_system_matrix();
372 
373  // Now we will loop over all the elements in the mesh, and compute
374  // the element matrix and right-hand-side contributions.
375  for (const auto & elem : mesh.active_local_element_ptr_range())
376  {
377  // Get the degree of freedom indices for the
378  // current element. These define where in the global
379  // matrix and right-hand-side this element will
380  // contribute to.
381  dof_map.dof_indices (elem, dof_indices);
382 
383  // Compute the element-specific data for the current
384  // element. This involves computing the location of the
385  // quadrature points (q_point) and the shape functions
386  // (phi, dphi) for the current element.
387  fe->reinit (elem);
388 
389  // Zero & resize the element matrix and right-hand side before
390  // summing them, with different element types in the mesh this
391  // is quite necessary.
392  const unsigned int n_dof_indices = dof_indices.size();
393 
394  Ke.resize (n_dof_indices, n_dof_indices);
395  Ce.resize (n_dof_indices, n_dof_indices);
396  Me.resize (n_dof_indices, n_dof_indices);
397  zero_matrix.resize (n_dof_indices, n_dof_indices);
398  Fe.resize (n_dof_indices);
399 
400  // Now loop over the quadrature points. This handles
401  // the numeric integration.
402  for (unsigned int qp=0; qp<qrule.n_points(); qp++)
403  {
404  // Now we will build the element matrix. This involves
405  // a double loop to integrate the test functions (i) against
406  // the trial functions (j).
407  for (std::size_t i=0; i<phi.size(); i++)
408  for (std::size_t j=0; j<phi.size(); j++)
409  {
410  Ke(i,j) += JxW[qp]*(dphi[i][qp]*dphi[j][qp]);
411  Me(i,j) += JxW[qp]*(phi[i][qp]*phi[j][qp]);
412  }
413  }
414 
415  // Now compute the contribution to the element matrix
416  // (due to mixed boundary conditions) if the current
417  // element lies on the boundary.
418  //
419  // The following loops over the sides of the element.
420  // If the element has no neighbor on a side then that
421  // side MUST live on a boundary of the domain.
422  for (auto side : elem->side_index_range())
423  if (elem->neighbor_ptr(side) == nullptr)
424  {
425  // Declare a special finite element object for
426  // boundary integration.
427  std::unique_ptr<FEBase> fe_face (FEBase::build(dim, fe_type));
428 
429  // Boundary integration requires one quadrature rule,
430  // with dimensionality one less than the dimensionality
431  // of the element.
432  QGauss qface(dim-1, SECOND);
433 
434  // Tell the finite element object to use our
435  // quadrature rule.
436  fe_face->attach_quadrature_rule (&qface);
437 
438  // The value of the shape functions at the quadrature
439  // points.
440  const std::vector<std::vector<Real>> & phi_face =
441  fe_face->get_phi();
442 
443  // The Jacobian times the quadrature weight at the quadrature
444  // points on the face.
445  const std::vector<Real> & JxW_face = fe_face->get_JxW();
446 
447  // Compute the shape function values on the element
448  // face.
449  fe_face->reinit(elem, side);
450 
451  // For the Robin BCs, consider a normal admittance an=1
452  // at some parts of the boundary
453  const Real an_value = 1.;
454 
455  // Loop over the face quadrature points for integration.
456  for (unsigned int qp=0; qp<qface.n_points(); qp++)
457  {
458  // Element matrix contribution due to prescribed
459  // admittance boundary conditions.
460  for (std::size_t i=0; i<phi_face.size(); i++)
461  for (std::size_t j=0; j<phi_face.size(); j++)
462  Ce(i,j) += rho * an_value * JxW_face[qp] * phi_face[i][qp] * phi_face[j][qp];
463  }
464  }
465 
466  // If this assembly program were to be used on an adaptive mesh,
467  // we would have to apply any hanging node constraint equations
468  // by uncommenting the following lines:
469  // std::vector<unsigned int> dof_indicesC = dof_indices;
470  // std::vector<unsigned int> dof_indicesM = dof_indices;
471  // dof_map.constrain_element_matrix (Ke, dof_indices);
472  // dof_map.constrain_element_matrix (Ce, dof_indicesC);
473  // dof_map.constrain_element_matrix (Me, dof_indicesM);
474 
475  // Finally, simply add the contributions to the additional
476  // matrices and vector.
477  stiffness.add_matrix (Ke, dof_indices);
478  damping.add_matrix (Ce, dof_indices);
479  mass.add_matrix (Me, dof_indices);
480 
481  // For the overall matrix, explicitly zero the entries where
482  // we added values in the other ones, so that we have
483  // identical sparsity footprints.
484  matrix.add_matrix(zero_matrix, dof_indices);
485  } // end loop over elements
486 }
487 
488 
489 // We now define the function which will combine the previously-assembled
490 // mass, stiffness, and damping matrices into a single system matrix.
492  const std::string & system_name)
493 {
494  LOG_SCOPE("add_M_C_K_helmholtz()", "misc_ex2");
495 
496  // Verify that we are assembling the system we think we are.
497  libmesh_assert_equal_to (system_name, "Helmholtz");
498 
499  // Get a reference to the FrequencySystem.
500  FrequencySystem & f_system =
501  es.get_system<FrequencySystem> (system_name);
502 
503  // Get the frequency, fluid density, and sound speed of the current solve.
504  const Number frequency = es.parameters.get<Number> ("current frequency");
505  const Real rho = es.parameters.get<Real> ("rho");
506  const Real speed = es.parameters.get<Real> ("wave speed");
507 
508  // Compute angular frequency omega and wave number k
509  const Number omega = 2.0*libMesh::pi*frequency;
510  const Number k = omega / speed;
511 
512  // Get writable references to the system matrix and vector, where the
513  // frequency-dependent system is to be collected.
514  SparseMatrix<Number> & matrix = *f_system.matrix;
515  NumericVector<Number> & rhs = *f_system.rhs;
516 
517  // Get writable references to the frequency-independent matrices
518  // and rhs, though we only need to extract values. This write access
519  // is necessary, since solver packages have to close the data structure
520  // before they can extract values for computation.
521  SparseMatrix<Number> & stiffness = f_system.get_matrix("stiffness");
522  SparseMatrix<Number> & damping = f_system.get_matrix("damping");
523  SparseMatrix<Number> & mass = f_system.get_matrix("mass");
524  NumericVector<Number> & freq_indep_rhs = f_system.get_vector("rhs");
525 
526  Number unit_i (0,1);
527 
528  // Compute the scale values for the different operators.
529  const Number scale_stiffness (1., 0.);
530  const Number scale_damping=unit_i*omega; // I is imaginary unit (from complex.h)
531  const Number scale_mass=-k*k;
532  const Number scale_rhs=-unit_i*rho*omega;
533 
534  // Now simply add the matrices together, store the result
535  // in matrix and rhs. Clear them first.
536  matrix.close ();
537  matrix.zero ();
538  rhs.close ();
539  rhs.zero ();
540 
541  // The matrices from which values are added to another matrix
542  // have to be closed. The add() method does take care of
543  // that, but let us do it explicitly.
544  stiffness.close ();
545  damping.close ();
546  mass.close ();
547 
548  // Add the stiffness and mass with the proper frequency to the
549  // overall system. For this to work properly, the matrix has
550  // to be not only initialized, but filled with the identical
551  // sparsity structure as the matrix added to it, otherwise
552  // solver packages like PETSc crash.
553  //
554  // Note that we have to add the mass and stiffness contributions one
555  // at a time, otherwise the real part of matrix would be fine, but
556  // the imaginary part would be cluttered with unwanted products.
557  matrix.add (scale_stiffness, stiffness);
558  matrix.add (scale_mass, mass);
559  matrix.add (scale_damping, damping);
560  rhs.add (scale_rhs, freq_indep_rhs);
561 
562  // The linear system involving "matrix" and "rhs" is now ready to be solved.
563 }
564 
565 #endif // LIBMESH_USE_COMPLEX_NUMBERS
class FEType hides (possibly multiple) FEFamily and approximation orders, thereby enabling specialize...
Definition: fe_type.h:196
OStreamProxy err
void attach_solve_function(void fptr(EquationSystems &es, const std::string &name))
Register a required user function to use in assembling/solving the system.
virtual void solve() override
Solves the system for all frequencies.
This is the EquationSystems class.
void write(std::string_view name, const XdrMODE, const unsigned int write_flags=(WRITE_DATA), bool partition_agnostic=true) const
Write the systems to disk using the XDR data format.
int main(int argc, char **argv)
FrequencySystem provides a specific system class for frequency-dependent (linear) systems...
unsigned int dim
The ExodusII_IO class implements reading meshes in the ExodusII file format from Sandia National Labs...
Definition: exodusII_io.h:52
void resize(const unsigned int n)
Resize the vector.
Definition: dense_vector.h:396
void prepare_for_use(const bool skip_renumber_nodes_and_elements, const bool skip_find_neighbors)
Prepare a newly ecreated (or read) mesh for use.
Definition: mesh_base.C:759
void print_info(std::ostream &os=libMesh::out) const
Prints information about the equation systems, by default to libMesh::out.
MeshBase & mesh
NumericVector< Number > * rhs
The system matrix.
NumericVector< Number > & add_vector(std::string_view vec_name, const bool projections=true, const ParallelType type=PARALLEL)
Adds the additional vector vec_name to this system.
Definition: system.C:768
The LibMeshInit class, when constructed, initializes the dependent libraries (e.g.
Definition: libmesh.h:90
The libMesh namespace provides an interface to certain functionality in the library.
const T_sys & get_system(std::string_view name) const
This is the MeshBase class.
Definition: mesh_base.h:75
virtual void zero()=0
Set all entries to zero.
virtual void add(const numeric_index_type i, const numeric_index_type j, const T value)=0
Add value to the element (i,j).
This class handles the numbering of degrees of freedom on a mesh.
Definition: dof_map.h:179
virtual void add_matrix(const DenseMatrix< T > &dm, const std::vector< numeric_index_type > &rows, const std::vector< numeric_index_type > &cols)=0
Add the full matrix dm to the SparseMatrix.
const T & get(std::string_view) const
Definition: parameters.h:426
virtual void zero()=0
Set all entries to 0.
virtual void write_equation_systems(const std::string &fname, const EquationSystems &es, const std::set< std::string > *system_names=nullptr) override
Writes out the solution for no specific time or timestep.
Definition: exodusII_io.C:2033
void print_info(std::ostream &os=libMesh::out, const unsigned int verbosity=0, const bool global=true) const
Prints relevant information about the mesh.
Definition: mesh_base.C:1562
void init(triangulateio &t)
Initializes the fields of t to nullptr/0 as necessary.
static std::unique_ptr< FEGenericBase > build(const unsigned int dim, const FEType &type)
Builds a specific finite element type.
unsigned int add_variable(std::string_view var, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
Adds the variable var to the list of variables for this system.
Definition: system.C:1357
unsigned int n_points() const
Definition: quadrature.h:131
void set_frequencies_by_steps(const Number base_freq, const Number freq_step=0., const unsigned int n_freq=1, const bool allocate_solution_duplicates=true)
Set the frequency range for which the system should be solved.
void attach_assemble_function(void fptr(EquationSystems &es, const std::string &name))
Register a user function to use in assembling the system matrix and RHS.
Definition: system.C:2161
virtual void close()=0
Calls the NumericVector&#39;s internal assembly routines, ensuring that the values are consistent across ...
void add_M_C_K_helmholtz(EquationSystems &es, const std::string &system_name)
virtual void close()=0
Calls the SparseMatrix&#39;s internal assembly routines, ensuring that the values are consistent across p...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
T & set(const std::string &)
Definition: parameters.h:469
OStreamProxy out
SparseMatrix< Number > * matrix
The system matrix.
const MeshBase & get_mesh() const
void resize(const unsigned int new_m, const unsigned int new_n)
Resizes the matrix to the specified size and calls zero().
Definition: dense_matrix.h:895
This class implements specific orders of Gauss quadrature.
unsigned int mesh_dimension() const
Definition: mesh_base.C:372
Parameters parameters
Data structure holding arbitrary parameters.
void assemble_helmholtz(EquationSystems &es, const std::string &system_name)
virtual void set(const numeric_index_type i, const T value)=0
Sets v(i) = value.
virtual void init()
Initialize all the systems.
virtual void add(const numeric_index_type i, const T value)=0
Adds value to the vector entry specified by i.
virtual System & add_system(std::string_view system_type, std::string_view name)
Add the system of type system_type named name to the systems array.
The Mesh class is a thin wrapper, around the ReplicatedMesh class by default.
Definition: mesh.h:50
SparseMatrix< Number > & add_matrix(std::string_view mat_name, ParallelType type=PARALLEL, MatrixBuildType mat_build_type=MatrixBuildType::AUTOMATIC)
Adds the additional matrix mat_name to this system.
Definition: system.C:1010
const DofMap & get_dof_map() const
Definition: system.h:2374
const SparseMatrix< Number > & get_matrix(std::string_view mat_name) const
Definition: system.C:1124
const SparseMatrix< Number > & get_system_matrix() const
The UNVIO class implements the Ideas UNV universal file format.
Definition: unv_io.h:52
const NumericVector< Number > & get_vector(std::string_view vec_name) const
Definition: system.C:943
const Real pi
.
Definition: libmesh.h:299