libMesh
quadrature_gauss_2D.C
Go to the documentation of this file.
1 // The libMesh Finite Element Library.
2 // Copyright (C) 2002-2025 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
3 
4 // This library is free software; you can redistribute it and/or
5 // modify it under the terms of the GNU Lesser General Public
6 // License as published by the Free Software Foundation; either
7 // version 2.1 of the License, or (at your option) any later version.
8 
9 // This library is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 // Lesser General Public License for more details.
13 
14 // You should have received a copy of the GNU Lesser General Public
15 // License along with this library; if not, write to the Free Software
16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 
18 
19 
20 // Local includes
21 #include "libmesh/quadrature_gauss.h"
22 #include "libmesh/quadrature_conical.h"
23 #include "libmesh/enum_to_string.h"
24 
25 #include "libmesh/face_c0polygon.h"
26 
27 namespace libMesh
28 {
29 
30 
32 {
33 #if LIBMESH_DIM > 1
34 
35  //-----------------------------------------------------------------------
36  // 2D quadrature rules
37  switch (_type)
38  {
39 
40 
41  //---------------------------------------------
42  // Quadrilateral quadrature rules
43  case QUAD4:
44  case QUADSHELL4:
45  case QUAD8:
46  case QUADSHELL8:
47  case QUAD9:
48  case QUADSHELL9:
49  {
50  // We compute the 2D quadrature rule as a tensor
51  // product of the 1D quadrature rule.
52  //
53  // For QUADs, a quadrature rule of order 'p' must be able to integrate
54  // bilinear (p=1), biquadratic (p=2), bicubic (p=3), etc. polynomials of the form
55  //
56  // (x^p + x^{p-1} + ... + 1) * (y^p + y^{p-1} + ... + 1)
57  //
58  // These polynomials have terms *up to* degree 2p but they are *not* complete
59  // polynomials of degree 2p. For example, when p=2 we have
60  // 1
61  // x y
62  // x^2 xy y^2
63  // yx^2 xy^2
64  // x^2y^2
65  QGauss q1D(1,get_order());
66  tensor_product_quad( q1D );
67  return;
68  }
69 
70 
71  //---------------------------------------------
72  // Triangle quadrature rules
73  case TRI3:
74  case TRISHELL3:
75  case TRI3SUBDIVISION:
76  case TRI6:
77  case TRI7:
78  {
79  switch(get_order())
80  {
81  case CONSTANT:
82  case FIRST:
83  {
84  // Exact for linears
85  _points.resize(1);
86  _weights.resize(1);
87 
88  _points[0](0) = Real(1)/3;
89  _points[0](1) = Real(1)/3;
90 
91  _weights[0] = 0.5;
92 
93  return;
94  }
95  case SECOND:
96  {
97  // Exact for quadratics
98  _points.resize(3);
99  _weights.resize(3);
100 
101  // Alternate rule with points on ref. elt. boundaries.
102  // Not ideal for problems with material coefficient discontinuities
103  // aligned along element boundaries.
104  // _points[0](0) = .5;
105  // _points[0](1) = .5;
106  // _points[1](0) = 0.;
107  // _points[1](1) = .5;
108  // _points[2](0) = .5;
109  // _points[2](1) = .0;
110 
111  _points[0](0) = Real(2)/3;
112  _points[0](1) = Real(1)/6;
113 
114  _points[1](0) = Real(1)/6;
115  _points[1](1) = Real(2)/3;
116 
117  _points[2](0) = Real(1)/6;
118  _points[2](1) = Real(1)/6;
119 
120 
121  _weights[0] = Real(1)/6;
122  _weights[1] = Real(1)/6;
123  _weights[2] = Real(1)/6;
124 
125  return;
126  }
127  case THIRD:
128  {
129  // Exact for cubics
130  _points.resize(4);
131  _weights.resize(4);
132 
133  // This rule is formed from a tensor product of
134  // appropriately-scaled Gauss and Jacobi rules. (See
135  // also the QConical quadrature class, this is a
136  // hard-coded version of one of those rules.) For high
137  // orders these rules generally have too many points,
138  // but at extremely low order they are competitive and
139  // have the additional benefit of having all positive
140  // weights.
141  _points[0](0) = 1.5505102572168219018027159252941e-01_R;
142  _points[0](1) = 1.7855872826361642311703513337422e-01_R;
143  _points[1](0) = 6.4494897427831780981972840747059e-01_R;
144  _points[1](1) = 7.5031110222608118177475598324603e-02_R;
145  _points[2](0) = 1.5505102572168219018027159252941e-01_R;
146  _points[2](1) = 6.6639024601470138670269327409637e-01_R;
147  _points[3](0) = 6.4494897427831780981972840747059e-01_R;
148  _points[3](1) = 2.8001991549907407200279599420481e-01_R;
149 
150  _weights[0] = 1.5902069087198858469718450103758e-01_R;
151  _weights[1] = 9.0979309128011415302815498962418e-02_R;
152  _weights[2] = 1.5902069087198858469718450103758e-01_R;
153  _weights[3] = 9.0979309128011415302815498962418e-02_R;
154 
155  return;
156 
157 
158  // The following third-order rule is quite commonly cited
159  // in the literature and most likely works fine. However,
160  // we generally prefer a rule with all positive weights
161  // and an equal number of points, when available.
162  //
163  // (allow_rules_with_negative_weights)
164  // {
165  // // Exact for cubics
166  // _points.resize(4);
167  // _weights.resize(4);
168  //
169  // _points[0](0) = .33333333333333333333333333333333;
170  // _points[0](1) = .33333333333333333333333333333333;
171  //
172  // _points[1](0) = .2;
173  // _points[1](1) = .6;
174  //
175  // _points[2](0) = .2;
176  // _points[2](1) = .2;
177  //
178  // _points[3](0) = .6;
179  // _points[3](1) = .2;
180  //
181  //
182  // _weights[0] = -27./96.;
183  // _weights[1] = 25./96.;
184  // _weights[2] = 25./96.;
185  // _weights[3] = 25./96.;
186  //
187  // return;
188  // } // end if (allow_rules_with_negative_weights)
189  // Note: if !allow_rules_with_negative_weights, fall through to next case.
190  }
191 
192 
193 
194  // A degree 4 rule with six points. This rule can be found in many places
195  // including:
196  //
197  // J.N. Lyness and D. Jespersen, Moderate degree symmetric
198  // quadrature rules for the triangle, J. Inst. Math. Appl. 15 (1975),
199  // 19--32.
200  //
201  // We used the code in:
202  // L. Zhang, T. Cui, and H. Liu. "A set of symmetric quadrature rules
203  // on triangles and tetrahedra" Journal of Computational Mathematics,
204  // v. 27, no. 1, 2009, pp. 89-96.
205  // to generate additional precision.
206  case FOURTH:
207  {
208  const unsigned int n_wts = 2;
209  const Real wts[n_wts] =
210  {
211  1.1169079483900573284750350421656140e-01_R,
212  5.4975871827660933819163162450105264e-02_R
213  };
214 
215  const Real a[n_wts] =
216  {
217  4.4594849091596488631832925388305199e-01_R,
218  9.1576213509770743459571463402201508e-02_R
219  };
220 
221  const Real b[n_wts] = {0., 0.}; // not used
222  const unsigned int permutation_ids[n_wts] = {3, 3};
223 
224  dunavant_rule2(wts, a, b, permutation_ids, n_wts); // 6 total points
225 
226  return;
227  }
228 
229 
230 
231  // Exact for quintics
232  // Can be found in "Quadrature on Simplices of Arbitrary
233  // Dimension" by Walkington.
234  case FIFTH:
235  {
236  const unsigned int n_wts = 3;
237  const Real wts[n_wts] =
238  {
239  Real(9)/80, // ~0.1125
240  Real(31)/480 + std::sqrt(Real(15))/2400, // ~0.06619707639
241  Real(31)/480 - std::sqrt(Real(15))/2400 // ~0.06296959027
242  };
243 
244  const Real a[n_wts] =
245  {
246  0., // 'a' parameter not used for origin permutation
247  Real(2)/7 + std::sqrt(Real(15))/21, // ~0.4701420641
248  Real(2)/7 - std::sqrt(Real(15))/21 // ~0.1012865073
249  };
250 
251  const Real b[n_wts] = {0., 0., 0.}; // not used
252  const unsigned int permutation_ids[n_wts] = {1, 3, 3};
253 
254  dunavant_rule2(wts, a, b, permutation_ids, n_wts); // 7 total points
255 
256  return;
257  }
258 
259 
260 
261  // A degree 6 rule with 12 points. This rule can be found in many places
262  // including:
263  //
264  // J.N. Lyness and D. Jespersen, Moderate degree symmetric
265  // quadrature rules for the triangle, J. Inst. Math. Appl. 15 (1975),
266  // 19--32.
267  //
268  // We used the code in:
269  // L. Zhang, T. Cui, and H. Liu. "A set of symmetric quadrature rules
270  // on triangles and tetrahedra" Journal of Computational Mathematics,
271  // v. 27, no. 1, 2009, pp. 89-96.
272  // to generate additional precision.
273  //
274  // Note that the following 7th-order Ro3-invariant rule also has only 12 points,
275  // which technically makes it the superior rule. This one is here for completeness.
276  case SIXTH:
277  {
278  const unsigned int n_wts = 3;
279  const Real wts[n_wts] =
280  {
281  5.8393137863189683012644805692789721e-02_R,
282  2.5422453185103408460468404553434492e-02_R,
283  4.1425537809186787596776728210221227e-02_R
284  };
285 
286  const Real a[n_wts] =
287  {
288  2.4928674517091042129163855310701908e-01_R,
289  6.3089014491502228340331602870819157e-02_R,
290  3.1035245103378440541660773395655215e-01_R
291  };
292 
293  const Real b[n_wts] =
294  {
295  0.,
296  0.,
297  6.3650249912139864723014259441204970e-01_R
298  };
299 
300  const unsigned int permutation_ids[n_wts] = {3, 3, 6}; // 12 total points
301 
302  dunavant_rule2(wts, a, b, permutation_ids, n_wts);
303 
304  return;
305  }
306 
307 
308  // A degree 7 rule with 12 points. This rule can be found in:
309  //
310  // K. Gatermann, The construction of symmetric cubature
311  // formulas for the square and the triangle, Computing 40
312  // (1988), 229--240.
313  //
314  // This rule, which is provably minimal in the number of
315  // integration points, is said to be 'Ro3 invariant' which
316  // means that a given set of barycentric coordinates
317  // (z1,z2,z3) implies the quadrature points (z1,z2),
318  // (z3,z1), (z2,z3) which are formed by taking the first
319  // two entries in cyclic permutations of the barycentric
320  // point. Barycentric coordinates are related in the
321  // sense that: z3 = 1 - z1 - z2.
322  //
323  // The 12-point sixth-order rule for triangles given in
324  // Flaherty's (http://www.cs.rpi.edu/~flaherje/FEM/fem6.ps)
325  // lecture notes has been removed in favor of this rule
326  // which is higher-order (for the same number of
327  // quadrature points) and has a few more digits of
328  // precision in the points and weights. Some 10-point
329  // degree 6 rules exist for the triangle but they have
330  // quadrature points outside the region of integration.
331  case SEVENTH:
332  {
333  _points.resize (12);
334  _weights.resize(12);
335 
336  const unsigned int nrows=4;
337 
338  // In each of the rows below, the first two entries are (z1, z2) which imply
339  // z3. The third entry is the weight for each of the points in the cyclic permutation.
340  // The original publication tabulated about 16 decimal digits for each point and weight
341  // parameter. The additional digits shown here were obtained using a code in the
342  // mp-quadrature library, https://github.com/jwpeterson/mp-quadrature
343  const Real rule_data[nrows][3] = {
344  {6.2382265094402118173683000996350e-02_R, 6.7517867073916085442557131050869e-02_R, 2.6517028157436251428754180460739e-02_R}, // group A
345  {5.5225456656926611737479190275645e-02_R, 3.2150249385198182266630784919920e-01_R, 4.3881408714446055036769903139288e-02_R}, // group B
346  {3.4324302945097146469630642483938e-02_R, 6.6094919618673565761198031019780e-01_R, 2.8775042784981585738445496900219e-02_R}, // group C
347  {5.1584233435359177925746338682643e-01_R, 2.7771616697639178256958187139372e-01_R, 6.7493187009802774462697086166421e-02_R} // group D
348  };
349 
350  for (unsigned int i=0, offset=0; i<nrows; ++i)
351  {
352  _points[offset + 0] = Point(rule_data[i][0], rule_data[i][1]); // (z1,z2)
353  _points[offset + 1] = Point(1.-rule_data[i][0]-rule_data[i][1], rule_data[i][0]); // (z3,z1)
354  _points[offset + 2] = Point(rule_data[i][1], 1.-rule_data[i][0]-rule_data[i][1]); // (z2,z3)
355 
356  // All these points get the same weight
357  _weights[offset + 0] = rule_data[i][2];
358  _weights[offset + 1] = rule_data[i][2];
359  _weights[offset + 2] = rule_data[i][2];
360 
361  // Increment offset
362  offset += 3;
363  }
364 
365  return;
366 
367 
368  // // The following is an inferior 7th-order Lyness-style rule with 15 points.
369  // // It's here only for completeness and the Ro3-invariant rule above should
370  // // be used instead!
371  // const unsigned int n_wts = 3;
372  // const Real wts[n_wts] =
373  // {
374  // 2.6538900895116205835977487499847719e-02_R,
375  // 3.5426541846066783659206291623201826e-02_R,
376  // 3.4637341039708446756138297960207647e-02_R
377  // };
378  //
379  // const Real a[n_wts] =
380  // {
381  // 6.4930513159164863078379776030396538e-02_R,
382  // 2.8457558424917033519741605734978046e-01_R,
383  // 3.1355918438493150795585190219862865e-01_R
384  // };
385  //
386  // const Real b[n_wts] =
387  // {
388  // 0.,
389  // 1.9838447668150671917987659863332941e-01_R,
390  // 4.3863471792372471511798695971295936e-02_R
391  // };
392  //
393  // const unsigned int permutation_ids[n_wts] = {3, 6, 6}; // 15 total points
394  //
395  // dunavant_rule2(wts, a, b, permutation_ids, n_wts);
396  //
397  // return;
398  }
399 
400 
401 
402 
403  // Another Dunavant rule. This one has all positive weights. This rule has
404  // 16 points while a comparable conical product rule would have 5*5=25.
405  //
406  // It was copied 23rd June 2008 from:
407  // http://people.scs.fsu.edu/~burkardt/f_src/dunavant/dunavant.f90
408  //
409  // Additional precision obtained from the code in:
410  // L. Zhang, T. Cui, and H. Liu. "A set of symmetric quadrature rules
411  // on triangles and tetrahedra" Journal of Computational Mathematics,
412  // v. 27, no. 1, 2009, pp. 89-96.
413  case EIGHTH:
414  {
415  const unsigned int n_wts = 5;
416  const Real wts[n_wts] =
417  {
418  7.2157803838893584125545555244532310e-02_R,
419  4.7545817133642312396948052194292159e-02_R,
420  5.1608685267359125140895775146064515e-02_R,
421  1.6229248811599040155462964170890299e-02_R,
422  1.3615157087217497132422345036954462e-02_R
423  };
424 
425  const Real a[n_wts] =
426  {
427  0.0, // 'a' parameter not used for origin permutation
428  4.5929258829272315602881551449416932e-01_R,
429  1.7056930775176020662229350149146450e-01_R,
430  5.0547228317030975458423550596598947e-02_R,
431  2.6311282963463811342178578628464359e-01_R,
432  };
433 
434  const Real b[n_wts] =
435  {
436  0.,
437  0.,
438  0.,
439  0.,
440  7.2849239295540428124100037917606196e-01_R
441  };
442 
443  const unsigned int permutation_ids[n_wts] = {1, 3, 3, 3, 6}; // 16 total points
444 
445  dunavant_rule2(wts, a, b, permutation_ids, n_wts);
446 
447  return;
448  }
449 
450 
451 
452  // Another Dunavant rule. This one has all positive weights. This rule has 19
453  // points. The comparable conical product rule would have 25.
454  // It was copied 23rd June 2008 from:
455  // http://people.scs.fsu.edu/~burkardt/f_src/dunavant/dunavant.f90
456  //
457  // Additional precision obtained from the code in:
458  // L. Zhang, T. Cui, and H. Liu. "A set of symmetric quadrature rules
459  // on triangles and tetrahedra" Journal of Computational Mathematics,
460  // v. 27, no. 1, 2009, pp. 89-96.
461  case NINTH:
462  {
463  const unsigned int n_wts = 6;
464  const Real wts[n_wts] =
465  {
466  4.8567898141399416909620991253644315e-02_R,
467  1.5667350113569535268427415643604658e-02_R,
468  1.2788837829349015630839399279499912e-02_R,
469  3.8913770502387139658369678149701978e-02_R,
470  3.9823869463605126516445887132022637e-02_R,
471  2.1641769688644688644688644688644689e-02_R
472  };
473 
474  const Real a[n_wts] =
475  {
476  0.0, // 'a' parameter not used for origin permutation
477  4.8968251919873762778370692483619280e-01_R,
478  4.4729513394452709865106589966276365e-02_R,
479  4.3708959149293663726993036443535497e-01_R,
480  1.8820353561903273024096128046733557e-01_R,
481  2.2196298916076569567510252769319107e-01_R
482  };
483 
484  const Real b[n_wts] =
485  {
486  0.,
487  0.,
488  0.,
489  0.,
490  0.,
491  7.4119859878449802069007987352342383e-01_R
492  };
493 
494  const unsigned int permutation_ids[n_wts] = {1, 3, 3, 3, 3, 6}; // 19 total points
495 
496  dunavant_rule2(wts, a, b, permutation_ids, n_wts);
497 
498  return;
499  }
500 
501 
502  // Another Dunavant rule with all positive weights. This rule has 25
503  // points. The comparable conical product rule would have 36.
504  // It was copied 23rd June 2008 from:
505  // http://people.scs.fsu.edu/~burkardt/f_src/dunavant/dunavant.f90
506  //
507  // Additional precision obtained from the code in:
508  // L. Zhang, T. Cui, and H. Liu. "A set of symmetric quadrature rules
509  // on triangles and tetrahedra" Journal of Computational Mathematics,
510  // v. 27, no. 1, 2009, pp. 89-96.
511  case TENTH:
512  {
513  const unsigned int n_wts = 6;
514  const Real wts[n_wts] =
515  {
516  4.5408995191376790047643297550014267e-02_R,
517  1.8362978878233352358503035945683300e-02_R,
518  2.2660529717763967391302822369298659e-02_R,
519  3.6378958422710054302157588309680344e-02_R,
520  1.4163621265528742418368530791049552e-02_R,
521  4.7108334818664117299637354834434138e-03_R
522  };
523 
524  const Real a[n_wts] =
525  {
526  0.0, // 'a' parameter not used for origin permutation
527  4.8557763338365737736750753220812615e-01_R,
528  1.0948157548503705479545863134052284e-01_R,
529  3.0793983876412095016515502293063162e-01_R,
530  2.4667256063990269391727646541117681e-01_R,
531  6.6803251012200265773540212762024737e-02_R
532  };
533 
534  const Real b[n_wts] =
535  {
536  0.,
537  0.,
538  0.,
539  5.5035294182099909507816172659300821e-01_R,
540  7.2832390459741092000873505358107866e-01_R,
541  9.2365593358750027664630697761508843e-01_R
542  };
543 
544  const unsigned int permutation_ids[n_wts] = {1, 3, 3, 6, 6, 6}; // 25 total points
545 
546  dunavant_rule2(wts, a, b, permutation_ids, n_wts);
547 
548  return;
549  }
550 
551 
552  // Dunavant's 11th-order rule contains points outside the region of
553  // integration, and is thus unacceptable for our FEM calculations.
554  //
555  // This 30-point, 11th-order rule was obtained by me [JWP] using the code in
556  //
557  // Additional precision obtained from the code in:
558  // L. Zhang, T. Cui, and H. Liu. "A set of symmetric quadrature rules
559  // on triangles and tetrahedra" Journal of Computational Mathematics,
560  // v. 27, no. 1, 2009, pp. 89-96.
561  //
562  // Note: the 28-point 11th-order rule obtained by Zhang in the paper above
563  // does not appear to be unique. It is a solution in the sense that it
564  // minimizes the error in the least-squares minimization problem, but
565  // it involves too many unknowns and the Jacobian is therefore singular
566  // when attempting to improve the solution via Newton's method.
567  case ELEVENTH:
568  {
569  const unsigned int n_wts = 6;
570  const Real wts[n_wts] =
571  {
572  3.6089021198604635216985338480426484e-02_R,
573  2.1607717807680420303346736867931050e-02_R,
574  3.1144524293927978774861144478241807e-03_R,
575  2.9086855161081509446654185084988077e-02_R,
576  8.4879241614917017182977532679947624e-03_R,
577  1.3795732078224796530729242858347546e-02_R
578  };
579 
580  const Real a[n_wts] =
581  {
582  3.9355079629947969884346551941969960e-01_R,
583  4.7979065808897448654107733982929214e-01_R,
584  5.1003445645828061436081405648347852e-03_R,
585  2.6597620190330158952732822450744488e-01_R,
586  2.8536418538696461608233522814483715e-01_R,
587  1.3723536747817085036455583801851025e-01_R
588  };
589 
590  const Real b[n_wts] =
591  {
592  0.,
593  0.,
594  5.6817155788572446538150614865768991e-02_R,
595  1.2539956353662088473247489775203396e-01_R,
596  1.2409970153698532116262152247041742e-02_R,
597  5.2792057988217708934207928630851643e-02_R
598  };
599 
600  const unsigned int permutation_ids[n_wts] = {3, 3, 6, 6, 6, 6}; // 30 total points
601 
602  dunavant_rule2(wts, a, b, permutation_ids, n_wts);
603 
604  return;
605  }
606 
607 
608 
609 
610  // Another Dunavant rule with all positive weights. This rule has 33
611  // points. The comparable conical product rule would have 36 (ELEVENTH) or 49 (TWELFTH).
612  //
613  // It was copied 23rd June 2008 from:
614  // http://people.scs.fsu.edu/~burkardt/f_src/dunavant/dunavant.f90
615  //
616  // Additional precision obtained from the code in:
617  // L. Zhang, T. Cui, and H. Liu. "A set of symmetric quadrature rules
618  // on triangles and tetrahedra" Journal of Computational Mathematics,
619  // v. 27, no. 1, 2009, pp. 89-96.
620  case TWELFTH:
621  {
622  const unsigned int n_wts = 8;
623  const Real wts[n_wts] =
624  {
625  3.0831305257795086169332418926151771e-03_R,
626  3.1429112108942550177135256546441273e-02_R,
627  1.7398056465354471494664198647499687e-02_R,
628  2.1846272269019201067728631278737487e-02_R,
629  1.2865533220227667708895461535782215e-02_R,
630  1.1178386601151722855919538351159995e-02_R,
631  8.6581155543294461858210504055170332e-03_R,
632  2.0185778883190464758914349626118386e-02_R
633  };
634 
635  const Real a[n_wts] =
636  {
637  2.1317350453210370246856975515728246e-02_R,
638  2.7121038501211592234595134039689474e-01_R,
639  1.2757614554158592467389632515428357e-01_R,
640  4.3972439229446027297973662348436108e-01_R,
641  4.8821738977380488256466206525881104e-01_R,
642  2.8132558098993954824813069297455275e-01_R,
643  1.1625191590759714124135414784260182e-01_R,
644  2.7571326968551419397479634607976398e-01_R
645  };
646 
647  const Real b[n_wts] =
648  {
649  0.,
650  0.,
651  0.,
652  0.,
653  0.,
654  6.9583608678780342214163552323607254e-01_R,
655  8.5801403354407263059053661662617818e-01_R,
656  6.0894323577978780685619243776371007e-01_R
657  };
658 
659  const unsigned int permutation_ids[n_wts] = {3, 3, 3, 3, 3, 6, 6, 6}; // 33 total points
660 
661  dunavant_rule2(wts, a, b, permutation_ids, n_wts);
662 
663  return;
664  }
665 
666 
667  // Another Dunavant rule with all positive weights. This rule has 37
668  // points. The comparable conical product rule would have 49 points.
669  //
670  // It was copied 23rd June 2008 from:
671  // http://people.scs.fsu.edu/~burkardt/f_src/dunavant/dunavant.f90
672  //
673  // A second rule with additional precision obtained from the code in:
674  // L. Zhang, T. Cui, and H. Liu. "A set of symmetric quadrature rules
675  // on triangles and tetrahedra" Journal of Computational Mathematics,
676  // v. 27, no. 1, 2009, pp. 89-96.
677  case THIRTEENTH:
678  {
679  const unsigned int n_wts = 9;
680  const Real wts[n_wts] =
681  {
682  3.3980018293415822140887212340442440e-02_R,
683  2.7800983765226664353628733005230734e-02_R,
684  2.9139242559599990702383541756669905e-02_R,
685  3.0261685517695859208964000161454122e-03_R,
686  1.1997200964447365386855399725479827e-02_R,
687  1.7320638070424185232993414255459110e-02_R,
688  7.4827005525828336316229285664517190e-03_R,
689  1.2089519905796909568722872786530380e-02_R,
690  4.7953405017716313612975450830554457e-03_R
691  };
692 
693  const Real a[n_wts] =
694  {
695  0., // 'a' parameter not used for origin permutation
696  4.2694141425980040602081253503137421e-01_R,
697  2.2137228629183290065481255470507908e-01_R,
698  2.1509681108843183869291313534052083e-02_R,
699  4.8907694645253934990068971909020439e-01_R,
700  3.0844176089211777465847185254124531e-01_R,
701  1.1092204280346339541286954522167452e-01_R,
702  1.6359740106785048023388790171095725e-01_R,
703  2.7251581777342966618005046435408685e-01_R
704  };
705 
706  const Real b[n_wts] =
707  {
708  0.,
709  0.,
710  0.,
711  0.,
712  0.,
713  6.2354599555367557081585435318623659e-01_R,
714  8.6470777029544277530254595089569318e-01_R,
715  7.4850711589995219517301859578870965e-01_R,
716  7.2235779312418796526062013230478405e-01_R
717  };
718 
719  const unsigned int permutation_ids[n_wts] = {1, 3, 3, 3, 3, 6, 6, 6, 6}; // 37 total points
720 
721  dunavant_rule2(wts, a, b, permutation_ids, n_wts);
722 
723  return;
724  }
725 
726 
727  // Another Dunavant rule. This rule has 42 points, while
728  // a comparable conical product rule would have 64.
729  //
730  // It was copied 23rd June 2008 from:
731  // http://people.scs.fsu.edu/~burkardt/f_src/dunavant/dunavant.f90
732  //
733  // Additional precision obtained from the code in:
734  // L. Zhang, T. Cui, and H. Liu. "A set of symmetric quadrature rules
735  // on triangles and tetrahedra" Journal of Computational Mathematics,
736  // v. 27, no. 1, 2009, pp. 89-96.
737  case FOURTEENTH:
738  {
739  const unsigned int n_wts = 10;
740  const Real wts[n_wts] =
741  {
742  1.0941790684714445320422472981662986e-02_R,
743  1.6394176772062675320655489369312672e-02_R,
744  2.5887052253645793157392455083198201e-02_R,
745  2.1081294368496508769115218662093065e-02_R,
746  7.2168498348883338008549607403266583e-03_R,
747  2.4617018012000408409130117545210774e-03_R,
748  1.2332876606281836981437622591818114e-02_R,
749  1.9285755393530341614244513905205430e-02_R,
750  7.2181540567669202480443459995079017e-03_R,
751  2.5051144192503358849300465412445582e-03_R
752  };
753 
754  const Real a[n_wts] =
755  {
756  4.8896391036217863867737602045239024e-01_R,
757  4.1764471934045392250944082218564344e-01_R,
758  2.7347752830883865975494428326269856e-01_R,
759  1.7720553241254343695661069046505908e-01_R,
760  6.1799883090872601267478828436935788e-02_R,
761  1.9390961248701048178250095054529511e-02_R,
762  1.7226668782135557837528960161365733e-01_R,
763  3.3686145979634500174405519708892539e-01_R,
764  2.9837288213625775297083151805961273e-01_R,
765  1.1897449769695684539818196192990548e-01_R
766  };
767 
768  const Real b[n_wts] =
769  {
770  0.,
771  0.,
772  0.,
773  0.,
774  0.,
775  0.,
776  7.7060855477499648258903327416742796e-01_R,
777  5.7022229084668317349769621336235426e-01_R,
778  6.8698016780808783735862715402031306e-01_R,
779  8.7975717137017112951457163697460183e-01_R
780  };
781 
782  const unsigned int permutation_ids[n_wts]
783  = {3, 3, 3, 3, 3, 3, 6, 6, 6, 6}; // 42 total points
784 
785  dunavant_rule2(wts, a, b, permutation_ids, n_wts);
786 
787  return;
788  }
789 
790 
791  // This 49-point rule was found by me [JWP] using the code in:
792  //
793  // L. Zhang, T. Cui, and H. Liu. "A set of symmetric quadrature rules
794  // on triangles and tetrahedra" Journal of Computational Mathematics,
795  // v. 27, no. 1, 2009, pp. 89-96.
796  //
797  // A 54-point, 15th-order rule is reported by
798  //
799  // Stephen Wandzura, Hong Xiao,
800  // Symmetric Quadrature Rules on a Triangle,
801  // Computers and Mathematics with Applications,
802  // Volume 45, Number 12, June 2003, pages 1829-1840.
803  //
804  // can be found here:
805  // http://people.scs.fsu.edu/~burkardt/f_src/wandzura/wandzura.f90
806  //
807  // but this 49-point rule is superior.
808  case FIFTEENTH:
809  {
810  const unsigned int n_wts = 11;
811  const Real wts[n_wts] =
812  {
813  2.4777380743035579804788826970198951e-02_R,
814  9.2433943023307730591540642828347660e-03_R,
815  2.2485768962175402793245929133296627e-03_R,
816  6.7052581900064143760518398833360903e-03_R,
817  1.9011381726930579256700190357527956e-02_R,
818  1.4605445387471889398286155981802858e-02_R,
819  1.5087322572773133722829435011138258e-02_R,
820  1.5630213780078803020711746273129099e-02_R,
821  6.1808086085778203192616856133701233e-03_R,
822  3.2209366452594664857296985751120513e-03_R,
823  5.8747373242569702667677969985668817e-03_R
824  };
825 
826  const Real a[n_wts] =
827  {
828  0.0, // 'a' parameter not used for origin
829  7.9031013655541635005816956762252155e-02_R,
830  1.8789501810770077611247984432284226e-02_R,
831  4.9250168823249670532514526605352905e-01_R,
832  4.0886316907744105975059040108092775e-01_R,
833  5.3877851064220142445952549348423733e-01_R,
834  2.0250549804829997692885033941362673e-01_R,
835  5.5349674918711643207148086558288110e-01_R,
836  7.8345022567320812359258882143250181e-01_R,
837  8.9514624528794883409864566727625002e-01_R,
838  3.2515745241110782862789881780746490e-01_R
839  };
840 
841  const Real b[n_wts] =
842  {
843  0.,
844  0.,
845  0.,
846  0.,
847  0.,
848  1.9412620368774630292701241080996842e-01_R,
849  9.8765911355712115933807754318089099e-02_R,
850  7.7663767064308164090246588765178087e-02_R,
851  2.1594628433980258573654682690950798e-02_R,
852  1.2563596287784997705599005477153617e-02_R,
853  1.5082654870922784345283124845552190e-02_R
854  };
855 
856  const unsigned int permutation_ids[n_wts]
857  = {1, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6}; // 49 total points
858 
859  dunavant_rule2(wts, a, b, permutation_ids, n_wts);
860 
861  return;
862  }
863 
864 
865 
866 
867  // Dunavant's 16th-order rule contains points outside the region of
868  // integration, and is thus unacceptable for our FEM calculations.
869  //
870  // This 55-point, 16th-order rule was obtained by me [JWP] using the code in
871  //
872  // Additional precision obtained from the code in:
873  // L. Zhang, T. Cui, and H. Liu. "A set of symmetric quadrature rules
874  // on triangles and tetrahedra" Journal of Computational Mathematics,
875  // v. 27, no. 1, 2009, pp. 89-96.
876  //
877  // Note: the 55-point 16th-order rule obtained by Zhang in the paper above
878  // does not appear to be unique. It is a solution in the sense that it
879  // minimizes the error in the least-squares minimization problem, but
880  // it involves too many unknowns and the Jacobian is therefore singular
881  // when attempting to improve the solution via Newton's method.
882  case SIXTEENTH:
883  {
884  const unsigned int n_wts = 12;
885  const Real wts[n_wts] =
886  {
887  2.2668082505910087151996321171534230e-02_R,
888  8.4043060714818596159798961899306135e-03_R,
889  1.0850949634049747713966288634484161e-03_R,
890  7.2252773375423638869298219383808751e-03_R,
891  1.2997715227338366024036316182572871e-02_R,
892  2.0054466616677715883228810959112227e-02_R,
893  9.7299841600417010281624372720122710e-03_R,
894  1.1651974438298104227427176444311766e-02_R,
895  9.1291185550484450744725847363097389e-03_R,
896  3.5568614040947150231712567900113671e-03_R,
897  5.8355861686234326181790822005304303e-03_R,
898  4.7411314396804228041879331486234396e-03_R
899  };
900 
901  const Real a[n_wts] =
902  {
903  0.0, // 'a' parameter not used for centroid weight
904  8.5402539407933203673769900926355911e-02_R,
905  1.2425572001444092841183633409631260e-02_R,
906  4.9174838341891594024701017768490960e-01_R,
907  4.5669426695387464162068900231444462e-01_R,
908  4.8506759880447437974189793537259677e-01_R,
909  2.0622099278664205707909858461264083e-01_R,
910  3.2374950270039093446805340265853956e-01_R,
911  7.3834330556606586255186213302750029e-01_R,
912  9.1210673061680792565673823935174611e-01_R,
913  6.6129919222598721544966837350891531e-01_R,
914  1.7807138906021476039088828811346122e-01_R
915  };
916 
917  const Real b[n_wts] =
918  {
919  0.0,
920  0.0,
921  0.0,
922  0.0,
923  0.0,
924  3.2315912848634384647700266402091638e-01_R,
925  1.5341553679414688425981898952416987e-01_R,
926  7.4295478991330687632977899141707872e-02_R,
927  7.1278762832147862035977841733532020e-02_R,
928  1.6623223223705792825395256602140459e-02_R,
929  1.4160772533794791868984026749196156e-02_R,
930  1.4539694958941854654807449467759690e-02_R
931  };
932 
933  const unsigned int permutation_ids[n_wts]
934  = {1, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6}; // 55 total points
935 
936  dunavant_rule2(wts, a, b, permutation_ids, n_wts);
937 
938  return;
939  }
940 
941 
942  // Dunavant's 17th-order rule has 61 points, while a
943  // comparable conical product rule would have 81 (16th and 17th orders).
944  //
945  // It can be found here:
946  // http://people.scs.fsu.edu/~burkardt/f_src/dunavant/dunavant.f90
947  //
948  // Zhang reports an identical rule in:
949  // L. Zhang, T. Cui, and H. Liu. "A set of symmetric quadrature rules
950  // on triangles and tetrahedra" Journal of Computational Mathematics,
951  // v. 27, no. 1, 2009, pp. 89-96.
952  //
953  // Note: the 61-point 17th-order rule obtained by Dunavant and Zhang
954  // does not appear to be unique. It is a solution in the sense that it
955  // minimizes the error in the least-squares minimization problem, but
956  // it involves too many unknowns and the Jacobian is therefore singular
957  // when attempting to improve the solution via Newton's method.
958  //
959  // Therefore, we prefer the following 63-point rule which
960  // I [JWP] found. It appears to be more accurate than the
961  // rule reported by Dunavant and Zhang, even though it has
962  // a few more points.
963  case SEVENTEENTH:
964  {
965  const unsigned int n_wts = 12;
966  const Real wts[n_wts] =
967  {
968  1.7464603792572004485690588092246146e-02_R,
969  5.9429003555801725246549713984660076e-03_R,
970  1.2490753345169579649319736639588729e-02_R,
971  1.5386987188875607593083456905596468e-02_R,
972  1.1185807311917706362674684312990270e-02_R,
973  1.0301845740670206831327304917180007e-02_R,
974  1.1767783072977049696840016810370464e-02_R,
975  3.8045312849431209558329128678945240e-03_R,
976  4.5139302178876351271037137230354382e-03_R,
977  2.2178812517580586419412547665472893e-03_R,
978  5.2216271537483672304731416553063103e-03_R,
979  9.8381136389470256422419930926212114e-04_R
980  };
981 
982  const Real a[n_wts] =
983  {
984  2.8796825754667362165337965123570514e-01_R,
985  4.9216175986208465345536805750663939e-01_R,
986  4.6252866763171173685916780827044612e-01_R,
987  1.6730292951631792248498303276090273e-01_R,
988  1.5816335500814652972296428532213019e-01_R,
989  1.6352252138387564873002458959679529e-01_R,
990  6.2447680488959768233910286168417367e-01_R,
991  8.7317249935244454285263604347964179e-01_R,
992  3.4428164322282694677972239461699271e-01_R,
993  9.1584484467813674010523309855340209e-02_R,
994  2.0172088013378989086826623852040632e-01_R,
995  9.6538762758254643474731509845084691e-01_R
996  };
997 
998  const Real b[n_wts] =
999  {
1000  0.0,
1001  0.0,
1002  0.0,
1003  3.4429160695501713926320695771253348e-01_R,
1004  2.2541623431550639817203145525444726e-01_R,
1005  8.0670083153531811694942222940484991e-02_R,
1006  6.5967451375050925655738829747288190e-02_R,
1007  4.5677879890996762665044366994439565e-02_R,
1008  1.1528411723154215812386518751976084e-02_R,
1009  9.3057714323900610398389176844165892e-03_R,
1010  1.5916814107619812717966560404970160e-02_R,
1011  1.0734733163764032541125434215228937e-02_R
1012  };
1013 
1014  const unsigned int permutation_ids[n_wts]
1015  = {3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6}; // 63 total points
1016 
1017  dunavant_rule2(wts, a, b, permutation_ids, n_wts);
1018 
1019  return;
1020 
1021  // _points.resize (61);
1022  // _weights.resize(61);
1023 
1024  // // The raw data for the quadrature rule.
1025  // const Real p[15][4] = {
1026  // { 1./3., 0., 0., 0.033437199290803e+00 / 2.0}, // 1-perm
1027  // {0.005658918886452e+00, 0.497170540556774e+00, 0., 0.005093415440507e+00 / 2.0}, // 3-perm
1028  // {0.035647354750751e+00, 0.482176322624625e+00, 0., 0.014670864527638e+00 / 2.0}, // 3-perm
1029  // {0.099520061958437e+00, 0.450239969020782e+00, 0., 0.024350878353672e+00 / 2.0}, // 3-perm
1030  // {0.199467521245206e+00, 0.400266239377397e+00, 0., 0.031107550868969e+00 / 2.0}, // 3-perm
1031  // {0.495717464058095e+00, 0.252141267970953e+00, 0., 0.031257111218620e+00 / 2.0}, // 3-perm
1032  // {0.675905990683077e+00, 0.162047004658461e+00, 0., 0.024815654339665e+00 / 2.0}, // 3-perm
1033  // {0.848248235478508e+00, 0.075875882260746e+00, 0., 0.014056073070557e+00 / 2.0}, // 3-perm
1034  // {0.968690546064356e+00, 0.015654726967822e+00, 0., 0.003194676173779e+00 / 2.0}, // 3-perm
1035  // {0.010186928826919e+00, 0.334319867363658e+00, 0.655493203809423e+00, 0.008119655318993e+00 / 2.0}, // 6-perm
1036  // {0.135440871671036e+00, 0.292221537796944e+00, 0.572337590532020e+00, 0.026805742283163e+00 / 2.0}, // 6-perm
1037  // {0.054423924290583e+00, 0.319574885423190e+00, 0.626001190286228e+00, 0.018459993210822e+00 / 2.0}, // 6-perm
1038  // {0.012868560833637e+00, 0.190704224192292e+00, 0.796427214974071e+00, 0.008476868534328e+00 / 2.0}, // 6-perm
1039  // {0.067165782413524e+00, 0.180483211648746e+00, 0.752351005937729e+00, 0.018292796770025e+00 / 2.0}, // 6-perm
1040  // {0.014663182224828e+00, 0.080711313679564e+00, 0.904625504095608e+00, 0.006665632004165e+00 / 2.0} // 6-perm
1041  // };
1042 
1043 
1044  // // Now call the dunavant routine to generate _points and _weights
1045  // dunavant_rule(p, 15);
1046 
1047  // return;
1048  }
1049 
1050 
1051 
1052  // Dunavant's 18th-order rule contains points outside the region and is therefore unsuitable
1053  // for our FEM calculations. His 19th-order rule has 73 points, compared with 100 points for
1054  // a comparable-order conical product rule.
1055  //
1056  // It was copied 23rd June 2008 from:
1057  // http://people.scs.fsu.edu/~burkardt/f_src/dunavant/dunavant.f90
1058  case EIGHTTEENTH:
1059  case NINETEENTH:
1060  {
1061  _points.resize (73);
1062  _weights.resize(73);
1063 
1064  // The raw data for the quadrature rule.
1065  const Real rule_data[17][4] = {
1066  { 1./3., 0., 0., 0.032906331388919e+00 / 2.0}, // 1-perm
1067  {0.020780025853987e+00, 0.489609987073006e+00, 0., 0.010330731891272e+00 / 2.0}, // 3-perm
1068  {0.090926214604215e+00, 0.454536892697893e+00, 0., 0.022387247263016e+00 / 2.0}, // 3-perm
1069  {0.197166638701138e+00, 0.401416680649431e+00, 0., 0.030266125869468e+00 / 2.0}, // 3-perm
1070  {0.488896691193805e+00, 0.255551654403098e+00, 0., 0.030490967802198e+00 / 2.0}, // 3-perm
1071  {0.645844115695741e+00, 0.177077942152130e+00, 0., 0.024159212741641e+00 / 2.0}, // 3-perm
1072  {0.779877893544096e+00, 0.110061053227952e+00, 0., 0.016050803586801e+00 / 2.0}, // 3-perm
1073  {0.888942751496321e+00, 0.055528624251840e+00, 0., 0.008084580261784e+00 / 2.0}, // 3-perm
1074  {0.974756272445543e+00, 0.012621863777229e+00, 0., 0.002079362027485e+00 / 2.0}, // 3-perm
1075  {0.003611417848412e+00, 0.395754787356943e+00, 0.600633794794645e+00, 0.003884876904981e+00 / 2.0}, // 6-perm
1076  {0.134466754530780e+00, 0.307929983880436e+00, 0.557603261588784e+00, 0.025574160612022e+00 / 2.0}, // 6-perm
1077  {0.014446025776115e+00, 0.264566948406520e+00, 0.720987025817365e+00, 0.008880903573338e+00 / 2.0}, // 6-perm
1078  {0.046933578838178e+00, 0.358539352205951e+00, 0.594527068955871e+00, 0.016124546761731e+00 / 2.0}, // 6-perm
1079  {0.002861120350567e+00, 0.157807405968595e+00, 0.839331473680839e+00, 0.002491941817491e+00 / 2.0}, // 6-perm
1080  {0.223861424097916e+00, 0.075050596975911e+00, 0.701087978926173e+00, 0.018242840118951e+00 / 2.0}, // 6-perm
1081  {0.034647074816760e+00, 0.142421601113383e+00, 0.822931324069857e+00, 0.010258563736199e+00 / 2.0}, // 6-perm
1082  {0.010161119296278e+00, 0.065494628082938e+00, 0.924344252620784e+00, 0.003799928855302e+00 / 2.0} // 6-perm
1083  };
1084 
1085 
1086  // Now call the dunavant routine to generate _points and _weights
1087  dunavant_rule(rule_data, 17);
1088 
1089  return;
1090  }
1091 
1092 
1093  // 20th-order rule by Wandzura.
1094  //
1095  // Stephen Wandzura, Hong Xiao,
1096  // Symmetric Quadrature Rules on a Triangle,
1097  // Computers and Mathematics with Applications,
1098  // Volume 45, Number 12, June 2003, pages 1829-1840.
1099  //
1100  // Wandzura's work extends the work of Dunavant by providing degree
1101  // 5,10,15,20,25, and 30 rules with positive weights for the triangle.
1102  //
1103  // Copied on 3rd July 2008 from:
1104  // http://people.scs.fsu.edu/~burkardt/f_src/wandzura/wandzura.f90
1105  case TWENTIETH:
1106  {
1107  // The equivalent conical product rule would have 121 points
1108  _points.resize (85);
1109  _weights.resize(85);
1110 
1111  // The raw data for the quadrature rule.
1112  const Real rule_data[19][4] = {
1113  {0.33333333333333e+00, 0.0, 0.0, 0.2761042699769952e-01 / 2.0}, // 1-perm
1114  {0.00150064932443e+00, 0.49924967533779e+00, 0.0, 0.1779029547326740e-02 / 2.0}, // 3-perm
1115  {0.09413975193895e+00, 0.45293012403052e+00, 0.0, 0.2011239811396117e-01 / 2.0}, // 3-perm
1116  {0.20447212408953e+00, 0.39776393795524e+00, 0.0, 0.2681784725933157e-01 / 2.0}, // 3-perm
1117  {0.47099959493443e+00, 0.26450020253279e+00, 0.0, 0.2452313380150201e-01 / 2.0}, // 3-perm
1118  {0.57796207181585e+00, 0.21101896409208e+00, 0.0, 0.1639457841069539e-01 / 2.0}, // 3-perm
1119  {0.78452878565746e+00, 0.10773560717127e+00, 0.0, 0.1479590739864960e-01 / 2.0}, // 3-perm
1120  {0.92186182432439e+00, 0.03906908783780e+00, 0.0, 0.4579282277704251e-02 / 2.0}, // 3-perm
1121  {0.97765124054134e+00, 0.01117437972933e+00, 0.0, 0.1651826515576217e-02 / 2.0}, // 3-perm
1122  {0.00534961818734e+00, 0.06354966590835e+00, 0.93110071590431e+00, 0.2349170908575584e-02 / 2.0}, // 6-perm
1123  {0.00795481706620e+00, 0.15710691894071e+00, 0.83493826399309e+00, 0.4465925754181793e-02 / 2.0}, // 6-perm
1124  {0.01042239828126e+00, 0.39564211436437e+00, 0.59393548735436e+00, 0.6099566807907972e-02 / 2.0}, // 6-perm
1125  {0.01096441479612e+00, 0.27316757071291e+00, 0.71586801449097e+00, 0.6891081327188203e-02 / 2.0}, // 6-perm
1126  {0.03856671208546e+00, 0.10178538248502e+00, 0.85964790542952e+00, 0.7997475072478163e-02 / 2.0}, // 6-perm
1127  {0.03558050781722e+00, 0.44665854917641e+00, 0.51776094300637e+00, 0.7386134285336024e-02 / 2.0}, // 6-perm
1128  {0.04967081636276e+00, 0.19901079414950e+00, 0.75131838948773e+00, 0.1279933187864826e-01 / 2.0}, // 6-perm
1129  {0.05851972508433e+00, 0.32426118369228e+00, 0.61721909122339e+00, 0.1725807117569655e-01 / 2.0}, // 6-perm
1130  {0.12149778700439e+00, 0.20853136321013e+00, 0.66997084978547e+00, 0.1867294590293547e-01 / 2.0}, // 6-perm
1131  {0.14071084494394e+00, 0.32317056653626e+00, 0.53611858851980e+00, 0.2281822405839526e-01 / 2.0} // 6-perm
1132  };
1133 
1134 
1135  // Now call the dunavant routine to generate _points and _weights
1136  dunavant_rule(rule_data, 19);
1137 
1138  return;
1139  }
1140 
1141 
1142 
1143  // 25th-order rule by Wandzura.
1144  //
1145  // Stephen Wandzura, Hong Xiao,
1146  // Symmetric Quadrature Rules on a Triangle,
1147  // Computers and Mathematics with Applications,
1148  // Volume 45, Number 12, June 2003, pages 1829-1840.
1149  //
1150  // Wandzura's work extends the work of Dunavant by providing degree
1151  // 5,10,15,20,25, and 30 rules with positive weights for the triangle.
1152  //
1153  // Copied on 3rd July 2008 from:
1154  // http://people.scs.fsu.edu/~burkardt/f_src/wandzura/wandzura.f90
1155  // case TWENTYFIRST: // fall through to 121 point conical product rule below
1156  case TWENTYSECOND:
1157  case TWENTYTHIRD:
1158  case TWENTYFOURTH:
1159  case TWENTYFIFTH:
1160  {
1161  // The equivalent conical product rule would have 169 points
1162  _points.resize (126);
1163  _weights.resize(126);
1164 
1165  // The raw data for the quadrature rule.
1166  const Real rule_data[26][4] = {
1167  {0.02794648307317e+00, 0.48602675846341e+00, 0.0, 0.8005581880020417e-02 / 2.0}, // 3-perm
1168  {0.13117860132765e+00, 0.43441069933617e+00, 0.0, 0.1594707683239050e-01 / 2.0}, // 3-perm
1169  {0.22022172951207e+00, 0.38988913524396e+00, 0.0, 0.1310914123079553e-01 / 2.0}, // 3-perm
1170  {0.40311353196039e+00, 0.29844323401980e+00, 0.0, 0.1958300096563562e-01 / 2.0}, // 3-perm
1171  {0.53191165532526e+00, 0.23404417233737e+00, 0.0, 0.1647088544153727e-01 / 2.0}, // 3-perm
1172  {0.69706333078196e+00, 0.15146833460902e+00, 0.0, 0.8547279074092100e-02 / 2.0}, // 3-perm
1173  {0.77453221290801e+00, 0.11273389354599e+00, 0.0, 0.8161885857226492e-02 / 2.0}, // 3-perm
1174  {0.84456861581695e+00, 0.07771569209153e+00, 0.0, 0.6121146539983779e-02 / 2.0}, // 3-perm
1175  {0.93021381277141e+00, 0.03489309361430e+00, 0.0, 0.2908498264936665e-02 / 2.0}, // 3-perm
1176  {0.98548363075813e+00, 0.00725818462093e+00, 0.0, 0.6922752456619963e-03 / 2.0}, // 3-perm
1177  {0.00129235270444e+00, 0.22721445215336e+00, 0.77149319514219e+00, 0.1248289199277397e-02 / 2.0}, // 6-perm
1178  {0.00539970127212e+00, 0.43501055485357e+00, 0.55958974387431e+00, 0.3404752908803022e-02 / 2.0}, // 6-perm
1179  {0.00638400303398e+00, 0.32030959927220e+00, 0.67330639769382e+00, 0.3359654326064051e-02 / 2.0}, // 6-perm
1180  {0.00502821150199e+00, 0.09175032228001e+00, 0.90322146621800e+00, 0.1716156539496754e-02 / 2.0}, // 6-perm
1181  {0.00682675862178e+00, 0.03801083585872e+00, 0.95516240551949e+00, 0.1480856316715606e-02 / 2.0}, // 6-perm
1182  {0.01001619963993e+00, 0.15742521848531e+00, 0.83255858187476e+00, 0.3511312610728685e-02 / 2.0}, // 6-perm
1183  {0.02575781317339e+00, 0.23988965977853e+00, 0.73435252704808e+00, 0.7393550149706484e-02 / 2.0}, // 6-perm
1184  {0.03022789811992e+00, 0.36194311812606e+00, 0.60782898375402e+00, 0.7983087477376558e-02 / 2.0}, // 6-perm
1185  {0.03050499010716e+00, 0.08355196095483e+00, 0.88594304893801e+00, 0.4355962613158041e-02 / 2.0}, // 6-perm
1186  {0.04595654736257e+00, 0.14844322073242e+00, 0.80560023190501e+00, 0.7365056701417832e-02 / 2.0}, // 6-perm
1187  {0.06744280054028e+00, 0.28373970872753e+00, 0.64881749073219e+00, 0.1096357284641955e-01 / 2.0}, // 6-perm
1188  {0.07004509141591e+00, 0.40689937511879e+00, 0.52305553346530e+00, 0.1174996174354112e-01 / 2.0}, // 6-perm
1189  {0.08391152464012e+00, 0.19411398702489e+00, 0.72197448833499e+00, 0.1001560071379857e-01 / 2.0}, // 6-perm
1190  {0.12037553567715e+00, 0.32413434700070e+00, 0.55549011732214e+00, 0.1330964078762868e-01 / 2.0}, // 6-perm
1191  {0.14806689915737e+00, 0.22927748355598e+00, 0.62265561728665e+00, 0.1415444650522614e-01 / 2.0}, // 6-perm
1192  {0.19177186586733e+00, 0.32561812259598e+00, 0.48261001153669e+00, 0.1488137956116801e-01 / 2.0} // 6-perm
1193  };
1194 
1195 
1196  // Now call the dunavant routine to generate _points and _weights
1197  dunavant_rule(rule_data, 26);
1198 
1199  return;
1200  }
1201 
1202 
1203 
1204  // 30th-order rule by Wandzura.
1205  //
1206  // Stephen Wandzura, Hong Xiao,
1207  // Symmetric Quadrature Rules on a Triangle,
1208  // Computers and Mathematics with Applications,
1209  // Volume 45, Number 12, June 2003, pages 1829-1840.
1210  //
1211  // Wandzura's work extends the work of Dunavant by providing degree
1212  // 5,10,15,20,25, and 30 rules with positive weights for the triangle.
1213  //
1214  // Copied on 3rd July 2008 from:
1215  // http://people.scs.fsu.edu/~burkardt/f_src/wandzura/wandzura.f90
1216  case TWENTYSIXTH:
1217  case TWENTYSEVENTH:
1218  case TWENTYEIGHTH:
1219  case TWENTYNINTH:
1220  case THIRTIETH:
1221  {
1222  // The equivalent conical product rule would have 256 points
1223  _points.resize (175);
1224  _weights.resize(175);
1225 
1226  // The raw data for the quadrature rule.
1227  const Real rule_data[36][4] = {
1228  {0.33333333333333e+00, 0.0, 0.0, 0.1557996020289920e-01 / 2.0}, // 1-perm
1229  {0.00733011643277e+00, 0.49633494178362e+00, 0.0, 0.3177233700534134e-02 / 2.0}, // 3-perm
1230  {0.08299567580296e+00, 0.45850216209852e+00, 0.0, 0.1048342663573077e-01 / 2.0}, // 3-perm
1231  {0.15098095612541e+00, 0.42450952193729e+00, 0.0, 0.1320945957774363e-01 / 2.0}, // 3-perm
1232  {0.23590585989217e+00, 0.38204707005392e+00, 0.0, 0.1497500696627150e-01 / 2.0}, // 3-perm
1233  {0.43802430840785e+00, 0.28098784579608e+00, 0.0, 0.1498790444338419e-01 / 2.0}, // 3-perm
1234  {0.54530204829193e+00, 0.22734897585403e+00, 0.0, 0.1333886474102166e-01 / 2.0}, // 3-perm
1235  {0.65088177698254e+00, 0.17455911150873e+00, 0.0, 0.1088917111390201e-01 / 2.0}, // 3-perm
1236  {0.75348314559713e+00, 0.12325842720144e+00, 0.0, 0.8189440660893461e-02 / 2.0}, // 3-perm
1237  {0.83983154221561e+00, 0.08008422889220e+00, 0.0, 0.5575387588607785e-02 / 2.0}, // 3-perm
1238  {0.90445106518420e+00, 0.04777446740790e+00, 0.0, 0.3191216473411976e-02 / 2.0}, // 3-perm
1239  {0.95655897063972e+00, 0.02172051468014e+00, 0.0, 0.1296715144327045e-02 / 2.0}, // 3-perm
1240  {0.99047064476913e+00, 0.00476467761544e+00, 0.0, 0.2982628261349172e-03 / 2.0}, // 3-perm
1241  {0.00092537119335e+00, 0.41529527091331e+00, 0.58377935789334e+00, 0.9989056850788964e-03 / 2.0}, // 6-perm
1242  {0.00138592585556e+00, 0.06118990978535e+00, 0.93742416435909e+00, 0.4628508491732533e-03 / 2.0}, // 6-perm
1243  {0.00368241545591e+00, 0.16490869013691e+00, 0.83140889440718e+00, 0.1234451336382413e-02 / 2.0}, // 6-perm
1244  {0.00390322342416e+00, 0.02503506223200e+00, 0.97106171434384e+00, 0.5707198522432062e-03 / 2.0}, // 6-perm
1245  {0.00323324815501e+00, 0.30606446515110e+00, 0.69070228669389e+00, 0.1126946125877624e-02 / 2.0}, // 6-perm
1246  {0.00646743211224e+00, 0.10707328373022e+00, 0.88645928415754e+00, 0.1747866949407337e-02 / 2.0}, // 6-perm
1247  {0.00324747549133e+00, 0.22995754934558e+00, 0.76679497516308e+00, 0.1182818815031657e-02 / 2.0}, // 6-perm
1248  {0.00867509080675e+00, 0.33703663330578e+00, 0.65428827588746e+00, 0.1990839294675034e-02 / 2.0}, // 6-perm
1249  {0.01559702646731e+00, 0.05625657618206e+00, 0.92814639735063e+00, 0.1900412795035980e-02 / 2.0}, // 6-perm
1250  {0.01797672125369e+00, 0.40245137521240e+00, 0.57957190353391e+00, 0.4498365808817451e-02 / 2.0}, // 6-perm
1251  {0.01712424535389e+00, 0.24365470201083e+00, 0.73922105263528e+00, 0.3478719460274719e-02 / 2.0}, // 6-perm
1252  {0.02288340534658e+00, 0.16538958561453e+00, 0.81172700903888e+00, 0.4102399036723953e-02 / 2.0}, // 6-perm
1253  {0.03273759728777e+00, 0.09930187449585e+00, 0.86796052821639e+00, 0.4021761549744162e-02 / 2.0}, // 6-perm
1254  {0.03382101234234e+00, 0.30847833306905e+00, 0.65770065458860e+00, 0.6033164660795066e-02 / 2.0}, // 6-perm
1255  {0.03554761446002e+00, 0.46066831859211e+00, 0.50378406694787e+00, 0.3946290302129598e-02 / 2.0}, // 6-perm
1256  {0.05053979030687e+00, 0.21881529945393e+00, 0.73064491023920e+00, 0.6644044537680268e-02 / 2.0}, // 6-perm
1257  {0.05701471491573e+00, 0.37920955156027e+00, 0.56377573352399e+00, 0.8254305856078458e-02 / 2.0}, // 6-perm
1258  {0.06415280642120e+00, 0.14296081941819e+00, 0.79288637416061e+00, 0.6496056633406411e-02 / 2.0}, // 6-perm
1259  {0.08050114828763e+00, 0.28373128210592e+00, 0.63576756960645e+00, 0.9252778144146602e-02 / 2.0}, // 6-perm
1260  {0.10436706813453e+00, 0.19673744100444e+00, 0.69889549086103e+00, 0.9164920726294280e-02 / 2.0}, // 6-perm
1261  {0.11384489442875e+00, 0.35588914121166e+00, 0.53026596435959e+00, 0.1156952462809767e-01 / 2.0}, // 6-perm
1262  {0.14536348771552e+00, 0.25981868535191e+00, 0.59481782693256e+00, 0.1176111646760917e-01 / 2.0}, // 6-perm
1263  {0.18994565282198e+00, 0.32192318123130e+00, 0.48813116594672e+00, 0.1382470218216540e-01 / 2.0} // 6-perm
1264  };
1265 
1266 
1267  // Now call the dunavant routine to generate _points and _weights
1268  dunavant_rule(rule_data, 36);
1269 
1270  return;
1271  }
1272 
1273 
1274  // By default, we fall back on the conical product rules. If the user
1275  // requests an order higher than what is currently available in the 1D
1276  // rules, an error will be thrown from the respective 1D code.
1277  default:
1278  {
1279  // The following quadrature rules are generated as
1280  // conical products. These tend to be non-optimal
1281  // (use too many points, cluster points in certain
1282  // regions of the domain) but they are quite easy to
1283  // automatically generate using a 1D Gauss rule on
1284  // [0,1] and two 1D Jacobi-Gauss rules on [0,1].
1285  QConical conical_rule(2, _order);
1286  conical_rule.init(*this);
1287 
1288  // Swap points and weights with the about-to-be destroyed rule.
1289  _points.swap (conical_rule.get_points() );
1290  _weights.swap(conical_rule.get_weights());
1291 
1292  return;
1293  }
1294  }
1295  }
1296 
1297 
1298  //---------------------------------------------
1299  // Arbitrary polygon quadrature rules
1300  case C0POLYGON:
1301  {
1302  QGauss tri_rule(2, _order);
1303  tri_rule.init(TRI3, _p_level, true);
1304 
1305  std::vector<Point> & tripoints = tri_rule.get_points();
1306  std::vector<Real> & triweights = tri_rule.get_weights();
1307 
1308  std::size_t numtripts = tripoints.size();
1309 
1310  // C0Polygon requires the newer Quadrature API
1311  if (!_elem)
1312  libmesh_error();
1313 
1315 
1316  const C0Polygon & poly = *cast_ptr<const C0Polygon *>(_elem);
1317 
1318  std::size_t numtris = poly.n_subtriangles();
1319  _points.resize(numtripts*numtris);
1320  _weights.resize(numtripts*numtris);
1321  for (std::size_t t = 0; t != numtris; ++t)
1322  {
1323  auto master_points = poly.master_subtriangle(t);
1324 
1325  // The factor of one half from the triweights cancels out
1326  // the factor of two here, so we don't need to do so
1327  // ourselves.
1328  const Real twice_master_tri_area =
1329  (- master_points[1](1) * master_points[2](0)
1330  - master_points[0](1) * master_points[1](0)
1331  + master_points[0](1) * master_points[2](0)
1332  + master_points[0](0) * master_points[1](1)
1333  - master_points[0](0) * master_points[2](1)
1334  + master_points[1](0) * master_points[2](1));
1335 
1336  const Point v01 = master_points[1] - master_points[0];
1337  const Point v02 = master_points[2] - master_points[0];
1338 
1339  for (std::size_t i = 0; i != numtripts; ++i)
1340  {
1341  _points[numtripts*t+i] =
1342  master_points[0] +
1343  v01 * tripoints[i](0) +
1344  v02 * tripoints[i](1);
1345  _weights[numtripts*t+i] = triweights[i] *
1346  twice_master_tri_area;
1347  }
1348  }
1349  return;
1350  }
1351 
1352  //---------------------------------------------
1353  // Unsupported type
1354  default:
1355  libmesh_error_msg("Element type not supported:" << Utility::enum_to_string(_type));
1356  }
1357 #endif
1358 }
1359 
1360 } // namespace libMesh
unsigned int n_subtriangles() const
Definition: face_polygon.h:212
ElemType _type
The type of element for which the current values have been computed.
Definition: quadrature.h:391
const std::vector< Real > & get_weights() const
Definition: quadrature.h:168
const Elem * _elem
The element for which the current values were computed, or nullptr if values were computed without a ...
Definition: quadrature.h:397
The libMesh namespace provides an interface to certain functionality in the library.
std::vector< Point > _points
The locations of the quadrature points in reference element space.
Definition: quadrature.h:409
std::vector< Real > _weights
The quadrature weights.
Definition: quadrature.h:415
unsigned int _p_level
The p-level of the element for which the current values have been computed.
Definition: quadrature.h:403
void dunavant_rule2(const Real *wts, const Real *a, const Real *b, const unsigned int *permutation_ids, const unsigned int n_wts)
libmesh_assert(ctx)
Order get_order() const
Definition: quadrature.h:249
void dunavant_rule(const Real rule_data[][4], const unsigned int n_pts)
The Dunavant rules are for triangles.
This class implements the so-called conical product quadrature rules for Tri and Tet elements...
std::string enum_to_string(const T e)
Order _order
The polynomial order which the quadrature rule is capable of integrating exactly. ...
Definition: quadrature.h:385
The C0Polygon is an element in 2D with an arbitrary (but fixed) number of first-order (EDGE2) sides...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const std::vector< Point > & get_points() const
Definition: quadrature.h:156
This class implements specific orders of Gauss quadrature.
virtual void init(const Elem &e, unsigned int p_level=invalid_uint)
Initializes the data structures for a quadrature rule for the element e.
Definition: quadrature.C:65
void tensor_product_quad(const QBase &q1D)
Constructs a 2D rule from the tensor product of q1D with itself.
Definition: quadrature.C:256
virtual void init_2D() override
Initializes the 2D quadrature rule by filling the points and weights vectors with the appropriate val...
virtual ElemType type() const =0
A Point defines a location in LIBMESH_DIM dimensional Real space.
Definition: point.h:39