<!– MOOSE Documentation Stub: Remove this when content is added. –>

# AuxKernels System

## Available Objects

- Moose App
- BoundsAux
- ConstantAuxCreates a constant field in the domain.
- DebugResidualAux
- DiffusionFluxAuxCompute components of flux vector for diffusion problems .
- ElementH1ErrorFunctionAuxComputes the H1 or W^{1,p} error between an exact function and a coupled variable.
- ElementL2ErrorFunctionAuxA class for computing the element-wise L^2 (Euclidean) error between a function and a coupled variable.
- ElementLengthAuxCompute the element size using Elem::hmin() or Elem::hmax() from libMesh.
- ElementLpNormAuxCompute an elemental field variable (single value per element) equal to the Lp-norm of a coupled Variable.
- ElementQualityAuxGenerates a field containing the quality metric for each element. Useful for visualizing mesh quality.
- FunctionAuxAuxiliary Kernel that creates and updates a field variable by sampling a function through space and time.
- GapValueAux
- JouleHeatingHeatGeneratedAuxCompute heat generated from Joule heating .
- LineSegmentLevelSetAuxAuxiliary Kernel that calcuates level set value using line segments' description.
- MaterialRankFourTensorAuxAccess a component of a RankFourTensor for automatic material property output
- MaterialRankTwoTensorAuxAccess a component of a RankTwoTensor for automatic material property output
- MaterialRealAuxOutputs element volume-averaged material properties
- MaterialRealDenseMatrixAux
- MaterialRealTensorValueAux
- MaterialRealVectorValueAux
- MaterialStdVectorAuxExtracts a component of a material type std::vector<Real> to an aux variable. If the std::vector is not of sufficient size then zero is returned
- MaterialStdVectorRealGradientAuxExtracts a component of a material's std::vector<RealGradient> to an aux variable. If the std::vector is not of sufficient size then zero is returned
- NearestNodeDistanceAuxStores the distance between a block and boundary or between two boundaries.
- NearestNodeValueAuxRetrieves a field value from the closest node on the paired boundary and stores it on this boundary or block.
- NormalizationAux
- ParsedAuxParsed function AuxKernel.
- PenetrationAuxAuxiliary Kernel for computing several geometry related quantities between two contacting bodies.
- ProcessorIDAuxCreates a field showing the processors and partitioning.
- QuotientAuxDivides two coupled variables.
- SelfAux
- SolutionAuxCreates fields by using information from a SolutionUserObject.
- SpatialUserObjectAux
- TagMatrixAuxCouple the diag of a tag matrix, and return its nodal value
- TagVectorAuxCouple a tag vector, and return its nodal value
- VariableGradientComponentCreates a field with consisting of one component of a coupled variable.
- VariableTimeIntegrationAux
- VectorMagnitudeAuxCreates a field representing the magnitude of three coupled variables using an Euclidean norm.
- VectorPostprocessorVisualizationAuxRead values from a VectorPostprocessor that is producing vectors that are 'number of processors' * in length. Puts the value for each processor into an elemental auxiliary field.
- Phase Field Test App
- VoronoiICAux
- Phase Field App
- BndsCalcAuxCalculate location of grain boundaries in a polycrystalline sample
- CrossTermGradientFreeEnergyFree energy contribution from the cross terms in ACMultiInetrface
- DiscreteNucleationAuxProject the DiscreteNucleationMap state onto an AuxVariable
- EBSDReaderAvgDataAux
- EBSDReaderPointDataAux
- EulerAngleProvider2RGBAuxOutput RGB representation of crystal orientation from user object to an AuxVariable. The entire domain must have the same crystal structure.
- EulerAngleVariables2RGBAux
- FeatureFloodCountAuxFeature detection by connectivity analysis
- GrainAdvectionAuxCalculates the advection velocity of grain due to rigid body translation and rotation
- KKSGlobalFreeEnergyTotal free energy in KKS system, including chemical, barrier and gradient terms
- KKSMultiFreeEnergyTotal free energy in multi-phase KKS system, including chemical, barrier and gradient terms
- OutputEulerAnglesOutput euler angles from user object to an AuxVariable.
- PFCEnergyDensity
- PFCRFFEnergyDensity
- TotalFreeEnergyTotal free energy (both the bulk and gradient parts), where the bulk free energy has been defined in a material
- Misc App
- CoupledDirectionalMeshHeightInterpolation
- Functional Expansion Tools App
- FunctionSeriesToAuxAuxKernel to convert a functional expansion (Functions object, type = FunctionSeries) to an AuxVariable
- Solid Mechanics App
- MaterialSymmElasticityTensorAux
- MaterialTensorAuxOutputs quantities related to second-order tensors used as material properties
- Fluid Properties App
- SaturationTemperatureAuxComputes saturation temperature from pressure and 2-phase fluid properties object
- SpecificEnthalpyAuxComputes specific enthalpy from pressure and temperature
- StagnationPressureAuxComputes stagnation pressure from specific volume, specific internal energy, and velocity
- StagnationTemperatureAuxComputes stagnation temperature from specific volume, specific internal energy, and velocity
- Contact App
- ContactPressureAux
- Richards App
- DarcyFluxComponentDarcy flux (in m
^{3.s}-1.m^{-2, or m.s}-1) -(k_ij/mu (nabla_j P - w_j)), where k_ij is the permeability tensor, mu is the fluid viscosity, P is the fluid pressure, and w_j is the fluid weight. If velocity_scaling is used then -(k_ij/mu (nabla_j P - w_j))/velocity_scaling is returned - RichardsDensityAuxauxillary variable which is fluid density
- RichardsDensityPrimeAuxauxillary variable which is d(density)/dp
- RichardsDensityPrimePrimeAuxauxillary variable which is d
^{2(density)/dp}2 - RichardsRelPermAuxauxillary variable which is the relative permeability
- RichardsRelPermPrimeAuxauxillary variable which is d(relative permeability)/dSeff
- RichardsRelPermPrimePrimeAuxauxillary variable which is d
^{2(relative permeability)/dSeff}2 - RichardsSatAuxauxillary variable which is saturation
- RichardsSatPrimeAuxauxillary variable which is saturation
- RichardsSeffAuxauxillary variable which is effective saturation
- RichardsSeffPrimeAuxauxillary variable which is effective saturation
- RichardsSeffPrimePrimeAuxauxillary variable which is 2nd derivative of effective saturation
- Tensor Mechanics App
- AccumulateAux
- CylindricalRankTwoAuxTakes RankTwoTensor material and outputs component in cylindrical coordinates
- DomainIntegralQFunction
- DomainIntegralTopologicalQFunction
- ElasticEnergyAuxCompute the local elastic energy
- GlobalDisplacementAuxAuxKernel to visualize the displacements generated by the global strain tensor
- NewmarkAccelAuxComputes the current acceleration using the Newmark method.
- NewmarkVelAuxCalculates the current velocity using Newmark method.
- RadialDisplacementCylinderAuxCompute the radial component of the displacement vector for cylindrical models.
- RadialDisplacementSphereAuxCompute the radial component of the displacement vector for spherical models.
- RankFourAuxAccess a component of a RankFourTensor
- RankTwoAuxAccess a component of a RankTwoTensor
- RankTwoScalarAuxCompute a scalar property of a RankTwoTensor
- TestNewmarkTIAssigns the velocity/acceleration calculated by time integrator to the velocity/acceleration auxvariable.
- XFEMApp
- XFEMCutPlaneAux
- XFEMMarkerAux
- XFEMVolFracAux
- Navier Stokes App
- EnthalpyAux
- INSCourantComputes h_min / |u|.
- INSDivergenceAuxComputes h_min / |u|.
- InternalEnergyAux
- NSEnthalpyAuxNodal auxiliary variable, for computing enthalpy at the nodes.
- NSInternalEnergyAuxAuxiliary kernel for computing the internal energy of the fluid.
- NSMachAuxAuxiliary kernel for computing the Mach number assuming an ideal gas.
- NSPressureAuxNodal auxiliary variable, for computing pressure at the nodes.
- NSSpecificVolumeAuxAuxiliary kernel for computing the specific volume (1/rho) of the fluid.
- NSTemperatureAuxTemperature is an auxiliary value computed from the total energy based on the FluidProperties.
- NSVelocityAuxVelocity auxiliary value.
- PressureAux
- SpecificInternalEnergyAux
- SpecificVolumeAux
- TemperatureAux
- Fluid Properties Test App
- TwoPhaseAverageDensityAuxComputes the average of the densities of the phases corresponding to a 2-phase fluid properties object.
- Chemical Reactions App
- AqueousEquilibriumRxnAuxConcentration of secondary equilibrium species
- EquilibriumConstantAuxEquilibrium constant for a given equilibrium species (in form log10(Keq))
- KineticDisPreConcAuxConcentration of secondary kinetic species
- KineticDisPreRateAuxKinetic rate of secondary kinetic species
- PHAuxpH of solution
- TotalConcentrationAuxTotal concentration of primary species (including stoichiometric contribution to secondary equilibrium species)
- Porous Flow App
- PorousFlowDarcyVelocityComponentDarcy velocity (in m
^{3.s}-1.m^{-2, or m.s}-1) -(k_ij * krel /mu (nabla_j P - w_j)), where k_ij is the permeability tensor, krel is the relative permeability, mu is the fluid viscosity, P is the fluid pressure, and w_j is the fluid weight. - PorousFlowDarcyVelocityComponentLowerDimensionalDarcy velocity on a lower-dimensional element embedded in a higher-dimensional mesh. Units m
^{3.s}-1.m^{-2, or m.s}-1. Darcy velocity = -(k_ij * krel /(mu * a) (nabla_j P - w_j)), where k_ij is the permeability tensor, krel is the relative permeability, mu is the fluid viscosity, P is the fluid pressure, a is the fracture aperture and w_j is the fluid weight. The difference between this AuxKernel and PorousFlowDarcyVelocity is that this one projects gravity along the element's tangent direction. NOTE! For a meaningful answer, your permeability tensor must NOT contain terms that rotate tangential vectors to non-tangential vectors. - PorousFlowPropertyAuxAuxKernel to provide access to properties evaluated at quadpoints. Note that elemental AuxVariables must be used, so that these properties are integrated over each element.

## Available Subsystems

## Available Actions

- Moose App
- AddKernelAction