- gradient_variableThe variable from which to compute the gradient componentC++ Type:std::vector<VariableName> Unit:(no unit assumed) Controllable:No Description:The variable from which to compute the gradient component 
- variableThe name of the variable that this object applies toC++ Type:AuxVariableName Unit:(no unit assumed) Controllable:No Description:The name of the variable that this object applies to 
PotentialToFieldAux
An AuxKernel that calculates the electrostatic electric field given the electrostatic potential.
Overview
This AuxKernel object uses the following equation for electric field:
where
- is the electric field in units of Volts per meter, 
- is the electrostatic potential in units of Volts, and 
- is a coefficient set via the "sign" parameter, and defaults to . 
The sign of the resulting calculation can be changed from the default, if needed, by setting "sign" to positive. This option  is the result of the desire to keep the object code as general as possible for use in  other scenarios where the positive gradient of a solution variable is desired, while  still retaining the traditional and expected electrostatic field result from various  electrodynamics texts by default.
Example Input File Syntax
[AuxKernels<<<{"href": "../../syntax/AuxKernels/index.html"}>>>]
  [Ex_aux]
    type = PotentialToFieldAux<<<{"description": "An AuxKernel that calculates the electrostatic electric field given the electrostatic potential.", "href": "PotentialToFieldAux.html"}>>>
    variable<<<{"description": "The name of the variable that this object applies to"}>>> = Ex
    gradient_variable<<<{"description": "The variable from which to compute the gradient component"}>>> = potential
    sign<<<{"description": "Sign of potential gradient."}>>> = negative
    component<<<{"description": "The gradient component to compute"}>>> = x
  []
[]Input Parameters
- blockThe list of blocks (ids or names) that this object will be appliedC++ Type:std::vector<SubdomainName> Controllable:No Description:The list of blocks (ids or names) that this object will be applied 
- boundaryThe list of boundaries (ids or names) from the mesh where this object appliesC++ Type:std::vector<BoundaryName> Controllable:No Description:The list of boundaries (ids or names) from the mesh where this object applies 
- check_boundary_restrictedTrueWhether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a meshDefault:True C++ Type:bool Controllable:No Description:Whether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh 
- componentThe gradient component to computeC++ Type:MooseEnum Controllable:No Description:The gradient component to compute 
- execute_onLINEAR TIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.Default:LINEAR TIMESTEP_END C++ Type:ExecFlagEnum Controllable:No Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html. 
- signnegativeSign of potential gradient.Default:negative C++ Type:MooseEnum Controllable:No Description:Sign of potential gradient. 
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.C++ Type:std::vector<std::string> Controllable:No Description:Adds user-defined labels for accessing object parameters via control logic. 
- enableTrueSet the enabled status of the MooseObject.Default:True C++ Type:bool Controllable:Yes Description:Set the enabled status of the MooseObject. 
- search_methodnearest_node_connected_sidesChoice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).Default:nearest_node_connected_sides C++ Type:MooseEnum Controllable:No Description:Choice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes). 
- seed0The seed for the master random number generatorDefault:0 C++ Type:unsigned int Controllable:No Description:The seed for the master random number generator 
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.Default:False C++ Type:bool Controllable:No Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used. 
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.C++ Type:MaterialPropertyName Unit:(no unit assumed) Controllable:No Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character. 
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.Default:False C++ Type:bool Controllable:No Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.