https://mooseframework.inl.gov
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Static Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Attributes | List of all members
PolynomialChaosTrainer Class Reference

#include <PolynomialChaosTrainer.h>

Inheritance diagram for PolynomialChaosTrainer:
[legend]

Public Types

typedef DataFileName DataFileParameterType
 

Public Member Functions

 PolynomialChaosTrainer (const InputParameters &parameters)
 
virtual void preTrain () override
 
virtual void train () override
 
virtual void postTrain () override
 
virtual void initialize () final
 
virtual void execute () final
 
virtual void finalize () final
 
virtual void threadJoin (const UserObject &) final
 
SubProblemgetSubProblem () const
 
bool shouldDuplicateInitialExecution () const
 
virtual Real spatialValue (const Point &) const
 
virtual const std::vector< Point > spatialPoints () const
 
void gatherSum (T &value)
 
void gatherMax (T &value)
 
void gatherMin (T &value)
 
void gatherProxyValueMax (T1 &proxy, T2 &value)
 
void gatherProxyValueMin (T1 &proxy, T2 &value)
 
void setPrimaryThreadCopy (UserObject *primary)
 
UserObjectprimaryThreadCopy ()
 
std::set< UserObjectName > getDependObjects () const
 
virtual bool needThreadedCopy () const
 
const std::set< std::string > & getRequestedItems () override
 
const std::set< std::string > & getSuppliedItems () override
 
unsigned int systemNumber () const
 
virtual bool enabled () const
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
MooseAppgetMooseApp () const
 
const std::string & type () const
 
virtual const std::string & name () const
 
std::string typeAndName () const
 
std::string errorPrefix (const std::string &error_type) const
 
void callMooseError (std::string msg, const bool with_prefix) const
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
const InputParametersparameters () const
 
MooseObjectName uniqueName () const
 
const T & getParam (const std::string &name) const
 
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 
const T * queryParam (const std::string &name) const
 
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 
bool isParamValid (const std::string &name) const
 
bool isParamSetByUser (const std::string &nm) const
 
void paramError (const std::string &param, Args... args) const
 
void paramWarning (const std::string &param, Args... args) const
 
void paramInfo (const std::string &param, Args... args) const
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 
void mooseError (Args &&... args) const
 
void mooseErrorNonPrefixed (Args &&... args) const
 
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
void mooseWarning (Args &&... args) const
 
void mooseWarningNonPrefixed (Args &&... args) const
 
void mooseDeprecated (Args &&... args) const
 
void mooseInfo (Args &&... args) const
 
std::string getDataFileName (const std::string &param) const
 
std::string getDataFileNameByName (const std::string &relative_path) const
 
std::string getDataFilePath (const std::string &relative_path) const
 
virtual void initialSetup ()
 
virtual void timestepSetup ()
 
virtual void jacobianSetup ()
 
virtual void residualSetup ()
 
virtual void customSetup (const ExecFlagType &)
 
const ExecFlagEnumgetExecuteOnEnum () const
 
UserObjectName getUserObjectName (const std::string &param_name) const
 
const T & getUserObject (const std::string &param_name, bool is_dependency=true) const
 
const T & getUserObjectByName (const UserObjectName &object_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBase (const std::string &param_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBaseByName (const UserObjectName &object_name, bool is_dependency=true) const
 
const std::vector< MooseVariableScalar *> & getCoupledMooseScalarVars ()
 
const std::set< TagID > & getScalarVariableCoupleableVectorTags () const
 
const std::set< TagID > & getScalarVariableCoupleableMatrixTags () const
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, MaterialData &material_data, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, MaterialData &material_data, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, const unsigned int state=0)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name, MaterialData &material_data)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data, const unsigned int state)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name)
 
std::pair< const MaterialProperty< T > *, std::set< SubdomainID > > getBlockMaterialProperty (const MaterialPropertyName &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialProperty (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialProperty ()
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialPropertyByName (const std::string &prop_name)
 
const MaterialProperty< T > & getZeroMaterialProperty (Ts... args)
 
std::set< SubdomainIDgetMaterialPropertyBlocks (const std::string &name)
 
std::vector< SubdomainName > getMaterialPropertyBlockNames (const std::string &name)
 
std::set< BoundaryIDgetMaterialPropertyBoundaryIDs (const std::string &name)
 
std::vector< BoundaryName > getMaterialPropertyBoundaryNames (const std::string &name)
 
void checkBlockAndBoundaryCompatibility (std::shared_ptr< MaterialBase > discrete)
 
std::unordered_map< SubdomainID, std::vector< MaterialBase *> > buildRequiredMaterials (bool allow_stateful=true)
 
void statefulPropertiesAllowed (bool)
 
bool getMaterialPropertyCalled () const
 
virtual const std::unordered_set< unsigned int > & getMatPropDependencies () const
 
virtual void resolveOptionalProperties ()
 
const GenericMaterialProperty< T, is_ad > & getPossiblyConstantGenericMaterialPropertyByName (const MaterialPropertyName &prop_name, MaterialData &material_data, const unsigned int state)
 
bool isImplicit ()
 
Moose::StateArg determineState () const
 
virtual void subdomainSetup () override
 
virtual void subdomainSetup () override
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
const GenericOptionalMaterialProperty< T, is_ad > & getGenericOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const GenericOptionalMaterialProperty< T, is_ad > & getGenericOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalMaterialProperty< T > & getOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalMaterialProperty< T > & getOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalADMaterialProperty< T > & getOptionalADMaterialProperty (const std::string &name)
 
const OptionalADMaterialProperty< T > & getOptionalADMaterialProperty (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOld (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOld (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOlder (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOlder (const std::string &name)
 
MaterialBasegetMaterial (const std::string &name)
 
MaterialBasegetMaterial (const std::string &name)
 
MaterialBasegetMaterialByName (const std::string &name, bool no_warn=false)
 
MaterialBasegetMaterialByName (const std::string &name, bool no_warn=false)
 
bool hasMaterialProperty (const std::string &name)
 
bool hasMaterialProperty (const std::string &name)
 
bool hasMaterialPropertyByName (const std::string &name)
 
bool hasMaterialPropertyByName (const std::string &name)
 
bool hasADMaterialProperty (const std::string &name)
 
bool hasADMaterialProperty (const std::string &name)
 
bool hasADMaterialPropertyByName (const std::string &name)
 
bool hasADMaterialPropertyByName (const std::string &name)
 
bool hasGenericMaterialProperty (const std::string &name)
 
bool hasGenericMaterialProperty (const std::string &name)
 
bool hasGenericMaterialPropertyByName (const std::string &name)
 
bool hasGenericMaterialPropertyByName (const std::string &name)
 
const FunctiongetFunction (const std::string &name) const
 
const FunctiongetFunctionByName (const FunctionName &name) const
 
bool hasFunction (const std::string &param_name) const
 
bool hasFunctionByName (const FunctionName &name) const
 
bool isDefaultPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessor (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessorByName (const PostprocessorName &name) const
 
std::size_t coupledPostprocessors (const std::string &param_name) const
 
const PostprocessorName & getPostprocessorName (const std::string &param_name, const unsigned int index=0) const
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name) const
 
const VectorPostprocessorName & getVectorPostprocessorName (const std::string &param_name) const
 
T & getSampler (const std::string &name)
 
SamplergetSampler (const std::string &name)
 
T & getSamplerByName (const SamplerName &name)
 
SamplergetSamplerByName (const SamplerName &name)
 
virtual void meshChanged ()
 
virtual void meshDisplaced ()
 
PerfGraphperfGraph ()
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
const Parallel::Communicator & comm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
const std::string & modelMetaDataName () const
 Accessor for the name of the model meta data. More...
 
const FileName & getModelDataFileName () const
 Get the associated filename. More...
 
bool hasModelData () const
 Check if we need to load model data (if the filename parameter is used) More...
 
template<>
SurrogateModelgetSurrogateModel (const std::string &name) const
 
template<>
SurrogateTrainerBasegetSurrogateTrainer (const std::string &name) const
 
template<>
SurrogateModelgetSurrogateModelByName (const UserObjectName &name) const
 
template<>
SurrogateTrainerBasegetSurrogateTrainerByName (const UserObjectName &name) const
 
template<typename T , typename... Args>
T & declareModelData (const std::string &data_name, Args &&... args)
 Declare model data for loading from file as well as restart. More...
 
template<typename T , typename... Args>
const T & getModelData (const std::string &data_name, Args &&... args) const
 Retrieve model data from the interface. More...
 
template<typename T = SurrogateModel>
T & getSurrogateModel (const std::string &name) const
 Get a SurrogateModel/Trainer with a given name. More...
 
template<typename T = SurrogateTrainerBase>
T & getSurrogateTrainer (const std::string &name) const
 
template<typename T = SurrogateModel>
T & getSurrogateModelByName (const UserObjectName &name) const
 Get a sampler with a given name. More...
 
template<typename T = SurrogateTrainerBase>
T & getSurrogateTrainerByName (const UserObjectName &name) const
 

Static Public Member Functions

static InputParameters validParams ()
 
static void sort (typename std::vector< T > &vector)
 
static void sortDFS (typename std::vector< T > &vector)
 
static void cyclicDependencyError (CyclicDependencyException< T2 > &e, const std::string &header)
 

Public Attributes

const ConsoleStream _console
 

Static Public Attributes

static constexpr PropertyValue::id_type default_property_id
 
static constexpr PropertyValue::id_type zero_property_id
 
static constexpr auto SYSTEM
 
static constexpr auto NAME
 

Protected Member Functions

template<typename T >
const T & getTrainingData (const ReporterName &rname)
 
const std::vector< Real > & getSamplerData () const
 
const std::vector< Real > & getPredictorData () const
 
unsigned int getCurrentSampleSize () const
 
unsigned int getLocalSampleSize () const
 
virtual std::vector< RealevaluateModelError (const SurrogateModel &surr)
 
virtual void addPostprocessorDependencyHelper (const PostprocessorName &name) const override
 
virtual void addVectorPostprocessorDependencyHelper (const VectorPostprocessorName &name) const override
 
virtual void addUserObjectDependencyHelper (const UserObject &uo) const override
 
void addReporterDependencyHelper (const ReporterName &reporter_name) override
 
const ReporterNamegetReporterName (const std::string &param_name) const
 
T & declareRestartableData (const std::string &data_name, Args &&... args)
 
ManagedValue< T > declareManagedRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 
const T & getRestartableData (const std::string &data_name) const
 
T & declareRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 
T & declareRecoverableData (const std::string &data_name, Args &&... args)
 
T & declareRestartableDataWithObjectName (const std::string &data_name, const std::string &object_name, Args &&... args)
 
T & declareRestartableDataWithObjectNameWithContext (const std::string &data_name, const std::string &object_name, void *context, Args &&... args)
 
std::string restartableName (const std::string &data_name) const
 
const T & getMeshProperty (const std::string &data_name, const std::string &prefix)
 
const T & getMeshProperty (const std::string &data_name)
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name) const
 
bool hasMeshProperty (const std::string &data_name) const
 
std::string meshPropertyName (const std::string &data_name) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 
std::string timedSectionName (const std::string &section_name) const
 
bool isCoupledScalar (const std::string &var_name, unsigned int i=0) const
 
unsigned int coupledScalarComponents (const std::string &var_name) const
 
unsigned int coupledScalar (const std::string &var_name, unsigned int comp=0) const
 
libMesh::Order coupledScalarOrder (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const ADVariableValueadCoupledScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const GenericVariableValue< is_ad > & coupledGenericScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const GenericVariableValue< false > & coupledGenericScalarValue (const std::string &var_name, const unsigned int comp) const
 
const GenericVariableValue< true > & coupledGenericScalarValue (const std::string &var_name, const unsigned int comp) const
 
const VariableValuecoupledVectorTagScalarValue (const std::string &var_name, TagID tag, unsigned int comp=0) const
 
const VariableValuecoupledMatrixTagScalarValue (const std::string &var_name, TagID tag, unsigned int comp=0) const
 
const VariableValuecoupledScalarValueOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarValueOlder (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDot (const std::string &var_name, unsigned int comp=0) const
 
const ADVariableValueadCoupledScalarDot (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDot (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDotOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDu (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDotDu (const std::string &var_name, unsigned int comp=0) const
 
const MooseVariableScalargetScalarVar (const std::string &var_name, unsigned int comp) const
 
virtual void checkMaterialProperty (const std::string &name, const unsigned int state)
 
void markMatPropRequested (const std::string &)
 
MaterialPropertyName getMaterialPropertyName (const std::string &name) const
 
void checkExecutionStage ()
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
const GenericMaterialProperty< T, is_ad > * defaultGenericMaterialProperty (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > * defaultGenericMaterialProperty (const std::string &name)
 
const MaterialProperty< T > * defaultMaterialProperty (const std::string &name)
 
const MaterialProperty< T > * defaultMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > * defaultADMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > * defaultADMaterialProperty (const std::string &name)
 

Static Protected Member Functions

static std::string meshPropertyName (const std::string &data_name, const std::string &prefix)
 

Protected Attributes

SubProblem_subproblem
 
FEProblemBase_fe_problem
 
SystemBase_sys
 
const THREAD_ID _tid
 
Assembly_assembly
 
const Moose::CoordinateSystemType_coord_sys
 
const bool _duplicate_initial_execution
 
std::set< std::string > _depend_uo
 
const bool & _enabled
 
MooseApp_app
 
const std::string _type
 
const std::string _name
 
const InputParameters_pars
 
Factory_factory
 
ActionFactory_action_factory
 
const ExecFlagEnum_execute_enum
 
const ExecFlagType_current_execute_flag
 
MooseApp_restartable_app
 
const std::string _restartable_system_name
 
const THREAD_ID _restartable_tid
 
const bool _restartable_read_only
 
FEProblemBase_mci_feproblem
 
FEProblemBase_mdi_feproblem
 
MooseApp_pg_moose_app
 
const std::string _prefix
 
FEProblemBase_sc_fe_problem
 
const THREAD_ID _sc_tid
 
const Real_real_zero
 
const VariableValue_scalar_zero
 
const Point & _point_zero
 
const InputParameters_mi_params
 
const std::string _mi_name
 
const MooseObjectName _mi_moose_object_name
 
FEProblemBase_mi_feproblem
 
SubProblem_mi_subproblem
 
const THREAD_ID _mi_tid
 
const Moose::MaterialDataType _material_data_type
 
MaterialData_material_data
 
bool _stateful_allowed
 
bool _get_material_property_called
 
std::vector< std::unique_ptr< PropertyValue > > _default_properties
 
std::unordered_set< unsigned int_material_property_dependencies
 
const MaterialPropertyName _get_suffix
 
const bool _use_interpolated_state
 
const InputParameters_ti_params
 
FEProblemBase_ti_feproblem
 
bool _is_implicit
 
Real_t
 
const Real_t_old
 
int_t_step
 
Real_dt
 
Real_dt_old
 
bool _is_transient
 
const Parallel::Communicator & _communicator
 
Sampler_sampler
 
dof_id_type _row
 During training loop, this is the row index of the data. More...
 
dof_id_type _local_row
 During training loop, this is the local row index of the data. More...
 
const Real_rval
 Response value. More...
 
const std::vector< Real > * _rvecval
 Vector response value. More...
 
std::vector< const Real * > _pvals
 Predictor values from reporters. More...
 
std::vector< unsigned int_pcols
 Columns from sampler for predictors. More...
 
unsigned int _n_dims
 Dimension of predictor data - either _sampler.getNumberOfCols() or _pvals.size() + _pcols.size(). More...
 
unsigned int_n_outputs
 The number of outputs. More...
 

Static Protected Attributes

static const std::string _interpolated_old
 
static const std::string _interpolated_older
 

Private Attributes

const std::vector< Real > & _predictor_row
 Predictor values. More...
 
const unsigned int_order
 Maximum polynomial order. The sum of 1D polynomial orders does not go above this value. More...
 
unsigned int_ndim
 Total number of parameters/dimensions. More...
 
std::vector< std::vector< unsigned int > > & _tuple
 A _ndim-by-_ncoeff matrix containing the appropriate one-dimensional polynomial order. More...
 
std::size_t & _ncoeff
 Total number of coefficient (defined by size of _tuple) More...
 
std::vector< Real > & _coeff
 These are the coefficients we are after in the PC expansion. More...
 
std::vector< std::unique_ptr< const PolynomialQuadrature::Polynomial > > & _poly
 The distributions used for sampling. More...
 
unsigned int _rtype
 The method in which to perform the regression (0=integration, 1=OLS) More...
 
const Real_ridge_penalty
 The penalty parameter for Ridge regularization. More...
 
QuadratureSampler_quad_sampler
 QuadratureSampler pointer, necessary for applying quadrature weights. More...
 
std::vector< std::unique_ptr< RealCalculator > > _calculators
 Calculators used for standardization in linear regression. More...
 
Real _r_sum
 
DenseMatrix< Real_matrix
 
DenseVector< Real_rhs
 

Detailed Description

Definition at line 22 of file PolynomialChaosTrainer.h.

Constructor & Destructor Documentation

◆ PolynomialChaosTrainer()

PolynomialChaosTrainer::PolynomialChaosTrainer ( const InputParameters parameters)

Definition at line 35 of file PolynomialChaosTrainer.C.

38  _order(declareModelData<unsigned int>("_order", getParam<unsigned int>("order"))),
39  _ndim(declareModelData<unsigned int>("_ndim", _sampler.getNumberOfCols())),
40  _tuple(declareModelData<std::vector<std::vector<unsigned int>>>(
42  _ncoeff(declareModelData<std::size_t>("_ncoeff", _tuple.size())),
43  _coeff(declareModelData<std::vector<Real>>("_coeff")),
44  _poly(declareModelData<std::vector<std::unique_ptr<const PolynomialQuadrature::Polynomial>>>(
45  "_poly")),
46  _ridge_penalty(getParam<Real>("penalty")),
47  _quad_sampler(dynamic_cast<QuadratureSampler *>(&_sampler))
48 {
49  // Check if number of distributions is correct
51  paramError("distributions",
52  "Sampler number of columns does not match number of inputted distributions.");
53 
54  auto rtype_enum = getParam<MooseEnum>("regression_type");
55  if (rtype_enum == "auto")
56  _rtype = _quad_sampler ? 0 : 1;
57  else
58  _rtype = rtype_enum == "integration" ? 0 : 1;
59 
60  if (_rtype == 0 && _quad_sampler &&
61  (!_pvals.empty() || _pcols.size() != _sampler.getNumberOfCols()))
62  paramError("sampler",
63  "QuadratureSampler must use all Sampler columns for training, and cannot be"
64  " used with other Reporters - otherwise, quadrature integration does not work.");
65  if (_rtype == 0 && _ridge_penalty != 0.0)
66  paramError("penalty",
67  "Ridge regularization penalty is only relevant if 'regression_type = ols'.");
68 
69  // Make polynomials
70  for (const auto & nm : getParam<std::vector<DistributionName>>("distributions"))
72 
73  // Create calculators for standardization
74  if (_rtype == 1)
75  {
76  _calculators.resize(_ncoeff * 3);
77  for (const auto & term : make_range(_ncoeff))
78  {
80  _calculators[3 * term + 1] = StochasticTools::makeCalculator(MooseEnumItem("stddev"), *this);
81  _calculators[3 * term + 2] = StochasticTools::makeCalculator(MooseEnumItem("sum"), *this);
82  }
83  }
84 }
unsigned int _rtype
The method in which to perform the regression (0=integration, 1=OLS)
std::size_t & _ncoeff
Total number of coefficient (defined by size of _tuple)
const Real & _ridge_penalty
The penalty parameter for Ridge regularization.
std::vector< std::vector< unsigned int > > & _tuple
A _ndim-by-_ncoeff matrix containing the appropriate one-dimensional polynomial order.
std::unique_ptr< const Polynomial > makePolynomial(const Distribution *dist)
std::vector< unsigned int > _pcols
Columns from sampler for predictors.
std::vector< const Real * > _pvals
Predictor values from reporters.
const unsigned int & _order
Maximum polynomial order. The sum of 1D polynomial orders does not go above this value.
static std::vector< std::vector< unsigned int > > generateTuple(unsigned int n_dims, unsigned int max_degree, bool include_bias=true)
Function computing for computing _tuple Example for ndim = 3, order = 4: | 0 | 1 0 0 | 2 1 1 0 0 0 | ...
std::unique_ptr< Calculator< InType, OutType > > makeCalculator(const MooseEnumItem &item, const libMesh::ParallelObject &other)
Definition: Calculators.h:335
std::vector< std::unique_ptr< const PolynomialQuadrature::Polynomial > > & _poly
The distributions used for sampling.
QuadratureSampler * _quad_sampler
QuadratureSampler pointer, necessary for applying quadrature weights.
const T & getParam(const std::string &name) const
const std::vector< Real > & _predictor_row
Predictor values.
void paramError(const std::string &param, Args... args) const
T & declareModelData(const std::string &data_name, Args &&... args)
Declare model data for loading from file as well as restart.
const Distribution & getDistributionByName(const DistributionName &name) const
const std::vector< Real > & getPredictorData() const
std::vector< Real > & _coeff
These are the coefficients we are after in the PC expansion.
IntRange< T > make_range(T beg, T end)
const InputParameters & parameters() const
unsigned int & _ndim
Total number of parameters/dimensions.
SurrogateTrainer(const InputParameters &parameters)
std::vector< std::unique_ptr< RealCalculator > > _calculators
Calculators used for standardization in linear regression.
dof_id_type getNumberOfCols() const

Member Function Documentation

◆ declareModelData()

template<typename T , typename... Args>
T & RestartableModelInterface::declareModelData ( const std::string &  data_name,
Args &&...  args 
)
inherited

Declare model data for loading from file as well as restart.

Definition at line 78 of file RestartableModelInterface.h.

79 {
80  return _model_restartable.declareRestartableData<T>(data_name, std::forward<Args>(args)...);
81 }
T & declareRestartableData(const std::string &data_name, Args &&... args)
Declare a piece of data as "restartable" and initialize it.
PublicRestartable _model_restartable
Member for interfacing with the framework&#39;s restartable system.

◆ evaluateModelError()

std::vector< Real > SurrogateTrainer::evaluateModelError ( const SurrogateModel surr)
protectedvirtualinherited

Definition at line 347 of file SurrogateTrainer.C.

Referenced by SurrogateTrainer::crossValidate().

348 {
349  std::vector<Real> error(1, 0.0);
350 
351  if (_rval)
352  {
353  Real model_eval = surr.evaluate(_predictor_data);
354  error[0] = MathUtils::pow(model_eval - (*_rval), 2);
355  }
356  else if (_rvecval)
357  {
358  error.resize(_rvecval->size());
359 
360  // Evaluate for vector response.
361  std::vector<Real> model_eval(error.size());
362  surr.evaluate(_predictor_data, model_eval);
363  for (auto r : make_range(_rvecval->size()))
364  error[r] = MathUtils::pow(model_eval[r] - (*_rvecval)[r], 2);
365  }
366 
367  return error;
368 }
const Real * _rval
Response value.
const std::vector< Real > * _rvecval
Vector response value.
std::vector< Real > _predictor_data
Predictor data for current row - can be combination of Sampler and Reporter values.
virtual Real evaluate(const std::vector< Real > &x) const
Evaluate surrogate model given a row of parameters.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
IntRange< T > make_range(T beg, T end)
T pow(T x, int e)

◆ execute()

void SurrogateTrainer::execute ( )
finalvirtualinherited

Implements GeneralUserObject.

Definition at line 176 of file SurrogateTrainer.C.

177 {
178  if (_doing_cv)
179  for (const auto & trial : make_range(_cv_n_trials))
180  {
181  std::vector<Real> trial_score = crossValidate();
182 
183  // Expand _cv_trial_scores with more columns if necessary, then insert values.
184  for (unsigned int r = _cv_trial_scores.size(); r < trial_score.size(); ++r)
185  _cv_trial_scores.push_back(std::vector<Real>(_cv_n_trials, 0.0));
186  for (auto r : make_range(trial_score.size()))
187  _cv_trial_scores[r][trial] = trial_score[r];
188  }
189 
192  executeTraining();
193 }
const bool _doing_cv
Set to true if cross validation is being performed, controls behavior in execute().
const unsigned int & _cv_n_trials
Number of repeated trials of cross validation to perform.
std::vector< std::vector< Real > > & _cv_trial_scores
RMSE scores from each CV trial - can be grabbed by VPP or Reporter.
dof_id_type getNumberOfLocalRows() const
std::vector< Real > crossValidate()
dof_id_type getNumberOfRows() const
IntRange< T > make_range(T beg, T end)
unsigned int _local_sample_size
Number of samples (locally) used to train the model.
unsigned int _current_sample_size
Number of samples used to train the model.

◆ finalize()

virtual void SurrogateTrainer::finalize ( )
inlinefinalvirtualinherited

Reimplemented from SurrogateTrainerBase.

Definition at line 63 of file SurrogateTrainer.h.

63 {}

◆ getCurrentSampleSize()

unsigned int SurrogateTrainer::getCurrentSampleSize ( ) const
inlineprotectedinherited

Definition at line 102 of file SurrogateTrainer.h.

Referenced by postTrain(), and preTrain().

102 { return _current_sample_size; };
unsigned int _current_sample_size
Number of samples used to train the model.

◆ getLocalSampleSize()

unsigned int SurrogateTrainer::getLocalSampleSize ( ) const
inlineprotectedinherited

Definition at line 107 of file SurrogateTrainer.h.

Referenced by NearestPointTrainer::preTrain(), GaussianProcessTrainer::preTrain(), and LibtorchANNTrainer::preTrain().

107 { return _local_sample_size; };
unsigned int _local_sample_size
Number of samples (locally) used to train the model.

◆ getModelData()

template<typename T , typename... Args>
const T & RestartableModelInterface::getModelData ( const std::string &  data_name,
Args &&...  args 
) const
inherited

Retrieve model data from the interface.

Definition at line 85 of file RestartableModelInterface.h.

86 {
87  return _model_restartable.getRestartableData<T>(data_name, std::forward<Args>(args)...);
88 }
const T & getRestartableData(const std::string &data_name) const
Declare a piece of data as "restartable" and initialize it Similar to declareRestartableData but retu...
PublicRestartable _model_restartable
Member for interfacing with the framework&#39;s restartable system.

◆ getModelDataFileName()

const FileName & RestartableModelInterface::getModelDataFileName ( ) const
inherited

Get the associated filename.

Definition at line 33 of file RestartableModelInterface.C.

34 {
35  return _model_object.getParam<FileName>("filename");
36 }
const T & getParam(const std::string &name) const
const MooseObject & _model_object
Reference to the MooseObject that uses this interface.

◆ getPredictorData()

const std::vector<Real>& SurrogateTrainer::getPredictorData ( ) const
inlineprotectedinherited

Definition at line 97 of file SurrogateTrainer.h.

97 { return _predictor_data; };
std::vector< Real > _predictor_data
Predictor data for current row - can be combination of Sampler and Reporter values.

◆ getSamplerData()

const std::vector<Real>& SurrogateTrainer::getSamplerData ( ) const
inlineprotectedinherited

Definition at line 92 of file SurrogateTrainer.h.

92 { return _row_data; };
std::vector< Real > _row_data
Sampler data for the current row.

◆ getSurrogateModel() [1/2]

template<>
SurrogateModel& SurrogateModelInterface::getSurrogateModel ( const std::string &  name) const
inherited

Definition at line 46 of file SurrogateModelInterface.C.

47 {
48  return getSurrogateModelByName<SurrogateModel>(_smi_params.get<UserObjectName>(name));
49 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateModel() [2/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateModel ( const std::string &  name) const
inherited

Get a SurrogateModel/Trainer with a given name.

Parameters
nameThe name of the parameter key of the sampler to retrieve
Returns
The sampler with name associated with the parameter 'name'

Definition at line 81 of file SurrogateModelInterface.h.

Referenced by SurrogateTrainer::initialize().

82 {
83  return getSurrogateModelByName<T>(_smi_params.get<UserObjectName>(name));
84 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateModelByName() [1/2]

template<>
SurrogateModel& SurrogateModelInterface::getSurrogateModelByName ( const UserObjectName &  name) const
inherited

Definition at line 31 of file SurrogateModelInterface.C.

32 {
33  std::vector<SurrogateModel *> models;
35  .query()
36  .condition<AttribName>(name)
37  .condition<AttribSystem>("SurrogateModel")
38  .queryInto(models);
39  if (models.empty())
40  mooseError("Unable to find a SurrogateModel object with the name '" + name + "'");
41  return *(models[0]);
42 }
void mooseError(Args &&... args)
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
TheWarehouse & theWarehouse() const
const std::string name
Definition: Setup.h:20
Query query()

◆ getSurrogateModelByName() [2/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateModelByName ( const UserObjectName &  name) const
inherited

Get a sampler with a given name.

Parameters
nameThe name of the sampler to retrieve
Returns
The sampler with name 'name'

Definition at line 88 of file SurrogateModelInterface.h.

Referenced by CrossValidationScores::CrossValidationScores(), EvaluateSurrogate::EvaluateSurrogate(), and InverseMapping::initialSetup().

89 {
90  std::vector<T *> models;
92  .query()
93  .condition<AttribName>(name)
94  .condition<AttribSystem>("SurrogateModel")
95  .queryInto(models);
96  if (models.empty())
97  mooseError("Unable to find a SurrogateModel object of type " + std::string(typeid(T).name()) +
98  " with the name '" + name + "'");
99  return *(models[0]);
100 }
void mooseError(Args &&... args)
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
TheWarehouse & theWarehouse() const
const std::string name
Definition: Setup.h:20
Query query()

◆ getSurrogateTrainer() [1/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateTrainer ( const std::string &  name) const
inherited

Definition at line 104 of file SurrogateModelInterface.h.

105 {
106  return getSurrogateTrainerByName<T>(_smi_params.get<UserObjectName>(name));
107 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateTrainer() [2/2]

template<>
SurrogateTrainerBase& SurrogateModelInterface::getSurrogateTrainer ( const std::string &  name) const
inherited

Definition at line 60 of file SurrogateModelInterface.C.

61 {
62  return getSurrogateTrainerByName<SurrogateTrainerBase>(_smi_params.get<UserObjectName>(name));
63 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateTrainerByName() [1/2]

template<>
SurrogateTrainerBase& SurrogateModelInterface::getSurrogateTrainerByName ( const UserObjectName &  name) const
inherited

Definition at line 53 of file SurrogateModelInterface.C.

54 {
56 }
T & getUserObject(const std::string &name, unsigned int tid=0) const
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
const std::string name
Definition: Setup.h:20
This is the base trainer class whose main functionality is the API for declaring model data...

◆ getSurrogateTrainerByName() [2/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateTrainerByName ( const UserObjectName &  name) const
inherited

Definition at line 111 of file SurrogateModelInterface.h.

Referenced by SurrogateTrainerOutput::output().

112 {
113  SurrogateTrainerBase * base_ptr =
115  T * obj_ptr = dynamic_cast<T *>(base_ptr);
116  if (!obj_ptr)
117  mooseError("Failed to find a SurrogateTrainer object of type " + std::string(typeid(T).name()) +
118  " with the name '",
119  name,
120  "' for the desired type.");
121  return *obj_ptr;
122 }
T & getUserObject(const std::string &name, unsigned int tid=0) const
void mooseError(Args &&... args)
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
const std::string name
Definition: Setup.h:20
const THREAD_ID _smi_tid
Thread ID.
This is the base trainer class whose main functionality is the API for declaring model data...

◆ getTrainingData()

template<typename T >
const T & SurrogateTrainer::getTrainingData ( const ReporterName rname)
protectedinherited

Definition at line 208 of file SurrogateTrainer.h.

209 {
210  auto it = _training_data.find(rname);
211  if (it != _training_data.end())
212  {
213  auto data = std::dynamic_pointer_cast<TrainingData<T>>(it->second);
214  if (!data)
215  mooseError("Reporter value ", rname, " already exists but is of different type.");
216  return data->get();
217  }
218  else
219  {
220  const std::vector<T> & rval = getReporterValueByName<std::vector<T>>(rname);
221  _training_data[rname] = std::make_shared<TrainingData<T>>(rval);
222  return std::dynamic_pointer_cast<TrainingData<T>>(_training_data[rname])->get();
223  }
224 }
std::unordered_map< ReporterName, std::shared_ptr< TrainingDataBase > > _training_data
Vector of reporter names and their corresponding values (to be filled by getTrainingData) ...
void mooseError(Args &&... args) const

◆ hasModelData()

bool RestartableModelInterface::hasModelData ( ) const
inherited

Check if we need to load model data (if the filename parameter is used)

Definition at line 39 of file RestartableModelInterface.C.

40 {
41  return _model_object.isParamValid("filename");
42 }
bool isParamValid(const std::string &name) const
const MooseObject & _model_object
Reference to the MooseObject that uses this interface.

◆ initialize()

void SurrogateTrainer::initialize ( )
finalvirtualinherited

Reimplemented from SurrogateTrainerBase.

Definition at line 153 of file SurrogateTrainer.C.

154 {
155  // Figure out if data is distributed
156  for (auto & pair : _training_data)
157  {
158  const ReporterName & name = pair.first;
159  TrainingDataBase & data = *pair.second;
160 
161  const auto & mode = _fe_problem.getReporterData().getReporterMode(name);
162  if (mode == REPORTER_MODE_DISTRIBUTED || (mode == REPORTER_MODE_ROOT && processor_id() != 0))
163  data.isDistributed() = true;
164  else if (mode == REPORTER_MODE_REPLICATED ||
165  (mode == REPORTER_MODE_ROOT && processor_id() == 0))
166  data.isDistributed() = false;
167  else
168  mooseError("Predictor reporter value ", name, " is not of supported mode.");
169  }
170 
171  if (_doing_cv)
172  _cv_surrogate = &getSurrogateModel("cv_surrogate");
173 }
const bool _doing_cv
Set to true if cross validation is being performed, controls behavior in execute().
T & getSurrogateModel(const std::string &name) const
Get a SurrogateModel/Trainer with a given name.
virtual const std::string & name() const
const ReporterData & getReporterData() const
std::unordered_map< ReporterName, std::shared_ptr< TrainingDataBase > > _training_data
Vector of reporter names and their corresponding values (to be filled by getTrainingData) ...
const ReporterProducerEnum & getReporterMode(const ReporterName &reporter_name) const
FEProblemBase & _fe_problem
void mooseError(Args &&... args) const
const SurrogateModel * _cv_surrogate
SurrogateModel used to evaluate model error relative to test points.
processor_id_type processor_id() const

◆ modelMetaDataName()

const std::string& RestartableModelInterface::modelMetaDataName ( ) const
inlineinherited

Accessor for the name of the model meta data.

Definition at line 47 of file RestartableModelInterface.h.

Referenced by SurrogateTrainerOutput::output(), and MappingOutput::output().

47 { return _model_meta_data_name; }
const std::string _model_meta_data_name
The model meta data name.

◆ postTrain()

void PolynomialChaosTrainer::postTrain ( )
overridevirtual

Reimplemented from SurrogateTrainer.

Definition at line 153 of file PolynomialChaosTrainer.C.

154 {
155  if (_rtype == 0)
156  {
157  gatherSum(_coeff);
158  if (!_quad_sampler)
159  for (std::size_t i = 0; i < _ncoeff; ++i)
161  }
162  else
163  {
165  gatherSum(_rhs.get_values());
166  for (auto & calc : _calculators)
167  calc->finalizeCalculator(true);
168  gatherSum(_r_sum);
169 
170  std::vector<Real> mu(_ncoeff);
171  std::vector<Real> sig(_ncoeff);
172  std::vector<Real> sum_pf(_ncoeff);
173  for (const auto i : make_range(_ncoeff))
174  {
175  mu[i] = i > 0 ? _calculators[3 * i]->getValue() : 0.0;
176  sig[i] = i > 0 ? _calculators[3 * i + 1]->getValue() : 1.0;
177  sum_pf[i] = _calculators[3 * i + 2]->getValue();
178  }
179 
180  const Real n = getCurrentSampleSize();
181  for (const auto i : make_range(_ncoeff))
182  {
183  for (const auto j : make_range(i + 1))
184  {
185  _matrix(i, j) -= (mu[j] * sum_pf[i] + mu[i] * sum_pf[j]);
186  _matrix(i, j) += n * mu[i] * mu[j];
187  _matrix(i, j) /= (sig[i] * sig[j]);
188  _matrix(j, i) = _matrix(i, j);
189  }
190  _rhs(i) = (_rhs(i) - mu[i] * _r_sum) / sig[i];
191  }
192 
193  DenseVector<Real> sol;
194  _matrix.lu_solve(_rhs, sol);
195  _coeff = sol.get_values();
196 
197  for (unsigned int i = 1; i < _ncoeff; ++i)
198  {
199  _coeff[i] /= sig[i];
200  _coeff[0] -= _coeff[i] * mu[i];
201  }
202  }
203 }
unsigned int getCurrentSampleSize() const
unsigned int _rtype
The method in which to perform the regression (0=integration, 1=OLS)
std::size_t & _ncoeff
Total number of coefficient (defined by size of _tuple)
void gatherSum(T &value)
static const std::string mu
Definition: NS.h:123
QuadratureSampler * _quad_sampler
QuadratureSampler pointer, necessary for applying quadrature weights.
std::vector< Real > & get_values()
void lu_solve(const DenseVector< Real > &b, DenseVector< Real > &x)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
std::vector< Real > & _coeff
These are the coefficients we are after in the PC expansion.
IntRange< T > make_range(T beg, T end)
DenseMatrix< Real > _matrix
static const std::complex< double > j(0, 1)
Complex number "j" (also known as "i")
std::vector< std::unique_ptr< RealCalculator > > _calculators
Calculators used for standardization in linear regression.

◆ preTrain()

void PolynomialChaosTrainer::preTrain ( )
overridevirtual

Reimplemented from SurrogateTrainer.

Definition at line 87 of file PolynomialChaosTrainer.C.

88 {
89  _coeff.assign(_ncoeff, 0.0);
90 
91  if (_rtype == 1)
92  {
94  paramError("order",
95  "Number of data points (",
97  ") must be greater than the number of terms in the polynomial (",
98  _ncoeff,
99  ").");
101  _rhs.resize(_ncoeff);
102  for (auto & calc : _calculators)
103  calc->initializeCalculator();
104  _r_sum = 0.0;
105  }
106 }
unsigned int getCurrentSampleSize() const
unsigned int _rtype
The method in which to perform the regression (0=integration, 1=OLS)
std::size_t & _ncoeff
Total number of coefficient (defined by size of _tuple)
void paramError(const std::string &param, Args... args) const
std::vector< Real > & _coeff
These are the coefficients we are after in the PC expansion.
void resize(const unsigned int new_m, const unsigned int new_n)
DenseMatrix< Real > _matrix
std::vector< std::unique_ptr< RealCalculator > > _calculators
Calculators used for standardization in linear regression.

◆ threadJoin()

virtual void SurrogateTrainerBase::threadJoin ( const UserObject )
inlinefinalvirtualinherited

Reimplemented from GeneralUserObject.

Definition at line 40 of file SurrogateTrainer.h.

40 {} // GeneralUserObjects are not threaded

◆ train()

void PolynomialChaosTrainer::train ( )
overridevirtual

Reimplemented from SurrogateTrainer.

Definition at line 109 of file PolynomialChaosTrainer.C.

110 {
111  // Evaluate polynomials to avoid duplication
112  DenseMatrix<Real> poly_val(_ndim, _order);
113  for (unsigned int d = 0; d < _ndim; ++d)
114  for (unsigned int i = 0; i < _order; ++i)
115  poly_val(d, i) = _poly[d]->compute(i, _predictor_row[d], /*normalize=*/_rtype == 0);
116 
117  // Evaluate multi-dimensional polynomials
118  std::vector<Real> basis(_ncoeff, 1.0);
119  for (const auto i : make_range(_ncoeff))
120  for (const auto d : make_range(_ndim))
121  basis[i] *= poly_val(d, _tuple[i][d]);
122 
123  // For integration
124  if (_rtype == 0)
125  {
126  const Real fact = (*_rval) * (_quad_sampler ? _quad_sampler->getQuadratureWeight(_row) : 1.0);
127  for (const auto i : make_range(_ncoeff))
128  _coeff[i] += fact * basis[i];
129  }
130  // For least-squares
131  else
132  {
133  // Loop over coefficients
134  for (const auto i : make_range(_ncoeff))
135  {
136  // Matrix is symmetric, so we'll add the upper diagonal later
137  for (const auto j : make_range(i + 1))
138  _matrix(i, j) += basis[i] * basis[j];
139  _rhs(i) += basis[i] * (*_rval);
140 
141  for (unsigned int c = i * 3; c < (i + 1) * 3; ++c)
142  _calculators[c]->updateCalculator(basis[i]);
143  }
144  _r_sum += (*_rval);
145 
146  if (_ridge_penalty != 0.0)
147  for (const auto i : make_range(_ncoeff))
148  _matrix(i, i) += _ridge_penalty;
149  }
150 }
unsigned int _rtype
The method in which to perform the regression (0=integration, 1=OLS)
std::size_t & _ncoeff
Total number of coefficient (defined by size of _tuple)
const Real & _ridge_penalty
The penalty parameter for Ridge regularization.
std::vector< std::vector< unsigned int > > & _tuple
A _ndim-by-_ncoeff matrix containing the appropriate one-dimensional polynomial order.
const unsigned int & _order
Maximum polynomial order. The sum of 1D polynomial orders does not go above this value.
std::vector< std::unique_ptr< const PolynomialQuadrature::Polynomial > > & _poly
The distributions used for sampling.
dof_id_type _row
During training loop, this is the row index of the data.
QuadratureSampler * _quad_sampler
QuadratureSampler pointer, necessary for applying quadrature weights.
Real getQuadratureWeight(dof_id_type row_index) const
const std::vector< Real > & _predictor_row
Predictor values.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
std::vector< Real > & _coeff
These are the coefficients we are after in the PC expansion.
IntRange< T > make_range(T beg, T end)
DenseMatrix< Real > _matrix
static const std::complex< double > j(0, 1)
Complex number "j" (also known as "i")
unsigned int & _ndim
Total number of parameters/dimensions.
std::vector< std::unique_ptr< RealCalculator > > _calculators
Calculators used for standardization in linear regression.

◆ validParams()

InputParameters PolynomialChaosTrainer::validParams ( )
static

Definition at line 17 of file PolynomialChaosTrainer.C.

18 {
20  params.addClassDescription("Computes and evaluates polynomial chaos surrogate model.");
21  params.addRequiredParam<unsigned int>("order", "Maximum polynomial order.");
22  params.addRequiredParam<std::vector<DistributionName>>(
23  "distributions", "Names of the distributions samples were taken from.");
24  MooseEnum rtype("integration ols auto", "auto");
25  params.addParam<MooseEnum>(
26  "regression_type",
27  rtype,
28  "The type of regression to perform for finding polynomial coefficents.");
29  params.addParam<Real>("penalty", 0.0, "Ridge regularization penalty factor for OLS regression.");
30 
31  params.suppressParameter<MooseEnum>("response_type");
32  return params;
33 }
void addParam(const std::string &name, const std::initializer_list< typename T::value_type > &value, const std::string &doc_string)
void addRequiredParam(const std::string &name, const std::string &doc_string)
void suppressParameter(const std::string &name)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void addClassDescription(const std::string &doc_string)
static InputParameters validParams()

Member Data Documentation

◆ _calculators

std::vector<std::unique_ptr<RealCalculator> > PolynomialChaosTrainer::_calculators
private

Calculators used for standardization in linear regression.

Definition at line 63 of file PolynomialChaosTrainer.h.

Referenced by PolynomialChaosTrainer(), postTrain(), preTrain(), and train().

◆ _coeff

std::vector<Real>& PolynomialChaosTrainer::_coeff
private

These are the coefficients we are after in the PC expansion.

Definition at line 48 of file PolynomialChaosTrainer.h.

Referenced by postTrain(), preTrain(), and train().

◆ _local_row

dof_id_type SurrogateTrainer::_local_row
protectedinherited

During training loop, this is the local row index of the data.

Definition at line 123 of file SurrogateTrainer.h.

Referenced by SurrogateTrainer::executeTraining().

◆ _matrix

DenseMatrix<Real> PolynomialChaosTrainer::_matrix
private

Matrix and rhs for the regression problem

Definition at line 68 of file PolynomialChaosTrainer.h.

Referenced by postTrain(), preTrain(), and train().

◆ _n_dims

unsigned int SurrogateTrainer::_n_dims
protectedinherited

◆ _n_outputs

unsigned int& SurrogateTrainer::_n_outputs
protectedinherited

◆ _ncoeff

std::size_t& PolynomialChaosTrainer::_ncoeff
private

Total number of coefficient (defined by size of _tuple)

Definition at line 45 of file PolynomialChaosTrainer.h.

Referenced by PolynomialChaosTrainer(), postTrain(), preTrain(), and train().

◆ _ndim

unsigned int& PolynomialChaosTrainer::_ndim
private

Total number of parameters/dimensions.

Definition at line 39 of file PolynomialChaosTrainer.h.

Referenced by PolynomialChaosTrainer(), and train().

◆ _order

const unsigned int& PolynomialChaosTrainer::_order
private

Maximum polynomial order. The sum of 1D polynomial orders does not go above this value.

Definition at line 36 of file PolynomialChaosTrainer.h.

Referenced by train().

◆ _pcols

std::vector<unsigned int> SurrogateTrainer::_pcols
protectedinherited

Columns from sampler for predictors.

Definition at line 131 of file SurrogateTrainer.h.

Referenced by PolynomialChaosTrainer(), SurrogateTrainer::SurrogateTrainer(), and SurrogateTrainer::updatePredictorRow().

◆ _poly

std::vector<std::unique_ptr<const PolynomialQuadrature::Polynomial> >& PolynomialChaosTrainer::_poly
private

The distributions used for sampling.

Definition at line 51 of file PolynomialChaosTrainer.h.

Referenced by PolynomialChaosTrainer(), and train().

◆ _predictor_row

const std::vector<Real>& PolynomialChaosTrainer::_predictor_row
private

Predictor values.

Definition at line 33 of file PolynomialChaosTrainer.h.

Referenced by train().

◆ _pvals

std::vector<const Real *> SurrogateTrainer::_pvals
protectedinherited

◆ _quad_sampler

QuadratureSampler* PolynomialChaosTrainer::_quad_sampler
private

QuadratureSampler pointer, necessary for applying quadrature weights.

Definition at line 60 of file PolynomialChaosTrainer.h.

Referenced by PolynomialChaosTrainer(), postTrain(), and train().

◆ _r_sum

Real PolynomialChaosTrainer::_r_sum
private

Definition at line 64 of file PolynomialChaosTrainer.h.

Referenced by postTrain(), preTrain(), and train().

◆ _rhs

DenseVector<Real> PolynomialChaosTrainer::_rhs
private

Definition at line 69 of file PolynomialChaosTrainer.h.

Referenced by postTrain(), preTrain(), and train().

◆ _ridge_penalty

const Real& PolynomialChaosTrainer::_ridge_penalty
private

The penalty parameter for Ridge regularization.

Definition at line 57 of file PolynomialChaosTrainer.h.

Referenced by PolynomialChaosTrainer(), and train().

◆ _row

dof_id_type SurrogateTrainer::_row
protectedinherited

During training loop, this is the row index of the data.

Definition at line 121 of file SurrogateTrainer.h.

Referenced by SurrogateTrainer::executeTraining(), and train().

◆ _rtype

unsigned int PolynomialChaosTrainer::_rtype
private

The method in which to perform the regression (0=integration, 1=OLS)

Definition at line 54 of file PolynomialChaosTrainer.h.

Referenced by PolynomialChaosTrainer(), postTrain(), preTrain(), and train().

◆ _rval

const Real* SurrogateTrainer::_rval
protectedinherited

◆ _rvecval

const std::vector<Real>* SurrogateTrainer::_rvecval
protectedinherited

◆ _sampler

Sampler& SurrogateTrainer::_sampler
protectedinherited

◆ _tuple

std::vector<std::vector<unsigned int> >& PolynomialChaosTrainer::_tuple
private

A _ndim-by-_ncoeff matrix containing the appropriate one-dimensional polynomial order.

Definition at line 42 of file PolynomialChaosTrainer.h.

Referenced by train().


The documentation for this class was generated from the following files: