Polynomials and quadratures based on defined distributions for Polynomial Chaos. More...
Classes | |
| class | ClenshawCurtisGrid |
| Clenshaw-Curtis sparse grid. More... | |
| class | Hermite |
| Normal distributions use Hermite polynomials. More... | |
| class | Legendre |
| Uniform distributions use Legendre polynomials. More... | |
| class | Polynomial |
| General polynomial class with function for evaluating a polynomial of a given order at a given point. More... | |
| class | Quadrature |
| General multidimensional quadrature class. More... | |
| class | SmolyakGrid |
| Smolyak sparse grid. More... | |
| class | TensorGrid |
| Full tensor product of 1D quadratures. More... | |
Functions | |
| std::unique_ptr< const Polynomial > | makePolynomial (const Distribution *dist) |
| Real | legendre (const unsigned int order, const Real x, const Real lower_bound=-1.0, const Real upper_bound=1.0) |
| Legendre polynomial of specified order. More... | |
| Real | hermite (const unsigned int order, const Real x, const Real mu=0.0, const Real sig=1.0) |
| Hermite polynomial of specified order. More... | |
| void | gauss_legendre (const unsigned int order, std::vector< Real > &points, std::vector< Real > &weights, const Real lower_bound, const Real upper_bound) |
| Generalized formula for any polynomial order. More... | |
| void | gauss_hermite (const unsigned int order, std::vector< Real > &points, std::vector< Real > &weights, const Real mu, const Real sig) |
| Generalized formula for any polynomial order. More... | |
| void | clenshaw_curtis (const unsigned int order, std::vector< Real > &points, std::vector< Real > &weights) |
Polynomials and quadratures based on defined distributions for Polynomial Chaos.
| void PolynomialQuadrature::clenshaw_curtis | ( | const unsigned int | order, |
| std::vector< Real > & | points, | ||
| std::vector< Real > & | weights | ||
| ) |
Definition at line 395 of file PolynomialQuadrature.C.
Referenced by PolynomialQuadrature::Legendre::clenshawQuadrature(), and TEST().
| void PolynomialQuadrature::gauss_hermite | ( | const unsigned int | order, |
| std::vector< Real > & | points, | ||
| std::vector< Real > & | weights, | ||
| const Real | mu, | ||
| const Real | sig | ||
| ) |
Generalized formula for any polynomial order.
Resulting number of points is then: N = order + 1 The sum of weights is sqrt(2*) Uses the Golub-Welsch algorithm:
Definition at line 365 of file PolynomialQuadrature.C.
Referenced by PolynomialQuadrature::Hermite::gaussQuadrature(), and TEST().
| void PolynomialQuadrature::gauss_legendre | ( | const unsigned int | order, |
| std::vector< Real > & | points, | ||
| std::vector< Real > & | weights, | ||
| const Real | lower_bound, | ||
| const Real | upper_bound | ||
| ) |
Generalized formula for any polynomial order.
Resulting number of points is then: N = order + 1 The sum of weights is 2 Uses the Golub-Welsch algorithm:
Definition at line 333 of file PolynomialQuadrature.C.
Referenced by PolynomialQuadrature::Legendre::gaussQuadrature(), and TEST().
| Real PolynomialQuadrature::hermite | ( | const unsigned int | order, |
| const Real | x, | ||
| const Real | mu = 0.0, |
||
| const Real | sig = 1.0 |
||
| ) |
Hermite polynomial of specified order.
Uses boost if available.
Definition at line 297 of file PolynomialQuadrature.C.
Referenced by PolynomialQuadrature::Hermite::compute(), PolynomialQuadrature::Hermite::computeDerivative(), and TEST().
| Real PolynomialQuadrature::legendre | ( | const unsigned int | order, |
| const Real | x, | ||
| const Real | lower_bound = -1.0, |
||
| const Real | upper_bound = 1.0 |
||
| ) |
Legendre polynomial of specified order.
Uses boost if available
Definition at line 206 of file PolynomialQuadrature.C.
Referenced by PolynomialQuadrature::Legendre::compute(), PolynomialQuadrature::Legendre::computeDerivativeRef(), and TEST().
| std::unique_ptr< const Polynomial > PolynomialQuadrature::makePolynomial | ( | const Distribution * | dist | ) |
Definition at line 34 of file PolynomialQuadrature.C.
Referenced by PolynomialChaosTrainer::PolynomialChaosTrainer(), and QuadratureSampler::QuadratureSampler().
1.8.14