19 params.
addClassDescription(
"Loops over and saves sample values for [NearestPointSurrogate.md].");
26 _sample_points(declareModelData<
std::vector<
std::vector<
Real>>>(
"_sample_points")),
27 _sample_results(declareModelData<
std::vector<
std::vector<
Real>>>(
"_sample_results")),
28 _predictor_row(getPredictorData())
std::vector< std::vector< Real > > & _sample_results
Container for results (y values).
void allgather(const T &send_data, std::vector< T, A > &recv_data) const
const Real * _rval
Response value.
unsigned int _n_dims
Dimension of predictor data - either _sampler.getNumberOfCols() or _pvals.size() + _pcols...
registerMooseObject("StochasticToolsApp", NearestPointTrainer)
static InputParameters validParams()
const std::vector< Real > * _rvecval
Vector response value.
const Parallel::Communicator & _communicator
NearestPointTrainer(const InputParameters ¶meters)
const std::vector< Real > & _predictor_row
Data from the current predictor row.
unsigned int getLocalSampleSize() const
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
This is the main trainer base class.
IntRange< T > make_range(T beg, T end)
std::vector< std::vector< Real > > & _sample_points
Map containing sample points and the results.
static InputParameters validParams()
virtual void preTrain() override
virtual void postTrain() override
virtual void train() override