https://mooseframework.inl.gov
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Static Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Member Functions | Private Attributes | List of all members
SurrogateTrainer Class Reference

This is the main trainer base class. More...

#include <SurrogateTrainer.h>

Inheritance diagram for SurrogateTrainer:
[legend]

Public Types

typedef DataFileName DataFileParameterType
 

Public Member Functions

 SurrogateTrainer (const InputParameters &parameters)
 
virtual void initialize () final
 
virtual void execute () final
 
virtual void finalize () final
 
virtual void threadJoin (const UserObject &) final
 
SubProblemgetSubProblem () const
 
bool shouldDuplicateInitialExecution () const
 
virtual Real spatialValue (const Point &) const
 
virtual const std::vector< Point > spatialPoints () const
 
void gatherSum (T &value)
 
void gatherMax (T &value)
 
void gatherMin (T &value)
 
void gatherProxyValueMax (T1 &proxy, T2 &value)
 
void gatherProxyValueMin (T1 &proxy, T2 &value)
 
void setPrimaryThreadCopy (UserObject *primary)
 
UserObjectprimaryThreadCopy ()
 
std::set< UserObjectName > getDependObjects () const
 
virtual bool needThreadedCopy () const
 
const std::set< std::string > & getRequestedItems () override
 
const std::set< std::string > & getSuppliedItems () override
 
unsigned int systemNumber () const
 
virtual bool enabled () const
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
MooseAppgetMooseApp () const
 
const std::string & type () const
 
virtual const std::string & name () const
 
std::string typeAndName () const
 
std::string errorPrefix (const std::string &error_type) const
 
void callMooseError (std::string msg, const bool with_prefix) const
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
const InputParametersparameters () const
 
MooseObjectName uniqueName () const
 
const T & getParam (const std::string &name) const
 
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 
const T * queryParam (const std::string &name) const
 
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 
bool isParamValid (const std::string &name) const
 
bool isParamSetByUser (const std::string &nm) const
 
void paramError (const std::string &param, Args... args) const
 
void paramWarning (const std::string &param, Args... args) const
 
void paramInfo (const std::string &param, Args... args) const
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 
void mooseError (Args &&... args) const
 
void mooseErrorNonPrefixed (Args &&... args) const
 
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
void mooseWarning (Args &&... args) const
 
void mooseWarningNonPrefixed (Args &&... args) const
 
void mooseDeprecated (Args &&... args) const
 
void mooseInfo (Args &&... args) const
 
std::string getDataFileName (const std::string &param) const
 
std::string getDataFileNameByName (const std::string &relative_path) const
 
std::string getDataFilePath (const std::string &relative_path) const
 
virtual void initialSetup ()
 
virtual void timestepSetup ()
 
virtual void jacobianSetup ()
 
virtual void residualSetup ()
 
virtual void customSetup (const ExecFlagType &)
 
const ExecFlagEnumgetExecuteOnEnum () const
 
UserObjectName getUserObjectName (const std::string &param_name) const
 
const T & getUserObject (const std::string &param_name, bool is_dependency=true) const
 
const T & getUserObjectByName (const UserObjectName &object_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBase (const std::string &param_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBaseByName (const UserObjectName &object_name, bool is_dependency=true) const
 
const std::vector< MooseVariableScalar *> & getCoupledMooseScalarVars ()
 
const std::set< TagID > & getScalarVariableCoupleableVectorTags () const
 
const std::set< TagID > & getScalarVariableCoupleableMatrixTags () const
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, MaterialData &material_data, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, MaterialData &material_data, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, const unsigned int state=0)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name, MaterialData &material_data)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data, const unsigned int state)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name)
 
std::pair< const MaterialProperty< T > *, std::set< SubdomainID > > getBlockMaterialProperty (const MaterialPropertyName &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialProperty (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialProperty ()
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialPropertyByName (const std::string &prop_name)
 
const MaterialProperty< T > & getZeroMaterialProperty (Ts... args)
 
std::set< SubdomainIDgetMaterialPropertyBlocks (const std::string &name)
 
std::vector< SubdomainName > getMaterialPropertyBlockNames (const std::string &name)
 
std::set< BoundaryIDgetMaterialPropertyBoundaryIDs (const std::string &name)
 
std::vector< BoundaryName > getMaterialPropertyBoundaryNames (const std::string &name)
 
void checkBlockAndBoundaryCompatibility (std::shared_ptr< MaterialBase > discrete)
 
std::unordered_map< SubdomainID, std::vector< MaterialBase *> > buildRequiredMaterials (bool allow_stateful=true)
 
void statefulPropertiesAllowed (bool)
 
bool getMaterialPropertyCalled () const
 
virtual const std::unordered_set< unsigned int > & getMatPropDependencies () const
 
virtual void resolveOptionalProperties ()
 
const GenericMaterialProperty< T, is_ad > & getPossiblyConstantGenericMaterialPropertyByName (const MaterialPropertyName &prop_name, MaterialData &material_data, const unsigned int state)
 
bool isImplicit ()
 
Moose::StateArg determineState () const
 
virtual void subdomainSetup () override
 
virtual void subdomainSetup () override
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
const GenericOptionalMaterialProperty< T, is_ad > & getGenericOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const GenericOptionalMaterialProperty< T, is_ad > & getGenericOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalMaterialProperty< T > & getOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalMaterialProperty< T > & getOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalADMaterialProperty< T > & getOptionalADMaterialProperty (const std::string &name)
 
const OptionalADMaterialProperty< T > & getOptionalADMaterialProperty (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOld (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOld (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOlder (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOlder (const std::string &name)
 
MaterialBasegetMaterial (const std::string &name)
 
MaterialBasegetMaterial (const std::string &name)
 
MaterialBasegetMaterialByName (const std::string &name, bool no_warn=false)
 
MaterialBasegetMaterialByName (const std::string &name, bool no_warn=false)
 
bool hasMaterialProperty (const std::string &name)
 
bool hasMaterialProperty (const std::string &name)
 
bool hasMaterialPropertyByName (const std::string &name)
 
bool hasMaterialPropertyByName (const std::string &name)
 
bool hasADMaterialProperty (const std::string &name)
 
bool hasADMaterialProperty (const std::string &name)
 
bool hasADMaterialPropertyByName (const std::string &name)
 
bool hasADMaterialPropertyByName (const std::string &name)
 
bool hasGenericMaterialProperty (const std::string &name)
 
bool hasGenericMaterialProperty (const std::string &name)
 
bool hasGenericMaterialPropertyByName (const std::string &name)
 
bool hasGenericMaterialPropertyByName (const std::string &name)
 
const FunctiongetFunction (const std::string &name) const
 
const FunctiongetFunctionByName (const FunctionName &name) const
 
bool hasFunction (const std::string &param_name) const
 
bool hasFunctionByName (const FunctionName &name) const
 
bool isDefaultPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessor (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessorByName (const PostprocessorName &name) const
 
std::size_t coupledPostprocessors (const std::string &param_name) const
 
const PostprocessorName & getPostprocessorName (const std::string &param_name, const unsigned int index=0) const
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name) const
 
const VectorPostprocessorName & getVectorPostprocessorName (const std::string &param_name) const
 
T & getSampler (const std::string &name)
 
SamplergetSampler (const std::string &name)
 
T & getSamplerByName (const SamplerName &name)
 
SamplergetSamplerByName (const SamplerName &name)
 
virtual void meshChanged ()
 
virtual void meshDisplaced ()
 
PerfGraphperfGraph ()
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
const Parallel::Communicator & comm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
const std::string & modelMetaDataName () const
 Accessor for the name of the model meta data. More...
 
const FileName & getModelDataFileName () const
 Get the associated filename. More...
 
bool hasModelData () const
 Check if we need to load model data (if the filename parameter is used) More...
 
template<>
SurrogateModelgetSurrogateModel (const std::string &name) const
 
template<>
SurrogateTrainerBasegetSurrogateTrainer (const std::string &name) const
 
template<>
SurrogateModelgetSurrogateModelByName (const UserObjectName &name) const
 
template<>
SurrogateTrainerBasegetSurrogateTrainerByName (const UserObjectName &name) const
 
template<typename T , typename... Args>
T & declareModelData (const std::string &data_name, Args &&... args)
 Declare model data for loading from file as well as restart. More...
 
template<typename T , typename... Args>
const T & getModelData (const std::string &data_name, Args &&... args) const
 Retrieve model data from the interface. More...
 
template<typename T = SurrogateModel>
T & getSurrogateModel (const std::string &name) const
 Get a SurrogateModel/Trainer with a given name. More...
 
template<typename T = SurrogateTrainerBase>
T & getSurrogateTrainer (const std::string &name) const
 
template<typename T = SurrogateModel>
T & getSurrogateModelByName (const UserObjectName &name) const
 Get a sampler with a given name. More...
 
template<typename T = SurrogateTrainerBase>
T & getSurrogateTrainerByName (const UserObjectName &name) const
 

Static Public Member Functions

static InputParameters validParams ()
 
static void sort (typename std::vector< T > &vector)
 
static void sortDFS (typename std::vector< T > &vector)
 
static void cyclicDependencyError (CyclicDependencyException< T2 > &e, const std::string &header)
 

Public Attributes

const ConsoleStream _console
 

Static Public Attributes

static constexpr PropertyValue::id_type default_property_id
 
static constexpr PropertyValue::id_type zero_property_id
 
static constexpr auto SYSTEM
 
static constexpr auto NAME
 

Protected Member Functions

virtual void preTrain ()
 
virtual void train ()
 
virtual void postTrain ()
 
template<typename T >
const T & getTrainingData (const ReporterName &rname)
 
const std::vector< Real > & getSamplerData () const
 
const std::vector< Real > & getPredictorData () const
 
unsigned int getCurrentSampleSize () const
 
unsigned int getLocalSampleSize () const
 
virtual std::vector< RealevaluateModelError (const SurrogateModel &surr)
 
virtual void addPostprocessorDependencyHelper (const PostprocessorName &name) const override
 
virtual void addVectorPostprocessorDependencyHelper (const VectorPostprocessorName &name) const override
 
virtual void addUserObjectDependencyHelper (const UserObject &uo) const override
 
void addReporterDependencyHelper (const ReporterName &reporter_name) override
 
const ReporterNamegetReporterName (const std::string &param_name) const
 
T & declareRestartableData (const std::string &data_name, Args &&... args)
 
ManagedValue< T > declareManagedRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 
const T & getRestartableData (const std::string &data_name) const
 
T & declareRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 
T & declareRecoverableData (const std::string &data_name, Args &&... args)
 
T & declareRestartableDataWithObjectName (const std::string &data_name, const std::string &object_name, Args &&... args)
 
T & declareRestartableDataWithObjectNameWithContext (const std::string &data_name, const std::string &object_name, void *context, Args &&... args)
 
std::string restartableName (const std::string &data_name) const
 
const T & getMeshProperty (const std::string &data_name, const std::string &prefix)
 
const T & getMeshProperty (const std::string &data_name)
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name) const
 
bool hasMeshProperty (const std::string &data_name) const
 
std::string meshPropertyName (const std::string &data_name) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 
std::string timedSectionName (const std::string &section_name) const
 
bool isCoupledScalar (const std::string &var_name, unsigned int i=0) const
 
unsigned int coupledScalarComponents (const std::string &var_name) const
 
unsigned int coupledScalar (const std::string &var_name, unsigned int comp=0) const
 
libMesh::Order coupledScalarOrder (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const ADVariableValueadCoupledScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const GenericVariableValue< is_ad > & coupledGenericScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const GenericVariableValue< false > & coupledGenericScalarValue (const std::string &var_name, const unsigned int comp) const
 
const GenericVariableValue< true > & coupledGenericScalarValue (const std::string &var_name, const unsigned int comp) const
 
const VariableValuecoupledVectorTagScalarValue (const std::string &var_name, TagID tag, unsigned int comp=0) const
 
const VariableValuecoupledMatrixTagScalarValue (const std::string &var_name, TagID tag, unsigned int comp=0) const
 
const VariableValuecoupledScalarValueOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarValueOlder (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDot (const std::string &var_name, unsigned int comp=0) const
 
const ADVariableValueadCoupledScalarDot (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDot (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDotOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDu (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDotDu (const std::string &var_name, unsigned int comp=0) const
 
const MooseVariableScalargetScalarVar (const std::string &var_name, unsigned int comp) const
 
virtual void checkMaterialProperty (const std::string &name, const unsigned int state)
 
void markMatPropRequested (const std::string &)
 
MaterialPropertyName getMaterialPropertyName (const std::string &name) const
 
void checkExecutionStage ()
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
const GenericMaterialProperty< T, is_ad > * defaultGenericMaterialProperty (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > * defaultGenericMaterialProperty (const std::string &name)
 
const MaterialProperty< T > * defaultMaterialProperty (const std::string &name)
 
const MaterialProperty< T > * defaultMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > * defaultADMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > * defaultADMaterialProperty (const std::string &name)
 

Static Protected Member Functions

static std::string meshPropertyName (const std::string &data_name, const std::string &prefix)
 

Protected Attributes

SubProblem_subproblem
 
FEProblemBase_fe_problem
 
SystemBase_sys
 
const THREAD_ID _tid
 
Assembly_assembly
 
const Moose::CoordinateSystemType_coord_sys
 
const bool _duplicate_initial_execution
 
std::set< std::string > _depend_uo
 
const bool & _enabled
 
MooseApp_app
 
const std::string _type
 
const std::string _name
 
const InputParameters_pars
 
Factory_factory
 
ActionFactory_action_factory
 
const ExecFlagEnum_execute_enum
 
const ExecFlagType_current_execute_flag
 
MooseApp_restartable_app
 
const std::string _restartable_system_name
 
const THREAD_ID _restartable_tid
 
const bool _restartable_read_only
 
FEProblemBase_mci_feproblem
 
FEProblemBase_mdi_feproblem
 
MooseApp_pg_moose_app
 
const std::string _prefix
 
FEProblemBase_sc_fe_problem
 
const THREAD_ID _sc_tid
 
const Real_real_zero
 
const VariableValue_scalar_zero
 
const Point & _point_zero
 
const InputParameters_mi_params
 
const std::string _mi_name
 
const MooseObjectName _mi_moose_object_name
 
FEProblemBase_mi_feproblem
 
SubProblem_mi_subproblem
 
const THREAD_ID _mi_tid
 
const Moose::MaterialDataType _material_data_type
 
MaterialData_material_data
 
bool _stateful_allowed
 
bool _get_material_property_called
 
std::vector< std::unique_ptr< PropertyValue > > _default_properties
 
std::unordered_set< unsigned int_material_property_dependencies
 
const MaterialPropertyName _get_suffix
 
const bool _use_interpolated_state
 
const InputParameters_ti_params
 
FEProblemBase_ti_feproblem
 
bool _is_implicit
 
Real_t
 
const Real_t_old
 
int_t_step
 
Real_dt
 
Real_dt_old
 
bool _is_transient
 
const Parallel::Communicator & _communicator
 
Sampler_sampler
 
dof_id_type _row
 During training loop, this is the row index of the data. More...
 
dof_id_type _local_row
 During training loop, this is the local row index of the data. More...
 
const Real_rval
 Response value. More...
 
const std::vector< Real > * _rvecval
 Vector response value. More...
 
std::vector< const Real * > _pvals
 Predictor values from reporters. More...
 
std::vector< unsigned int_pcols
 Columns from sampler for predictors. More...
 
unsigned int _n_dims
 Dimension of predictor data - either _sampler.getNumberOfCols() or _pvals.size() + _pcols.size(). More...
 
unsigned int_n_outputs
 The number of outputs. More...
 

Static Protected Attributes

static const std::string _interpolated_old
 
static const std::string _interpolated_older
 

Private Member Functions

void checkIntegrity () const
 
void executeTraining ()
 
std::vector< RealcrossValidate ()
 
void updatePredictorRow ()
 

Private Attributes

std::vector< Real_row_data
 Sampler data for the current row. More...
 
std::vector< Real_predictor_data
 Predictor data for current row - can be combination of Sampler and Reporter values. More...
 
const bool _skip_unconverged
 Whether or not we are skipping samples that have unconverged solutions. More...
 
const bool * _converged
 Whether or not the current sample has a converged solution. More...
 
unsigned int _current_sample_size
 Number of samples used to train the model. More...
 
unsigned int _local_sample_size
 Number of samples (locally) used to train the model. More...
 
std::unordered_map< ReporterName, std::shared_ptr< TrainingDataBase > > _training_data
 Vector of reporter names and their corresponding values (to be filled by getTrainingData) More...
 
std::vector< dof_id_type_skip_indices
 
const MooseEnum_cv_type
 Type of cross validation to perform - for now, just 'none' (no CV) or 'k_fold'. More...
 
const unsigned int_n_splits
 Number of splits (k) to split sampler data into. More...
 
const unsigned int_cv_n_trials
 Number of repeated trials of cross validation to perform. More...
 
const unsigned int_cv_seed
 Seed used for _cv_generator. More...
 
MooseRandom _cv_generator
 Random number generator used for shuffling sampler rows during splitting. More...
 
const SurrogateModel_cv_surrogate
 SurrogateModel used to evaluate model error relative to test points. More...
 
const bool _doing_cv
 Set to true if cross validation is being performed, controls behavior in execute(). More...
 
std::vector< std::vector< Real > > & _cv_trial_scores
 RMSE scores from each CV trial - can be grabbed by VPP or Reporter. More...
 

Detailed Description

This is the main trainer base class.

The main purpose is to avoid a lot of code duplication from performing sampler loops and dealing with distributed data. There three functions that derived trainer should override: preTrain, train, and postTrain. Derived class should also use the getTrainingData functionality, which provides a refernce to vector reporter data in its current state within the sampler loop.

The idea behind this is to emulate the element loop behaiviour in other MOOSE objects. For instance, in a kernel, the value of _u corresponds to the solution in an element. Here data referenced with getTrainingData will correspond to the the value of the data in a sampler row.

Definition at line 55 of file SurrogateTrainer.h.

Constructor & Destructor Documentation

◆ SurrogateTrainer()

SurrogateTrainer::SurrogateTrainer ( const InputParameters parameters)

Definition at line 85 of file SurrogateTrainer.C.

88  _sampler(getSampler("sampler")),
89  _rval(nullptr),
90  _rvecval(nullptr),
91  _pvals(getParam<std::vector<ReporterName>>("predictors").size()),
92  _pcols(getParam<std::vector<unsigned int>>("predictor_cols")),
93  _n_outputs(declareModelData<unsigned int>("_n_outputs", 1)),
95  _skip_unconverged(getParam<bool>("skip_unconverged_samples")),
96  _converged(nullptr),
97  _cv_type(getParam<MooseEnum>("cv_type")),
98  _n_splits(getParam<unsigned int>("cv_splits")),
99  _cv_n_trials(getParam<unsigned int>("cv_n_trials")),
100  _cv_seed(getParam<unsigned int>("cv_seed")),
101  _doing_cv(_cv_type != "none"),
102  _cv_trial_scores(declareModelData<std::vector<std::vector<Real>>>("cv_scores"))
103 {
104  if (_skip_unconverged)
105  {
106  if (!isParamValid("converged_reporter"))
107  paramError("skip_unconverged_samples",
108  "'converged_reporter' needs to be specified to skip unconverged sample.");
109  _converged = &getTrainingData<bool>(getParam<ReporterName>("converged_reporter"));
110  }
111 
112  if (_doing_cv)
113  {
114  if (!isParamValid("cv_surrogate"))
115  paramError("cv_type",
116  "To perform cross-validation, the option cv_surrogate needs to be specified",
117  " to provide a Surrogate object for training and evaluation.");
118 
120  paramError("cv_splits",
121  "The specified number of splits (cv_splits = ",
122  _n_splits,
123  ")",
124  " exceeds the number of rows in Sampler '",
125  getParam<SamplerName>("sampler"),
126  "'");
127 
129  }
130 
131  // Get TrainingData for responses and predictors
132  if (getParam<MooseEnum>("response_type") == 0)
133  _rval = &getTrainingData<Real>(getParam<ReporterName>("response"));
134  else if (getParam<MooseEnum>("response_type") == 1)
135  _rvecval = &getTrainingData<std::vector<Real>>(getParam<ReporterName>("response"));
136 
137  const auto & pnames = getParam<std::vector<ReporterName>>("predictors");
138  for (unsigned int i = 0; i < pnames.size(); ++i)
139  _pvals[i] = &getTrainingData<Real>(pnames[i]);
140 
141  // If predictors and predictor_cols are empty, use all sampler columns
142  if (_pvals.empty() && _pcols.empty())
143  {
144  _pcols.resize(_sampler.getNumberOfCols());
145  std::iota(_pcols.begin(), _pcols.end(), 0);
146  }
147  _n_dims = _pvals.size() + _pcols.size();
148 
149  _predictor_data.resize(_n_dims);
150 }
SurrogateTrainerBase(const InputParameters &parameters)
const bool _doing_cv
Set to true if cross validation is being performed, controls behavior in execute().
const Real * _rval
Response value.
unsigned int _n_dims
Dimension of predictor data - either _sampler.getNumberOfCols() or _pvals.size() + _pcols...
const unsigned int & _cv_n_trials
Number of repeated trials of cross validation to perform.
const std::vector< Real > * _rvecval
Vector response value.
void seed(std::size_t i, unsigned int seed)
std::vector< unsigned int > _pcols
Columns from sampler for predictors.
std::vector< const Real * > _pvals
Predictor values from reporters.
MooseRandom _cv_generator
Random number generator used for shuffling sampler rows during splitting.
std::vector< std::vector< Real > > & _cv_trial_scores
RMSE scores from each CV trial - can be grabbed by VPP or Reporter.
unsigned int & _n_outputs
The number of outputs.
bool isParamValid(const std::string &name) const
std::vector< Real > _predictor_data
Predictor data for current row - can be combination of Sampler and Reporter values.
const T & getParam(const std::string &name) const
void paramError(const std::string &param, Args... args) const
T & declareModelData(const std::string &data_name, Args &&... args)
Declare model data for loading from file as well as restart.
dof_id_type getNumberOfRows() const
T & getSampler(const std::string &name)
std::vector< Real > _row_data
Sampler data for the current row.
const InputParameters & parameters() const
const unsigned int & _n_splits
Number of splits (k) to split sampler data into.
const bool * _converged
Whether or not the current sample has a converged solution.
SurrogateModelInterface(const MooseObject *moose_object)
const bool _skip_unconverged
Whether or not we are skipping samples that have unconverged solutions.
dof_id_type getNumberOfCols() const
const unsigned int & _cv_seed
Seed used for _cv_generator.
const MooseEnum & _cv_type
Type of cross validation to perform - for now, just &#39;none&#39; (no CV) or &#39;k_fold&#39;.

Member Function Documentation

◆ checkIntegrity()

void SurrogateTrainer::checkIntegrity ( ) const
private

Definition at line 196 of file SurrogateTrainer.C.

Referenced by executeTraining().

197 {
198  // Check that the number of sampler columns hasn't changed
199  if (_row_data.size() != _sampler.getNumberOfCols())
200  mooseError("Number of sampler columns has changed.");
201 
202  // Check that training data is correctly sized
203  for (auto & pair : _training_data)
204  {
205  dof_id_type rsize = pair.second->size();
206  dof_id_type nrow =
207  pair.second->isDistributed() ? _sampler.getNumberOfLocalRows() : _sampler.getNumberOfRows();
208  if (rsize != nrow)
209  mooseError("Reporter value ",
210  pair.first,
211  " of size ",
212  rsize,
213  " does not match sampler size (",
214  nrow,
215  ").");
216  }
217 }
dof_id_type getNumberOfLocalRows() const
std::unordered_map< ReporterName, std::shared_ptr< TrainingDataBase > > _training_data
Vector of reporter names and their corresponding values (to be filled by getTrainingData) ...
dof_id_type getNumberOfRows() const
std::vector< Real > _row_data
Sampler data for the current row.
void mooseError(Args &&... args) const
dof_id_type getNumberOfCols() const
uint8_t dof_id_type

◆ crossValidate()

std::vector< Real > SurrogateTrainer::crossValidate ( )
private

Definition at line 252 of file SurrogateTrainer.C.

Referenced by execute().

253 {
254  std::vector<Real> cv_score(1, 0.0);
255 
256  // Get skipped indices for each split
258  std::vector<std::vector<dof_id_type>> split_indices;
259  if (processor_id() == 0)
260  {
261  std::vector<dof_id_type> indices_flat(n_rows);
262  std::iota(indices_flat.begin(), indices_flat.end(), 0);
263  MooseUtils::shuffle(indices_flat, _cv_generator, 0);
264 
265  split_indices.resize(_n_splits);
266  for (const auto & k : make_range(_n_splits))
267  {
268  const dof_id_type num_ind = n_rows / _n_splits + (k < (n_rows % _n_splits) ? 1 : 0);
269  split_indices[k].insert(split_indices[k].begin(),
270  std::make_move_iterator(indices_flat.begin()),
271  std::make_move_iterator(indices_flat.begin() + num_ind));
272  std::sort(split_indices[k].begin(), split_indices[k].end());
273  indices_flat.erase(indices_flat.begin(), indices_flat.begin() + num_ind);
274  }
275  }
276 
277  std::vector<dof_id_type> split_ids_buffer;
278  for (const auto & k : make_range(_n_splits))
279  {
280  if (processor_id() == 0)
281  split_ids_buffer = split_indices[k];
282  _communicator.broadcast(split_ids_buffer, 0);
283 
284  _current_sample_size = _sampler.getNumberOfRows() - split_ids_buffer.size();
285 
286  auto first = std::lower_bound(
287  split_ids_buffer.begin(), split_ids_buffer.end(), _sampler.getLocalRowBegin());
288  auto last = std::upper_bound(
289  split_ids_buffer.begin(), split_ids_buffer.end(), _sampler.getLocalRowEnd());
290  _skip_indices.insert(_skip_indices.begin(), first, last);
291 
293 
294  // Train the model
295  executeTraining();
296 
297  // Evaluate the model
298  std::vector<Real> split_mse(1, 0.0);
299  std::vector<Real> row_mse(1, 0.0);
300 
301  auto skipped_row = _skip_indices.begin();
302 
304  {
305  const std::vector<Real> row = _sampler.getNextLocalRow();
306  if (skipped_row != _skip_indices.end() && p == *skipped_row)
307  {
308  for (unsigned int i = 0; i < _row_data.size(); ++i)
309  _row_data[i] = row[i];
310 
311  for (auto & pair : _training_data)
312  pair.second->setCurrentIndex(
313  (pair.second->isDistributed() ? p - _sampler.getLocalRowBegin() : p));
314 
316 
317  row_mse = evaluateModelError(*_cv_surrogate);
318 
319  // Expand split_mse if needed.
320  split_mse.resize(row_mse.size(), 0.0);
321 
322  // Increment errors
323  for (unsigned int r = 0; r < split_mse.size(); ++r)
324  split_mse[r] += row_mse[r];
325 
326  skipped_row++;
327  }
328  }
329  gatherSum(split_mse);
330 
331  // Expand cv_score if necessary.
332  cv_score.resize(split_mse.size(), 0.0);
333 
334  for (auto r : make_range(split_mse.size()))
335  cv_score[r] += split_mse[r] / n_rows;
336 
337  _skip_indices.clear();
338  }
339 
340  for (auto r : make_range(cv_score.size()))
341  cv_score[r] = std::sqrt(cv_score[r]);
342 
343  return cv_score;
344 }
void shuffle(std::vector< T > &data, MooseRandom &generator, const std::size_t seed_index=0)
std::vector< Real > getNextLocalRow()
dof_id_type getLocalRowBegin() const
const Parallel::Communicator & _communicator
MooseRandom _cv_generator
Random number generator used for shuffling sampler rows during splitting.
dof_id_type getNumberOfLocalRows() const
void gatherSum(T &value)
std::vector< dof_id_type > _skip_indices
std::unordered_map< ReporterName, std::shared_ptr< TrainingDataBase > > _training_data
Vector of reporter names and their corresponding values (to be filled by getTrainingData) ...
void broadcast(T &data, const unsigned int root_id=0, const bool identical_sizes=false) const
dof_id_type getLocalRowEnd() const
virtual std::vector< Real > evaluateModelError(const SurrogateModel &surr)
dof_id_type getNumberOfRows() const
std::vector< Real > _row_data
Sampler data for the current row.
IntRange< T > make_range(T beg, T end)
unsigned int _local_sample_size
Number of samples (locally) used to train the model.
unsigned int _current_sample_size
Number of samples used to train the model.
const unsigned int & _n_splits
Number of splits (k) to split sampler data into.
const SurrogateModel * _cv_surrogate
SurrogateModel used to evaluate model error relative to test points.
processor_id_type processor_id() const
static const std::string k
Definition: NS.h:130
uint8_t dof_id_type

◆ declareModelData()

template<typename T , typename... Args>
T & RestartableModelInterface::declareModelData ( const std::string &  data_name,
Args &&...  args 
)
inherited

Declare model data for loading from file as well as restart.

Definition at line 78 of file RestartableModelInterface.h.

79 {
80  return _model_restartable.declareRestartableData<T>(data_name, std::forward<Args>(args)...);
81 }
T & declareRestartableData(const std::string &data_name, Args &&... args)
Declare a piece of data as "restartable" and initialize it.
PublicRestartable _model_restartable
Member for interfacing with the framework&#39;s restartable system.

◆ evaluateModelError()

std::vector< Real > SurrogateTrainer::evaluateModelError ( const SurrogateModel surr)
protectedvirtual

Definition at line 347 of file SurrogateTrainer.C.

Referenced by crossValidate().

348 {
349  std::vector<Real> error(1, 0.0);
350 
351  if (_rval)
352  {
353  Real model_eval = surr.evaluate(_predictor_data);
354  error[0] = MathUtils::pow(model_eval - (*_rval), 2);
355  }
356  else if (_rvecval)
357  {
358  error.resize(_rvecval->size());
359 
360  // Evaluate for vector response.
361  std::vector<Real> model_eval(error.size());
362  surr.evaluate(_predictor_data, model_eval);
363  for (auto r : make_range(_rvecval->size()))
364  error[r] = MathUtils::pow(model_eval[r] - (*_rvecval)[r], 2);
365  }
366 
367  return error;
368 }
const Real * _rval
Response value.
const std::vector< Real > * _rvecval
Vector response value.
std::vector< Real > _predictor_data
Predictor data for current row - can be combination of Sampler and Reporter values.
virtual Real evaluate(const std::vector< Real > &x) const
Evaluate surrogate model given a row of parameters.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
IntRange< T > make_range(T beg, T end)
T pow(T x, int e)

◆ execute()

void SurrogateTrainer::execute ( )
finalvirtual

Implements GeneralUserObject.

Definition at line 176 of file SurrogateTrainer.C.

177 {
178  if (_doing_cv)
179  for (const auto & trial : make_range(_cv_n_trials))
180  {
181  std::vector<Real> trial_score = crossValidate();
182 
183  // Expand _cv_trial_scores with more columns if necessary, then insert values.
184  for (unsigned int r = _cv_trial_scores.size(); r < trial_score.size(); ++r)
185  _cv_trial_scores.push_back(std::vector<Real>(_cv_n_trials, 0.0));
186  for (auto r : make_range(trial_score.size()))
187  _cv_trial_scores[r][trial] = trial_score[r];
188  }
189 
192  executeTraining();
193 }
const bool _doing_cv
Set to true if cross validation is being performed, controls behavior in execute().
const unsigned int & _cv_n_trials
Number of repeated trials of cross validation to perform.
std::vector< std::vector< Real > > & _cv_trial_scores
RMSE scores from each CV trial - can be grabbed by VPP or Reporter.
dof_id_type getNumberOfLocalRows() const
std::vector< Real > crossValidate()
dof_id_type getNumberOfRows() const
IntRange< T > make_range(T beg, T end)
unsigned int _local_sample_size
Number of samples (locally) used to train the model.
unsigned int _current_sample_size
Number of samples used to train the model.

◆ executeTraining()

void SurrogateTrainer::executeTraining ( )
private

Definition at line 220 of file SurrogateTrainer.C.

Referenced by crossValidate(), and execute().

221 {
222  checkIntegrity();
224  _local_row = 0;
225 
226  preTrain();
227 
229  {
230  // Need to do this manually in order to keep the iterators valid
231  const std::vector<Real> data = _sampler.getNextLocalRow();
232  for (unsigned int i = 0; i < _row_data.size(); ++i)
233  _row_data[i] = data[i];
234 
235  // Set training data
236  for (auto & pair : _training_data)
237  pair.second->setCurrentIndex((pair.second->isDistributed() ? _local_row : _row));
238 
240 
241  if ((!_skip_unconverged || *_converged) &&
242  std::find(_skip_indices.begin(), _skip_indices.end(), _row) == _skip_indices.end())
243  train();
244 
245  _local_row++;
246  }
247 
248  postTrain();
249 }
std::vector< Real > getNextLocalRow()
dof_id_type getLocalRowBegin() const
void checkIntegrity() const
dof_id_type _row
During training loop, this is the row index of the data.
virtual void train()
dof_id_type _local_row
During training loop, this is the local row index of the data.
virtual void postTrain()
std::vector< dof_id_type > _skip_indices
std::unordered_map< ReporterName, std::shared_ptr< TrainingDataBase > > _training_data
Vector of reporter names and their corresponding values (to be filled by getTrainingData) ...
virtual void preTrain()
dof_id_type getLocalRowEnd() const
std::vector< Real > _row_data
Sampler data for the current row.
const bool * _converged
Whether or not the current sample has a converged solution.
const bool _skip_unconverged
Whether or not we are skipping samples that have unconverged solutions.

◆ finalize()

virtual void SurrogateTrainer::finalize ( )
inlinefinalvirtual

Reimplemented from SurrogateTrainerBase.

Definition at line 63 of file SurrogateTrainer.h.

63 {}

◆ getCurrentSampleSize()

unsigned int SurrogateTrainer::getCurrentSampleSize ( ) const
inlineprotected

Definition at line 102 of file SurrogateTrainer.h.

Referenced by PolynomialChaosTrainer::postTrain(), and PolynomialChaosTrainer::preTrain().

102 { return _current_sample_size; };
unsigned int _current_sample_size
Number of samples used to train the model.

◆ getLocalSampleSize()

unsigned int SurrogateTrainer::getLocalSampleSize ( ) const
inlineprotected

Definition at line 107 of file SurrogateTrainer.h.

Referenced by NearestPointTrainer::preTrain(), GaussianProcessTrainer::preTrain(), and LibtorchANNTrainer::preTrain().

107 { return _local_sample_size; };
unsigned int _local_sample_size
Number of samples (locally) used to train the model.

◆ getModelData()

template<typename T , typename... Args>
const T & RestartableModelInterface::getModelData ( const std::string &  data_name,
Args &&...  args 
) const
inherited

Retrieve model data from the interface.

Definition at line 85 of file RestartableModelInterface.h.

86 {
87  return _model_restartable.getRestartableData<T>(data_name, std::forward<Args>(args)...);
88 }
const T & getRestartableData(const std::string &data_name) const
Declare a piece of data as "restartable" and initialize it Similar to declareRestartableData but retu...
PublicRestartable _model_restartable
Member for interfacing with the framework&#39;s restartable system.

◆ getModelDataFileName()

const FileName & RestartableModelInterface::getModelDataFileName ( ) const
inherited

Get the associated filename.

Definition at line 33 of file RestartableModelInterface.C.

34 {
35  return _model_object.getParam<FileName>("filename");
36 }
const T & getParam(const std::string &name) const
const MooseObject & _model_object
Reference to the MooseObject that uses this interface.

◆ getPredictorData()

const std::vector<Real>& SurrogateTrainer::getPredictorData ( ) const
inlineprotected

Definition at line 97 of file SurrogateTrainer.h.

97 { return _predictor_data; };
std::vector< Real > _predictor_data
Predictor data for current row - can be combination of Sampler and Reporter values.

◆ getSamplerData()

const std::vector<Real>& SurrogateTrainer::getSamplerData ( ) const
inlineprotected

Definition at line 92 of file SurrogateTrainer.h.

92 { return _row_data; };
std::vector< Real > _row_data
Sampler data for the current row.

◆ getSurrogateModel() [1/2]

template<>
SurrogateModel& SurrogateModelInterface::getSurrogateModel ( const std::string &  name) const
inherited

Definition at line 46 of file SurrogateModelInterface.C.

47 {
48  return getSurrogateModelByName<SurrogateModel>(_smi_params.get<UserObjectName>(name));
49 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateModel() [2/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateModel ( const std::string &  name) const
inherited

Get a SurrogateModel/Trainer with a given name.

Parameters
nameThe name of the parameter key of the sampler to retrieve
Returns
The sampler with name associated with the parameter 'name'

Definition at line 81 of file SurrogateModelInterface.h.

Referenced by initialize().

82 {
83  return getSurrogateModelByName<T>(_smi_params.get<UserObjectName>(name));
84 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateModelByName() [1/2]

template<>
SurrogateModel& SurrogateModelInterface::getSurrogateModelByName ( const UserObjectName &  name) const
inherited

Definition at line 31 of file SurrogateModelInterface.C.

32 {
33  std::vector<SurrogateModel *> models;
35  .query()
36  .condition<AttribName>(name)
37  .condition<AttribSystem>("SurrogateModel")
38  .queryInto(models);
39  if (models.empty())
40  mooseError("Unable to find a SurrogateModel object with the name '" + name + "'");
41  return *(models[0]);
42 }
void mooseError(Args &&... args)
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
TheWarehouse & theWarehouse() const
const std::string name
Definition: Setup.h:20
Query query()

◆ getSurrogateModelByName() [2/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateModelByName ( const UserObjectName &  name) const
inherited

Get a sampler with a given name.

Parameters
nameThe name of the sampler to retrieve
Returns
The sampler with name 'name'

Definition at line 88 of file SurrogateModelInterface.h.

Referenced by CrossValidationScores::CrossValidationScores(), EvaluateSurrogate::EvaluateSurrogate(), and InverseMapping::initialSetup().

89 {
90  std::vector<T *> models;
92  .query()
93  .condition<AttribName>(name)
94  .condition<AttribSystem>("SurrogateModel")
95  .queryInto(models);
96  if (models.empty())
97  mooseError("Unable to find a SurrogateModel object of type " + std::string(typeid(T).name()) +
98  " with the name '" + name + "'");
99  return *(models[0]);
100 }
void mooseError(Args &&... args)
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
TheWarehouse & theWarehouse() const
const std::string name
Definition: Setup.h:20
Query query()

◆ getSurrogateTrainer() [1/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateTrainer ( const std::string &  name) const
inherited

Definition at line 104 of file SurrogateModelInterface.h.

105 {
106  return getSurrogateTrainerByName<T>(_smi_params.get<UserObjectName>(name));
107 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateTrainer() [2/2]

template<>
SurrogateTrainerBase& SurrogateModelInterface::getSurrogateTrainer ( const std::string &  name) const
inherited

Definition at line 60 of file SurrogateModelInterface.C.

61 {
62  return getSurrogateTrainerByName<SurrogateTrainerBase>(_smi_params.get<UserObjectName>(name));
63 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateTrainerByName() [1/2]

template<>
SurrogateTrainerBase& SurrogateModelInterface::getSurrogateTrainerByName ( const UserObjectName &  name) const
inherited

Definition at line 53 of file SurrogateModelInterface.C.

54 {
56 }
T & getUserObject(const std::string &name, unsigned int tid=0) const
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
const std::string name
Definition: Setup.h:20
This is the base trainer class whose main functionality is the API for declaring model data...

◆ getSurrogateTrainerByName() [2/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateTrainerByName ( const UserObjectName &  name) const
inherited

Definition at line 111 of file SurrogateModelInterface.h.

Referenced by SurrogateTrainerOutput::output().

112 {
113  SurrogateTrainerBase * base_ptr =
115  T * obj_ptr = dynamic_cast<T *>(base_ptr);
116  if (!obj_ptr)
117  mooseError("Failed to find a SurrogateTrainer object of type " + std::string(typeid(T).name()) +
118  " with the name '",
119  name,
120  "' for the desired type.");
121  return *obj_ptr;
122 }
T & getUserObject(const std::string &name, unsigned int tid=0) const
void mooseError(Args &&... args)
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
const std::string name
Definition: Setup.h:20
const THREAD_ID _smi_tid
Thread ID.
This is the base trainer class whose main functionality is the API for declaring model data...

◆ getTrainingData()

template<typename T >
const T & SurrogateTrainer::getTrainingData ( const ReporterName rname)
protected

Definition at line 208 of file SurrogateTrainer.h.

209 {
210  auto it = _training_data.find(rname);
211  if (it != _training_data.end())
212  {
213  auto data = std::dynamic_pointer_cast<TrainingData<T>>(it->second);
214  if (!data)
215  mooseError("Reporter value ", rname, " already exists but is of different type.");
216  return data->get();
217  }
218  else
219  {
220  const std::vector<T> & rval = getReporterValueByName<std::vector<T>>(rname);
221  _training_data[rname] = std::make_shared<TrainingData<T>>(rval);
222  return std::dynamic_pointer_cast<TrainingData<T>>(_training_data[rname])->get();
223  }
224 }
std::unordered_map< ReporterName, std::shared_ptr< TrainingDataBase > > _training_data
Vector of reporter names and their corresponding values (to be filled by getTrainingData) ...
void mooseError(Args &&... args) const

◆ hasModelData()

bool RestartableModelInterface::hasModelData ( ) const
inherited

Check if we need to load model data (if the filename parameter is used)

Definition at line 39 of file RestartableModelInterface.C.

40 {
41  return _model_object.isParamValid("filename");
42 }
bool isParamValid(const std::string &name) const
const MooseObject & _model_object
Reference to the MooseObject that uses this interface.

◆ initialize()

void SurrogateTrainer::initialize ( )
finalvirtual

Reimplemented from SurrogateTrainerBase.

Definition at line 153 of file SurrogateTrainer.C.

154 {
155  // Figure out if data is distributed
156  for (auto & pair : _training_data)
157  {
158  const ReporterName & name = pair.first;
159  TrainingDataBase & data = *pair.second;
160 
161  const auto & mode = _fe_problem.getReporterData().getReporterMode(name);
162  if (mode == REPORTER_MODE_DISTRIBUTED || (mode == REPORTER_MODE_ROOT && processor_id() != 0))
163  data.isDistributed() = true;
164  else if (mode == REPORTER_MODE_REPLICATED ||
165  (mode == REPORTER_MODE_ROOT && processor_id() == 0))
166  data.isDistributed() = false;
167  else
168  mooseError("Predictor reporter value ", name, " is not of supported mode.");
169  }
170 
171  if (_doing_cv)
172  _cv_surrogate = &getSurrogateModel("cv_surrogate");
173 }
const bool _doing_cv
Set to true if cross validation is being performed, controls behavior in execute().
T & getSurrogateModel(const std::string &name) const
Get a SurrogateModel/Trainer with a given name.
virtual const std::string & name() const
const ReporterData & getReporterData() const
std::unordered_map< ReporterName, std::shared_ptr< TrainingDataBase > > _training_data
Vector of reporter names and their corresponding values (to be filled by getTrainingData) ...
const ReporterProducerEnum & getReporterMode(const ReporterName &reporter_name) const
FEProblemBase & _fe_problem
void mooseError(Args &&... args) const
const SurrogateModel * _cv_surrogate
SurrogateModel used to evaluate model error relative to test points.
processor_id_type processor_id() const

◆ modelMetaDataName()

const std::string& RestartableModelInterface::modelMetaDataName ( ) const
inlineinherited

Accessor for the name of the model meta data.

Definition at line 47 of file RestartableModelInterface.h.

Referenced by SurrogateTrainerOutput::output(), and MappingOutput::output().

47 { return _model_meta_data_name; }
const std::string _model_meta_data_name
The model meta data name.

◆ postTrain()

virtual void SurrogateTrainer::postTrain ( )
inlineprotectedvirtual

◆ preTrain()

virtual void SurrogateTrainer::preTrain ( )
inlineprotectedvirtual

◆ threadJoin()

virtual void SurrogateTrainerBase::threadJoin ( const UserObject )
inlinefinalvirtualinherited

Reimplemented from GeneralUserObject.

Definition at line 40 of file SurrogateTrainer.h.

40 {} // GeneralUserObjects are not threaded

◆ train()

virtual void SurrogateTrainer::train ( )
inlineprotectedvirtual

◆ updatePredictorRow()

void SurrogateTrainer::updatePredictorRow ( )
private

Definition at line 371 of file SurrogateTrainer.C.

Referenced by crossValidate(), and executeTraining().

372 {
373  unsigned int d = 0;
374  for (const auto & val : _pvals)
375  _predictor_data[d++] = *val;
376  for (const auto & col : _pcols)
377  _predictor_data[d++] = _row_data[col];
378 }
std::vector< unsigned int > _pcols
Columns from sampler for predictors.
std::vector< const Real * > _pvals
Predictor values from reporters.
std::vector< Real > _predictor_data
Predictor data for current row - can be combination of Sampler and Reporter values.
std::vector< Real > _row_data
Sampler data for the current row.

◆ validParams()

InputParameters SurrogateTrainer::validParams ( )
static

Definition at line 34 of file SurrogateTrainer.C.

Referenced by NearestPointTrainer::validParams(), PolynomialRegressionTrainer::validParams(), PolynomialChaosTrainer::validParams(), LibtorchANNTrainer::validParams(), and GaussianProcessTrainer::validParams().

35 {
37  params.addRequiredParam<SamplerName>("sampler",
38  "Sampler used to create predictor and response data.");
39  params.addParam<ReporterName>(
40  "converged_reporter",
41  "Reporter value used to determine if a sample's multiapp solve converged.");
42  params.addParam<bool>("skip_unconverged_samples",
43  false,
44  "True to skip samples where the multiapp did not converge, "
45  "'stochastic_reporter' is required to do this.");
46 
47  // Common Training Data
48  MooseEnum data_type("real=0 vector_real=1", "real");
50  "response",
51  "Reporter value of response results, can be vpp with <vpp_name>/<vector_name> or sampler "
52  "column with 'sampler/col_<index>'.");
53  params.addParam<MooseEnum>("response_type", data_type, "Response data type.");
54  params.addParam<std::vector<ReporterName>>(
55  "predictors",
56  std::vector<ReporterName>(),
57  "Reporter values used as the independent random variables, If 'predictors' and "
58  "'predictor_cols' are both empty, all sampler columns are used.");
59  params.addParam<std::vector<unsigned int>>(
60  "predictor_cols",
61  std::vector<unsigned int>(),
62  "Sampler columns used as the independent random variables, If 'predictors' and "
63  "'predictor_cols' are both empty, all sampler columns are used.");
64  // End Common Training Data
65 
66  MooseEnum cv_type("none=0 k_fold=1", "none");
67  params.addParam<MooseEnum>(
68  "cv_type",
69  cv_type,
70  "Cross-validation method to use for dataset. Options are 'none' or 'k_fold'.");
71  params.addRangeCheckedParam<unsigned int>(
72  "cv_splits", 10, "cv_splits > 1", "Number of splits (k) to use in k-fold cross-validation.");
73  params.addParam<UserObjectName>("cv_surrogate",
74  "Name of Surrogate object used for model cross-validation.");
75  params.addParam<unsigned int>(
76  "cv_n_trials", 1, "Number of repeated trials of cross-validation to perform.");
77  params.addParam<unsigned int>("cv_seed",
78  std::numeric_limits<unsigned int>::max(),
79  "Seed used to initialize random number generator for data "
80  "splitting during cross validation.");
81 
82  return params;
83 }
MPI_Datatype data_type
void addParam(const std::string &name, const std::initializer_list< typename T::value_type > &value, const std::string &doc_string)
void addRequiredParam(const std::string &name, const std::string &doc_string)
static InputParameters validParams()

Member Data Documentation

◆ _converged

const bool* SurrogateTrainer::_converged
private

Whether or not the current sample has a converged solution.

Definition at line 170 of file SurrogateTrainer.h.

Referenced by executeTraining(), and SurrogateTrainer().

◆ _current_sample_size

unsigned int SurrogateTrainer::_current_sample_size
private

Number of samples used to train the model.

Definition at line 173 of file SurrogateTrainer.h.

Referenced by crossValidate(), execute(), and getCurrentSampleSize().

◆ _cv_generator

MooseRandom SurrogateTrainer::_cv_generator
private

Random number generator used for shuffling sampler rows during splitting.

Definition at line 196 of file SurrogateTrainer.h.

Referenced by crossValidate(), and SurrogateTrainer().

◆ _cv_n_trials

const unsigned int& SurrogateTrainer::_cv_n_trials
private

Number of repeated trials of cross validation to perform.

Definition at line 192 of file SurrogateTrainer.h.

Referenced by execute().

◆ _cv_seed

const unsigned int& SurrogateTrainer::_cv_seed
private

Seed used for _cv_generator.

Definition at line 194 of file SurrogateTrainer.h.

Referenced by SurrogateTrainer().

◆ _cv_surrogate

const SurrogateModel* SurrogateTrainer::_cv_surrogate
private

SurrogateModel used to evaluate model error relative to test points.

Definition at line 198 of file SurrogateTrainer.h.

Referenced by crossValidate(), and initialize().

◆ _cv_trial_scores

std::vector<std::vector<Real> >& SurrogateTrainer::_cv_trial_scores
private

RMSE scores from each CV trial - can be grabbed by VPP or Reporter.

Definition at line 202 of file SurrogateTrainer.h.

Referenced by execute().

◆ _cv_type

const MooseEnum& SurrogateTrainer::_cv_type
private

Type of cross validation to perform - for now, just 'none' (no CV) or 'k_fold'.

Definition at line 188 of file SurrogateTrainer.h.

◆ _doing_cv

const bool SurrogateTrainer::_doing_cv
private

Set to true if cross validation is being performed, controls behavior in execute().

Definition at line 200 of file SurrogateTrainer.h.

Referenced by execute(), initialize(), and SurrogateTrainer().

◆ _local_row

dof_id_type SurrogateTrainer::_local_row
protected

During training loop, this is the local row index of the data.

Definition at line 123 of file SurrogateTrainer.h.

Referenced by executeTraining().

◆ _local_sample_size

unsigned int SurrogateTrainer::_local_sample_size
private

Number of samples (locally) used to train the model.

Definition at line 176 of file SurrogateTrainer.h.

Referenced by crossValidate(), execute(), and getLocalSampleSize().

◆ _n_dims

unsigned int SurrogateTrainer::_n_dims
protected

Dimension of predictor data - either _sampler.getNumberOfCols() or _pvals.size() + _pcols.size().

Definition at line 133 of file SurrogateTrainer.h.

Referenced by NearestPointTrainer::NearestPointTrainer(), GaussianProcessTrainer::postTrain(), LibtorchANNTrainer::postTrain(), LibtorchANNTrainer::preTrain(), SurrogateTrainer(), NearestPointTrainer::train(), and PolynomialRegressionTrainer::train().

◆ _n_outputs

unsigned int& SurrogateTrainer::_n_outputs
protected

◆ _n_splits

const unsigned int& SurrogateTrainer::_n_splits
private

Number of splits (k) to split sampler data into.

Definition at line 190 of file SurrogateTrainer.h.

Referenced by crossValidate(), and SurrogateTrainer().

◆ _pcols

std::vector<unsigned int> SurrogateTrainer::_pcols
protected

Columns from sampler for predictors.

Definition at line 131 of file SurrogateTrainer.h.

Referenced by PolynomialChaosTrainer::PolynomialChaosTrainer(), SurrogateTrainer(), and updatePredictorRow().

◆ _predictor_data

std::vector<Real> SurrogateTrainer::_predictor_data
private

Predictor data for current row - can be combination of Sampler and Reporter values.

Definition at line 164 of file SurrogateTrainer.h.

Referenced by evaluateModelError(), getPredictorData(), SurrogateTrainer(), and updatePredictorRow().

◆ _pvals

std::vector<const Real *> SurrogateTrainer::_pvals
protected

Predictor values from reporters.

Definition at line 129 of file SurrogateTrainer.h.

Referenced by PolynomialChaosTrainer::PolynomialChaosTrainer(), SurrogateTrainer(), and updatePredictorRow().

◆ _row

dof_id_type SurrogateTrainer::_row
protected

During training loop, this is the row index of the data.

Definition at line 121 of file SurrogateTrainer.h.

Referenced by executeTraining(), and PolynomialChaosTrainer::train().

◆ _row_data

std::vector<Real> SurrogateTrainer::_row_data
private

Sampler data for the current row.

Definition at line 161 of file SurrogateTrainer.h.

Referenced by checkIntegrity(), crossValidate(), executeTraining(), getSamplerData(), and updatePredictorRow().

◆ _rval

const Real* SurrogateTrainer::_rval
protected

◆ _rvecval

const std::vector<Real>* SurrogateTrainer::_rvecval
protected

◆ _sampler

Sampler& SurrogateTrainer::_sampler
protected

◆ _skip_indices

std::vector<dof_id_type> SurrogateTrainer::_skip_indices
private

Vector of indices to skip during executeTraining()

Definition at line 186 of file SurrogateTrainer.h.

Referenced by crossValidate(), and executeTraining().

◆ _skip_unconverged

const bool SurrogateTrainer::_skip_unconverged
private

Whether or not we are skipping samples that have unconverged solutions.

Definition at line 167 of file SurrogateTrainer.h.

Referenced by executeTraining(), and SurrogateTrainer().

◆ _training_data

std::unordered_map<ReporterName, std::shared_ptr<TrainingDataBase> > SurrogateTrainer::_training_data
private

Vector of reporter names and their corresponding values (to be filled by getTrainingData)

Definition at line 179 of file SurrogateTrainer.h.

Referenced by checkIntegrity(), crossValidate(), executeTraining(), getTrainingData(), and initialize().


The documentation for this class was generated from the following files: