www.mooseframework.org
Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
HydrogenFluidProperties Class Reference

Hydrogen (H2) fluid properties as a function of pressure (Pa) and temperature (K). More...

#include <HydrogenFluidProperties.h>

Inheritance diagram for HydrogenFluidProperties:
[legend]

Public Member Functions

 HydrogenFluidProperties (const InputParameters &parameters)
 
virtual std::string fluidName () const override
 Fluid name. More...
 
virtual Real molarMass () const override
 Molar mass [kg/mol]. More...
 
virtual Real mu_from_rho_T (Real density, Real temperature) const override
 Dynamic viscosity as a function of density and temperature. More...
 
virtual void mu_drhoT_from_rho_T (Real density, Real temperature, Real ddensity_dT, Real &mu, Real &dmu_drho, Real &dmu_dT) const override
 Dynamic viscosity and its derivatives wrt density and temperature. More...
 
virtual Real mu_from_p_T (Real pressure, Real temperature) const override
 
virtual void mu_from_p_T (Real pressure, Real temperature, Real &mu, Real &dmu_dp, Real &dmu_dT) const override
 
virtual Real k_from_rho_T (Real density, Real temperature) const override
 Thermal conductivity as a function of density and temperature. More...
 
virtual Real k_from_p_T (Real pressure, Real temperature) const override
 Thermal conductivity. More...
 
virtual void k_from_p_T (Real pressure, Real temperature, Real &k, Real &dk_dp, Real &dk_dT) const override
 Thermal conductivity and its derivatives wrt pressure and temperature. More...
 
virtual Real henryConstant (Real temperature) const override
 Henry's law constant for dissolution in water. More...
 
virtual void henryConstant_dT (Real temperature, Real &Kh, Real &dKh_dT) const override
 Henry's law constant for dissolution in water and derivative wrt temperature. More...
 
virtual Real criticalPressure () const override
 Critical pressure. More...
 
virtual Real criticalTemperature () const override
 Critical temperature. More...
 
virtual Real criticalDensity () const override
 Critical density. More...
 
virtual Real triplePointPressure () const override
 Triple point pressure. More...
 
virtual Real triplePointTemperature () const override
 Triple point temperature. More...
 
virtual Real vaporPressure (Real temperature) const override
 Vapor pressure. More...
 
virtual Real rho_from_p_T (Real pressure, Real temperature) const override
 Density from pressure and temperature. More...
 
virtual void rho_from_p_T (Real pressure, Real temperature, Real &rho, Real &drho_dp, Real &drho_dT) const override
 Density and its derivatives from pressure and temperature. More...
 
virtual Real e_from_p_T (Real pressure, Real temperature) const override
 Internal energy from pressure and temperature. More...
 
virtual void e_from_p_T (Real p, Real T, Real &e, Real &de_dp, Real &de_dT) const override
 Internal energy and its derivatives from pressure and temperature. More...
 
virtual void rho_e_dpT (Real pressure, Real temperature, Real &rho, Real &drho_dp, Real &drho_dT, Real &e, Real &de_dp, Real &de_dT) const override
 Density and internal energy and their derivatives wrt pressure and temperature. More...
 
virtual Real c_from_p_T (Real pressure, Real temperature) const override
 Speed of sound. More...
 
virtual Real cp_from_p_T (Real pressure, Real temperature) const override
 Isobaric specific heat capacity. More...
 
virtual Real cv_from_p_T (Real pressure, Real temperature) const override
 Isochoric specific heat. More...
 
virtual void rho_mu (Real pressure, Real temperature, Real &rho, Real &mu) const override
 Density and viscosity. More...
 
virtual void rho_mu_dpT (Real pressure, Real temperature, Real &rho, Real &drho_dp, Real &drho_dT, Real &mu, Real &dmu_dp, Real &dmu_dT) const override
 Density and viscosity and their derivatives wrt pressure and temperature. More...
 
virtual Real s_from_p_T (Real pressure, Real temperature) const override
 Specific entropy from pressure and temperature. More...
 
virtual void s_from_p_T (Real p, Real T, Real &s, Real &ds_dp, Real &ds_dT) const override
 Specific entropy and its derivatives from pressure and temperature. More...
 
virtual Real h_from_p_T (Real pressure, Real temperature) const override
 Specific enthalpy from pressure and temperature. More...
 
virtual void h_from_p_T (Real p, Real T, Real &h, Real &dh_dp, Real &dh_dT) const override
 Specific enthalpy and its derivatives from pressure and temperature. More...
 
virtual Real p_from_rho_T (Real rho, Real T) const
 Pressure as a function of density and temperature. More...
 
virtual Real p_from_v_e (Real v, Real e) const
 Pressure from specific volume and specific internal energy. More...
 
virtual void p_from_v_e (Real v, Real e, Real &p, Real &dp_dv, Real &dp_de) const
 Pressure and its derivatives from specific volume and specific internal energy. More...
 
virtual Real T_from_v_e (Real v, Real e) const
 Temperature from specific volume and specific internal energy. More...
 
virtual void T_from_v_e (Real v, Real e, Real &T, Real &dT_dv, Real &dT_de) const
 Temperature and its derivatives from specific volume and specific internal energy. More...
 
virtual Real c_from_v_e (Real v, Real e) const
 Sound speed from specific volume and specific internal energy. More...
 
virtual void c_from_v_e (Real v, Real e, Real &c, Real &dc_dv, Real &dc_de) const
 Sound speed and its derivatives from specific volume and specific internal energy. More...
 
virtual Real cp_from_v_e (Real v, Real e) const
 Isobaric (constant-pressure) specific heat from specific volume and specific internal energy. More...
 
virtual Real cv_from_v_e (Real v, Real e) const
 Isochoric (constant-volume) specific heat from specific volume and specific internal energy. More...
 
virtual Real mu_from_v_e (Real v, Real e) const
 Dynamic viscosity from specific volume and specific internal energy. More...
 
virtual Real k_from_v_e (Real v, Real e) const
 Thermal conductivity from specific volume and specific internal energy. More...
 
virtual Real s_from_v_e (Real v, Real e) const
 Specific entropy from specific volume and specific internal energy. More...
 
virtual void s_from_v_e (Real v, Real e, Real &s, Real &ds_dv, Real &ds_de) const
 Specific entropy and its derivatives from specific volume and specific internal energy. More...
 
virtual Real s (Real pressure, Real temperature) const
 
virtual Real s_from_h_p (Real h, Real p) const
 Specific entropy from specific enthalpy and pressure. More...
 
virtual void s_from_h_p (Real h, Real p, Real &s, Real &ds_dh, Real &ds_dp) const
 Specific entropy and its derivatives from specific enthalpy and pressure. More...
 
virtual Real rho_from_p_s (Real p, Real s) const
 Density from pressure and specific entropy. More...
 
virtual void rho_from_p_s (Real p, Real s, Real &rho, Real &drho_dp, Real &drho_ds) const
 Density and its derivatives from pressure and specific entropy. More...
 
virtual Real e_from_v_h (Real v, Real h) const
 Specific internal energy as a function of specific volume and specific enthalpy. More...
 
virtual void e_from_v_h (Real v, Real h, Real &e, Real &de_dv, Real &de_dh) const
 Specific internal energy and derivatives as a function of specific volume and specific enthalpy. More...
 
virtual Real rho (Real p, Real T) const
 
virtual void rho_dpT (Real pressure, Real temperature, Real &rho, Real &drho_dp, Real &drho_dT) const
 
virtual Real v_from_p_T (Real p, Real T) const
 Specific volume from pressure and temperature. More...
 
virtual void v_from_p_T (Real p, Real T, Real &v, Real &dv_dp, Real &dv_dT) const
 Specific volume and its derivatives from pressure and temperature. More...
 
virtual Real e_from_p_rho (Real p, Real rho) const
 Specific internal energy from pressure and density. More...
 
virtual void e_from_p_rho (Real p, Real rho, Real &e, Real &de_dp, Real &de_drho) const
 Specific internal energy and its derivatives from pressure and density. More...
 
virtual Real e_spndl_from_v (Real v) const
 Specific internal energy from temperature and specific volume. More...
 
virtual void v_e_spndl_from_T (Real T, Real &v, Real &e) const
 Specific internal energy from temperature and specific volume. More...
 
virtual Real e_from_T_v (Real T, Real v) const
 Specific volume and specific internal energy from temerature at the vapor spinodal. More...
 
virtual void e_from_T_v (Real T, Real v, Real &e, Real &de_dT, Real &de_dv) const
 Specific internal energy and its derivatives from temperature and specific volume. More...
 
virtual Real p_from_T_v (Real T, Real v) const
 Pressure from temperature and specific volume. More...
 
virtual void p_from_T_v (Real T, Real v, Real &p, Real &dp_dT, Real &dp_dv) const
 Pressure and its derivatives from temperature and specific volume. More...
 
virtual Real h_from_T_v (Real T, Real v) const
 Specific enthalpy from temperature and specific volume. More...
 
virtual void h_from_T_v (Real T, Real v, Real &h, Real &dh_dT, Real &dh_dv) const
 Specific enthalpy and its derivatives from temperature and specific volume. More...
 
virtual Real s_from_T_v (Real T, Real v) const
 Specific entropy from temperature and specific volume. More...
 
virtual void s_from_T_v (Real T, Real v, Real &s, Real &ds_dT, Real &ds_dv) const
 Specific entropy and its derivatives from temperature and specific volume. More...
 
virtual Real cv_from_T_v (Real T, Real v) const
 Specific isochoric heat capacity from temperature and specific volume. More...
 
virtual Real h (Real p, Real T) const
 
virtual void h_dpT (Real pressure, Real temperature, Real &h, Real &dh_dp, Real &dh_dT) const
 
virtual Real e (Real pressure, Real temperature) const
 
virtual void e_dpT (Real pressure, Real temperature, Real &e, Real &de_dp, Real &de_dT) const
 
virtual Real p_from_h_s (Real h, Real s) const
 Pressure from specific enthalpy and specific entropy. More...
 
virtual void p_from_h_s (Real h, Real s, Real &p, Real &dp_dh, Real &dp_ds) const
 Pressure and its derivatives from specific enthalpy and specific entropy. More...
 
virtual Real g_from_v_e (Real v, Real e) const
 Gibbs free energy from specific volume and specific internal energy. More...
 
virtual Real beta_from_p_T (Real p, Real T) const
 Thermal expansion coefficient from pressure and temperature. More...
 
virtual Real beta (Real pressure, Real temperature) const
 
virtual Real pp_sat_from_p_T (Real p, Real T) const
 Partial pressure at saturation in a gas mixture. More...
 
virtual Real T_from_p_h (Real pressure, Real enthalpy) const
 Temperature from pressure and specific enthalpy. More...
 
virtual Real criticalInternalEnergy () const
 Critical specific internal energy. More...
 
virtual Real c (Real pressure, Real temperature) const
 
virtual Real gamma_from_p_T (Real pressure, Real temperature) const
 Adiabatic index - ratio of specific heats. More...
 
virtual Real mu (Real pressure, Real temperature) const
 Dynamic viscosity. More...
 
virtual void mu_dpT (Real pressure, Real temperature, Real &mu, Real &dmu_dp, Real &dmu_dT) const
 Dynamic viscosity and its derivatives wrt pressure and temperature. More...
 
virtual Real k (Real pressure, Real temperature) const
 
virtual void k_dpT (Real pressure, Real temperature, Real &k, Real &dk_dp, Real &dk_dT) const
 
virtual void vaporPressure_dT (Real temperature, Real &psat, Real &dpsat_dT) const
 Vapor pressure. More...
 
virtual void execute () final
 
virtual void initialize () final
 
virtual void finalize () final
 
virtual void threadJoin (const UserObject &) final
 
virtual void subdomainSetup () final
 

Protected Member Functions

virtual Real alpha (Real delta, Real tau) const override
 Helmholtz free energy for H2 From Leachman et al (reference above) More...
 
virtual Real dalpha_ddelta (Real delta, Real tau) const override
 Derivative of Helmholtz free energy wrt delta. More...
 
virtual Real dalpha_dtau (Real delta, Real tau) const override
 Derivative of Helmholtz free energy wrt tau. More...
 
virtual Real d2alpha_ddelta2 (Real delta, Real tau) const override
 Second derivative of Helmholtz free energy wrt delta. More...
 
virtual Real d2alpha_dtau2 (Real delta, Real tau) const override
 Second derivative of Helmholtz free energy wrt tau. More...
 
virtual Real d2alpha_ddeltatau (Real delta, Real tau) const override
 Second derivative of Helmholtz free energy wrt delta and tau. More...
 
virtual Real henryConstantIAPWS (Real temperature, Real A, Real B, Real C) const
 IAPWS formulation of Henry's law constant for dissolution in water From Guidelines on the Henry's constant and vapour liquid distribution constant for gases in H20 and D20 at high temperatures, IAPWS (2004) More...
 
virtual void henryConstantIAPWS_dT (Real temperature, Real &Kh, Real &dKh_dT, Real A, Real B, Real C) const
 IAPWS formulation of Henry's law constant for dissolution in water and derivative wrt temperature. More...
 

Protected Attributes

const Real _Mh2
 Hydrogen molar mass (kg/mol) More...
 
const Real _p_critical
 Critical pressure (Pa) More...
 
const Real _T_critical
 Critical temperature (K) More...
 
const Real _rho_molar_critical
 Critical molar density (mol/l) More...
 
const Real _rho_critical
 Critical density (kg/m^3) More...
 
const Real _p_triple
 Triple point pressure (Pa) More...
 
const Real _T_triple
 Triple point temperature (K) More...
 
const std::array< Real, 5 > _a {{1.616, -0.4117, -0.792, 0.758, 1.217}}
 Coefficients for ideal gas component of the Helmholtz free energy. More...
 
const std::array< Real, 5 > _b
 
const std::array< Real, 7 > _N1 {{-6.93643, 0.01, 2.1101, 4.52059, 0.732564, -1.34086, 0.130985}}
 Coefficients for residual component of the Helmholtz free energy. More...
 
const std::array< Real, 7 > _t1 {{0.6844, 1.0, 0.989, 0.489, 0.803, 1.1444, 1.409}}
 
const std::array< unsigned int, 7 > _d1 {{1, 4, 1, 1, 2, 2, 3}}
 
const std::array< Real, 2 > _N2 {{-0.777414, 0.351944}}
 
const std::array< Real, 2 > _t2 {{1.754, 1.311}}
 
const std::array< unsigned int, 2 > _d2 {{1, 3}}
 
const std::array< Real, 5 > _N3 {{-0.0211716, 0.0226312, 0.032187, -0.0231752, 0.0557346}}
 
const std::array< Real, 5 > _t3 {{4.187, 5.646, 0.791, 7.249, 2.986}}
 
const std::array< unsigned int, 5 > _d3 {{2, 1, 3, 1, 1}}
 
const std::array< Real, 5 > _phi3 {{-1.685, -0.489, -0.103, -2.506, -1.607}}
 
const std::array< Real, 5 > _beta3 {{-0.171, -0.2245, -0.1304, -0.2785, -0.3967}}
 
const std::array< Real, 5 > _gamma3 {{0.7164, 1.3444, 1.4517, 0.7204, 1.5445}}
 
const std::array< Real, 5 > _D3 {{1.506, 0.156, 1.736, 0.67, 1.662}}
 
const std::array< Real, 5 > _amu {{2.09630e-1, -4.55274e-1, 1.423602e-1, -3.35325e-2, 2.76981e-3}}
 Coefficients for viscosity. More...
 
const std::array< Real, 7 > _bmu {{-0.187, 2.4871, 3.7151, -11.0972, 9.0965, -3.8292, 0.5166}}
 
const std::array< Real, 6 > _cmu
 
const std::array< Real, 7 > _a1k
 Coefficients for thermal conductivity. More...
 
const std::array< Real, 4 > _a2k {{1.38497e2, -2.21878e1, 4.57151, 1.0}}
 
const std::array< Real, 5 > _b1k {{3.63081e-2, -2.07629e-2, 3.1481e-2, -1.43097e-2, 1.7498e-3}}
 
const std::array< Real, 5 > _b2k {{1.8337e-3, -8.86716e-3, 1.5826e-2, -1.06283e-2, 2.80673e-3}}
 
const Real _R
 Universal gas constant (J/mol/K) More...
 
const Real _T_c2k
 Conversion of temperature from Celsius to Kelvin. More...
 

Detailed Description

Hydrogen (H2) fluid properties as a function of pressure (Pa) and temperature (K).

Thermodynamic properties calculated from: Leachman, Jacobsen, Penoncello,and Lemmon, Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen, Journal of Physical and Chemical Reference Data, 38, 721–748 (2009)

Viscosity from: Muzny, Huber and Kazakov, Correlation for the viscosity of normal hydrogen obtained from symbolic regression, Journal of Chemical and Engineering Data, 58, 969-979 (2013)

Thermal conductivity from: Assael, Assael, Huber, Perkins and Takata, Correlation of the thermal conductivity of normal and parahydrogen from the triple point to 1000 K and up to 100 Mpa, Journal of Physical and Chemical Reference Data, 40 (2011)

Definition at line 40 of file HydrogenFluidProperties.h.

Constructor & Destructor Documentation

◆ HydrogenFluidProperties()

HydrogenFluidProperties::HydrogenFluidProperties ( const InputParameters &  parameters)

Definition at line 26 of file HydrogenFluidProperties.C.

27  : HelmholtzFluidProperties(parameters),
28  _Mh2(2.01588e-3),
29  _p_critical(1.315e6),
30  _T_critical(33.19),
31  _rho_molar_critical(15.508),
33  _p_triple(7.7e3),
34  _T_triple(13.952)
35 {
36 }
const Real _T_triple
Triple point temperature (K)
const Real _rho_molar_critical
Critical molar density (mol/l)
HelmholtzFluidProperties(const InputParameters &parameters)
const Real _rho_critical
Critical density (kg/m^3)
const Real _Mh2
Hydrogen molar mass (kg/mol)
const Real _T_critical
Critical temperature (K)
const Real _p_triple
Triple point pressure (Pa)
const Real _p_critical
Critical pressure (Pa)
virtual Real e(Real pressure, Real temperature) const

Member Function Documentation

◆ alpha()

Real HydrogenFluidProperties::alpha ( Real  delta,
Real  tau 
) const
overrideprotectedvirtual

Helmholtz free energy for H2 From Leachman et al (reference above)

Parameters
deltascaled density (-)
tauscaled temperature (-)
Returns
alpha Helmholtz free energy

Implements HelmholtzFluidProperties.

Definition at line 274 of file HydrogenFluidProperties.C.

275 {
276  // Ideal gas component of the Helmholtz free energy
277  Real alpha0 = std::log(delta) + 1.5 * std::log(tau) - 1.4579856475 + 1.888076782 * tau;
278 
279  for (std::size_t i = 0; i < _a.size(); ++i)
280  alpha0 += _a[i] * std::log(1.0 - std::exp(_b[i] * tau));
281 
282  // Residual component of the Helmholtz free energy
283  Real alphar = 0.0;
284 
285  for (std::size_t i = 0; i < _t1.size(); ++i)
286  alphar += _N1[i] * MathUtils::pow(delta, _d1[i]) * std::pow(tau, _t1[i]);
287 
288  for (std::size_t i = 0; i < _t2.size(); ++i)
289  alphar += _N2[i] * MathUtils::pow(delta, _d2[i]) * std::pow(tau, _t2[i]) * std::exp(-delta);
290 
291  for (std::size_t i = 0; i < _t3.size(); ++i)
292  alphar += _N3[i] * MathUtils::pow(delta, _d3[i]) * std::pow(tau, _t3[i]) *
293  std::exp(_phi3[i] * Utility::pow<2>(delta - _D3[i]) +
294  _beta3[i] * Utility::pow<2>(tau - _gamma3[i]));
295 
296  // The Helmholtz free energy is the sum of these two
297  return alpha0 + alphar;
298 }
const std::array< Real, 2 > _N2
const std::array< Real, 5 > _beta3
const std::array< Real, 5 > _t3
const std::array< Real, 7 > _N1
Coefficients for residual component of the Helmholtz free energy.
const std::array< Real, 5 > _N3
const std::array< unsigned int, 7 > _d1
const std::array< Real, 7 > _t1
const std::array< Real, 5 > _phi3
const std::array< Real, 5 > _b
const std::array< unsigned int, 2 > _d2
const std::array< Real, 5 > _D3
const std::array< Real, 5 > _a
Coefficients for ideal gas component of the Helmholtz free energy.
const std::array< Real, 5 > _gamma3
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
const std::array< Real, 2 > _t2
const std::array< unsigned int, 5 > _d3

◆ beta()

Real SinglePhaseFluidProperties::beta ( Real  pressure,
Real  temperature 
) const
virtualinherited

Definition at line 256 of file SinglePhaseFluidProperties.C.

Referenced by Water97FluidProperties::vaporTemperature().

257 {
259 }
virtual Real beta_from_p_T(Real p, Real T) const
Thermal expansion coefficient from pressure and temperature.
const std::string temperature
Definition: NS.h:27
const std::string pressure
Definition: NS.h:26

◆ beta_from_p_T()

Real SinglePhaseFluidProperties::beta_from_p_T ( Real  p,
Real  T 
) const
virtualinherited

Thermal expansion coefficient from pressure and temperature.

Parameters
[in]ppressure (Pa)
[in]Ttemperature (K)
Returns
beta (1/K)

Reimplemented in SimpleFluidProperties.

Definition at line 171 of file SinglePhaseFluidProperties.C.

Referenced by SinglePhaseFluidProperties::beta().

172 {
173  // The volumetric thermal expansion coefficient is defined as
174  // 1/v dv/dT)_p
175  // It is the fractional change rate of volume with respect to temperature change
176  // at constant pressure. Here it is coded as
177  // - 1/rho drho/dT)_p
178  // using chain rule with v = v(rho)
179 
180  Real rho, drho_dp, drho_dT;
181  rho_from_p_T(p, T, rho, drho_dp, drho_dT);
182  return -drho_dT / rho;
183 }
virtual Real rho(Real p, Real T) const
virtual Real rho_from_p_T(Real p, Real T) const
Density from pressure and temperature.

◆ c()

Real SinglePhaseFluidProperties::c ( Real  pressure,
Real  temperature 
) const
virtualinherited

◆ c_from_p_T()

Real HelmholtzFluidProperties::c_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtualinherited

Speed of sound.

Parameters
pressurefluid pressure (Pa)
temperaturefluid temperature (K)
Returns
speed of sound (m/s)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 123 of file HelmholtzFluidProperties.C.

124 {
125  // Require density first
126  const Real density = rho_from_p_T(pressure, temperature);
127  // Scale the input density and temperature
128  const Real delta = density / criticalDensity();
129  const Real tau = criticalTemperature() / temperature;
130 
131  const Real da_dd = dalpha_ddelta(delta, tau);
132 
133  Real w = 2.0 * delta * da_dd + delta * delta * d2alpha_ddelta2(delta, tau);
134  w -= Utility::pow<2>(delta * da_dd - delta * tau * d2alpha_ddeltatau(delta, tau)) /
135  (tau * tau * d2alpha_dtau2(delta, tau));
136 
137  return std::sqrt(_R * temperature * w / molarMass());
138 }
virtual Real d2alpha_ddeltatau(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta and tau.
virtual Real d2alpha_dtau2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt tau.
virtual Real molarMass() const
Molar mass [kg/mol].
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
virtual Real d2alpha_ddelta2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta.
const Real _R
Universal gas constant (J/mol/K)
virtual Real criticalTemperature() const
Critical temperature.
virtual Real dalpha_ddelta(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt delta.
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
virtual Real criticalDensity() const
Critical density.
const std::string pressure
Definition: NS.h:26

◆ c_from_v_e() [1/2]

Real SinglePhaseFluidProperties::c_from_v_e ( Real  v,
Real  e 
) const
virtualinherited

Sound speed from specific volume and specific internal energy.

Parameters
[in]vspecific volume
[in]especific internal energy

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 50 of file SinglePhaseFluidProperties.C.

Referenced by FluidPropertiesMaterial::computeQpProperties(), and NSMachAux::computeValue().

51 {
52  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
53 }
const std::string name
Definition: Setup.h:22

◆ c_from_v_e() [2/2]

void SinglePhaseFluidProperties::c_from_v_e ( Real  v,
Real  e,
Real &  c,
Real &  dc_dv,
Real &  dc_de 
) const
virtualinherited

Sound speed and its derivatives from specific volume and specific internal energy.

Parameters
[in]vspecific volume
[in]especific internal energy
[out]dc_dvderivative of sound speed w.r.t. specific volume
[out]dc_dederivative of sound speed w.r.t. specific internal energy

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 56 of file SinglePhaseFluidProperties.C.

57 {
58  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
59 }
const std::string name
Definition: Setup.h:22

◆ cp_from_p_T()

Real HelmholtzFluidProperties::cp_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtualinherited

Isobaric specific heat capacity.

Parameters
pressurefluid pressure (Pa)
temperaturefluid temperature (K)
Returns
cp (J/kg/K)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 141 of file HelmholtzFluidProperties.C.

142 {
143  // Require density first
144  const Real density = rho_from_p_T(pressure, temperature);
145  // Scale the input density and temperature
146  const Real delta = density / criticalDensity();
147  const Real tau = criticalTemperature() / temperature;
148 
149  const Real da_dd = dalpha_ddelta(delta, tau);
150 
151  const Real cp = _R *
152  (-tau * tau * d2alpha_dtau2(delta, tau) +
153  Utility::pow<2>(delta * da_dd - delta * tau * d2alpha_ddeltatau(delta, tau)) /
154  (2.0 * delta * da_dd + delta * delta * d2alpha_ddelta2(delta, tau))) /
155  molarMass();
156 
157  return cp;
158 }
virtual Real d2alpha_ddeltatau(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta and tau.
virtual Real d2alpha_dtau2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt tau.
virtual Real molarMass() const
Molar mass [kg/mol].
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
virtual Real d2alpha_ddelta2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta.
const Real _R
Universal gas constant (J/mol/K)
virtual Real criticalTemperature() const
Critical temperature.
virtual Real dalpha_ddelta(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt delta.
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
virtual Real criticalDensity() const
Critical density.
const std::string pressure
Definition: NS.h:26

◆ cp_from_v_e()

Real SinglePhaseFluidProperties::cp_from_v_e ( Real  v,
Real  e 
) const
virtualinherited

Isobaric (constant-pressure) specific heat from specific volume and specific internal energy.

Parameters
[in]vspecific volume
[in]especific internal energy

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 61 of file SinglePhaseFluidProperties.C.

Referenced by FluidPropertiesMaterial::computeQpProperties(), and GeneralVaporMixtureFluidProperties::cp_from_p_T().

62 {
63  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
64 }
const std::string name
Definition: Setup.h:22

◆ criticalDensity()

Real HydrogenFluidProperties::criticalDensity ( ) const
overridevirtual

Critical density.

Returns
critical density (kg/m^3)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 63 of file HydrogenFluidProperties.C.

64 {
65  return _rho_critical;
66 }
const Real _rho_critical
Critical density (kg/m^3)

◆ criticalInternalEnergy()

Real SinglePhaseFluidProperties::criticalInternalEnergy ( ) const
virtualinherited

Critical specific internal energy.

Returns
specific internal energy (J/kg)

Reimplemented in StiffenedGasFluidProperties.

Definition at line 232 of file SinglePhaseFluidProperties.C.

Referenced by IdealRealGasMixtureFluidProperties::p_T_from_v_e().

233 {
234  mooseError(name(), ": criticalInternalEnergy() is not implemented");
235 }
const std::string name
Definition: Setup.h:22

◆ criticalPressure()

Real HydrogenFluidProperties::criticalPressure ( ) const
overridevirtual

Critical pressure.

Returns
critical pressure (Pa)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 51 of file HydrogenFluidProperties.C.

52 {
53  return _p_critical;
54 }
const Real _p_critical
Critical pressure (Pa)

◆ criticalTemperature()

Real HydrogenFluidProperties::criticalTemperature ( ) const
overridevirtual

Critical temperature.

Returns
critical temperature (K)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 57 of file HydrogenFluidProperties.C.

58 {
59  return _T_critical;
60 }
const Real _T_critical
Critical temperature (K)

◆ cv_from_p_T()

Real HelmholtzFluidProperties::cv_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtualinherited

Isochoric specific heat.

Parameters
pressurefluid pressure (Pa)
temperaturefluid temperature (K)
Returns
cv (J/kg/K)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 161 of file HelmholtzFluidProperties.C.

162 {
163  // Require density first
164  const Real density = rho_from_p_T(pressure, temperature);
165  // Scale the input density and temperature
166  const Real delta = density / criticalDensity();
167  const Real tau = criticalTemperature() / temperature;
168 
169  return -_R * tau * tau * d2alpha_dtau2(delta, tau) / molarMass();
170 }
virtual Real d2alpha_dtau2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt tau.
virtual Real molarMass() const
Molar mass [kg/mol].
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
const Real _R
Universal gas constant (J/mol/K)
virtual Real criticalTemperature() const
Critical temperature.
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
virtual Real criticalDensity() const
Critical density.
const std::string pressure
Definition: NS.h:26

◆ cv_from_T_v()

Real SinglePhaseFluidProperties::cv_from_T_v ( Real  T,
Real  v 
) const
virtualinherited

Specific isochoric heat capacity from temperature and specific volume.

Parameters
[in]Ttemperature
[in]vspecific volume

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 568 of file SinglePhaseFluidProperties.C.

Referenced by IdealRealGasMixtureFluidProperties::cv_from_p_T(), and IdealRealGasMixtureFluidProperties::cv_from_T_v().

569 {
570  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
571 }
const std::string name
Definition: Setup.h:22

◆ cv_from_v_e()

Real SinglePhaseFluidProperties::cv_from_v_e ( Real  v,
Real  e 
) const
virtualinherited

Isochoric (constant-volume) specific heat from specific volume and specific internal energy.

Parameters
[in]vspecific volume
[in]especific internal energy

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 66 of file SinglePhaseFluidProperties.C.

Referenced by FluidPropertiesMaterial::computeQpProperties(), and GeneralVaporMixtureFluidProperties::cv_from_p_T().

67 {
68  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
69 }
const std::string name
Definition: Setup.h:22

◆ d2alpha_ddelta2()

Real HydrogenFluidProperties::d2alpha_ddelta2 ( Real  delta,
Real  tau 
) const
overrideprotectedvirtual

Second derivative of Helmholtz free energy wrt delta.

Parameters
deltascaled density (-)
tauscaled temperature (-)
Returns
second derivative of Helmholtz free energy wrt delta

Implements HelmholtzFluidProperties.

Definition at line 356 of file HydrogenFluidProperties.C.

357 {
358  // Ideal gas component of the Helmholtz free energy
359  Real dalpha0 = -1.0 / delta / delta;
360 
361  // Residual component of the Helmholtz free energy
362  Real dalphar = 0.0;
363 
364  for (std::size_t i = 0; i < _t1.size(); ++i)
365  dalphar +=
366  _N1[i] * _d1[i] * (_d1[i] - 1.0) * MathUtils::pow(delta, _d1[i]) * std::pow(tau, _t1[i]);
367 
368  for (std::size_t i = 0; i < _t2.size(); ++i)
369  dalphar += _N2[i] * MathUtils::pow(delta, _d2[i]) * std::pow(tau, _t2[i]) * std::exp(-delta) *
370  (delta * delta - 2.0 * _d2[i] * delta + _d2[i] * (_d2[i] - 1.0));
371 
372  for (std::size_t i = 0; i < _t3.size(); ++i)
373  dalphar += _N3[i] * MathUtils::pow(delta, _d3[i]) * std::pow(tau, _t3[i]) *
374  std::exp(_phi3[i] * Utility::pow<2>(delta - _D3[i]) +
375  _beta3[i] * Utility::pow<2>(tau - _gamma3[i])) *
376  (_d3[i] * _d3[i] +
377  2.0 * delta * delta * _phi3[i] *
378  (1.0 + 2.0 * _phi3[i] * (_D3[i] - delta) * (_D3[i] - delta)) +
379  _d3[i] * (4.0 * delta * _phi3[i] * (delta - _D3[i]) - 1.0));
380 
381  // The Helmholtz free energy is the sum of these two
382  return dalpha0 + dalphar / delta / delta;
383 }
const std::array< Real, 2 > _N2
const std::array< Real, 5 > _beta3
const std::array< Real, 5 > _t3
const std::array< Real, 7 > _N1
Coefficients for residual component of the Helmholtz free energy.
const std::array< Real, 5 > _N3
const std::array< unsigned int, 7 > _d1
const std::array< Real, 7 > _t1
const std::array< Real, 5 > _phi3
const std::array< unsigned int, 2 > _d2
const std::array< Real, 5 > _D3
const std::array< Real, 5 > _gamma3
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
const std::array< Real, 2 > _t2
const std::array< unsigned int, 5 > _d3

◆ d2alpha_ddeltatau()

Real HydrogenFluidProperties::d2alpha_ddeltatau ( Real  delta,
Real  tau 
) const
overrideprotectedvirtual

Second derivative of Helmholtz free energy wrt delta and tau.

Parameters
deltascaled density (-)
tauscaled temperature (-)
Returns
second derivative of Helmholtz free energy wrt delta and tau

Implements HelmholtzFluidProperties.

Definition at line 422 of file HydrogenFluidProperties.C.

423 {
424  // Residual component of the Helmholtz free energy
425  Real dalphar = 0.0;
426 
427  for (std::size_t i = 0; i < _t1.size(); ++i)
428  dalphar += _N1[i] * _d1[i] * _t1[i] * std::pow(delta, _d1[i]) * std::pow(tau, _t1[i]);
429 
430  for (std::size_t i = 0; i < _t2.size(); ++i)
431  dalphar += _N2[i] * _t2[i] * std::pow(delta, _d2[i]) * std::pow(tau, _t2[i]) *
432  std::exp(-delta) * (_d2[i] - delta);
433 
434  for (std::size_t i = 0; i < _t3.size(); ++i)
435  dalphar += _N3[i] * std::pow(delta, _d3[i]) * std::pow(tau, _t3[i]) *
436  std::exp(_phi3[i] * Utility::pow<2>(delta - _D3[i]) +
437  _beta3[i] * Utility::pow<2>(tau - _gamma3[i])) *
438  (_d3[i] + delta * (2.0 * _phi3[i] * (delta - _D3[i]))) *
439  (_t3[i] + 2.0 * _beta3[i] * tau * (tau - _gamma3[i]));
440 
441  // The Helmholtz free energy is the sum of these two
442  return dalphar / delta / tau;
443 }
const std::array< Real, 2 > _N2
const std::array< Real, 5 > _beta3
const std::array< Real, 5 > _t3
const std::array< Real, 7 > _N1
Coefficients for residual component of the Helmholtz free energy.
const std::array< Real, 5 > _N3
const std::array< unsigned int, 7 > _d1
const std::array< Real, 7 > _t1
const std::array< Real, 5 > _phi3
const std::array< unsigned int, 2 > _d2
const std::array< Real, 5 > _D3
const std::array< Real, 5 > _gamma3
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
const std::array< Real, 2 > _t2
const std::array< unsigned int, 5 > _d3

◆ d2alpha_dtau2()

Real HydrogenFluidProperties::d2alpha_dtau2 ( Real  delta,
Real  tau 
) const
overrideprotectedvirtual

Second derivative of Helmholtz free energy wrt tau.

Parameters
deltascaled density (-)
tauscaled temperature (-)
Returns
second derivative of Helmholtz free energy wrt tau

Implements HelmholtzFluidProperties.

Definition at line 386 of file HydrogenFluidProperties.C.

387 {
388  // Ideal gas component of the Helmholtz free energy
389  Real dalpha0 = -1.5 / tau / tau;
390 
391  for (std::size_t i = 0; i < _a.size(); ++i)
392  {
393  Real exptau = std::exp(_b[i] * tau);
394  dalpha0 -= _a[i] * (_b[i] * _b[i] * exptau / (1.0 - exptau) * (exptau / (1.0 - exptau) + 1.0));
395  }
396 
397  // Residual component of the Helmholtz free energy
398  Real dalphar = 0.0;
399 
400  for (std::size_t i = 0; i < _t1.size(); ++i)
401  dalphar +=
402  _N1[i] * _t1[i] * (_t1[i] - 1.0) * MathUtils::pow(delta, _d1[i]) * std::pow(tau, _t1[i]);
403 
404  for (std::size_t i = 0; i < _t2.size(); ++i)
405  dalphar += _N2[i] * _t2[i] * (_t2[i] - 1.0) * MathUtils::pow(delta, _d2[i]) *
406  std::pow(tau, _t2[i]) * std::exp(-delta);
407 
408  for (std::size_t i = 0; i < _t3.size(); ++i)
409  dalphar += _N3[i] * MathUtils::pow(delta, _d3[i]) * std::pow(tau, _t3[i]) *
410  std::exp(_phi3[i] * Utility::pow<2>(delta - _D3[i]) +
411  _beta3[i] * Utility::pow<2>(tau - _gamma3[i])) *
412  (_t3[i] * _t3[i] +
413  2.0 * _beta3[i] * tau * tau *
414  (1.0 + 2.0 * _beta3[i] * MathUtils::pow(tau - _gamma3[i], 2)) -
415  _t3[i] * (1.0 + 4.0 * _beta3[i] * tau * (tau - _gamma3[i])));
416 
417  // The Helmholtz free energy is the sum of these two
418  return dalpha0 + dalphar / tau / tau;
419 }
const std::array< Real, 2 > _N2
const std::array< Real, 5 > _beta3
const std::array< Real, 5 > _t3
const std::array< Real, 7 > _N1
Coefficients for residual component of the Helmholtz free energy.
const std::array< Real, 5 > _N3
const std::array< unsigned int, 7 > _d1
const std::array< Real, 7 > _t1
const std::array< Real, 5 > _phi3
const std::array< Real, 5 > _b
const std::array< unsigned int, 2 > _d2
const std::array< Real, 5 > _D3
const std::array< Real, 5 > _a
Coefficients for ideal gas component of the Helmholtz free energy.
const std::array< Real, 5 > _gamma3
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
const std::array< Real, 2 > _t2
const std::array< unsigned int, 5 > _d3

◆ dalpha_ddelta()

Real HydrogenFluidProperties::dalpha_ddelta ( Real  delta,
Real  tau 
) const
overrideprotectedvirtual

Derivative of Helmholtz free energy wrt delta.

Parameters
deltascaled density (-)
tauscaled temperature (-)
Returns
derivative of Helmholtz free energy wrt delta

Implements HelmholtzFluidProperties.

Definition at line 301 of file HydrogenFluidProperties.C.

302 {
303  // Ideal gas component of the Helmholtz free energy
304  Real dalpha0 = 1.0 / delta;
305 
306  // Residual component of the Helmholtz free energy
307  Real dalphar = 0.0;
308 
309  for (std::size_t i = 0; i < _t1.size(); ++i)
310  dalphar += _N1[i] * _d1[i] * MathUtils::pow(delta, _d1[i]) * std::pow(tau, _t1[i]);
311 
312  for (std::size_t i = 0; i < _t2.size(); ++i)
313  dalphar += _N2[i] * MathUtils::pow(delta, _d2[i]) * std::pow(tau, _t2[i]) * std::exp(-delta) *
314  (_d2[i] - delta);
315 
316  for (std::size_t i = 0; i < _t3.size(); ++i)
317  dalphar += _N3[i] * MathUtils::pow(delta, _d3[i]) * std::pow(tau, _t3[i]) *
318  std::exp(_phi3[i] * Utility::pow<2>(delta - _D3[i]) +
319  _beta3[i] * Utility::pow<2>(tau - _gamma3[i])) *
320  (_d3[i] + delta * (2.0 * _phi3[i] * (delta - _D3[i])));
321 
322  // The Helmholtz free energy is the sum of these two
323  return dalpha0 + dalphar / delta;
324 }
const std::array< Real, 2 > _N2
const std::array< Real, 5 > _beta3
const std::array< Real, 5 > _t3
const std::array< Real, 7 > _N1
Coefficients for residual component of the Helmholtz free energy.
const std::array< Real, 5 > _N3
const std::array< unsigned int, 7 > _d1
const std::array< Real, 7 > _t1
const std::array< Real, 5 > _phi3
const std::array< unsigned int, 2 > _d2
const std::array< Real, 5 > _D3
const std::array< Real, 5 > _gamma3
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
const std::array< Real, 2 > _t2
const std::array< unsigned int, 5 > _d3

◆ dalpha_dtau()

Real HydrogenFluidProperties::dalpha_dtau ( Real  delta,
Real  tau 
) const
overrideprotectedvirtual

Derivative of Helmholtz free energy wrt tau.

Parameters
deltascaled density (-)
tauscaled temperature (-)
Returns
derivative of Helmholtz free energy wrt tau

Implements HelmholtzFluidProperties.

Definition at line 327 of file HydrogenFluidProperties.C.

328 {
329  // Ideal gas component of the Helmholtz free energy
330  Real dalpha0 = 1.5 / tau + 1.888076782;
331 
332  for (std::size_t i = 0; i < _a.size(); ++i)
333  dalpha0 += _a[i] * _b[i] * (1.0 - 1.0 / (1.0 - std::exp(_b[i] * tau)));
334 
335  // Residual component of the Helmholtz free energy
336  Real dalphar = 0.0;
337 
338  for (std::size_t i = 0; i < _t1.size(); ++i)
339  dalphar += _N1[i] * _t1[i] * MathUtils::pow(delta, _d1[i]) * std::pow(tau, _t1[i]);
340 
341  for (std::size_t i = 0; i < _t2.size(); ++i)
342  dalphar +=
343  _N2[i] * _t2[i] * MathUtils::pow(delta, _d2[i]) * std::pow(tau, _t2[i]) * std::exp(-delta);
344 
345  for (std::size_t i = 0; i < _t3.size(); ++i)
346  dalphar += _N3[i] * MathUtils::pow(delta, _d3[i]) * std::pow(tau, _t3[i]) *
347  std::exp(_phi3[i] * Utility::pow<2>(delta - _D3[i]) +
348  _beta3[i] * Utility::pow<2>(tau - _gamma3[i])) *
349  (_t3[i] + tau * (2.0 * _beta3[i] * (tau - _gamma3[i])));
350 
351  // The Helmholtz free energy is the sum of these two
352  return dalpha0 + dalphar / tau;
353 }
const std::array< Real, 2 > _N2
const std::array< Real, 5 > _beta3
const std::array< Real, 5 > _t3
const std::array< Real, 7 > _N1
Coefficients for residual component of the Helmholtz free energy.
const std::array< Real, 5 > _N3
const std::array< unsigned int, 7 > _d1
const std::array< Real, 7 > _t1
const std::array< Real, 5 > _phi3
const std::array< Real, 5 > _b
const std::array< unsigned int, 2 > _d2
const std::array< Real, 5 > _D3
const std::array< Real, 5 > _a
Coefficients for ideal gas component of the Helmholtz free energy.
const std::array< Real, 5 > _gamma3
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
const std::array< Real, 2 > _t2
const std::array< unsigned int, 5 > _d3

◆ e()

Real SinglePhaseFluidProperties::e ( Real  pressure,
Real  temperature 
) const
virtualinherited

Definition at line 366 of file SinglePhaseFluidProperties.C.

Referenced by Water97FluidProperties::b2bc(), IdealGasFluidProperties::c_from_v_e(), StiffenedGasFluidProperties::c_from_v_e(), NaClFluidProperties::cp_from_p_T(), Water97FluidProperties::densityRegion3(), SinglePhaseFluidProperties::e_dpT(), StiffenedGasFluidProperties::e_from_p_rho(), IdealGasFluidProperties::e_from_p_rho(), HelmholtzFluidProperties::e_from_p_T(), IdealGasFluidPropertiesPT::e_from_p_T(), Water97FluidProperties::e_from_p_T(), IdealGasFluidProperties::e_from_p_T(), NaClFluidProperties::e_from_p_T(), StiffenedGasFluidProperties::e_from_p_T(), SimpleFluidProperties::e_from_p_T(), TabulatedFluidProperties::e_from_p_T(), SinglePhaseFluidProperties::e_from_p_T(), StiffenedGasFluidProperties::e_from_T_v(), IdealGasFluidProperties::e_from_T_v(), IdealGasFluidProperties::e_from_v_h(), StiffenedGasFluidProperties::e_from_v_h(), IdealGasFluidProperties::g_from_v_e(), StiffenedGasFluidProperties::g_from_v_e(), IdealGasFluidProperties::h_from_p_T(), NaClFluidProperties::h_from_p_T(), NitrogenFluidProperties::mu_drhoT_from_rho_T(), mu_drhoT_from_rho_T(), CO2FluidProperties::mu_drhoT_from_rho_T(), StiffenedGasFluidProperties::p_from_T_v(), IdealGasFluidProperties::p_from_v_e(), StiffenedGasFluidProperties::p_from_v_e(), HelmholtzFluidProperties::rho_e_dpT(), IdealGasFluidPropertiesPT::rho_e_dpT(), Water97FluidProperties::rho_e_dpT(), NaClFluidProperties::rho_e_dpT(), SimpleFluidProperties::rho_e_dpT(), TabulatedFluidProperties::rho_e_dpT(), StiffenedGasFluidProperties::s_from_T_v(), IdealGasFluidProperties::s_from_v_e(), StiffenedGasFluidProperties::s_from_v_e(), Water97FluidProperties::subregion3(), Water97FluidProperties::subregionVolume(), SinglePhaseFluidProperties::T_from_p_h(), StiffenedGasFluidProperties::T_from_v_e(), IdealGasFluidProperties::T_from_v_e(), StiffenedGasFluidProperties::v_e_spndl_from_T(), and Water97FluidProperties::vaporTemperature().

367 {
368  return e_from_p_T(p, T);
369 }
virtual Real e_from_p_T(Real p, Real T) const
Internal energy from pressure and temperature.

◆ e_dpT()

void SinglePhaseFluidProperties::e_dpT ( Real  pressure,
Real  temperature,
Real &  e,
Real &  de_dp,
Real &  de_dT 
) const
virtualinherited

Definition at line 372 of file SinglePhaseFluidProperties.C.

374 {
375  e_from_p_T(pressure, temperature, e, de_dp, de_dT);
376 }
const std::string temperature
Definition: NS.h:27
virtual Real e_from_p_T(Real p, Real T) const
Internal energy from pressure and temperature.
const std::string pressure
Definition: NS.h:26
virtual Real e(Real pressure, Real temperature) const

◆ e_from_p_rho() [1/2]

Real SinglePhaseFluidProperties::e_from_p_rho ( Real  p,
Real  rho 
) const
virtualinherited

Specific internal energy from pressure and density.

Parameters
[in]ppressure
[in]rhodensity

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 502 of file SinglePhaseFluidProperties.C.

Referenced by StagnationTemperatureAux::computeValue(), InternalEnergyAux::computeValue(), and SinglePhaseFluidProperties::e_from_p_T().

503 {
504  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
505 }
const std::string name
Definition: Setup.h:22

◆ e_from_p_rho() [2/2]

void SinglePhaseFluidProperties::e_from_p_rho ( Real  p,
Real  rho,
Real &  e,
Real &  de_dp,
Real &  de_drho 
) const
virtualinherited

Specific internal energy and its derivatives from pressure and density.

Parameters
[in]ppressure
[in]rhodensity
[out]especific internal energy
[out]de_dpderivative of specific internal energy w.r.t. pressure
[out]de_drhoderivative of specific internal energy w.r.t. density

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 508 of file SinglePhaseFluidProperties.C.

509 {
510  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
511 }
const std::string name
Definition: Setup.h:22

◆ e_from_p_T() [1/2]

Real HelmholtzFluidProperties::e_from_p_T ( Real  p,
Real  T 
) const
overridevirtualinherited

Internal energy from pressure and temperature.

Parameters
[in]ppressure (Pa)
[in]Ttemperature (K)
Returns
internal energy (J/kg)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 65 of file HelmholtzFluidProperties.C.

Referenced by HelmholtzFluidProperties::e_from_p_T(), and HelmholtzFluidProperties::rho_e_dpT().

66 {
67  // Require density first
69  // Scale the input density and temperature
70  const Real delta = density / criticalDensity();
71  const Real tau = criticalTemperature() / temperature;
72 
73  return _R * temperature * tau * dalpha_dtau(delta, tau) / molarMass();
74 }
virtual Real molarMass() const
Molar mass [kg/mol].
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
const Real _R
Universal gas constant (J/mol/K)
virtual Real criticalTemperature() const
Critical temperature.
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
virtual Real dalpha_dtau(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt tau.
virtual Real criticalDensity() const
Critical density.
const std::string pressure
Definition: NS.h:26

◆ e_from_p_T() [2/2]

void HelmholtzFluidProperties::e_from_p_T ( Real  p,
Real  T,
Real &  e,
Real &  de_dp,
Real &  de_dT 
) const
overridevirtualinherited

Internal energy and its derivatives from pressure and temperature.

Parameters
[in]ppressure (Pa)
[in]Ttemperature (K)
[out]einternal energy (J/kg)
[out]de_dpderivative of internal energy w.r.t. pressure
[out]de_dTderivative of internal energy w.r.t. temperature

Reimplemented from SinglePhaseFluidProperties.

Definition at line 77 of file HelmholtzFluidProperties.C.

79 {
80  e = this->e_from_p_T(pressure, temperature);
81 
82  // Require density first
84  // Scale the input density and temperature
85  const Real delta = density / criticalDensity();
86  const Real tau = criticalTemperature() / temperature;
87 
88  const Real da_dd = dalpha_ddelta(delta, tau);
89  const Real d2a_dd2 = d2alpha_ddelta2(delta, tau);
90  const Real d2a_ddt = d2alpha_ddeltatau(delta, tau);
91 
92  de_dp = tau * d2a_ddt / (density * (2.0 * da_dd + delta * d2a_dd2));
93  de_dT = -_R *
94  (delta * tau * d2a_ddt * (da_dd - tau * d2a_ddt) / (2.0 * da_dd + delta * d2a_dd2) +
95  tau * tau * d2alpha_dtau2(delta, tau)) /
96  molarMass();
97 }
virtual Real d2alpha_ddeltatau(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta and tau.
virtual Real d2alpha_dtau2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt tau.
virtual Real molarMass() const
Molar mass [kg/mol].
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
virtual Real d2alpha_ddelta2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta.
const Real _R
Universal gas constant (J/mol/K)
virtual Real criticalTemperature() const
Critical temperature.
virtual Real dalpha_ddelta(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt delta.
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
virtual Real criticalDensity() const
Critical density.
const std::string pressure
Definition: NS.h:26
virtual Real e(Real pressure, Real temperature) const
virtual Real e_from_p_T(Real pressure, Real temperature) const override
Internal energy from pressure and temperature.

◆ e_from_T_v() [1/2]

Real SinglePhaseFluidProperties::e_from_T_v ( Real  T,
Real  v 
) const
virtualinherited

Specific volume and specific internal energy from temerature at the vapor spinodal.

Parameters
[in]Ttemerature

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 513 of file SinglePhaseFluidProperties.C.

Referenced by IdealRealGasMixtureFluidProperties::e_from_T_v(), IdealRealGasMixtureFluidProperties::k_from_p_T(), IdealRealGasMixtureFluidProperties::k_from_T_v(), IdealRealGasMixtureFluidProperties::mu_from_p_T(), and IdealRealGasMixtureFluidProperties::mu_from_T_v().

514 {
515  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
516 }
const std::string name
Definition: Setup.h:22

◆ e_from_T_v() [2/2]

void SinglePhaseFluidProperties::e_from_T_v ( Real  T,
Real  v,
Real &  e,
Real &  de_dT,
Real &  de_dv 
) const
virtualinherited

Specific internal energy and its derivatives from temperature and specific volume.

Parameters
[in]Ttemperature
[in]vspecific volume
[out]especific internal energy (J/kg)
[out]de_dTderivative of specific internal energy w.r.t. temperature
[out]de_dvderivative of specific internal energy w.r.t. specific volume

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 530 of file SinglePhaseFluidProperties.C.

531 {
532  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
533 }
const std::string name
Definition: Setup.h:22

◆ e_from_v_h() [1/2]

Real SinglePhaseFluidProperties::e_from_v_h ( Real  v,
Real  h 
) const
virtualinherited

Specific internal energy as a function of specific volume and specific enthalpy.

Parameters
[in]vspecific volume
[in]hspecific enthalpy

Reimplemented in StiffenedGasFluidProperties, and IdealGasFluidProperties.

Definition at line 114 of file SinglePhaseFluidProperties.C.

Referenced by SinglePhaseFluidProperties::T_from_p_h().

115 {
116  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
117 }
const std::string name
Definition: Setup.h:22

◆ e_from_v_h() [2/2]

void SinglePhaseFluidProperties::e_from_v_h ( Real  v,
Real  h,
Real &  e,
Real &  de_dv,
Real &  de_dh 
) const
virtualinherited

Specific internal energy and derivatives as a function of specific volume and specific enthalpy.

Parameters
[in]vspecific volume
[in]hspecific enthalpy
[out]de_dvderivative of specific internal energy w.r.t. specific volume
[out]de_dhderivative of specific internal energy w.r.t. specific enthalpy

Reimplemented in StiffenedGasFluidProperties, and IdealGasFluidProperties.

Definition at line 120 of file SinglePhaseFluidProperties.C.

121 {
122  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
123 }
const std::string name
Definition: Setup.h:22

◆ e_spndl_from_v()

Real SinglePhaseFluidProperties::e_spndl_from_v ( Real  v) const
virtualinherited

Specific internal energy from temperature and specific volume.

Parameters
[in]Ttemperature
[in]vspecific volume

Reimplemented in StiffenedGasFluidProperties.

Definition at line 518 of file SinglePhaseFluidProperties.C.

Referenced by IdealRealGasMixtureFluidProperties::p_T_from_v_e().

519 {
520  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
521 }
const std::string name
Definition: Setup.h:22

◆ execute()

virtual void FluidProperties::execute ( )
inlinefinalvirtualinherited

Definition at line 27 of file FluidProperties.h.

27 {}

◆ finalize()

virtual void FluidProperties::finalize ( )
inlinefinalvirtualinherited

Definition at line 29 of file FluidProperties.h.

29 {}

◆ fluidName()

std::string HydrogenFluidProperties::fluidName ( ) const
overridevirtual

Fluid name.

Returns
string representing fluid name

Reimplemented from SinglePhaseFluidProperties.

Definition at line 39 of file HydrogenFluidProperties.C.

40 {
41  return "hydrogen";
42 }

◆ g_from_v_e()

Real SinglePhaseFluidProperties::g_from_v_e ( Real  v,
Real  e 
) const
virtualinherited

Gibbs free energy from specific volume and specific internal energy.

Parameters
[in]vspecific volume
[in]especific internal energy

Reimplemented in StiffenedGasFluidProperties, and IdealGasFluidProperties.

Definition at line 595 of file SinglePhaseFluidProperties.C.

Referenced by FluidPropertiesMaterial::computeQpProperties().

596 {
597  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
598 }
const std::string name
Definition: Setup.h:22

◆ gamma_from_p_T()

Real SinglePhaseFluidProperties::gamma_from_p_T ( Real  pressure,
Real  temperature 
) const
virtualinherited

Adiabatic index - ratio of specific heats.

Parameters
pressurefluid pressure (Pa)
temperaturefluid temperature (K)
Returns
gamma (-)

Definition at line 250 of file SinglePhaseFluidProperties.C.

251 {
253 }
virtual Real cv_from_p_T(Real pressure, Real temperature) const
Isochoric specific heat.
const std::string temperature
Definition: NS.h:27
virtual Real cp_from_p_T(Real pressure, Real temperature) const
Isobaric specific heat capacity.
const std::string pressure
Definition: NS.h:26

◆ h()

Real SinglePhaseFluidProperties::h ( Real  p,
Real  T 
) const
virtualinherited

◆ h_dpT()

void SinglePhaseFluidProperties::h_dpT ( Real  pressure,
Real  temperature,
Real &  h,
Real &  dh_dp,
Real &  dh_dT 
) const
virtualinherited

Definition at line 480 of file SinglePhaseFluidProperties.C.

481 {
482  h_from_p_T(p, T, h, dh_dp, dh_dT);
483 }
virtual Real h(Real p, Real T) const
virtual Real h_from_p_T(Real p, Real T) const
Specific enthalpy from pressure and temperature.

◆ h_from_p_T() [1/2]

Real HelmholtzFluidProperties::h_from_p_T ( Real  p,
Real  T 
) const
overridevirtualinherited

Specific enthalpy from pressure and temperature.

Parameters
[in]ppressure (Pa)
[in]Ttemperature (K)
Returns
h (J/kg)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 229 of file HelmholtzFluidProperties.C.

Referenced by HelmholtzFluidProperties::h_from_p_T().

230 {
231  // Require density first
232  const Real density = rho_from_p_T(pressure, temperature);
233  // Scale the input density and temperature
234  const Real delta = density / criticalDensity();
235  const Real tau = criticalTemperature() / temperature;
236 
237  return _R * temperature * (tau * dalpha_dtau(delta, tau) + delta * dalpha_ddelta(delta, tau)) /
238  molarMass();
239 }
virtual Real molarMass() const
Molar mass [kg/mol].
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
const Real _R
Universal gas constant (J/mol/K)
virtual Real criticalTemperature() const
Critical temperature.
virtual Real dalpha_ddelta(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt delta.
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
virtual Real dalpha_dtau(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt tau.
virtual Real criticalDensity() const
Critical density.
const std::string pressure
Definition: NS.h:26

◆ h_from_p_T() [2/2]

void HelmholtzFluidProperties::h_from_p_T ( Real  p,
Real  T,
Real &  h,
Real &  dh_dp,
Real &  dh_dT 
) const
overridevirtualinherited

Specific enthalpy and its derivatives from pressure and temperature.

Parameters
[in]ppressure (Pa)
[in]Ttemperature (K)
[out]hspecific enthalpy (J/kg)
[out]dh_dpderivative of specific enthalpy w.r.t. pressure
[out]dh_dTderivative of specific enthalpy w.r.t. temperature

Reimplemented from SinglePhaseFluidProperties.

Definition at line 242 of file HelmholtzFluidProperties.C.

244 {
245  h = this->h_from_p_T(pressure, temperature);
246 
247  // Require density first
248  const Real density = rho_from_p_T(pressure, temperature);
249  // Scale the input density and temperature
250  const Real delta = density / criticalDensity();
251  const Real tau = criticalTemperature() / temperature;
252 
253  const Real da_dd = dalpha_ddelta(delta, tau);
254  const Real d2a_dd2 = d2alpha_ddelta2(delta, tau);
255  const Real d2a_ddt = d2alpha_ddeltatau(delta, tau);
256 
257  dh_dp = (da_dd + delta * d2a_dd2 + tau * d2a_ddt) / (density * (2.0 * da_dd + delta * d2a_dd2));
258  dh_dT = _R *
259  (delta * da_dd * (1.0 - tau * d2a_ddt / da_dd) * (1.0 - tau * d2a_ddt / da_dd) /
260  (2.0 + delta * d2a_dd2 / da_dd) -
261  tau * tau * d2alpha_dtau2(delta, tau)) /
262  molarMass();
263 }
virtual Real d2alpha_ddeltatau(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta and tau.
virtual Real d2alpha_dtau2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt tau.
virtual Real molarMass() const
Molar mass [kg/mol].
const std::string density
Definition: NS.h:17
virtual Real h(Real p, Real T) const
const std::string temperature
Definition: NS.h:27
virtual Real d2alpha_ddelta2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta.
const Real _R
Universal gas constant (J/mol/K)
virtual Real criticalTemperature() const
Critical temperature.
virtual Real dalpha_ddelta(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt delta.
virtual Real h_from_p_T(Real pressure, Real temperature) const override
Specific enthalpy from pressure and temperature.
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
virtual Real criticalDensity() const
Critical density.
const std::string pressure
Definition: NS.h:26

◆ h_from_T_v() [1/2]

Real SinglePhaseFluidProperties::h_from_T_v ( Real  T,
Real  v 
) const
virtualinherited

Specific enthalpy from temperature and specific volume.

Parameters
[in]Ttemperature
[in]vspecific volume

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 546 of file SinglePhaseFluidProperties.C.

Referenced by IdealRealGasMixtureFluidProperties::cp_from_p_T(), and IdealRealGasMixtureFluidProperties::cp_from_T_v().

547 {
548  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
549 }
const std::string name
Definition: Setup.h:22

◆ h_from_T_v() [2/2]

void SinglePhaseFluidProperties::h_from_T_v ( Real  T,
Real  v,
Real &  h,
Real &  dh_dT,
Real &  dh_dv 
) const
virtualinherited

Specific enthalpy and its derivatives from temperature and specific volume.

Parameters
[in]Ttemperature
[in]vspecific volume
[out]hspecific enthalpy (J/kg)
[out]dh_dTderivative of specific enthalpy w.r.t. temperature
[out]dh_dvderivative of specific enthalpy w.r.t. specific volume

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 552 of file SinglePhaseFluidProperties.C.

553 {
554  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
555 }
const std::string name
Definition: Setup.h:22

◆ henryConstant()

Real HydrogenFluidProperties::henryConstant ( Real  temperature) const
overridevirtual

Henry's law constant for dissolution in water.

Parameters
temperaturefluid temperature (K)
Returns
Henry's constant

Reimplemented from SinglePhaseFluidProperties.

Definition at line 246 of file HydrogenFluidProperties.C.

247 {
248  return henryConstantIAPWS(temperature, -4.73284, 6.08954, 6.06066);
249 }
const std::string temperature
Definition: NS.h:27
virtual Real henryConstantIAPWS(Real temperature, Real A, Real B, Real C) const
IAPWS formulation of Henry&#39;s law constant for dissolution in water From Guidelines on the Henry&#39;s con...

◆ henryConstant_dT()

void HydrogenFluidProperties::henryConstant_dT ( Real  temperature,
Real &  Kh,
Real &  dKh_dT 
) const
overridevirtual

Henry's law constant for dissolution in water and derivative wrt temperature.

Parameters
temperaturefluid temperature (K)
[out]KhHenry's constant
[out]dKh_dTderivative of Kh wrt temperature

Reimplemented from SinglePhaseFluidProperties.

Definition at line 252 of file HydrogenFluidProperties.C.

253 {
254  henryConstantIAPWS_dT(temperature, Kh, dKh_dT, -4.73284, 6.08954, 6.06066);
255 }
const std::string temperature
Definition: NS.h:27
virtual void henryConstantIAPWS_dT(Real temperature, Real &Kh, Real &dKh_dT, Real A, Real B, Real C) const
IAPWS formulation of Henry&#39;s law constant for dissolution in water and derivative wrt temperature...

◆ henryConstantIAPWS()

Real SinglePhaseFluidProperties::henryConstantIAPWS ( Real  temperature,
Real  A,
Real  B,
Real  C 
) const
protectedvirtualinherited

IAPWS formulation of Henry's law constant for dissolution in water From Guidelines on the Henry's constant and vapour liquid distribution constant for gases in H20 and D20 at high temperatures, IAPWS (2004)

Definition at line 262 of file SinglePhaseFluidProperties.C.

Referenced by MethaneFluidProperties::henryConstant(), NitrogenFluidProperties::henryConstant(), henryConstant(), and CO2FluidProperties::henryConstant().

263 {
264  Real Tr = temperature / 647.096;
265  Real tau = 1.0 - Tr;
266 
267  Real lnkh = A / Tr + B * std::pow(tau, 0.355) / Tr + C * std::pow(Tr, -0.41) * std::exp(tau);
268 
269  // The vapor pressure used in this formulation
270  std::vector<Real> a{-7.85951783, 1.84408259, -11.7866497, 22.6807411, -15.9618719, 1.80122502};
271  std::vector<Real> b{1.0, 1.5, 3.0, 3.5, 4.0, 7.5};
272  Real sum = 0.0;
273 
274  for (std::size_t i = 0; i < a.size(); ++i)
275  sum += a[i] * std::pow(tau, b[i]);
276 
277  return 22.064e6 * std::exp(sum / Tr) * std::exp(lnkh);
278 }
const std::string temperature
Definition: NS.h:27
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)

◆ henryConstantIAPWS_dT()

void SinglePhaseFluidProperties::henryConstantIAPWS_dT ( Real  temperature,
Real &  Kh,
Real &  dKh_dT,
Real  A,
Real  B,
Real  C 
) const
protectedvirtualinherited

IAPWS formulation of Henry's law constant for dissolution in water and derivative wrt temperature.

Definition at line 281 of file SinglePhaseFluidProperties.C.

Referenced by MethaneFluidProperties::henryConstant_dT(), NitrogenFluidProperties::henryConstant_dT(), henryConstant_dT(), and CO2FluidProperties::henryConstant_dT().

283 {
284  Real pc = 22.064e6;
285  Real Tc = 647.096;
286 
287  Real Tr = temperature / Tc;
288  Real tau = 1.0 - Tr;
289 
290  Real lnkh = A / Tr + B * std::pow(tau, 0.355) / Tr + C * std::pow(Tr, -0.41) * std::exp(tau);
291  Real dlnkh_dT =
292  (-A / Tr / Tr - B * std::pow(tau, 0.355) / Tr / Tr - 0.355 * B * std::pow(tau, -0.645) / Tr -
293  0.41 * C * std::pow(Tr, -1.41) * std::exp(tau) - C * std::pow(Tr, -0.41) * std::exp(tau)) /
294  Tc;
295 
296  // The vapor pressure used in this formulation
297  std::vector<Real> a{-7.85951783, 1.84408259, -11.7866497, 22.6807411, -15.9618719, 1.80122502};
298  std::vector<Real> b{1.0, 1.5, 3.0, 3.5, 4.0, 7.5};
299  Real sum = 0.0;
300  Real dsum = 0.0;
301 
302  for (std::size_t i = 0; i < a.size(); ++i)
303  {
304  sum += a[i] * std::pow(tau, b[i]);
305  dsum += a[i] * b[i] * std::pow(tau, b[i] - 1.0);
306  }
307 
308  Real p = pc * std::exp(sum / Tr);
309  Real dp_dT = -p / Tc / Tr * (sum / Tr + dsum);
310 
311  // Henry's constant and its derivative wrt temperature
312  Kh = p * std::exp(lnkh);
313  dKh_dT = (p * dlnkh_dT + dp_dT) * std::exp(lnkh);
314 }
const std::string temperature
Definition: NS.h:27
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)

◆ initialize()

virtual void FluidProperties::initialize ( )
inlinefinalvirtualinherited

Definition at line 28 of file FluidProperties.h.

28 {}

◆ k()

Real SinglePhaseFluidProperties::k ( Real  pressure,
Real  temperature 
) const
virtualinherited

◆ k_dpT()

void SinglePhaseFluidProperties::k_dpT ( Real  pressure,
Real  temperature,
Real &  k,
Real &  dk_dp,
Real &  dk_dT 
) const
virtualinherited

Definition at line 461 of file SinglePhaseFluidProperties.C.

463 {
464  k_from_p_T(pressure, temperature, k, dk_dp, dk_dT);
465 }
const std::string temperature
Definition: NS.h:27
virtual Real k(Real pressure, Real temperature) const
virtual Real k_from_p_T(Real pressure, Real temperature) const
Thermal conductivity.
const std::string pressure
Definition: NS.h:26

◆ k_from_p_T() [1/2]

Real HydrogenFluidProperties::k_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtual

Thermal conductivity.

Parameters
pressurefluid pressure (Pa)
temperaturefluid temperature (K)
Returns
thermal conductivity (W/m/K)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 224 of file HydrogenFluidProperties.C.

Referenced by k_from_p_T().

225 {
226  // Require density first
227  const Real density = rho_from_p_T(pressure, temperature);
229 }
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
virtual Real k_from_rho_T(Real density, Real temperature) const override
Thermal conductivity as a function of density and temperature.
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
const std::string pressure
Definition: NS.h:26

◆ k_from_p_T() [2/2]

void HydrogenFluidProperties::k_from_p_T ( Real  pressure,
Real  temperature,
Real &  k,
Real &  dk_dp,
Real &  dk_dT 
) const
overridevirtual

Thermal conductivity and its derivatives wrt pressure and temperature.

Parameters
pressurefluid pressure (Pa)
temperaturefluid temperature (K)
[out]thermalconductivity (W/m/K)
[out]derivativeof thermal conductivity wrt pressure
[out]derivativeof thermal conductivity wrt temperature

Reimplemented from SinglePhaseFluidProperties.

Definition at line 232 of file HydrogenFluidProperties.C.

234 {
235  k = this->k_from_p_T(pressure, temperature);
236  // Calculate derivatives using finite differences
237  const Real eps = 1.0e-6;
238  const Real peps = pressure * eps;
239  const Real Teps = temperature * eps;
240 
241  dk_dp = (this->k_from_p_T(pressure + peps, temperature) - k) / peps;
242  dk_dT = (this->k_from_p_T(pressure, temperature + Teps) - k) / Teps;
243 }
virtual Real k_from_p_T(Real pressure, Real temperature) const override
Thermal conductivity.
const std::string temperature
Definition: NS.h:27
virtual Real k(Real pressure, Real temperature) const
const std::string pressure
Definition: NS.h:26

◆ k_from_rho_T()

Real HydrogenFluidProperties::k_from_rho_T ( Real  density,
Real  temperature 
) const
overridevirtual

Thermal conductivity as a function of density and temperature.

Parameters
densityfluid density (kg/m^3)
temperaturefluid temperature (K)
Returns
thermal conductivity (W/m/K)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 193 of file HydrogenFluidProperties.C.

Referenced by k_from_p_T().

194 {
195  // // Scaled variables
196  const Real Tr = temperature / 33.145;
197  const Real rhor = density / 31.262;
198 
199  // The ideal gas component
200  Real sum1 = 0.0;
201  for (std::size_t i = 0; i < _a1k.size(); ++i)
202  sum1 += _a1k[i] * MathUtils::pow(Tr, i);
203 
204  Real sum2 = 0.0;
205  for (std::size_t i = 0; i < _a2k.size(); ++i)
206  sum2 += _a2k[i] * MathUtils::pow(Tr, i);
207 
208  const Real lambda0 = sum1 / sum2;
209 
210  // The excess contribution due to density
211  Real lambdah = 0.0;
212  for (std::size_t i = 0; i < _b1k.size(); ++i)
213  lambdah += (_b1k[i] + _b2k[i] * Tr) * MathUtils::pow(rhor, i + 1);
214 
215  // The critical enhancement
216  const Real lambdac = 6.24e-4 / (-2.58e-7 + std::abs(Tr - 1.0)) *
217  std::exp(-MathUtils::pow(0.837 * (rhor - 1.0), 2));
218 
219  // The thermal conductivity
220  return lambda0 + lambdah + lambdac;
221 }
const std::array< Real, 5 > _b2k
const std::array< Real, 4 > _a2k
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
const std::array< Real, 5 > _b1k
const std::array< Real, 7 > _a1k
Coefficients for thermal conductivity.
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)

◆ k_from_v_e()

Real SinglePhaseFluidProperties::k_from_v_e ( Real  v,
Real  e 
) const
virtualinherited

Thermal conductivity from specific volume and specific internal energy.

Parameters
[in]vspecific volume
[in]especific internal energy

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 76 of file SinglePhaseFluidProperties.C.

Referenced by FluidPropertiesMaterial::computeQpProperties(), GeneralVaporMixtureFluidProperties::k_from_p_T(), IdealRealGasMixtureFluidProperties::k_from_p_T(), and IdealRealGasMixtureFluidProperties::k_from_T_v().

77 {
78  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
79 }
const std::string name
Definition: Setup.h:22

◆ molarMass()

Real HydrogenFluidProperties::molarMass ( ) const
overridevirtual

Molar mass [kg/mol].

Returns
molar mass

Reimplemented from SinglePhaseFluidProperties.

Definition at line 45 of file HydrogenFluidProperties.C.

46 {
47  return _Mh2;
48 }
const Real _Mh2
Hydrogen molar mass (kg/mol)

◆ mu()

Real SinglePhaseFluidProperties::mu ( Real  pressure,
Real  temperature 
) const
virtualinherited

◆ mu_dpT()

void SinglePhaseFluidProperties::mu_dpT ( Real  pressure,
Real  temperature,
Real &  mu,
Real &  dmu_dp,
Real &  dmu_dT 
) const
virtualinherited

Dynamic viscosity and its derivatives wrt pressure and temperature.

Parameters
pressurefluid pressure (Pa)
temperaturefluid temperature (K)
[out]muviscosity (Pa.s)
[out]dmu_dpderivative of viscosity wrt pressure
[out]dmu_dTderivative of viscosity wrt temperature

Definition at line 418 of file SinglePhaseFluidProperties.C.

420 {
421  mu_from_p_T(pressure, temperature, mu, dmu_dp, dmu_dT);
422 }
virtual Real mu_from_p_T(Real pressure, Real temperature) const
virtual Real mu(Real pressure, Real temperature) const
Dynamic viscosity.
const std::string temperature
Definition: NS.h:27
const std::string pressure
Definition: NS.h:26

◆ mu_drhoT_from_rho_T()

void HydrogenFluidProperties::mu_drhoT_from_rho_T ( Real  density,
Real  temperature,
Real  ddensity_dT,
Real &  mu,
Real &  dmu_drho,
Real &  dmu_dT 
) const
overridevirtual

Dynamic viscosity and its derivatives wrt density and temperature.

Parameters
densityfluid density (kg/m^3)
temperaturefluid temperature (K)
ddensity_dTderivative of density wrt temperature
[out]muviscosity (Pa.s)
[out]dmu_drhoderivative of viscosity wrt density
[out]dmu_dTderivative of viscosity wrt temperature

Reimplemented from SinglePhaseFluidProperties.

Definition at line 115 of file HydrogenFluidProperties.C.

Referenced by mu_from_p_T().

121 {
122  // Scaled variables
123  const Real Tstar = temperature / 30.41;
124  const Real logTstar = std::log(Tstar);
125  const Real Tr = temperature / _T_critical;
126  const Real rhor = density / 90.5;
127  const Real drhor_drho = 1.0 / 90.5;
128  const Real dTr_dT = 1.0 / _T_critical;
129 
130  // The dilute gas component
131  Real sum = 0.0, dsum_dT = 0.0;
132  for (std::size_t i = 0; i < _amu.size(); ++i)
133  {
134  sum += _amu[i] * MathUtils::pow(logTstar, i);
135  dsum_dT += i * _amu[i] * MathUtils::pow(logTstar, i) / (temperature * logTstar);
136  }
137 
138  const Real mu0 =
139  0.021357 * std::sqrt(1000.0 * _Mh2 * temperature) / (0.297 * 0.297 * std::exp(sum));
140  const Real dmu0_dT = 21.357 * _Mh2 * (1.0 - 2.0 * temperature * dsum_dT) * std::exp(-sum) /
141  (2.0 * std::sqrt(1000.0 * _Mh2 * temperature) * 0.297 * 0.297);
142 
143  // The excess contribution due to density
144  Real sumr = 0.0;
145  for (std::size_t i = 0; i < _bmu.size(); ++i)
146  sumr += _bmu[i];
147 
148  const Real mu1 = MathUtils::pow(0.297, 3) * sumr * mu0 / Tstar;
149  const Real dmu1_dT =
150  MathUtils::pow(0.297, 3) * sumr * (dmu0_dT / Tstar - mu0 / (30.41 * Tstar * Tstar));
151 
152  // The viscosity and derivatives are then
153  const Real exponent = _cmu[1] * Tr + _cmu[2] / Tr + _cmu[3] * rhor * rhor / (_cmu[4] + Tr) +
154  _cmu[5] * MathUtils::pow(rhor, 6);
155  const Real dexponent_drho =
156  (2.0 * _cmu[3] * rhor / (_cmu[4] + Tr) + 6.0 * _cmu[5] * MathUtils::pow(rhor, 5)) *
157  drhor_drho;
158  const Real dexponent_dT =
159  (_cmu[1] - _cmu[2] / Tr / Tr - _cmu[3] * rhor * rhor / (_cmu[4] + Tr) / (_cmu[4] + Tr)) *
160  dTr_dT;
161 
162  mu = (mu0 + mu1 * density + _cmu[0] * rhor * rhor * std::exp(exponent)) * 1.0e-6;
163  dmu_drho =
164  (mu1 + _cmu[0] * rhor * std::exp(exponent) * (2.0 * drhor_drho + rhor * dexponent_drho)) *
165  1.0e-6;
166  dmu_dT =
167  (dmu0_dT + density * dmu1_dT + _cmu[0] * rhor * rhor * dexponent_dT * std::exp(exponent)) *
168  1.0e-6 +
169  dmu_drho * ddensity_dT;
170 }
const std::array< Real, 6 > _cmu
virtual Real mu(Real pressure, Real temperature) const
Dynamic viscosity.
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
const std::array< Real, 5 > _amu
Coefficients for viscosity.
const Real _Mh2
Hydrogen molar mass (kg/mol)
const Real _T_critical
Critical temperature (K)
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
virtual Real e(Real pressure, Real temperature) const
const std::array< Real, 7 > _bmu

◆ mu_from_p_T() [1/2]

Real HydrogenFluidProperties::mu_from_p_T ( Real  pressure,
Real  temperature 
) const
overridevirtual

Reimplemented from SinglePhaseFluidProperties.

Definition at line 173 of file HydrogenFluidProperties.C.

174 {
175  // Require density first
176  const Real density = rho_from_p_T(pressure, temperature);
178 }
virtual Real mu_from_rho_T(Real density, Real temperature) const override
Dynamic viscosity as a function of density and temperature.
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
const std::string pressure
Definition: NS.h:26

◆ mu_from_p_T() [2/2]

void HydrogenFluidProperties::mu_from_p_T ( Real  pressure,
Real  temperature,
Real &  mu,
Real &  dmu_dp,
Real &  dmu_dT 
) const
overridevirtual

Reimplemented from SinglePhaseFluidProperties.

Definition at line 181 of file HydrogenFluidProperties.C.

183 {
184  Real rho, drho_dp, drho_dT;
185  rho_from_p_T(pressure, temperature, rho, drho_dp, drho_dT);
186 
187  Real dmu_drho;
188  mu_drhoT_from_rho_T(rho, temperature, drho_dT, mu, dmu_drho, dmu_dT);
189  dmu_dp = dmu_drho * drho_dp;
190 }
virtual Real mu(Real pressure, Real temperature) const
Dynamic viscosity.
virtual void mu_drhoT_from_rho_T(Real density, Real temperature, Real ddensity_dT, Real &mu, Real &dmu_drho, Real &dmu_dT) const override
Dynamic viscosity and its derivatives wrt density and temperature.
const std::string temperature
Definition: NS.h:27
virtual Real rho(Real p, Real T) const
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
const std::string pressure
Definition: NS.h:26

◆ mu_from_rho_T()

Real HydrogenFluidProperties::mu_from_rho_T ( Real  density,
Real  temperature 
) const
overridevirtual

Dynamic viscosity as a function of density and temperature.

Parameters
densityfluid density (kg/m^3)
temperaturefluid temperature (K)
Returns
viscosity (Pa.s)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 81 of file HydrogenFluidProperties.C.

Referenced by mu_from_p_T().

82 {
83  // Scaled variables
84  const Real Tstar = temperature / 30.41;
85  const Real logTstar = std::log(Tstar);
86  const Real Tr = temperature / _T_critical;
87  const Real rhor = density / 90.5;
88 
89  // Ideal gas component
90  Real sum = 0.0;
91  for (std::size_t i = 0; i < _amu.size(); ++i)
92  sum += _amu[i] * MathUtils::pow(logTstar, i);
93 
94  const Real mu0 =
95  0.021357 * std::sqrt(1000.0 * _Mh2 * temperature) / (0.297 * 0.297 * std::exp(sum));
96 
97  // The excess contribution due to density
98  Real sumr = 0.0;
99  for (std::size_t i = 0; i < _bmu.size(); ++i)
100  sumr += _bmu[i];
101 
102  const Real mu1 = MathUtils::pow(0.297, 3) * sumr * mu0 / Tstar;
103 
104  // The viscosity is then
105  const Real mu =
106  mu0 + mu1 * density +
107  _cmu[0] * rhor * rhor *
108  std::exp(_cmu[1] * Tr + _cmu[2] / Tr + _cmu[3] * rhor * rhor / (_cmu[4] + Tr) +
109  _cmu[5] * MathUtils::pow(rhor, 6));
110 
111  return mu * 1.0e-6;
112 }
const std::array< Real, 6 > _cmu
virtual Real mu(Real pressure, Real temperature) const
Dynamic viscosity.
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
const std::array< Real, 5 > _amu
Coefficients for viscosity.
const Real _Mh2
Hydrogen molar mass (kg/mol)
const Real _T_critical
Critical temperature (K)
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
const std::array< Real, 7 > _bmu

◆ mu_from_v_e()

Real SinglePhaseFluidProperties::mu_from_v_e ( Real  v,
Real  e 
) const
virtualinherited

Dynamic viscosity from specific volume and specific internal energy.

Parameters
[in]vspecific volume
[in]especific internal energy

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 71 of file SinglePhaseFluidProperties.C.

Referenced by FluidPropertiesMaterial::computeQpProperties(), GeneralVaporMixtureFluidProperties::mu_from_p_T(), IdealRealGasMixtureFluidProperties::mu_from_p_T(), and IdealRealGasMixtureFluidProperties::mu_from_T_v().

72 {
73  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
74 }
const std::string name
Definition: Setup.h:22

◆ p_from_h_s() [1/2]

Real SinglePhaseFluidProperties::p_from_h_s ( Real  h,
Real  s 
) const
virtualinherited

Pressure from specific enthalpy and specific entropy.

Parameters
[in]hspecific enthalpy
[in]sspecific entropy

Reimplemented in StiffenedGasFluidProperties, and IdealGasFluidProperties.

Definition at line 584 of file SinglePhaseFluidProperties.C.

Referenced by StagnationPressureAux::computeValue(), and StagnationTemperatureAux::computeValue().

585 {
586  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
587 }
const std::string name
Definition: Setup.h:22

◆ p_from_h_s() [2/2]

void SinglePhaseFluidProperties::p_from_h_s ( Real  h,
Real  s,
Real &  p,
Real &  dp_dh,
Real &  dp_ds 
) const
virtualinherited

Pressure and its derivatives from specific enthalpy and specific entropy.

Parameters
[in]hspecific enthalpy
[in]sspecific entropy

Reimplemented in StiffenedGasFluidProperties, and IdealGasFluidProperties.

Definition at line 590 of file SinglePhaseFluidProperties.C.

591 {
592  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
593 }
const std::string name
Definition: Setup.h:22

◆ p_from_rho_T()

Real HelmholtzFluidProperties::p_from_rho_T ( Real  rho,
Real  T 
) const
virtualinherited

Pressure as a function of density and temperature.

Parameters
rhodensity (kg/m^3)
Ttemperature (K)
Returns
pressure (Pa)

Reimplemented in CO2FluidProperties.

Definition at line 266 of file HelmholtzFluidProperties.C.

Referenced by CO2FluidProperties::p_from_rho_T(), and HelmholtzFluidProperties::rho_from_p_T().

267 {
268  // Scale the input density and temperature
269  const Real delta = density / criticalDensity();
270  const Real tau = criticalTemperature() / temperature;
271 
272  return _R * density * temperature * delta * dalpha_ddelta(delta, tau) / molarMass();
273 }
virtual Real molarMass() const
Molar mass [kg/mol].
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
const Real _R
Universal gas constant (J/mol/K)
virtual Real criticalTemperature() const
Critical temperature.
virtual Real dalpha_ddelta(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt delta.
virtual Real criticalDensity() const
Critical density.

◆ p_from_T_v() [1/2]

Real SinglePhaseFluidProperties::p_from_T_v ( Real  T,
Real  v 
) const
virtualinherited

Pressure from temperature and specific volume.

Parameters
[in]Ttemperature
[in]vspecific volume

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 535 of file SinglePhaseFluidProperties.C.

Referenced by IdealRealGasMixtureFluidProperties::p_from_T_v().

536 {
537  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
538 }
const std::string name
Definition: Setup.h:22

◆ p_from_T_v() [2/2]

void SinglePhaseFluidProperties::p_from_T_v ( Real  T,
Real  v,
Real &  p,
Real &  dp_dT,
Real &  dp_dv 
) const
virtualinherited

Pressure and its derivatives from temperature and specific volume.

Parameters
[in]Ttemperature
[in]vspecific volume
[out]ppressure (Pa)
[out]dp_dTderivative of pressure w.r.t. temperature
[out]dp_dvderivative of pressure w.r.t. specific volume

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 541 of file SinglePhaseFluidProperties.C.

542 {
543  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
544 }
const std::string name
Definition: Setup.h:22

◆ p_from_v_e() [1/2]

Real SinglePhaseFluidProperties::p_from_v_e ( Real  v,
Real  e 
) const
virtualinherited

Pressure from specific volume and specific internal energy.

Parameters
[in]vspecific volume
[in]especific internal energy

Reimplemented in IdealGasFluidProperties, StiffenedGasFluidProperties, and NaNInterfaceTestFluidProperties.

Definition at line 28 of file SinglePhaseFluidProperties.C.

Referenced by FluidPropertiesMaterial::computeQpProperties(), PressureAux::computeValue(), StagnationPressureAux::computeValue(), and StagnationTemperatureAux::computeValue().

29 {
30  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
31 }
const std::string name
Definition: Setup.h:22

◆ p_from_v_e() [2/2]

void SinglePhaseFluidProperties::p_from_v_e ( Real  v,
Real  e,
Real &  p,
Real &  dp_dv,
Real &  dp_de 
) const
virtualinherited

Pressure and its derivatives from specific volume and specific internal energy.

Parameters
[in]vspecific volume
[in]especific internal energy
[out]ppressure
[out]dp_dvderivative of pressure w.r.t. specific volume
[out]dp_dederivative of pressure w.r.t. specific internal energy

Reimplemented in IdealGasFluidProperties, StiffenedGasFluidProperties, and NaNInterfaceTestFluidProperties.

Definition at line 34 of file SinglePhaseFluidProperties.C.

35 {
36  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
37 }
const std::string name
Definition: Setup.h:22

◆ pp_sat_from_p_T()

Real SinglePhaseFluidProperties::pp_sat_from_p_T ( Real  p,
Real  T 
) const
virtualinherited

Partial pressure at saturation in a gas mixture.

Parameters
[in]ppressure (Pa)
[in]Ttemperature (K)
Returns
pp_sat (Pa)

Reimplemented in StiffenedGasFluidProperties.

Definition at line 196 of file SinglePhaseFluidProperties.C.

Referenced by IdealRealGasMixtureFluidProperties::xs_prim_from_p_T().

197 {
198  mooseError(name(), ": pp_sat_from_p_T is not implemented");
199 }
const std::string name
Definition: Setup.h:22

◆ rho()

Real SinglePhaseFluidProperties::rho ( Real  p,
Real  T 
) const
virtualinherited

Definition at line 491 of file SinglePhaseFluidProperties.C.

Referenced by SinglePhaseFluidProperties::beta_from_p_T(), StiffenedGasFluidProperties::c2_from_p_rho(), StiffenedGasFluidProperties::e_from_p_rho(), IdealGasFluidProperties::e_from_p_rho(), NaClFluidProperties::e_from_p_T(), SinglePhaseFluidProperties::e_from_p_T(), IdealGasFluidProperties::h_from_p_T(), Water97FluidProperties::k_from_p_T(), CO2FluidProperties::mu_from_p_T(), NitrogenFluidProperties::mu_from_p_T(), mu_from_p_T(), Water97FluidProperties::mu_from_p_T(), SinglePhaseFluidProperties::rho_dpT(), HelmholtzFluidProperties::rho_e_dpT(), IdealGasFluidPropertiesPT::rho_e_dpT(), Water97FluidProperties::rho_e_dpT(), NaClFluidProperties::rho_e_dpT(), SimpleFluidProperties::rho_e_dpT(), TabulatedFluidProperties::rho_e_dpT(), IdealGasFluidProperties::rho_from_p_s(), StiffenedGasFluidProperties::rho_from_p_s(), HelmholtzFluidProperties::rho_from_p_T(), IdealGasFluidPropertiesPT::rho_from_p_T(), StiffenedGasFluidProperties::rho_from_p_T(), CO2FluidProperties::rho_from_p_T(), IdealGasFluidProperties::rho_from_p_T(), Water97FluidProperties::rho_from_p_T(), NaClFluidProperties::rho_from_p_T(), SimpleFluidProperties::rho_from_p_T(), TabulatedFluidProperties::rho_from_p_T(), HelmholtzFluidProperties::rho_mu(), IdealGasFluidPropertiesPT::rho_mu(), SimpleFluidProperties::rho_mu(), Water97FluidProperties::rho_mu(), TabulatedFluidProperties::rho_mu(), HelmholtzFluidProperties::rho_mu_dpT(), IdealGasFluidPropertiesPT::rho_mu_dpT(), SimpleFluidProperties::rho_mu_dpT(), Water97FluidProperties::rho_mu_dpT(), TabulatedFluidProperties::rho_mu_dpT(), SinglePhaseFluidProperties::T_from_p_h(), and SinglePhaseFluidProperties::v_from_p_T().

492 {
493  return rho_from_p_T(p, T);
494 }
virtual Real rho_from_p_T(Real p, Real T) const
Density from pressure and temperature.

◆ rho_dpT()

void SinglePhaseFluidProperties::rho_dpT ( Real  pressure,
Real  temperature,
Real &  rho,
Real &  drho_dp,
Real &  drho_dT 
) const
virtualinherited

Definition at line 359 of file SinglePhaseFluidProperties.C.

361 {
362  rho_from_p_T(pressure, temperature, rho, drho_dp, drho_dT);
363 }
const std::string temperature
Definition: NS.h:27
virtual Real rho(Real p, Real T) const
virtual Real rho_from_p_T(Real p, Real T) const
Density from pressure and temperature.
const std::string pressure
Definition: NS.h:26

◆ rho_e_dpT()

void HelmholtzFluidProperties::rho_e_dpT ( Real  pressure,
Real  temperature,
Real &  rho,
Real &  drho_dp,
Real &  drho_dT,
Real &  e,
Real &  de_dp,
Real &  de_dT 
) const
overridevirtualinherited

Density and internal energy and their derivatives wrt pressure and temperature.

Parameters
pressurefluid pressure (Pa)
temperaturefluid temperature (K)
[out]rhodensity (kg/m^3)
[out]drho_dpderivative of density wrt pressure
[out]drho_dTderivative of density wrt temperature
[out]einternal energy (J/kg)
[out]de_dpderivative of internal energy wrt pressure
[out]de_dTderivative of internal energy wrt temperature

Reimplemented from SinglePhaseFluidProperties.

Definition at line 100 of file HelmholtzFluidProperties.C.

108 {
109  Real density, ddensity_dp, ddensity_dT;
110  rho_from_p_T(pressure, temperature, density, ddensity_dp, ddensity_dT);
111  rho = density;
112  drho_dp = ddensity_dp;
113  drho_dT = ddensity_dT;
114 
115  Real energy, denergy_dp, denergy_dT;
116  e_from_p_T(pressure, temperature, energy, denergy_dp, denergy_dT);
117  e = energy;
118  de_dp = denergy_dp;
119  de_dT = denergy_dT;
120 }
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
virtual Real rho(Real p, Real T) const
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
const std::string pressure
Definition: NS.h:26
virtual Real e(Real pressure, Real temperature) const
virtual Real e_from_p_T(Real pressure, Real temperature) const override
Internal energy from pressure and temperature.

◆ rho_from_p_s() [1/2]

Real SinglePhaseFluidProperties::rho_from_p_s ( Real  p,
Real  s 
) const
virtualinherited

Density from pressure and specific entropy.

Parameters
[in]ppressure
[in]sspecific entropy

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 103 of file SinglePhaseFluidProperties.C.

Referenced by StagnationTemperatureAux::computeValue(), and SinglePhaseFluidProperties::T_from_p_h().

104 {
105  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
106 }
const std::string name
Definition: Setup.h:22

◆ rho_from_p_s() [2/2]

void SinglePhaseFluidProperties::rho_from_p_s ( Real  p,
Real  s,
Real &  rho,
Real &  drho_dp,
Real &  drho_ds 
) const
virtualinherited

Density and its derivatives from pressure and specific entropy.

Parameters
[in]ppressure
[in]sspecific entropy
[out]rhodensity
[out]drho_dpderivative of density w.r.t. pressure
[out]drho_dsderivative of density w.r.t. specific entropy

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 109 of file SinglePhaseFluidProperties.C.

110 {
111  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
112 }
const std::string name
Definition: Setup.h:22

◆ rho_from_p_T() [1/2]

Real HelmholtzFluidProperties::rho_from_p_T ( Real  p,
Real  T 
) const
overridevirtualinherited

Density from pressure and temperature.

Parameters
[in]ppressure (Pa)
[in]Ttemperature (K)
Returns
density (kg/m^3)

Reimplemented from SinglePhaseFluidProperties.

Reimplemented in CO2FluidProperties.

Definition at line 29 of file HelmholtzFluidProperties.C.

Referenced by HelmholtzFluidProperties::c_from_p_T(), HelmholtzFluidProperties::cp_from_p_T(), HelmholtzFluidProperties::cv_from_p_T(), HelmholtzFluidProperties::e_from_p_T(), HelmholtzFluidProperties::h_from_p_T(), NitrogenFluidProperties::k_from_p_T(), k_from_p_T(), NitrogenFluidProperties::mu_from_p_T(), CO2FluidProperties::mu_from_p_T(), mu_from_p_T(), HelmholtzFluidProperties::rho_e_dpT(), HelmholtzFluidProperties::rho_from_p_T(), CO2FluidProperties::rho_from_p_T(), HelmholtzFluidProperties::rho_mu(), HelmholtzFluidProperties::rho_mu_dpT(), and HelmholtzFluidProperties::s_from_p_T().

30 {
31  Real density;
32  // Initial estimate of a bracketing interval for the density
33  Real lower_density = 1.0e-2;
34  Real upper_density = 100.0;
35 
36  // The density is found by finding the zero of the pressure
37  auto pressure_diff = [&pressure, &temperature, this](Real x) {
38  return this->p_from_rho_T(x, temperature) - pressure;
39  };
40 
41  BrentsMethod::bracket(pressure_diff, lower_density, upper_density);
42  density = BrentsMethod::root(pressure_diff, lower_density, upper_density);
43 
44  return density;
45 }
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
Real root(std::function< Real(Real)> const &f, Real x1, Real x2, Real tol=1.0e-12)
Finds the root of a function using Brent&#39;s method.
Definition: BrentsMethod.C:61
virtual Real p_from_rho_T(Real rho, Real T) const
Pressure as a function of density and temperature.
const std::string pressure
Definition: NS.h:26
void bracket(std::function< Real(Real)> const &f, Real &x1, Real &x2)
Function to bracket a root of a given function.
Definition: BrentsMethod.C:17

◆ rho_from_p_T() [2/2]

void HelmholtzFluidProperties::rho_from_p_T ( Real  p,
Real  T,
Real &  rho,
Real &  drho_dp,
Real &  drho_dT 
) const
overridevirtualinherited

Density and its derivatives from pressure and temperature.

Parameters
[in]ppressure (Pa)
[in]Ttemperature (K)
[out]rhodensity (kg/m^3)
[out]drho_dpderivative of density w.r.t. pressure
[out]drho_dTderivative of density w.r.t. temperature

Reimplemented from SinglePhaseFluidProperties.

Reimplemented in CO2FluidProperties.

Definition at line 48 of file HelmholtzFluidProperties.C.

50 {
52 
53  // Scale the density and temperature
54  const Real delta = rho / criticalDensity();
55  const Real tau = criticalTemperature() / temperature;
56  const Real da_dd = dalpha_ddelta(delta, tau);
57  const Real d2a_dd2 = d2alpha_ddelta2(delta, tau);
58 
59  drho_dp = molarMass() / (_R * temperature * delta * (2.0 * da_dd + delta * d2a_dd2));
60  drho_dT = rho * (tau * d2alpha_ddeltatau(delta, tau) - da_dd) / temperature /
61  (2.0 * da_dd + delta * d2a_dd2);
62 }
virtual Real d2alpha_ddeltatau(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta and tau.
virtual Real molarMass() const
Molar mass [kg/mol].
const std::string temperature
Definition: NS.h:27
virtual Real d2alpha_ddelta2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta.
virtual Real rho(Real p, Real T) const
const Real _R
Universal gas constant (J/mol/K)
virtual Real criticalTemperature() const
Critical temperature.
virtual Real dalpha_ddelta(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt delta.
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
virtual Real criticalDensity() const
Critical density.
const std::string pressure
Definition: NS.h:26

◆ rho_mu()

void HelmholtzFluidProperties::rho_mu ( Real  pressure,
Real  temperature,
Real &  rho,
Real &  mu 
) const
overridevirtualinherited

Density and viscosity.

Parameters
pressurefluid pressure (Pa)
temperaturefluid temperature (K)
[out]rhodensity (kg/m^3)
[out]muviscosity (Pa.s)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 173 of file HelmholtzFluidProperties.C.

174 {
177 }
virtual Real mu_from_p_T(Real pressure, Real temperature) const
virtual Real mu(Real pressure, Real temperature) const
Dynamic viscosity.
const std::string temperature
Definition: NS.h:27
virtual Real rho(Real p, Real T) const
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
const std::string pressure
Definition: NS.h:26

◆ rho_mu_dpT()

void HelmholtzFluidProperties::rho_mu_dpT ( Real  pressure,
Real  temperature,
Real &  rho,
Real &  drho_dp,
Real &  drho_dT,
Real &  mu,
Real &  dmu_dp,
Real &  dmu_dT 
) const
overridevirtualinherited

Density and viscosity and their derivatives wrt pressure and temperature.

Parameters
pressurefluid pressure (Pa)
temperaturefluid temperature (K)
[out]rhodensity (kg/m^3)
[out]drho_dpderivative of density wrt pressure
[out]drho_dTderivative of density wrt temperature
[out]muviscosity (Pa.s)
[out]dmu_dpderivative of viscosity wrt pressure
[out]dmu_dTderivative of viscosity wrt temperature

Reimplemented from SinglePhaseFluidProperties.

Definition at line 180 of file HelmholtzFluidProperties.C.

188 {
189  rho_from_p_T(pressure, temperature, rho, drho_dp, drho_dT);
190  mu_from_p_T(pressure, temperature, mu, dmu_dp, dmu_dT);
191 }
virtual Real mu_from_p_T(Real pressure, Real temperature) const
virtual Real mu(Real pressure, Real temperature) const
Dynamic viscosity.
const std::string temperature
Definition: NS.h:27
virtual Real rho(Real p, Real T) const
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
const std::string pressure
Definition: NS.h:26

◆ s()

Real SinglePhaseFluidProperties::s ( Real  pressure,
Real  temperature 
) const
virtualinherited

◆ s_from_h_p() [1/2]

Real SinglePhaseFluidProperties::s_from_h_p ( Real  h,
Real  p 
) const
virtualinherited

Specific entropy from specific enthalpy and pressure.

Parameters
[in]hspecific enthalpy
[in]ppressure

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 92 of file SinglePhaseFluidProperties.C.

Referenced by SinglePhaseFluidProperties::T_from_p_h().

93 {
94  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
95 }
const std::string name
Definition: Setup.h:22

◆ s_from_h_p() [2/2]

void SinglePhaseFluidProperties::s_from_h_p ( Real  h,
Real  p,
Real &  s,
Real &  ds_dh,
Real &  ds_dp 
) const
virtualinherited

Specific entropy and its derivatives from specific enthalpy and pressure.

Parameters
[in]hspecific enthalpy
[in]ppressure
[out]sspecific entropy
[out]ds_dhderivative of specific entropy w.r.t. specific enthalpy
[out]ds_dpderivative of specific entropy w.r.t. pressure

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 98 of file SinglePhaseFluidProperties.C.

99 {
100  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
101 }
const std::string name
Definition: Setup.h:22

◆ s_from_p_T() [1/2]

Real HelmholtzFluidProperties::s_from_p_T ( Real  p,
Real  T 
) const
overridevirtualinherited

Specific entropy from pressure and temperature.

Parameters
[in]ppressure
[in]Ttemperature

Reimplemented from SinglePhaseFluidProperties.

Definition at line 194 of file HelmholtzFluidProperties.C.

Referenced by HelmholtzFluidProperties::s_from_p_T().

195 {
196  // Require density first
197  const Real density = rho_from_p_T(pressure, temperature);
198  // Scale the input density and temperature
199  const Real delta = density / criticalDensity();
200  const Real tau = criticalTemperature() / temperature;
201 
202  return _R * (tau * dalpha_dtau(delta, tau) - alpha(delta, tau)) / molarMass();
203 }
virtual Real molarMass() const
Molar mass [kg/mol].
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
const Real _R
Universal gas constant (J/mol/K)
virtual Real criticalTemperature() const
Critical temperature.
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
virtual Real dalpha_dtau(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt tau.
virtual Real alpha(Real delta, Real tau) const =0
Helmholtz free energy.
virtual Real criticalDensity() const
Critical density.
const std::string pressure
Definition: NS.h:26

◆ s_from_p_T() [2/2]

void HelmholtzFluidProperties::s_from_p_T ( Real  p,
Real  T,
Real &  s,
Real &  ds_dp,
Real &  ds_dT 
) const
overridevirtualinherited

Specific entropy and its derivatives from pressure and temperature.

Parameters
[in]ppressure
[in]Ttemperature
[out]sspecific entropy
[out]ds_dpderivative of specific entropy w.r.t. pressure
[out]ds_dTderivative of specific entropy w.r.t. temperature

Reimplemented from SinglePhaseFluidProperties.

Definition at line 206 of file HelmholtzFluidProperties.C.

208 {
209  s = this->s_from_p_T(pressure, temperature);
210 
211  // Require density first
212  const Real density = rho_from_p_T(pressure, temperature);
213  // Scale the input density and temperature
214  const Real delta = density / criticalDensity();
215  const Real tau = criticalTemperature() / temperature;
216 
217  const Real da_dd = dalpha_ddelta(delta, tau);
218  const Real da_dt = dalpha_dtau(delta, tau);
219  const Real d2a_dd2 = d2alpha_ddelta2(delta, tau);
220  const Real d2a_dt2 = d2alpha_dtau2(delta, tau);
221  const Real d2a_ddt = d2alpha_ddeltatau(delta, tau);
222 
223  ds_dp = tau * (d2a_ddt - da_dd) / (density * temperature * (2.0 * da_dd + delta * d2a_dd2));
224  ds_dT = -_R * tau * (da_dt - alpha(delta, tau) + tau * (d2a_dt2 - da_dt)) /
225  (molarMass() * temperature);
226 }
virtual Real d2alpha_ddeltatau(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta and tau.
virtual Real d2alpha_dtau2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt tau.
virtual Real s(Real pressure, Real temperature) const
virtual Real molarMass() const
Molar mass [kg/mol].
const std::string density
Definition: NS.h:17
const std::string temperature
Definition: NS.h:27
virtual Real d2alpha_ddelta2(Real delta, Real tau) const =0
Second derivative of Helmholtz free energy wrt delta.
const Real _R
Universal gas constant (J/mol/K)
virtual Real criticalTemperature() const
Critical temperature.
virtual Real dalpha_ddelta(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt delta.
virtual Real rho_from_p_T(Real pressure, Real temperature) const override
Density from pressure and temperature.
virtual Real dalpha_dtau(Real delta, Real tau) const =0
Derivative of Helmholtz free energy wrt tau.
virtual Real alpha(Real delta, Real tau) const =0
Helmholtz free energy.
virtual Real criticalDensity() const
Critical density.
virtual Real s_from_p_T(Real pressure, Real temperature) const override
Specific entropy from pressure and temperature.
const std::string pressure
Definition: NS.h:26

◆ s_from_T_v() [1/2]

Real SinglePhaseFluidProperties::s_from_T_v ( Real  T,
Real  v 
) const
virtualinherited

Specific entropy from temperature and specific volume.

Parameters
[in]Ttemperature
[in]vspecific volume

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 557 of file SinglePhaseFluidProperties.C.

Referenced by IdealRealGasMixtureFluidProperties::s_from_T_v().

558 {
559  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
560 }
const std::string name
Definition: Setup.h:22

◆ s_from_T_v() [2/2]

void SinglePhaseFluidProperties::s_from_T_v ( Real  T,
Real  v,
Real &  s,
Real &  ds_dT,
Real &  ds_dv 
) const
virtualinherited

Specific entropy and its derivatives from temperature and specific volume.

Parameters
[in]Ttemperature
[in]vspecific volume
[out]sspecific entropy (J/kg)
[out]ds_dTderivative of specific entropy w.r.t. temperature
[out]ds_dvderivative of specific entropy w.r.t. specific volume

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 563 of file SinglePhaseFluidProperties.C.

564 {
565  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
566 }
const std::string name
Definition: Setup.h:22

◆ s_from_v_e() [1/2]

Real SinglePhaseFluidProperties::s_from_v_e ( Real  v,
Real  e 
) const
virtualinherited

Specific entropy from specific volume and specific internal energy.

Parameters
[in]vspecific volume
[in]especific internal energy

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 81 of file SinglePhaseFluidProperties.C.

Referenced by StagnationPressureAux::computeValue(), and StagnationTemperatureAux::computeValue().

82 {
83  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
84 }
const std::string name
Definition: Setup.h:22

◆ s_from_v_e() [2/2]

void SinglePhaseFluidProperties::s_from_v_e ( Real  v,
Real  e,
Real &  s,
Real &  ds_dv,
Real &  ds_de 
) const
virtualinherited

Specific entropy and its derivatives from specific volume and specific internal energy.

Parameters
[in]vspecific volume
[in]especific internal energy
[out]sspecific entropy
[out]ds_dvderivative of specific entropy w.r.t. specific volume
[out]ds_dederivative of specific entropy w.r.t. specific internal energy

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 87 of file SinglePhaseFluidProperties.C.

88 {
89  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
90 }
const std::string name
Definition: Setup.h:22

◆ subdomainSetup()

virtual void FluidProperties::subdomainSetup ( )
inlinefinalvirtualinherited

Definition at line 32 of file FluidProperties.h.

32 {}

◆ T_from_p_h()

Real SinglePhaseFluidProperties::T_from_p_h ( Real  pressure,
Real  enthalpy 
) const
virtualinherited

Temperature from pressure and specific enthalpy.

Parameters
[in]pressurepressure (Pa)
[in]enthalpyenthalpy (J/kg)
Returns
Temperature (K)

Reimplemented in IdealGasFluidProperties.

Definition at line 601 of file SinglePhaseFluidProperties.C.

602 {
603  const Real s = s_from_h_p(h, p);
604  const Real rho = rho_from_p_s(p, s);
605  const Real v = 1. / rho;
606  const Real e = e_from_v_h(v, h);
607  return T_from_v_e(v, e);
608 }
virtual Real T_from_v_e(Real v, Real e) const
Temperature from specific volume and specific internal energy.
virtual Real s(Real pressure, Real temperature) const
virtual Real h(Real p, Real T) const
virtual Real s_from_h_p(Real h, Real p) const
Specific entropy from specific enthalpy and pressure.
virtual Real rho(Real p, Real T) const
virtual Real e_from_v_h(Real v, Real h) const
Specific internal energy as a function of specific volume and specific enthalpy.
virtual Real rho_from_p_s(Real p, Real s) const
Density from pressure and specific entropy.
virtual Real e(Real pressure, Real temperature) const

◆ T_from_v_e() [1/2]

Real SinglePhaseFluidProperties::T_from_v_e ( Real  v,
Real  e 
) const
virtualinherited

Temperature from specific volume and specific internal energy.

Parameters
[in]vspecific volume
[in]especific internal energy
Returns
sound speed

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 39 of file SinglePhaseFluidProperties.C.

Referenced by FluidPropertiesMaterial::computeQpProperties(), StagnationTemperatureAux::computeValue(), TemperatureAux::computeValue(), IdealRealGasMixtureFluidProperties::p_T_from_v_e(), and SinglePhaseFluidProperties::T_from_p_h().

40 {
41  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
42 }
const std::string name
Definition: Setup.h:22

◆ T_from_v_e() [2/2]

void SinglePhaseFluidProperties::T_from_v_e ( Real  v,
Real  e,
Real &  T,
Real &  dT_dv,
Real &  dT_de 
) const
virtualinherited

Temperature and its derivatives from specific volume and specific internal energy.

Parameters
[in]vspecific volume
[in]especific internal energy
[out]Ttemperature
[out]dT_dvderivative of temperature w.r.t. specific volume
[out]dT_dederivative of temperature w.r.t. specific internal energy

Reimplemented in IdealGasFluidProperties, and StiffenedGasFluidProperties.

Definition at line 45 of file SinglePhaseFluidProperties.C.

46 {
47  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
48 }
const std::string name
Definition: Setup.h:22

◆ threadJoin()

virtual void FluidProperties::threadJoin ( const UserObject &  )
inlinefinalvirtualinherited

Definition at line 31 of file FluidProperties.h.

31 {}

◆ triplePointPressure()

Real HydrogenFluidProperties::triplePointPressure ( ) const
overridevirtual

Triple point pressure.

Returns
triple point pressure (Pa)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 69 of file HydrogenFluidProperties.C.

70 {
71  return _p_triple;
72 }
const Real _p_triple
Triple point pressure (Pa)

◆ triplePointTemperature()

Real HydrogenFluidProperties::triplePointTemperature ( ) const
overridevirtual

Triple point temperature.

Returns
triple point temperature (K)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 75 of file HydrogenFluidProperties.C.

76 {
77  return _T_triple;
78 }
const Real _T_triple
Triple point temperature (K)

◆ v_e_spndl_from_T()

void SinglePhaseFluidProperties::v_e_spndl_from_T ( Real  T,
Real &  v,
Real &  e 
) const
virtualinherited

Specific internal energy from temperature and specific volume.

Parameters
[in]Ttemperature
[in]vspecific volume

Reimplemented in StiffenedGasFluidProperties.

Definition at line 524 of file SinglePhaseFluidProperties.C.

Referenced by IdealRealGasMixtureFluidProperties::v_from_p_T().

525 {
526  mooseError(name(), ": ", __PRETTY_FUNCTION__, " not implemented.");
527 }
const std::string name
Definition: Setup.h:22

◆ v_from_p_T() [1/2]

Real SinglePhaseFluidProperties::v_from_p_T ( Real  p,
Real  T 
) const
virtualinherited

Specific volume from pressure and temperature.

Parameters
[in]ppressure
[in]Ttemperature

Definition at line 151 of file SinglePhaseFluidProperties.C.

Referenced by GeneralVaporMixtureFluidProperties::c_from_p_T(), GeneralVaporMixtureFluidProperties::cp_from_p_T(), GeneralVaporMixtureFluidProperties::cv_from_p_T(), GeneralVaporMixtureFluidProperties::k_from_p_T(), GeneralVaporMixtureFluidProperties::mu_from_p_T(), GeneralVaporMixtureFluidProperties::v_from_p_T(), and IdealRealGasMixtureFluidProperties::xs_prim_from_p_T().

152 {
153  Real rho = rho_from_p_T(p, T);
154  return 1.0 / rho;
155 }
virtual Real rho(Real p, Real T) const
virtual Real rho_from_p_T(Real p, Real T) const
Density from pressure and temperature.

◆ v_from_p_T() [2/2]

void SinglePhaseFluidProperties::v_from_p_T ( Real  p,
Real  T,
Real &  v,
Real &  dv_dp,
Real &  dv_dT 
) const
virtualinherited

Specific volume and its derivatives from pressure and temperature.

Parameters
[in]ppressure
[in]Ttemperature
[out]vspecific volume
[out]dv_dpderivative of specific volume w.r.t. pressure
[out]dv_dTderivative of specific volume w.r.t. temperature

Definition at line 158 of file SinglePhaseFluidProperties.C.

159 {
160  Real rho, drho_dp, drho_dT;
161  rho_from_p_T(p, T, rho, drho_dp, drho_dT);
162 
163  v = 1.0 / rho;
164  const Real dv_drho = -1.0 / (rho * rho);
165 
166  dv_dp = dv_drho * drho_dp;
167  dv_dT = dv_drho * drho_dT;
168 }
virtual Real rho(Real p, Real T) const
virtual Real rho_from_p_T(Real p, Real T) const
Density from pressure and temperature.

◆ vaporPressure()

Real HydrogenFluidProperties::vaporPressure ( Real  temperature) const
overridevirtual

Vapor pressure.

Used to delineate liquid and gas phases. Valid for temperatures between the triple point temperature and the critical temperature

Parameters
temperaturewater temperature (K)
Returns
saturation pressure (Pa)

Reimplemented from SinglePhaseFluidProperties.

Definition at line 258 of file HydrogenFluidProperties.C.

259 {
260  if (temperature < _T_triple || temperature > _T_critical)
261  throw MooseException("Temperature is out of range in " + name() + ": vaporPressure()");
262 
263  const Real Tr = temperature / _T_critical;
264  const Real theta = 1.0 - Tr;
265 
266  const Real logpressure = (-4.89789 * theta + 0.988588 * std::pow(theta, 1.5) +
267  0.349689 * Utility::pow<2>(theta) + 0.499356 * std::pow(theta, 2.85)) /
268  Tr;
269 
270  return _p_critical * std::exp(logpressure);
271 }
const std::string temperature
Definition: NS.h:27
const std::string name
Definition: Setup.h:22
const Real _T_critical
Critical temperature (K)
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
const Real _p_critical
Critical pressure (Pa)

◆ vaporPressure_dT()

void SinglePhaseFluidProperties::vaporPressure_dT ( Real  temperature,
Real &  psat,
Real &  dpsat_dT 
) const
virtualinherited

Vapor pressure.

Used to delineate liquid and gas phases. Valid for temperatures between the triple point temperature and the critical temperature

Parameters
temperaturewater temperature (K)
[out]saturationpressure (Pa)
[out]derivativeof saturation pressure wrt temperature (Pa/K)

Reimplemented in Water97FluidProperties.

Definition at line 351 of file SinglePhaseFluidProperties.C.

Referenced by PorousFlowWaterNCG::equilibriumMassFractions(), and PorousFlowWaterNCG::gasProperties().

354 {
355  mooseError(name(), ": vaporPressure_dT() is not implemented");
356 }
const std::string name
Definition: Setup.h:22

Member Data Documentation

◆ _a

const std::array<Real, 5> HydrogenFluidProperties::_a {{1.616, -0.4117, -0.792, 0.758, 1.217}}
protected

Coefficients for ideal gas component of the Helmholtz free energy.

Definition at line 158 of file HydrogenFluidProperties.h.

Referenced by alpha(), d2alpha_dtau2(), and dalpha_dtau().

◆ _a1k

const std::array<Real, 7> HydrogenFluidProperties::_a1k
protected
Initial value:
{
{-3.40976e-1, 4.5882, -1.4508, 3.26394e-1, 3.16939e-3, 1.90592e-4, -1.139e-6}}

Coefficients for thermal conductivity.

Definition at line 185 of file HydrogenFluidProperties.h.

Referenced by k_from_rho_T().

◆ _a2k

const std::array<Real, 4> HydrogenFluidProperties::_a2k {{1.38497e2, -2.21878e1, 4.57151, 1.0}}
protected

Definition at line 187 of file HydrogenFluidProperties.h.

Referenced by k_from_rho_T().

◆ _amu

const std::array<Real, 5> HydrogenFluidProperties::_amu {{2.09630e-1, -4.55274e-1, 1.423602e-1, -3.35325e-2, 2.76981e-3}}
protected

Coefficients for viscosity.

Definition at line 179 of file HydrogenFluidProperties.h.

Referenced by mu_drhoT_from_rho_T(), and mu_from_rho_T().

◆ _b

const std::array<Real, 5> HydrogenFluidProperties::_b
protected
Initial value:
{
{-16.0205159149, -22.6580178006, -60.0090511389, -74.9434303817, -206.9392065168}}

Definition at line 159 of file HydrogenFluidProperties.h.

Referenced by alpha(), d2alpha_dtau2(), and dalpha_dtau().

◆ _b1k

const std::array<Real, 5> HydrogenFluidProperties::_b1k {{3.63081e-2, -2.07629e-2, 3.1481e-2, -1.43097e-2, 1.7498e-3}}
protected

Definition at line 188 of file HydrogenFluidProperties.h.

Referenced by k_from_rho_T().

◆ _b2k

const std::array<Real, 5> HydrogenFluidProperties::_b2k {{1.8337e-3, -8.86716e-3, 1.5826e-2, -1.06283e-2, 2.80673e-3}}
protected

Definition at line 189 of file HydrogenFluidProperties.h.

Referenced by k_from_rho_T().

◆ _beta3

const std::array<Real, 5> HydrogenFluidProperties::_beta3 {{-0.171, -0.2245, -0.1304, -0.2785, -0.3967}}
protected

◆ _bmu

const std::array<Real, 7> HydrogenFluidProperties::_bmu {{-0.187, 2.4871, 3.7151, -11.0972, 9.0965, -3.8292, 0.5166}}
protected

Definition at line 180 of file HydrogenFluidProperties.h.

Referenced by mu_drhoT_from_rho_T(), and mu_from_rho_T().

◆ _cmu

const std::array<Real, 6> HydrogenFluidProperties::_cmu
protected
Initial value:
{
{6.43449673, 4.56334068e-2, 2.32797868e-1, 9.5832612e-1, 1.27941189e-1, 3.63576595e-1}}

Definition at line 181 of file HydrogenFluidProperties.h.

Referenced by mu_drhoT_from_rho_T(), and mu_from_rho_T().

◆ _d1

const std::array<unsigned int, 7> HydrogenFluidProperties::_d1 {{1, 4, 1, 1, 2, 2, 3}}
protected

◆ _d2

const std::array<unsigned int, 2> HydrogenFluidProperties::_d2 {{1, 3}}
protected

◆ _d3

const std::array<unsigned int, 5> HydrogenFluidProperties::_d3 {{2, 1, 3, 1, 1}}
protected

◆ _D3

const std::array<Real, 5> HydrogenFluidProperties::_D3 {{1.506, 0.156, 1.736, 0.67, 1.662}}
protected

◆ _gamma3

const std::array<Real, 5> HydrogenFluidProperties::_gamma3 {{0.7164, 1.3444, 1.4517, 0.7204, 1.5445}}
protected

◆ _Mh2

const Real HydrogenFluidProperties::_Mh2
protected

Hydrogen molar mass (kg/mol)

Definition at line 143 of file HydrogenFluidProperties.h.

Referenced by molarMass(), mu_drhoT_from_rho_T(), and mu_from_rho_T().

◆ _N1

const std::array<Real, 7> HydrogenFluidProperties::_N1 {{-6.93643, 0.01, 2.1101, 4.52059, 0.732564, -1.34086, 0.130985}}
protected

Coefficients for residual component of the Helmholtz free energy.

Definition at line 162 of file HydrogenFluidProperties.h.

Referenced by alpha(), d2alpha_ddelta2(), d2alpha_ddeltatau(), d2alpha_dtau2(), dalpha_ddelta(), and dalpha_dtau().

◆ _N2

const std::array<Real, 2> HydrogenFluidProperties::_N2 {{-0.777414, 0.351944}}
protected

◆ _N3

const std::array<Real, 5> HydrogenFluidProperties::_N3 {{-0.0211716, 0.0226312, 0.032187, -0.0231752, 0.0557346}}
protected

◆ _p_critical

const Real HydrogenFluidProperties::_p_critical
protected

Critical pressure (Pa)

Definition at line 145 of file HydrogenFluidProperties.h.

Referenced by criticalPressure(), and vaporPressure().

◆ _p_triple

const Real HydrogenFluidProperties::_p_triple
protected

Triple point pressure (Pa)

Definition at line 153 of file HydrogenFluidProperties.h.

Referenced by triplePointPressure().

◆ _phi3

const std::array<Real, 5> HydrogenFluidProperties::_phi3 {{-1.685, -0.489, -0.103, -2.506, -1.607}}
protected

◆ _R

const Real SinglePhaseFluidProperties::_R
protectedinherited

◆ _rho_critical

const Real HydrogenFluidProperties::_rho_critical
protected

Critical density (kg/m^3)

Definition at line 151 of file HydrogenFluidProperties.h.

Referenced by criticalDensity().

◆ _rho_molar_critical

const Real HydrogenFluidProperties::_rho_molar_critical
protected

Critical molar density (mol/l)

Definition at line 149 of file HydrogenFluidProperties.h.

◆ _t1

const std::array<Real, 7> HydrogenFluidProperties::_t1 {{0.6844, 1.0, 0.989, 0.489, 0.803, 1.1444, 1.409}}
protected

◆ _t2

const std::array<Real, 2> HydrogenFluidProperties::_t2 {{1.754, 1.311}}
protected

◆ _t3

const std::array<Real, 5> HydrogenFluidProperties::_t3 {{4.187, 5.646, 0.791, 7.249, 2.986}}
protected

◆ _T_c2k

const Real SinglePhaseFluidProperties::_T_c2k
protectedinherited

◆ _T_critical

const Real HydrogenFluidProperties::_T_critical
protected

Critical temperature (K)

Definition at line 147 of file HydrogenFluidProperties.h.

Referenced by criticalTemperature(), mu_drhoT_from_rho_T(), mu_from_rho_T(), and vaporPressure().

◆ _T_triple

const Real HydrogenFluidProperties::_T_triple
protected

Triple point temperature (K)

Definition at line 155 of file HydrogenFluidProperties.h.

Referenced by triplePointTemperature().


The documentation for this class was generated from the following files: