Loading [MathJax]/extensions/tex2jax.js
https://mooseframework.inl.gov
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends
FlibeFluidProperties.C
Go to the documentation of this file.
1 //* This file is part of the MOOSE framework
2 //* https://mooseframework.inl.gov
3 //*
4 //* All rights reserved, see COPYRIGHT for full restrictions
5 //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
6 //*
7 //* Licensed under LGPL 2.1, please see LICENSE for details
8 //* https://www.gnu.org/licenses/lgpl-2.1.html
9 
10 #include "FlibeFluidProperties.h"
11 
12 registerMooseObject("FluidPropertiesApp", FlibeFluidProperties);
13 
16 {
18  params.addRangeCheckedParam<Real>(
19  "drho_dp",
20  1.7324E-7,
21  "drho_dp > 0.0",
22  "derivative of density with respect to pressure (at constant temperature)");
23  params.addClassDescription("Fluid properties for flibe");
24  return params;
25 }
26 
28  : SinglePhaseFluidProperties(parameters),
29  _drho_dp(getParam<Real>("drho_dp")),
30  _drho_dT(-0.4884),
31  _p_atm(101325.0),
32  _cp(2416.0),
33  _c0(2413.0),
34  _dp_dT_at_constant_v(-_drho_dT / _drho_dp)
35 {
36 }
37 
38 std::string
40 {
41  return "flibe";
42 }
43 
44 Real
46 {
47  return 99.037703E-3;
48 }
49 
50 Real
52 {
54  return (1.0 / v - _drho_dT * temperature - _c0) / _drho_dp + _p_atm;
55 }
56 
57 void
58 FlibeFluidProperties::p_from_v_e(Real v, Real e, Real & p, Real & dp_dv, Real & dp_de) const
59 {
60  p = p_from_v_e(v, e);
61 
62  // chain rule, (dp_de)_v = (dp_dT)_v * (dT_de)_v
63  Real T, dT_dv, dT_de;
64  T_from_v_e(v, e, T, dT_dv, dT_de);
65  dp_de = _dp_dT_at_constant_v * dT_de;
66 
67  // cyclic relation, (dP_dv)_e = - (dp_de)_v * (de_dv)_p
68  Real cp = cp_from_v_e(v, e);
69  Real dT_dv_at_constant_p = -1.0 / (_drho_dT * v * v);
70  Real de_dv_at_constant_p = cp * dT_dv_at_constant_p - p;
71  dp_dv = -dp_de * de_dv_at_constant_p;
72 }
73 
74 void
76  const ADReal & v, const ADReal & e, ADReal & p, ADReal & dp_dv, ADReal & dp_de) const
77 {
78  p = SinglePhaseFluidProperties::p_from_v_e(v, e);
79 
80  // chain rule, (dp_de)_v = (dp_dT)_v * (dT_de)_v
81  ADReal T, dT_dv, dT_de;
82  T_from_v_e(v, e, T, dT_dv, dT_de);
83  dp_de = _dp_dT_at_constant_v * dT_de;
84 
85  // cyclic relation, (dP_dv)_e = - (dp_de)_v * (de_dv)_p
86  auto cp = SinglePhaseFluidProperties::cp_from_v_e(v, e);
87  auto dT_dv_at_constant_p = -1.0 / (_drho_dT * v * v);
88  auto de_dv_at_constant_p = cp * dT_dv_at_constant_p - p;
89  dp_dv = -dp_de * de_dv_at_constant_p;
90 }
91 
92 Real
94 {
95  // We need to write these in a somewhat strange manner to ensure that pressure
96  // and temperature do not depend implicitly on each other, causing a circular
97  // logic problem. Substituting the definition for pressure based on the
98  // rho * (h - e) = P, where h = Cp * T into the density correlation for flibe,
99  // we can rearrange and get temperature in terms of only v and e
100 
101  // p = (Cp * T - e) / v
102  // T = (1 / v - drho_dp * [p - p_atm] + _c0) / drho_dT
103  // = (1 / v - drho_dp * [(Cp * T - e) / v - p_atm] + _c0) / drho_dT
104  // = (1 + drho_dp * e + p_atm * v * drho_dp - _c0 * v) / (drho_dT * v + drho_dp * Cp)
105 
106  Real cp = cp_from_v_e(v, e);
107  Real numerator = 1.0 + _drho_dp * (e + _p_atm * v) - _c0 * v;
108  Real denominator = _drho_dT * v + _drho_dp * cp;
109  return numerator / denominator;
110 }
111 
112 void
113 FlibeFluidProperties::T_from_v_e(Real v, Real e, Real & T, Real & dT_dv, Real & dT_de) const
114 {
115  T = T_from_v_e(v, e);
116 
117  // reciprocity relation based on the definition of cv
118  Real cv = cv_from_v_e(v, e);
119  dT_de = 1.0 / cv;
120 
121  // cyclic relation, (dT_dv)_e = -(dT_de)_v * (de_dv)_T
122  Real p = p_from_v_e(v, e);
123  Real dp_dv_at_constant_T = -1.0 / (_drho_dp * v * v);
124  Real de_dv_at_constant_T = -(p + v * dp_dv_at_constant_T);
125  dT_dv = -dT_de * de_dv_at_constant_T;
126 }
127 
128 void
130  const ADReal & v, const ADReal & e, ADReal & T, ADReal & dT_dv, ADReal & dT_de) const
131 {
132  T = SinglePhaseFluidProperties::T_from_v_e(v, e);
133 
134  // reciprocity relation based on the definition of cv
135  auto cv = SinglePhaseFluidProperties::cv_from_v_e(v, e);
136  dT_de = 1.0 / cv;
137 
138  // cyclic relation, (dT_dv)_e = -(dT_de)_v * (de_dv)_T
139  auto p = SinglePhaseFluidProperties::p_from_v_e(v, e);
140  auto dp_dv_at_constant_T = -1.0 / (_drho_dp * v * v);
141  auto de_dv_at_constant_T = -(p + v * dp_dv_at_constant_T);
142  dT_dv = -dT_de * de_dv_at_constant_T;
143 }
144 
145 Real
146 FlibeFluidProperties::T_from_p_h(Real /* p */, Real h) const
147 {
148  return h / _cp;
149 }
150 
151 Real FlibeFluidProperties::cp_from_v_e(Real /*v*/, Real /*e*/) const { return _cp; }
152 
153 void
154 FlibeFluidProperties::cp_from_v_e(Real v, Real e, Real & cp, Real & dcp_dv, Real & dcp_de) const
155 {
156  cp = cp_from_v_e(v, e);
157  dcp_dv = 0.0;
158  dcp_de = 0.0;
159 }
160 
161 Real
163 {
164  // definition of Cv by replacing e by h + p * v
165  Real cp = cp_from_v_e(v, e);
166  return cp - _dp_dT_at_constant_v * v;
167 }
168 
169 void
170 FlibeFluidProperties::cv_from_v_e(Real v, Real e, Real & cv, Real & dcv_dv, Real & dcv_de) const
171 {
172  cv = cv_from_v_e(v, e);
173  dcv_dv = -_dp_dT_at_constant_v;
174  dcv_de = 0.0;
175 }
176 
177 void
179  const ADReal & v, const ADReal & e, ADReal & cv, ADReal & dcv_dv, ADReal & dcv_de) const
180 {
181  cv = SinglePhaseFluidProperties::cv_from_v_e(v, e);
182  dcv_dv = -_dp_dT_at_constant_v;
183  dcv_de = 0.0;
184 }
185 
186 Real
188 {
190  return 1.16e-4 * std::exp(3755.0 / temperature);
191 }
192 
193 Real
195 {
197  return 5.0e-4 * temperature + 0.63;
198 }
199 
200 Real
202 {
203  return _drho_dT * temperature + _drho_dp * (pressure - _p_atm) + _c0;
204 }
205 
206 void
208  Real pressure, Real temperature, Real & rho, Real & drho_dp, Real & drho_dT) const
209 {
211  drho_dp = _drho_dp;
212  drho_dT = _drho_dT;
213 }
214 
215 void
217  const ADReal & temperature,
218  ADReal & rho,
219  ADReal & drho_dp,
220  ADReal & drho_dT) const
221 {
222  rho = SinglePhaseFluidProperties::rho_from_p_T(pressure, temperature);
223  drho_dp = _drho_dp;
224  drho_dT = _drho_dT;
225 }
226 
227 ADReal
229 {
230  return 1.0 / (_drho_dT * temperature + _drho_dp * (pressure - _p_atm) + _c0);
231 }
232 
233 Real
235 {
236  return 1.0 / (_drho_dT * temperature + _drho_dp * (pressure - _p_atm) + _c0);
237 }
238 
239 void
241  Real pressure, Real temperature, Real & v, Real & dv_dp, Real & dv_dT) const
242 {
244  dv_dp = -v * v * _drho_dp;
245  dv_dT = -v * v * _drho_dT;
246 }
247 
248 Real
249 FlibeFluidProperties::h_from_p_T(Real /*pressure*/, Real temperature) const
250 {
251  // definition of h for constant Cp
252  Real cp = cp_from_v_e(0.0 /* dummy */, 0.0 /* dummy */);
253  return cp * temperature;
254 }
255 
256 void
258  Real pressure, Real temperature, Real & h, Real & dh_dp, Real & dh_dT) const
259 {
261  Real cp = cp_from_v_e(0.0 /* dummy */, 0.0 /* dummy */);
262 
263  dh_dp = 0.0;
264  dh_dT = cp;
265 }
266 
267 Real
269 {
270  // definition of h = e + p * v
272  Real cp = cp_from_v_e(v, 0.0 /* dummy */);
273  return cp * temperature - pressure * v;
274 }
275 
276 void
278  Real pressure, Real temperature, Real & e, Real & de_dp, Real & de_dT) const
279 {
281 
282  Real v, dv_dp, dv_dT;
283  v_from_p_T(pressure, temperature, v, dv_dp, dv_dT);
284 
285  // definition of e = h - p * v
286  de_dp = -pressure * dv_dp - v;
287 
288  // definition of e = h - p * v
289  Real cp = cp_from_v_e(v, e);
290  de_dT = cp - pressure * dv_dT;
291 }
292 
293 Real
294 FlibeFluidProperties::e_from_p_rho(Real p, Real rho) const
295 {
296  return e_from_p_T(p, T_from_p_rho(p, rho));
297 }
298 
299 Real
300 FlibeFluidProperties::T_from_p_rho(Real p, Real rho) const
301 {
302  Real temperature = (rho - (p - _p_atm) * _drho_dp - _c0) / _drho_dT;
303  return temperature;
304 }
305 
306 Real FlibeFluidProperties::cp_from_p_T(Real /*pressure*/, Real /*temperature*/) const
307 {
308  return _cp;
309 }
310 
311 void
313  Real pressure, Real temperature, Real & cp, Real & dcp_dp, Real & dcp_dT) const
314 {
316  dcp_dp = 0.0;
317  dcp_dT = 0.0;
318 }
319 
320 Real
322 {
325  return cv_from_v_e(v, e);
326 }
327 
328 void
330  Real pressure, Real temperature, Real & cv, Real & dcv_dp, Real & dcv_dT) const
331 {
333  dcv_dp = 0.0;
334  dcv_dT = 0.0;
335 }
336 
337 Real
338 FlibeFluidProperties::mu_from_p_T(Real /*pressure*/, Real temperature) const
339 {
340  return 1.16e-4 * std::exp(3755.0 / temperature);
341 }
342 
343 void
345  Real pressure, Real temperature, Real & mu, Real & dmu_dp, Real & dmu_dT) const
346 {
347  mu = this->mu_from_p_T(pressure, temperature);
348  dmu_dp = 0.0;
349  dmu_dT = -1.16e-4 * std::exp(3755.0 / temperature) * 3755.0 / (temperature * temperature);
350 }
351 
352 Real
353 FlibeFluidProperties::k_from_p_T(Real /*pressure*/, Real temperature) const
354 {
355  return 5.0e-4 * temperature + 0.63;
356 }
357 
358 void
360  Real pressure, Real temperature, Real & k, Real & dk_dp, Real & dk_dT) const
361 {
362  k = this->k_from_p_T(pressure, temperature);
363  dk_dp = 0.0;
364  dk_dT = 5.0e-4;
365 }
virtual Real molarMass() const override
Molar mass.
virtual std::string fluidName() const override
Fluid name.
static const std::string cv
Definition: NS.h:122
const Real _dp_dT_at_constant_v
derivative of pressure with respect to temperature at constant specific volume
virtual Real cv_from_v_e(Real v, Real e) const override
Isochoric specific heat from specific volume and specific internal energy.
static InputParameters validParams()
const Real _c0
additive constant to rho(P, T) correlation
virtual Real T_from_p_h(Real p, Real h) const override
Temperature and its derivatives from pressure and specific enthalpy.
static InputParameters validParams()
virtual Real e_from_p_rho(Real p, Real rho) const override
Specific energy from pressure and density.
const Real _drho_dT
Derivative of density with respect to temperature at fixed pressure.
FlibeFluidProperties(const InputParameters &parameters)
static const std::string temperature
Definition: NS.h:59
virtual Real cp_from_v_e(Real v, Real e) const override
Isobaric specific heat from specific volume and specific internal energy.
DualNumber< Real, DNDerivativeType, true > ADReal
Fluid properties for 2LiF-BeF2 (flibe) .
virtual Real mu_from_p_T(Real p, Real T) const override
Dynamic viscosity from pressure and temperature.
static const std::string cp
Definition: NS.h:121
virtual Real rho_from_p_T(Real p, Real T) const override
Density from pressure and temperature.
e e e e s T T T T T rho v v T e h
virtual Real T_from_v_e(Real v, Real e) const override
Temperature from specific volume and specific internal energy.
static const std::string mu
Definition: NS.h:123
const Real _cp
specific heat at constant pressure
const Real _p_atm
Atmospheric pressure, Pa.
virtual Real cv_from_p_T(Real p, Real T) const override
Isochoric specific heat capacity from pressure and temperature.
Common class for single phase fluid properties.
virtual Real cp_from_p_T(Real p, Real T) const override
Isobaric specific heat capacity from pressure and temperature.
const Real & _drho_dp
Derivative of density with respect to pressure at fixed temperature.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual Real v_from_p_T(Real p, Real T) const override
Specific volume from pressure and temperature.
static const std::string v
Definition: NS.h:84
static const std::string pressure
Definition: NS.h:56
virtual Real k_from_p_T(Real p, Real T) const override
Thermal conductivity from pressure and temperature.
virtual Real h_from_p_T(Real p, Real T) const override
Specific enthalpy from pressure and temperature.
void addClassDescription(const std::string &doc_string)
virtual Real k_from_v_e(Real v, Real e) const override
Thermal conductivity from specific volume and specific internal energy.
virtual Real e_from_p_T(Real p, Real T) const override
Specific internal energy from pressure and temperature.
void addRangeCheckedParam(const std::string &name, const T &value, const std::string &parsed_function, const std::string &doc_string)
registerMooseObject("FluidPropertiesApp", FlibeFluidProperties)
virtual Real mu_from_v_e(Real v, Real e) const override
Dynamic viscosity from specific volume and specific internal energy.
static const std::string k
Definition: NS.h:130
virtual Real T_from_p_rho(Real p, Real rho) const
Temperature and its derivatives from pressure and specific enthalpy.
virtual Real p_from_v_e(Real v, Real e) const override
Pressure from specific volume and specific internal energy.