https://mooseframework.inl.gov
NewtonInversion.h
Go to the documentation of this file.
1 //* This file is part of the MOOSE framework
2 //* https://mooseframework.inl.gov
3 //*
4 //* All rights reserved, see COPYRIGHT for full restrictions
5 //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
6 //*
7 //* Licensed under LGPL 2.1, please see LICENSE for details
8 //* https://www.gnu.org/licenses/lgpl-2.1.html
9 
10 // * This file is part of the MOOSE framework
11 // * https://mooseframework.inl.gov
12 // *
13 // * All rights reserved, see COPYRIGHT for full restrictions
14 // * https://github.com/idaholab/moose/blob/master/COPYRIGHT
15 // *
16 // * Licensed under LGPL 2.1, please see LICENSE for details
17 // * https://www.gnu.org/licenses/lgpl-2.1.html
18 
19 #pragma once
20 
21 #include "Moose.h"
22 #include "MooseUtils.h"
23 #include "libmesh/dense_matrix.h"
24 
26 {
41 template <typename T, typename Functor>
42 std::pair<T, T>
43 NewtonSolve(const T & x,
44  const T & y,
45  const Real z_initial_guess,
46  const Real tolerance,
47  const Functor & func,
48  const std::string & caller_name,
49  const unsigned int max_its = 100)
50 {
51  // R represents residual
52 
53  std::function<bool(const T &, const T &)> abs_tol_check =
54  [tolerance](const T & R, const T & /*y*/)
55  { return MetaPhysicL::raw_value(std::abs(R)) < tolerance; };
56  std::function<bool(const T &, const T &)> rel_tol_check = [tolerance](const T & R, const T & y)
57  { return MetaPhysicL::raw_value(std::abs(R / y)) < tolerance; };
58  auto convergence_check = MooseUtils::absoluteFuzzyEqual(MetaPhysicL::raw_value(y), 0, tolerance)
59  ? abs_tol_check
60  : rel_tol_check;
61 
62  T z = z_initial_guess, R, new_y, dy_dx, dy_dz;
63  unsigned int iteration = 0;
64 
65  do
66  {
67  func(x, z, new_y, dy_dx, dy_dz);
68  R = new_y - y;
69 
70  // We always want to perform at least one update in order to get derivatives on z correct (z
71  // corresponding to the initial guess will have no derivative information), so we don't
72  // immediately return if we are converged
73  const bool converged = convergence_check(R, y);
74 
75 #ifndef NDEBUG
76  static constexpr Real perturbation_factor = 1 + 1e-8;
77  T perturbed_y, dummy, dummy2;
78  func(x, perturbation_factor * z, perturbed_y, dummy, dummy2);
79  // Check the accuracy of the Jacobian
80  auto J_differenced = (perturbed_y - new_y) / (1e-8 * z);
81  if (!MooseUtils::relativeFuzzyEqual(J_differenced, dy_dz, 1e-2))
82  mooseDoOnce(mooseWarning(caller_name + ": Bad Jacobian in NewtonSolve"));
83 #endif
84 
85  z += -(R / dy_dz);
86 
87  // Check for NaNs
88  if (std::isnan(z))
89  mooseException(caller_name + ": NaN detected in Newton solve");
90 
91  if (converged)
92  break;
93  } while (++iteration < max_its);
94 
95  // Check for divergence or slow convergence of Newton's method
96  if (iteration >= max_its)
97  mooseException(caller_name +
98  ": Newton solve convergence failed: maximum number of iterations, ",
99  max_its,
100  ", exceeded");
101 
102  return {z, dy_dz};
103 }
104 
123 template <typename T, typename Functor1, typename Functor2>
124 void
125 NewtonSolve2D(const T & f,
126  const T & g,
127  const Real x0,
128  const Real y0,
129  T & x_final,
130  T & y_final,
131  const Real f_tol,
132  const Real g_tol,
133  const Functor1 & func1,
134  const Functor2 & func2,
135  const unsigned int max_its = 100)
136 {
137 
138  constexpr unsigned int system_size = 2;
139  DenseVector<T> targets = {{f, g}};
140  DenseVector<Real> tolerances = {{f_tol, g_tol}};
141  // R represents a residual equal to y - y_in
142  auto convergence_check = [&targets, &tolerances](const auto & minus_R)
143  {
144  for (const auto i : index_range(minus_R))
145  {
146  const auto error = std::abs(MooseUtils::absoluteFuzzyEqual(targets(i), 0, tolerances(i))
147  ? minus_R(i)
148  : minus_R(i) / targets(i));
149  if (error >= tolerances(i))
150  return false;
151  }
152  return true;
153  };
154 
155  DenseVector<T> u = {{x0, y0}};
156  DenseVector<T> minus_R(system_size), func_evals(system_size), u_update;
157  DenseMatrix<T> J(system_size, system_size);
158  unsigned int iteration = 0;
159 #ifndef NDEBUG
160  DenseVector<Real> svs(system_size), evs_real(system_size), evs_imag(system_size);
161  DenseMatrix<Real> raw_J(system_size, system_size), raw_J2(system_size, system_size);
162 #endif
163 
164  typedef std::function<void(const T &, const T &, T &, T &, T &)> FuncType;
165  std::array<FuncType, 2> func = {{func1, func2}};
166 
167  auto assign_solution = [&u, &x_final, &y_final]()
168  {
169  x_final = u(0);
170  y_final = u(1);
171  };
172 
173  do
174  {
175  for (const auto i : make_range(system_size))
176  func[i](u(0), u(1), func_evals(i), J(i, 0), J(i, 1));
177 
178  for (const auto i : make_range(system_size))
179  minus_R(i) = targets(i) - func_evals(i);
180 
181  // We always want to perform at least one update in order to get derivatives on z correct (z
182  // corresponding to the initial guess will have no derivative information), so we don't
183  // immediately return if we are converged
184  const bool converged = convergence_check(minus_R);
185 
186  // Check for NaNs before proceeding to system solve. We may simultaneously not have NaNs in z
187  // but have NaNs in the function evaluation
188  for (const auto i : make_range(system_size))
189  if (std::isnan(minus_R(i)))
190  {
191  assign_solution();
192  mooseException("NaN detected in Newton solve");
193  }
194 
195  // Do some Jacobi (rowmax) preconditioning
196  for (const auto i : make_range(system_size))
197  {
198  const auto rowmax = std::max(std::abs(J(i, 0)), std::abs(J(i, 1)));
199  for (const auto j : make_range(system_size))
200  J(i, j) /= rowmax;
201  minus_R(i) /= rowmax;
202  }
203 
204 #ifndef NDEBUG
205  //
206  // Check nature of linearized system
207  //
208  for (const auto i : make_range(system_size))
209  for (const auto j : make_range(system_size))
210  {
211  raw_J(i, j) = MetaPhysicL::raw_value(J(i, j));
212  raw_J2(i, j) = MetaPhysicL::raw_value(J(i, j));
213  }
214  raw_J.svd(svs);
215  raw_J2.evd(evs_real, evs_imag);
216 #endif
217 
218  J.lu_solve(minus_R, u_update);
219  // reset the decomposition
220  J.zero();
221  u += u_update;
222 
223  // Check for NaNs
224  for (const auto i : make_range(system_size))
225  if (std::isnan(u(i)))
226  {
227  assign_solution();
228  mooseException("NaN detected in Newton solve");
229  }
230 
231  if (converged)
232  break;
233  } while (++iteration < max_its);
234 
235  assign_solution();
236 
237  // Check for divergence or slow convergence of Newton's method
238  if (iteration >= max_its)
239  mooseException(
240  "Newton solve convergence failed: maximum number of iterations, ", max_its, ", exceeded");
241 }
242 } // namespace FluidPropertiesUtils
bool absoluteFuzzyEqual(const T &var1, const T2 &var2, const T3 &tol=libMesh::TOLERANCE *libMesh::TOLERANCE)
void mooseWarning(Args &&... args)
auto raw_value(const Eigen::Map< T > &in)
const std::vector< double > y
std::pair< T, T > NewtonSolve(const T &x, const T &y, const Real z_initial_guess, const Real tolerance, const Functor &func, const std::string &caller_name, const unsigned int max_its=100)
NewtonSolve does a 1D Newton Solve to solve the equation y = f(x, z) for variable z...
bool converged(const std::vector< std::pair< unsigned int, Real >> &residuals, const std::vector< Real > &abs_tolerances)
Based on the residuals, determine if the iterative process converged or not.
void NewtonSolve2D(const T &f, const T &g, const Real x0, const Real y0, T &x_final, T &y_final, const Real f_tol, const Real g_tol, const Functor1 &func1, const Functor2 &func2, const unsigned int max_its=100)
NewtonSolve2D does a 2D Newton Solve to solve for the x and y such that: f = func1(x, y) and g = func2(x, y).
FunctorEnvelope< T > Functor
const std::vector< double > x
Real f(Real x)
Test function for Brents method.
static const std::string R
Definition: NS.h:162
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void evd(DenseVector< Real > &lambda_real, DenseVector< Real > &lambda_imag)
bool relativeFuzzyEqual(const T &var1, const T2 &var2, const T3 &tol=libMesh::TOLERANCE *libMesh::TOLERANCE)
IntRange< T > make_range(T beg, T end)
static const std::complex< double > j(0, 1)
Complex number "j" (also known as "i")
auto index_range(const T &sizable)