www.mooseframework.org
FlinakFluidProperties.C
Go to the documentation of this file.
1 //* This file is part of the MOOSE framework
2 //* https://www.mooseframework.org
3 //*
4 //* All rights reserved, see COPYRIGHT for full restrictions
5 //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
6 //*
7 //* Licensed under LGPL 2.1, please see LICENSE for details
8 //* https://www.gnu.org/licenses/lgpl-2.1.html
9 
10 #include "FlinakFluidProperties.h"
11 
12 registerMooseObject("FluidPropertiesApp", FlinakFluidProperties);
13 
16 {
18  params.addRangeCheckedParam<Real>(
19  "drho_dp",
20  1.7324E-7,
21  "drho_dp > 0.0",
22  "derivative of density with respect to pressure (at constant temperature)");
23  params.addClassDescription("Fluid properties for flinak");
24  return params;
25 }
26 
28  : SinglePhaseFluidProperties(parameters),
29  _drho_dp(getParam<Real>("drho_dp")),
30  _drho_dT(-0.73),
31  _p_atm(101325.0),
32  _cp(2010.0),
33  _c0(2729.0),
34  _dp_dT_at_constant_v(-_drho_dT / _drho_dp)
35 {
36 }
37 
38 std::string
40 {
41  return "flinak";
42 }
43 
44 Real
46 {
47  return 41.291077435E-3;
48 }
49 
50 Real
52 {
54  return (1.0 / v - _drho_dT * temperature - _c0) / _drho_dp + _p_atm;
55 }
56 
57 void
58 FlinakFluidProperties::p_from_v_e(Real v, Real e, Real & p, Real & dp_dv, Real & dp_de) const
59 {
60  p = p_from_v_e(v, e);
61 
62  // chain rule, (dp_de)_v = (dp_dT)_v * (dT_de)_v
63  Real T, dT_dv, dT_de;
64  T_from_v_e(v, e, T, dT_dv, dT_de);
65  dp_de = _dp_dT_at_constant_v * dT_de;
66 
67  // cyclic relation, (dP_dv)_e = - (dp_de)_v * (de_dv)_p
68  Real cp = cp_from_v_e(v, e);
69  Real dT_dv_at_constant_p = -1.0 / (_drho_dT * v * v);
70  Real de_dv_at_constant_p = cp * dT_dv_at_constant_p - p;
71  dp_dv = -dp_de * de_dv_at_constant_p;
72 }
73 
74 void
76  const DualReal & v, const DualReal & e, DualReal & p, DualReal & dp_dv, DualReal & dp_de) const
77 {
78  p = SinglePhaseFluidProperties::p_from_v_e(v, e);
79 
80  // chain rule, (dp_de)_v = (dp_dT)_v * (dT_de)_v
81  DualReal T, dT_dv, dT_de;
82  T_from_v_e(v, e, T, dT_dv, dT_de);
83  dp_de = _dp_dT_at_constant_v * dT_de;
84 
85  // cyclic relation, (dP_dv)_e = - (dp_de)_v * (de_dv)_p
86  auto cp = SinglePhaseFluidProperties::cp_from_v_e(v, e);
87  auto dT_dv_at_constant_p = -1.0 / (_drho_dT * v * v);
88  auto de_dv_at_constant_p = cp * dT_dv_at_constant_p - p;
89  dp_dv = -dp_de * de_dv_at_constant_p;
90 }
91 
92 Real
94 {
95  // We need to write these in a somewhat strange manner to ensure that pressure
96  // and temperature do not depend implicitly on each other, causing a circular
97  // logic problem. Substituting the definition for pressure based on the
98  // rho * (h - e) = P, where h = Cp * T into the density correlation for flibe,
99  // we can rearrange and get temperature in terms of only v and e
100 
101  // p = (Cp * T - e) / v
102  // T = (1 / v - drho_dp * [p - p_atm] + _c0) / drho_dT
103  // = (1 / v - drho_dp * [(Cp * T - e) / v - p_atm] + _c0) / drho_dT
104  // = (1 + drho_dp * e + p_atm * v * drho_dp - _c0 * v) / (drho_dT * v + drho_dp * Cp)
105 
106  Real cp = cp_from_v_e(v, e);
107  Real numerator = 1.0 + _drho_dp * (e + _p_atm * v) - _c0 * v;
108  Real denominator = _drho_dT * v + _drho_dp * cp;
109  return numerator / denominator;
110 }
111 
112 void
113 FlinakFluidProperties::T_from_v_e(Real v, Real e, Real & T, Real & dT_dv, Real & dT_de) const
114 {
115  T = T_from_v_e(v, e);
116 
117  // reciprocity relation based on the definition of cv
118  Real cv = cv_from_v_e(v, e);
119  dT_de = 1.0 / cv;
120 
121  // cyclic relation, (dT_dv)_e = -(dT_de)_v * (de_dv)_T
122  Real p = p_from_v_e(v, e);
123  Real dp_dv_at_constant_T = -1.0 / (_drho_dp * v * v);
124  Real de_dv_at_constant_T = -(p + v * dp_dv_at_constant_T);
125  dT_dv = -dT_de * de_dv_at_constant_T;
126 }
127 
128 void
130  const DualReal & v, const DualReal & e, DualReal & T, DualReal & dT_dv, DualReal & dT_de) const
131 {
132  T = SinglePhaseFluidProperties::T_from_v_e(v, e);
133 
134  // reciprocity relation based on the definition of cv
135  auto cv = SinglePhaseFluidProperties::cv_from_v_e(v, e);
136  dT_de = 1.0 / cv;
137 
138  // cyclic relation, (dT_dv)_e = -(dT_de)_v * (de_dv)_T
139  auto p = SinglePhaseFluidProperties::p_from_v_e(v, e);
140  auto dp_dv_at_constant_T = -1.0 / (_drho_dp * v * v);
141  auto de_dv_at_constant_T = -(p + v * dp_dv_at_constant_T);
142  dT_dv = -dT_de * de_dv_at_constant_T;
143 }
144 
145 Real
146 FlinakFluidProperties::T_from_p_h(Real /* p */, Real h) const
147 {
148  return h / _cp;
149 }
150 
151 Real
152 FlinakFluidProperties::T_from_p_rho(Real p, Real rho) const
153 {
154  Real temperature = (rho - (p - _p_atm) * _drho_dp - _c0) / _drho_dT;
155  return temperature;
156 }
157 
158 Real FlinakFluidProperties::cp_from_v_e(Real /*v*/, Real /*e*/) const { return _cp; }
159 
160 void
161 FlinakFluidProperties::cp_from_v_e(Real v, Real e, Real & cp, Real & dcp_dv, Real & dcp_de) const
162 {
163  cp = cp_from_v_e(v, e);
164  dcp_dv = 0.0;
165  dcp_de = 0.0;
166 }
167 
168 Real
170 {
171  // definition of Cv by replacing e by h + p * v
172  Real cp = cp_from_v_e(v, e);
173  return cp - _dp_dT_at_constant_v * v;
174 }
175 
176 void
177 FlinakFluidProperties::cv_from_v_e(Real v, Real e, Real & cv, Real & dcv_dv, Real & dcv_de) const
178 {
179  cv = cv_from_v_e(v, e);
180  dcv_dv = -_dp_dT_at_constant_v;
181  dcv_de = 0.0;
182 }
183 
184 void
186  const DualReal & e,
187  DualReal & cv,
188  DualReal & dcv_dv,
189  DualReal & dcv_de) const
190 {
191  cv = SinglePhaseFluidProperties::cv_from_v_e(v, e);
192  dcv_dv = -_dp_dT_at_constant_v;
193  dcv_de = 0.0;
194 }
195 
196 Real
198 {
200  return 4.0e-5 * std::exp(4170.0 / temperature);
201 }
202 
203 Real
205 {
207  return 5.0e-4 * temperature + 0.43;
208 }
209 
210 Real
212 {
213  return _drho_dT * temperature + _drho_dp * (pressure - _p_atm) + _c0;
214 }
215 
216 void
218  Real pressure, Real temperature, Real & rho, Real & drho_dp, Real & drho_dT) const
219 {
221  drho_dp = _drho_dp;
222  drho_dT = _drho_dT;
223 }
224 
225 void
227  const DualReal & temperature,
228  DualReal & rho,
229  DualReal & drho_dp,
230  DualReal & drho_dT) const
231 {
232  rho = SinglePhaseFluidProperties::rho_from_p_T(pressure, temperature);
233  drho_dp = _drho_dp;
234  drho_dT = _drho_dT;
235 }
236 
237 DualReal
239 {
240  return 1.0 / (_drho_dT * temperature + _drho_dp * (pressure - _p_atm) + _c0);
241 }
242 
243 Real
245 {
246  return 1.0 / (_drho_dT * temperature + _drho_dp * (pressure - _p_atm) + _c0);
247 }
248 
249 void
251  Real pressure, Real temperature, Real & v, Real & dv_dp, Real & dv_dT) const
252 {
254  dv_dp = -v * v * _drho_dp;
255  dv_dT = -v * v * _drho_dT;
256 }
257 
258 Real
259 FlinakFluidProperties::h_from_p_T(Real /*pressure*/, Real temperature) const
260 {
261  // definition of h for constant Cp
262  Real cp = cp_from_v_e(0.0 /* dummy */, 0.0 /* dummy */);
263  return cp * temperature;
264 }
265 
266 void
268  Real pressure, Real temperature, Real & h, Real & dh_dp, Real & dh_dT) const
269 {
271  Real cp = cp_from_v_e(0.0 /* dummy */, 0.0 /* dummy */);
272 
273  dh_dp = 0.0;
274  dh_dT = cp;
275 }
276 
277 Real
279 {
280  // definition of h = e + p * v
282  Real cp = cp_from_v_e(v, 0.0 /* dummy */);
283  return cp * temperature - pressure * v;
284 }
285 
286 void
288  Real pressure, Real temperature, Real & e, Real & de_dp, Real & de_dT) const
289 {
291 
292  Real v, dv_dp, dv_dT;
293  v_from_p_T(pressure, temperature, v, dv_dp, dv_dT);
294 
295  // definition of e = h - p * v
296  de_dp = -pressure * dv_dp - v;
297 
298  // definition of e = h - p * v
299  Real cp = cp_from_v_e(v, e);
300  de_dT = cp - pressure * dv_dT;
301 }
302 
303 Real
304 FlinakFluidProperties::e_from_p_rho(Real p, Real rho) const
305 {
306  return e_from_p_T(p, T_from_p_rho(p, rho));
307 }
308 
309 Real
311 {
312  Real rho, drho_dp, drho_dT;
313  rho_from_p_T(pressure, temperature, rho, drho_dp, drho_dT);
314  return -drho_dT / rho;
315 }
316 
317 Real FlinakFluidProperties::cp_from_p_T(Real /*pressure*/, Real /*temperature*/) const
318 {
319  return _cp;
320 }
321 
322 void
324  Real pressure, Real temperature, Real & cp, Real & dcp_dp, Real & dcp_dT) const
325 {
327  dcp_dp = 0.0;
328  dcp_dT = 0.0;
329 }
330 
331 Real
333 {
336  return cv_from_v_e(v, e);
337 }
338 
339 void
341  Real pressure, Real temperature, Real & cv, Real & dcv_dp, Real & dcv_dT) const
342 {
344  dcv_dp = 0.0;
345  dcv_dT = 0.0;
346 }
347 
348 Real
349 FlinakFluidProperties::mu_from_p_T(Real /*pressure*/, Real temperature) const
350 {
351  return 4.0e-5 * std::exp(4170.0 / temperature);
352 }
353 
354 void
356  Real pressure, Real temperature, Real & mu, Real & dmu_dp, Real & dmu_dT) const
357 {
358  mu = this->mu_from_p_T(pressure, temperature);
359  dmu_dp = 0.0;
360  dmu_dT = -4.0e-5 * std::exp(4170.0 / temperature) * 4170.0 / (temperature * temperature);
361 }
362 
363 Real
364 FlinakFluidProperties::k_from_p_T(Real /*pressure*/, Real temperature) const
365 {
366  return 5.0e-4 * temperature + 0.43;
367 }
368 
369 void
371  Real pressure, Real temperature, Real & k, Real & dk_dp, Real & dk_dT) const
372 {
373  k = this->k_from_p_T(pressure, temperature);
374  dk_dp = 0.0;
375  dk_dT = 5.0e-4;
376 }
const Real _p_atm
Atmospheric pressure, Pa.
virtual Real h_from_p_T(Real p, Real T) const override
Specific enthalpy from pressure and temperature.
static const std::string cv
Definition: NS.h:121
virtual Real T_from_p_rho(Real p, Real rho) const
Temperature from pressure and density.
static InputParameters validParams()
virtual Real cv_from_p_T(Real p, Real T) const override
Isochoric specific heat capacity from pressure and temperature.
FlinakFluidProperties(const InputParameters &parameters)
virtual Real cv_from_v_e(Real v, Real e) const override
Isochoric specific heat from specific volume and specific internal energy.
virtual Real T_from_v_e(Real v, Real e) const override
Temperature from specific volume and specific internal energy.
DualNumber< Real, DNDerivativeType, true > DualReal
static InputParameters validParams()
registerMooseObject("FluidPropertiesApp", FlinakFluidProperties)
virtual Real cp_from_p_T(Real p, Real T) const override
Isobaric specific heat capacity from pressure and temperature.
static const std::string temperature
Definition: NS.h:57
virtual Real beta_from_p_T(Real p, Real T) const override
Thermal expansion coefficient from pressure and temperature.
const Real _cp
specific heat at constant pressure
static const std::string cp
Definition: NS.h:120
virtual std::string fluidName() const override
Fluid name.
virtual Real T_from_p_h(Real p, Real h) const override
Temperature from pressure and specific enthalpy.
virtual Real v_from_p_T(Real p, Real T) const override
Specific volume from pressure and temperature.
virtual Real e_from_p_rho(Real p, Real rho) const override
Specific internal energy from pressure and density.
const Real _drho_dT
Derivative of density with respect to temperature at fixed pressure.
static const std::string mu
Definition: NS.h:122
Common class for single phase fluid properties.
virtual Real mu_from_v_e(Real v, Real e) const override
Dynamic viscosity from specific volume and specific internal energy.
e e e e s T T T T T rho v v T h
virtual Real k_from_v_e(Real v, Real e) const override
Thermal conductivity from specific volume and specific internal energy.
virtual Real p_from_v_e(Real v, Real e) const override
Pressure from specific volume and specific internal energy.
const Real & _drho_dp
Derivative of density with respect to pressure at fixed temperature.
Fluid properties for 0.465 LiF - 0.115 NaF - 0.42 KF (flinak) .
virtual Real e_from_p_T(Real p, Real T) const override
Specific internal energy from pressure and temperature.
const Real _dp_dT_at_constant_v
derivative of pressure with respect to temperature at constant specific volume
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const std::string v
Definition: NS.h:82
static const std::string pressure
Definition: NS.h:56
virtual Real rho_from_p_T(Real p, Real T) const override
Density from pressure and temperature.
void addClassDescription(const std::string &doc_string)
virtual Real k_from_p_T(Real p, Real T) const override
Thermal conductivity from pressure and temperature.
void addRangeCheckedParam(const std::string &name, const T &value, const std::string &parsed_function, const std::string &doc_string)
const Real _c0
additive constant to rho(P, T) correlation
virtual Real molarMass() const override
Molar mass.
virtual Real mu_from_p_T(Real p, Real T) const override
Dynamic viscosity from pressure and temperature.
virtual Real cp_from_v_e(Real v, Real e) const override
Isobaric specific heat from specific volume and specific internal energy.
static const std::string k
Definition: NS.h:124