libMesh
Public Types | Public Member Functions | Static Public Member Functions | Protected Types | Protected Member Functions | Protected Attributes | Static Protected Attributes | List of all members
libMesh::FEXYZ< Dim > Class Template Reference

XYZ finite elements. More...

#include <fe.h>

Inheritance diagram for libMesh::FEXYZ< Dim >:
[legend]

Public Types

typedef FEGenericBase< typename FEOutputType< T >::type >::OutputShape OutputShape
 
typedef TensorTools::IncrementRank< OutputShape >::type OutputGradient
 
typedef TensorTools::IncrementRank< OutputGradient >::type OutputTensor
 
typedef TensorTools::DecrementRank< OutputShape >::type OutputDivergence
 
typedef TensorTools::MakeNumber< OutputShape >::type OutputNumber
 
typedef TensorTools::IncrementRank< OutputNumber >::type OutputNumberGradient
 
typedef TensorTools::IncrementRank< OutputNumberGradient >::type OutputNumberTensor
 
typedef TensorTools::DecrementRank< OutputNumber >::type OutputNumberDivergence
 

Public Member Functions

 FEXYZ (const FEType &fet)
 Constructor. More...
 
virtual void reinit (const Elem *elem, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
 Explicitly call base class method. More...
 
virtual void reinit (const Elem *elem, const unsigned int side, const Real tolerance=TOLERANCE, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
 Reinitializes all the physical element-dependent data based on the side of face. More...
 
Real shape (const Elem *elem, const Order order, const unsigned int i, const Point &p)
 Subdivision finite elements. More...
 
Real shape_deriv (const Elem *elem, const Order order, const unsigned int i, const unsigned int j, const Point &p)
 
Real shape_second_deriv (const Elem *elem, const Order order, const unsigned int i, const unsigned int j, const Point &p)
 
virtual unsigned int n_shape_functions () const override
 
virtual FEContinuity get_continuity () const override
 
virtual bool is_hierarchic () const override
 
virtual void edge_reinit (const Elem *elem, const unsigned int edge, const Real tolerance=TOLERANCE, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
 Reinitializes all the physical element-dependent data based on the edge. More...
 
virtual void side_map (const Elem *elem, const Elem *side, const unsigned int s, const std::vector< Point > &reference_side_points, std::vector< Point > &reference_points) override
 Computes the reference space quadrature points on the side of an element based on the side quadrature points. More...
 
virtual void attach_quadrature_rule (QBase *q) override
 Provides the class with the quadrature rule, which provides the locations (on a reference element) where the shape functions are to be calculated. More...
 
virtual unsigned int n_quadrature_points () const override
 
virtual bool shapes_need_reinit () const override
 
const std::vector< std::vector< OutputShape > > & get_phi () const
 
const std::vector< std::vector< OutputGradient > > & get_dphi () const
 
const std::vector< std::vector< OutputShape > > & get_curl_phi () const
 
const std::vector< std::vector< OutputDivergence > > & get_div_phi () const
 
const std::vector< std::vector< OutputShape > > & get_dphidx () const
 
const std::vector< std::vector< OutputShape > > & get_dphidy () const
 
const std::vector< std::vector< OutputShape > > & get_dphidz () const
 
const std::vector< std::vector< OutputShape > > & get_dphidxi () const
 
const std::vector< std::vector< OutputShape > > & get_dphideta () const
 
const std::vector< std::vector< OutputShape > > & get_dphidzeta () const
 
const std::vector< std::vector< OutputTensor > > & get_d2phi () const
 
const std::vector< std::vector< OutputShape > > & get_d2phidx2 () const
 
const std::vector< std::vector< OutputShape > > & get_d2phidxdy () const
 
const std::vector< std::vector< OutputShape > > & get_d2phidxdz () const
 
const std::vector< std::vector< OutputShape > > & get_d2phidy2 () const
 
const std::vector< std::vector< OutputShape > > & get_d2phidydz () const
 
const std::vector< std::vector< OutputShape > > & get_d2phidz2 () const
 
const std::vector< std::vector< OutputShape > > & get_d2phidxi2 () const
 
const std::vector< std::vector< OutputShape > > & get_d2phidxideta () const
 
const std::vector< std::vector< OutputShape > > & get_d2phidxidzeta () const
 
const std::vector< std::vector< OutputShape > > & get_d2phideta2 () const
 
const std::vector< std::vector< OutputShape > > & get_d2phidetadzeta () const
 
const std::vector< std::vector< OutputShape > > & get_d2phidzeta2 () const
 
const std::vector< OutputGradient > & get_dphase () const
 
const std::vector< Real > & get_Sobolev_weight () const
 
const std::vector< RealGradient > & get_Sobolev_dweight () const
 
void print_phi (std::ostream &os) const
 Prints the value of each shape function at each quadrature point. More...
 
void print_dphi (std::ostream &os) const
 Prints the value of each shape function's derivative at each quadrature point. More...
 
void print_d2phi (std::ostream &os) const
 Prints the value of each shape function's second derivatives at each quadrature point. More...
 
unsigned int get_dim () const
 
const std::vector< Point > & get_xyz () const
 
const std::vector< Real > & get_JxW () const
 
const std::vector< RealGradient > & get_dxyzdxi () const
 
const std::vector< RealGradient > & get_dxyzdeta () const
 
const std::vector< RealGradient > & get_dxyzdzeta () const
 
const std::vector< RealGradient > & get_d2xyzdxi2 () const
 
const std::vector< RealGradient > & get_d2xyzdeta2 () const
 
const std::vector< RealGradient > & get_d2xyzdzeta2 () const
 
const std::vector< RealGradient > & get_d2xyzdxideta () const
 
const std::vector< RealGradient > & get_d2xyzdxidzeta () const
 
const std::vector< RealGradient > & get_d2xyzdetadzeta () const
 
const std::vector< Real > & get_dxidx () const
 
const std::vector< Real > & get_dxidy () const
 
const std::vector< Real > & get_dxidz () const
 
const std::vector< Real > & get_detadx () const
 
const std::vector< Real > & get_detady () const
 
const std::vector< Real > & get_detadz () const
 
const std::vector< Real > & get_dzetadx () const
 
const std::vector< Real > & get_dzetady () const
 
const std::vector< Real > & get_dzetadz () const
 
const std::vector< std::vector< Point > > & get_tangents () const
 
const std::vector< Point > & get_normals () const
 
const std::vector< Real > & get_curvatures () const
 
ElemType get_type () const
 
unsigned int get_p_level () const
 
FEType get_fe_type () const
 
Order get_order () const
 
void set_fe_order (int new_order)
 Sets the base FE order of the finite element. More...
 
FEFamily get_family () const
 
const FEMapget_fe_map () const
 
void print_JxW (std::ostream &os) const
 Prints the Jacobian times the weight for each quadrature point. More...
 
void print_xyz (std::ostream &os) const
 Prints the spatial location of each quadrature point (on the physical element). More...
 
void print_info (std::ostream &os) const
 Prints all the relevant information about the current element. More...
 

Static Public Member Functions

static OutputShape shape (const ElemType t, const Order o, const unsigned int i, const Point &p)
 
static OutputShape shape (const Elem *elem, const Order o, const unsigned int i, const Point &p)
 
static OutputShape shape_deriv (const ElemType t, const Order o, const unsigned int i, const unsigned int j, const Point &p)
 
static OutputShape shape_deriv (const Elem *elem, const Order o, const unsigned int i, const unsigned int j, const Point &p)
 
static OutputShape shape_second_deriv (const ElemType t, const Order o, const unsigned int i, const unsigned int j, const Point &p)
 
static OutputShape shape_second_deriv (const Elem *elem, const Order o, const unsigned int i, const unsigned int j, const Point &p)
 
static void nodal_soln (const Elem *elem, const Order o, const std::vector< Number > &elem_soln, std::vector< Number > &nodal_soln)
 Build the nodal soln from the element soln. More...
 
static unsigned int n_shape_functions (const ElemType t, const Order o)
 
static unsigned int n_dofs (const ElemType t, const Order o)
 
static unsigned int n_dofs_at_node (const ElemType t, const Order o, const unsigned int n)
 
static unsigned int n_dofs_per_elem (const ElemType t, const Order o)
 
static void dofs_on_side (const Elem *const elem, const Order o, unsigned int s, std::vector< unsigned int > &di)
 Fills the vector di with the local degree of freedom indices associated with side s of element elem. More...
 
static void dofs_on_edge (const Elem *const elem, const Order o, unsigned int e, std::vector< unsigned int > &di)
 Fills the vector di with the local degree of freedom indices associated with edge e of element elem. More...
 
static Point inverse_map (const Elem *elem, const Point &p, const Real tolerance=TOLERANCE, const bool secure=true)
 
static void inverse_map (const Elem *elem, const std::vector< Point > &physical_points, std::vector< Point > &reference_points, const Real tolerance=TOLERANCE, const bool secure=true)
 Takes a number points in physical space (in the physical_points vector) and finds their location on the reference element for the input element elem. More...
 
static void compute_constraints (DofConstraints &constraints, DofMap &dof_map, const unsigned int variable_number, const Elem *elem)
 Computes the constraint matrix contributions (for non-conforming adapted meshes) corresponding to variable number var_number, using element-specific optimizations if possible. More...
 
static Point map (const Elem *elem, const Point &reference_point)
 
static Point map_xi (const Elem *elem, const Point &reference_point)
 
static Point map_eta (const Elem *elem, const Point &reference_point)
 
static Point map_zeta (const Elem *elem, const Point &reference_point)
 
static std::unique_ptr< FEGenericBasebuild (const unsigned int dim, const FEType &type)
 Builds a specific finite element type. More...
 
static std::unique_ptr< FEGenericBasebuild_InfFE (const unsigned int dim, const FEType &type)
 Builds a specific infinite element type. More...
 
static void compute_proj_constraints (DofConstraints &constraints, DofMap &dof_map, const unsigned int variable_number, const Elem *elem)
 Computes the constraint matrix contributions (for non-conforming adapted meshes) corresponding to variable number var_number, using generic projections. More...
 
static void coarsened_dof_values (const NumericVector< Number > &global_vector, const DofMap &dof_map, const Elem *coarse_elem, DenseVector< Number > &coarse_dofs, const unsigned int var, const bool use_old_dof_indices=false)
 Creates a local projection on coarse_elem, based on the DoF values in global_vector for it's children. More...
 
static void coarsened_dof_values (const NumericVector< Number > &global_vector, const DofMap &dof_map, const Elem *coarse_elem, DenseVector< Number > &coarse_dofs, const bool use_old_dof_indices=false)
 Creates a local projection on coarse_elem, based on the DoF values in global_vector for it's children. More...
 
static void compute_periodic_constraints (DofConstraints &constraints, DofMap &dof_map, const PeriodicBoundaries &boundaries, const MeshBase &mesh, const PointLocatorBase *point_locator, const unsigned int variable_number, const Elem *elem)
 Computes the constraint matrix contributions (for meshes with periodic boundary conditions) corresponding to variable number var_number, using generic projections. More...
 
static bool on_reference_element (const Point &p, const ElemType t, const Real eps=TOLERANCE)
 
static void get_refspace_nodes (const ElemType t, std::vector< Point > &nodes)
 
static void compute_node_constraints (NodeConstraints &constraints, const Elem *elem)
 Computes the nodal constraint contributions (for non-conforming adapted meshes), using Lagrange geometry. More...
 
static void compute_periodic_node_constraints (NodeConstraints &constraints, const PeriodicBoundaries &boundaries, const MeshBase &mesh, const PointLocatorBase *point_locator, const Elem *elem)
 Computes the node position constraint equation contributions (for meshes with periodic boundary conditions) More...
 
static void print_info (std::ostream &out=libMesh::out)
 Prints the reference information, by default to libMesh::out. More...
 
static std::string get_info ()
 Gets a string containing the reference information. More...
 
static unsigned int n_objects ()
 Prints the number of outstanding (created, but not yet destroyed) objects. More...
 
static void enable_print_counter_info ()
 Methods to enable/disable the reference counter output from print_info() More...
 
static void disable_print_counter_info ()
 

Protected Types

typedef std::map< std::string, std::pair< unsigned int, unsigned int > > Counts
 Data structure to log the information. More...
 

Protected Member Functions

virtual void init_shape_functions (const std::vector< Point > &qp, const Elem *e) override
 Update the various member data fields phi, dphidxi, dphideta, dphidzeta, etc. More...
 
virtual void compute_shape_functions (const Elem *elem, const std::vector< Point > &qp) override
 After having updated the jacobian and the transformation from local to global coordinates in FEAbstract::compute_map(), the first derivatives of the shape functions are transformed to global coordinates, giving dphi, dphidx, dphidy, and dphidz. More...
 
void compute_face_values (const Elem *elem, const Elem *side, const std::vector< Real > &weights)
 Compute the map & shape functions for this face. More...
 
virtual void init_base_shape_functions (const std::vector< Point > &qp, const Elem *e) override
 Initialize the data fields for the base of an an infinite element. More...
 
void determine_calculations ()
 Determine which values are to be calculated, for both the FE itself and for the FEMap. More...
 
void increment_constructor_count (const std::string &name)
 Increments the construction counter. More...
 
void increment_destructor_count (const std::string &name)
 Increments the destruction counter. More...
 

Protected Attributes

std::vector< Pointcached_nodes
 An array of the node locations on the last element we computed on. More...
 
ElemType last_side
 The last side and last edge we did a reinit on. More...
 
unsigned int last_edge
 
std::unique_ptr< FETransformationBase< FEOutputType< T >::type > > _fe_trans
 Object that handles computing shape function values, gradients, etc in the physical domain. More...
 
std::vector< std::vector< OutputShape > > phi
 Shape function values. More...
 
std::vector< std::vector< OutputGradient > > dphi
 Shape function derivative values. More...
 
std::vector< std::vector< OutputShape > > curl_phi
 Shape function curl values. More...
 
std::vector< std::vector< OutputDivergence > > div_phi
 Shape function divergence values. More...
 
std::vector< std::vector< OutputShape > > dphidxi
 Shape function derivatives in the xi direction. More...
 
std::vector< std::vector< OutputShape > > dphideta
 Shape function derivatives in the eta direction. More...
 
std::vector< std::vector< OutputShape > > dphidzeta
 Shape function derivatives in the zeta direction. More...
 
std::vector< std::vector< OutputShape > > dphidx
 Shape function derivatives in the x direction. More...
 
std::vector< std::vector< OutputShape > > dphidy
 Shape function derivatives in the y direction. More...
 
std::vector< std::vector< OutputShape > > dphidz
 Shape function derivatives in the z direction. More...
 
std::vector< std::vector< OutputTensor > > d2phi
 Shape function second derivative values. More...
 
std::vector< std::vector< OutputShape > > d2phidxi2
 Shape function second derivatives in the xi direction. More...
 
std::vector< std::vector< OutputShape > > d2phidxideta
 Shape function second derivatives in the xi-eta direction. More...
 
std::vector< std::vector< OutputShape > > d2phidxidzeta
 Shape function second derivatives in the xi-zeta direction. More...
 
std::vector< std::vector< OutputShape > > d2phideta2
 Shape function second derivatives in the eta direction. More...
 
std::vector< std::vector< OutputShape > > d2phidetadzeta
 Shape function second derivatives in the eta-zeta direction. More...
 
std::vector< std::vector< OutputShape > > d2phidzeta2
 Shape function second derivatives in the zeta direction. More...
 
std::vector< std::vector< OutputShape > > d2phidx2
 Shape function second derivatives in the x direction. More...
 
std::vector< std::vector< OutputShape > > d2phidxdy
 Shape function second derivatives in the x-y direction. More...
 
std::vector< std::vector< OutputShape > > d2phidxdz
 Shape function second derivatives in the x-z direction. More...
 
std::vector< std::vector< OutputShape > > d2phidy2
 Shape function second derivatives in the y direction. More...
 
std::vector< std::vector< OutputShape > > d2phidydz
 Shape function second derivatives in the y-z direction. More...
 
std::vector< std::vector< OutputShape > > d2phidz2
 Shape function second derivatives in the z direction. More...
 
std::vector< OutputGradientdphase
 Used for certain infinite element families: the first derivatives of the phase term in global coordinates, over all quadrature points. More...
 
std::vector< RealGradientdweight
 Used for certain infinite element families: the global derivative of the additional radial weight $ 1/{r^2} $, over all quadrature points. More...
 
std::vector< Realweight
 Used for certain infinite element families: the additional radial weight $ 1/{r^2} $ in local coordinates, over all quadrature points. More...
 
std::unique_ptr< FEMap_fe_map
 
const unsigned int dim
 The dimensionality of the object. More...
 
bool calculations_started
 Have calculations with this object already been started? Then all get_* functions should already have been called. More...
 
bool calculate_phi
 Should we calculate shape functions? More...
 
bool calculate_dphi
 Should we calculate shape function gradients? More...
 
bool calculate_d2phi
 Should we calculate shape function hessians? More...
 
bool calculate_curl_phi
 Should we calculate shape function curls? More...
 
bool calculate_div_phi
 Should we calculate shape function divergences? More...
 
bool calculate_dphiref
 Should we calculate reference shape function gradients? More...
 
FEType fe_type
 The finite element type for this object. More...
 
ElemType elem_type
 The element type the current data structures are set up for. More...
 
unsigned int _p_level
 The p refinement level the current data structures are set up for. More...
 
QBaseqrule
 A pointer to the quadrature rule employed. More...
 
bool shapes_on_quadrature
 A flag indicating if current data structures correspond to quadrature rule points. More...
 

Static Protected Attributes

static Counts _counts
 Actually holds the data. More...
 
static Threads::atomic< unsigned int > _n_objects
 The number of objects. More...
 
static Threads::spin_mutex _mutex
 Mutual exclusion object to enable thread-safe reference counting. More...
 
static bool _enable_print_counter
 Flag to control whether reference count information is printed when print_info is called. More...
 

Detailed Description

template<unsigned int Dim>
class libMesh::FEXYZ< Dim >

XYZ finite elements.

These require specialization because the shape functions are defined in terms of physical XYZ coordinates rather than local coordinates.

Author
Benjamin S. Kirk
Date
2002-2007

Definition at line 824 of file fe.h.

Member Typedef Documentation

◆ Counts

typedef std::map<std::string, std::pair<unsigned int, unsigned int> > libMesh::ReferenceCounter::Counts
protectedinherited

Data structure to log the information.

The log is identified by the class name.

Definition at line 117 of file reference_counter.h.

◆ OutputDivergence

Definition at line 122 of file fe_base.h.

◆ OutputGradient

Definition at line 120 of file fe_base.h.

◆ OutputNumber

Definition at line 123 of file fe_base.h.

◆ OutputNumberDivergence

Definition at line 126 of file fe_base.h.

◆ OutputNumberGradient

Definition at line 124 of file fe_base.h.

◆ OutputNumberTensor

Definition at line 125 of file fe_base.h.

◆ OutputShape

typedef FEGenericBase<typename FEOutputType<T>::type>::OutputShape libMesh::FE< Dim, T >::OutputShape
inherited

Definition at line 101 of file fe.h.

◆ OutputTensor

Definition at line 121 of file fe_base.h.

Constructor & Destructor Documentation

◆ FEXYZ()

template<unsigned int Dim>
libMesh::FEXYZ< Dim >::FEXYZ ( const FEType fet)
explicit

Constructor.

Creates a monomial finite element to be used in dimension Dim.

Definition at line 833 of file fe.h.

833  :
834  FE<Dim,XYZ> (fet)
835  {}

Member Function Documentation

◆ attach_quadrature_rule()

virtual void libMesh::FE< Dim, T >::attach_quadrature_rule ( QBase q)
overridevirtualinherited

Provides the class with the quadrature rule, which provides the locations (on a reference element) where the shape functions are to be calculated.

Implements libMesh::FEAbstract.

◆ build()

static std::unique_ptr<FEGenericBase> libMesh::FEGenericBase< FEOutputType< T >::type >::build ( const unsigned int  dim,
const FEType type 
)
staticinherited

Builds a specific finite element type.

A std::unique_ptr<FEGenericBase> is returned to prevent a memory leak. This way the user need not remember to delete the object.

The build call will fail if the OutputType of this class is not compatible with the output required for the requested type

◆ build_InfFE()

static std::unique_ptr<FEGenericBase> libMesh::FEGenericBase< FEOutputType< T >::type >::build_InfFE ( const unsigned int  dim,
const FEType type 
)
staticinherited

Builds a specific infinite element type.

A std::unique_ptr<FEGenericBase> is returned to prevent a memory leak. This way the user need not remember to delete the object.

The build call will fail if the OutputShape of this class is not compatible with the output required for the requested type

◆ coarsened_dof_values() [1/2]

static void libMesh::FEGenericBase< FEOutputType< T >::type >::coarsened_dof_values ( const NumericVector< Number > &  global_vector,
const DofMap dof_map,
const Elem coarse_elem,
DenseVector< Number > &  coarse_dofs,
const unsigned int  var,
const bool  use_old_dof_indices = false 
)
staticinherited

Creates a local projection on coarse_elem, based on the DoF values in global_vector for it's children.

Computes a vector of coefficients corresponding to dof_indices for only the single given var

◆ coarsened_dof_values() [2/2]

static void libMesh::FEGenericBase< FEOutputType< T >::type >::coarsened_dof_values ( const NumericVector< Number > &  global_vector,
const DofMap dof_map,
const Elem coarse_elem,
DenseVector< Number > &  coarse_dofs,
const bool  use_old_dof_indices = false 
)
staticinherited

Creates a local projection on coarse_elem, based on the DoF values in global_vector for it's children.

Computes a vector of coefficients corresponding to all dof_indices.

◆ compute_constraints()

static void libMesh::FE< Dim, T >::compute_constraints ( DofConstraints constraints,
DofMap dof_map,
const unsigned int  variable_number,
const Elem elem 
)
staticinherited

Computes the constraint matrix contributions (for non-conforming adapted meshes) corresponding to variable number var_number, using element-specific optimizations if possible.

◆ compute_face_values()

template<unsigned int Dim>
void libMesh::FEXYZ< Dim >::compute_face_values ( const Elem elem,
const Elem side,
const std::vector< Real > &  weights 
)
protected

Compute the map & shape functions for this face.

◆ compute_node_constraints()

static void libMesh::FEAbstract::compute_node_constraints ( NodeConstraints constraints,
const Elem elem 
)
staticinherited

Computes the nodal constraint contributions (for non-conforming adapted meshes), using Lagrange geometry.

◆ compute_periodic_constraints()

static void libMesh::FEGenericBase< FEOutputType< T >::type >::compute_periodic_constraints ( DofConstraints constraints,
DofMap dof_map,
const PeriodicBoundaries boundaries,
const MeshBase mesh,
const PointLocatorBase point_locator,
const unsigned int  variable_number,
const Elem elem 
)
staticinherited

Computes the constraint matrix contributions (for meshes with periodic boundary conditions) corresponding to variable number var_number, using generic projections.

◆ compute_periodic_node_constraints()

static void libMesh::FEAbstract::compute_periodic_node_constraints ( NodeConstraints constraints,
const PeriodicBoundaries boundaries,
const MeshBase mesh,
const PointLocatorBase point_locator,
const Elem elem 
)
staticinherited

Computes the node position constraint equation contributions (for meshes with periodic boundary conditions)

◆ compute_proj_constraints()

static void libMesh::FEGenericBase< FEOutputType< T >::type >::compute_proj_constraints ( DofConstraints constraints,
DofMap dof_map,
const unsigned int  variable_number,
const Elem elem 
)
staticinherited

Computes the constraint matrix contributions (for non-conforming adapted meshes) corresponding to variable number var_number, using generic projections.

◆ compute_shape_functions()

template<unsigned int Dim>
virtual void libMesh::FEXYZ< Dim >::compute_shape_functions ( const Elem elem,
const std::vector< Point > &  qp 
)
overrideprotectedvirtual

After having updated the jacobian and the transformation from local to global coordinates in FEAbstract::compute_map(), the first derivatives of the shape functions are transformed to global coordinates, giving dphi, dphidx, dphidy, and dphidz.

This method should rarely be re-defined in derived classes, but still should be usable for children. Therefore, keep it protected.

Reimplemented from libMesh::FEGenericBase< FEOutputType< T >::type >.

◆ determine_calculations()

void libMesh::FEGenericBase< FEOutputType< T >::type >::determine_calculations ( )
protectedinherited

Determine which values are to be calculated, for both the FE itself and for the FEMap.

◆ disable_print_counter_info()

static void libMesh::ReferenceCounter::disable_print_counter_info ( )
staticinherited

◆ dofs_on_edge()

static void libMesh::FE< Dim, T >::dofs_on_edge ( const Elem *const  elem,
const Order  o,
unsigned int  e,
std::vector< unsigned int > &  di 
)
staticinherited

Fills the vector di with the local degree of freedom indices associated with edge e of element elem.

On a p-refined element, o should be the base order of the element.

◆ dofs_on_side()

static void libMesh::FE< Dim, T >::dofs_on_side ( const Elem *const  elem,
const Order  o,
unsigned int  s,
std::vector< unsigned int > &  di 
)
staticinherited

Fills the vector di with the local degree of freedom indices associated with side s of element elem.

On a p-refined element, o should be the base order of the element.

◆ edge_reinit()

virtual void libMesh::FE< Dim, T >::edge_reinit ( const Elem elem,
const unsigned int  edge,
const Real  tolerance = TOLERANCE,
const std::vector< Point > *const  pts = nullptr,
const std::vector< Real > *const  weights = nullptr 
)
overridevirtualinherited

Reinitializes all the physical element-dependent data based on the edge.

The tolerance parameter is passed to the involved call to inverse_map(). By default the shape functions and associated data are computed at the quadrature points specified by the quadrature rule qrule, but may be any points specified on the reference side element specified in the optional argument pts.

Implements libMesh::FEAbstract.

◆ enable_print_counter_info()

static void libMesh::ReferenceCounter::enable_print_counter_info ( )
staticinherited

Methods to enable/disable the reference counter output from print_info()

◆ get_continuity()

virtual FEContinuity libMesh::FE< Dim, T >::get_continuity ( ) const
overridevirtualinherited
Returns
The continuity level of the finite element.

Implements libMesh::FEAbstract.

◆ get_curl_phi()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_curl_phi ( ) const
inherited
Returns
The curl of the shape function at the quadrature points.

Definition at line 223 of file fe_base.h.

References libMesh::FEAbstract::calculate_curl_phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::curl_phi.

224  { libmesh_assert(!calculations_started || calculate_curl_phi);
225  calculate_curl_phi = calculate_dphiref = true; return curl_phi; }
bool calculate_curl_phi
Should we calculate shape function curls?
Definition: fe_abstract.h:557
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
std::vector< std::vector< OutputShape > > curl_phi
Shape function curl values.
Definition: fe_base.h:508
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_curvatures()

const std::vector<Real>& libMesh::FEAbstract::get_curvatures ( ) const
inherited
Returns
The curvatures for use in face integration.

Definition at line 391 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

392  { return this->_fe_map->get_curvatures();}
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_d2phi()

const std::vector<std::vector<OutputTensor> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phi ( ) const
inherited
Returns
The shape function second derivatives at the quadrature points.

Definition at line 289 of file fe_base.h.

References libMesh::FEAbstract::calculate_d2phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::d2phi.

290  { libmesh_assert(!calculations_started || calculate_d2phi);
291  calculate_d2phi = calculate_dphiref = true; return d2phi; }
bool calculate_d2phi
Should we calculate shape function hessians?
Definition: fe_abstract.h:552
std::vector< std::vector< OutputTensor > > d2phi
Shape function second derivative values.
Definition: fe_base.h:551
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_d2phideta2()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phideta2 ( ) const
inherited
Returns
The shape function second derivatives at the quadrature points, in reference coordinates

Definition at line 369 of file fe_base.h.

References libMesh::FEAbstract::calculate_d2phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::d2phideta2.

370  { libmesh_assert(!calculations_started || calculate_d2phi);
371  calculate_d2phi = calculate_dphiref = true; return d2phideta2; }
bool calculate_d2phi
Should we calculate shape function hessians?
Definition: fe_abstract.h:552
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
std::vector< std::vector< OutputShape > > d2phideta2
Shape function second derivatives in the eta direction.
Definition: fe_base.h:571
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_d2phidetadzeta()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidetadzeta ( ) const
inherited
Returns
The shape function second derivatives at the quadrature points, in reference coordinates

Definition at line 377 of file fe_base.h.

References libMesh::FEAbstract::calculate_d2phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::d2phidetadzeta.

378  { libmesh_assert(!calculations_started || calculate_d2phi);
bool calculate_d2phi
Should we calculate shape function hessians?
Definition: fe_abstract.h:552
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
std::vector< std::vector< OutputShape > > d2phidetadzeta
Shape function second derivatives in the eta-zeta direction.
Definition: fe_base.h:576
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_d2phidx2()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidx2 ( ) const
inherited
Returns
The shape function second derivatives at the quadrature points.

Definition at line 297 of file fe_base.h.

References libMesh::FEAbstract::calculate_d2phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::d2phidx2.

298  { libmesh_assert(!calculations_started || calculate_d2phi);
299  calculate_d2phi = calculate_dphiref = true; return d2phidx2; }
bool calculate_d2phi
Should we calculate shape function hessians?
Definition: fe_abstract.h:552
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
std::vector< std::vector< OutputShape > > d2phidx2
Shape function second derivatives in the x direction.
Definition: fe_base.h:586
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_d2phidxdy()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxdy ( ) const
inherited
Returns
The shape function second derivatives at the quadrature points.

Definition at line 305 of file fe_base.h.

References libMesh::FEAbstract::calculate_d2phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::d2phidxdy.

306  { libmesh_assert(!calculations_started || calculate_d2phi);
307  calculate_d2phi = calculate_dphiref = true; return d2phidxdy; }
bool calculate_d2phi
Should we calculate shape function hessians?
Definition: fe_abstract.h:552
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
std::vector< std::vector< OutputShape > > d2phidxdy
Shape function second derivatives in the x-y direction.
Definition: fe_base.h:591
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_d2phidxdz()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxdz ( ) const
inherited
Returns
The shape function second derivatives at the quadrature points.

Definition at line 313 of file fe_base.h.

References libMesh::FEAbstract::calculate_d2phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::d2phidxdz.

314  { libmesh_assert(!calculations_started || calculate_d2phi);
315  calculate_d2phi = calculate_dphiref = true; return d2phidxdz; }
bool calculate_d2phi
Should we calculate shape function hessians?
Definition: fe_abstract.h:552
std::vector< std::vector< OutputShape > > d2phidxdz
Shape function second derivatives in the x-z direction.
Definition: fe_base.h:596
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_d2phidxi2()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxi2 ( ) const
inherited
Returns
The shape function second derivatives at the quadrature points, in reference coordinates

Definition at line 345 of file fe_base.h.

References libMesh::FEAbstract::calculate_d2phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::d2phidxi2.

346  { libmesh_assert(!calculations_started || calculate_d2phi);
347  calculate_d2phi = calculate_dphiref = true; return d2phidxi2; }
bool calculate_d2phi
Should we calculate shape function hessians?
Definition: fe_abstract.h:552
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567
std::vector< std::vector< OutputShape > > d2phidxi2
Shape function second derivatives in the xi direction.
Definition: fe_base.h:556

◆ get_d2phidxideta()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxideta ( ) const
inherited
Returns
The shape function second derivatives at the quadrature points, in reference coordinates

Definition at line 353 of file fe_base.h.

References libMesh::FEAbstract::calculate_d2phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::d2phidxideta.

354  { libmesh_assert(!calculations_started || calculate_d2phi);
bool calculate_d2phi
Should we calculate shape function hessians?
Definition: fe_abstract.h:552
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
std::vector< std::vector< OutputShape > > d2phidxideta
Shape function second derivatives in the xi-eta direction.
Definition: fe_base.h:561
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_d2phidxidzeta()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxidzeta ( ) const
inherited
Returns
The shape function second derivatives at the quadrature points, in reference coordinates

Definition at line 361 of file fe_base.h.

References libMesh::FEAbstract::calculate_d2phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::d2phidxidzeta.

362  { libmesh_assert(!calculations_started || calculate_d2phi);
bool calculate_d2phi
Should we calculate shape function hessians?
Definition: fe_abstract.h:552
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
std::vector< std::vector< OutputShape > > d2phidxidzeta
Shape function second derivatives in the xi-zeta direction.
Definition: fe_base.h:566
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_d2phidy2()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidy2 ( ) const
inherited
Returns
The shape function second derivatives at the quadrature points.

Definition at line 321 of file fe_base.h.

References libMesh::FEAbstract::calculate_d2phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::d2phidy2.

322  { libmesh_assert(!calculations_started || calculate_d2phi);
323  calculate_d2phi = calculate_dphiref = true; return d2phidy2; }
bool calculate_d2phi
Should we calculate shape function hessians?
Definition: fe_abstract.h:552
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
std::vector< std::vector< OutputShape > > d2phidy2
Shape function second derivatives in the y direction.
Definition: fe_base.h:601
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_d2phidydz()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidydz ( ) const
inherited
Returns
The shape function second derivatives at the quadrature points.

Definition at line 329 of file fe_base.h.

References libMesh::FEAbstract::calculate_d2phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::d2phidydz.

330  { libmesh_assert(!calculations_started || calculate_d2phi);
331  calculate_d2phi = calculate_dphiref = true; return d2phidydz; }
bool calculate_d2phi
Should we calculate shape function hessians?
Definition: fe_abstract.h:552
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
std::vector< std::vector< OutputShape > > d2phidydz
Shape function second derivatives in the y-z direction.
Definition: fe_base.h:606
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_d2phidz2()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidz2 ( ) const
inherited
Returns
The shape function second derivatives at the quadrature points.

Definition at line 337 of file fe_base.h.

References libMesh::FEAbstract::calculate_d2phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::d2phidz2.

338  { libmesh_assert(!calculations_started || calculate_d2phi);
339  calculate_d2phi = calculate_dphiref = true; return d2phidz2; }
bool calculate_d2phi
Should we calculate shape function hessians?
Definition: fe_abstract.h:552
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567
std::vector< std::vector< OutputShape > > d2phidz2
Shape function second derivatives in the z direction.
Definition: fe_base.h:611

◆ get_d2phidzeta2()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidzeta2 ( ) const
inherited
Returns
The shape function second derivatives at the quadrature points, in reference coordinates

Definition at line 385 of file fe_base.h.

References libMesh::FEAbstract::calculate_d2phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::d2phidzeta2.

386  { libmesh_assert(!calculations_started || calculate_d2phi);
387  calculate_d2phi = calculate_dphiref = true; return d2phidzeta2; }
bool calculate_d2phi
Should we calculate shape function hessians?
Definition: fe_abstract.h:552
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567
std::vector< std::vector< OutputShape > > d2phidzeta2
Shape function second derivatives in the zeta direction.
Definition: fe_base.h:581

◆ get_d2xyzdeta2()

const std::vector<RealGradient>& libMesh::FEAbstract::get_d2xyzdeta2 ( ) const
inherited
Returns
The second partial derivatives in eta.

Definition at line 278 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

279  { return this->_fe_map->get_d2xyzdeta2(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_d2xyzdetadzeta()

const std::vector<RealGradient>& libMesh::FEAbstract::get_d2xyzdetadzeta ( ) const
inherited
Returns
The second partial derivatives in eta-zeta.

Definition at line 308 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

309  { return this->_fe_map->get_d2xyzdetadzeta(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_d2xyzdxi2()

const std::vector<RealGradient>& libMesh::FEAbstract::get_d2xyzdxi2 ( ) const
inherited
Returns
The second partial derivatives in xi.

Definition at line 272 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

273  { return this->_fe_map->get_d2xyzdxi2(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_d2xyzdxideta()

const std::vector<RealGradient>& libMesh::FEAbstract::get_d2xyzdxideta ( ) const
inherited
Returns
The second partial derivatives in xi-eta.

Definition at line 294 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

295  { return this->_fe_map->get_d2xyzdxideta(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_d2xyzdxidzeta()

const std::vector<RealGradient>& libMesh::FEAbstract::get_d2xyzdxidzeta ( ) const
inherited
Returns
The second partial derivatives in xi-zeta.

Definition at line 302 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

303  { return this->_fe_map->get_d2xyzdxidzeta(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_d2xyzdzeta2()

const std::vector<RealGradient>& libMesh::FEAbstract::get_d2xyzdzeta2 ( ) const
inherited
Returns
The second partial derivatives in zeta.

Definition at line 286 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

287  { return this->_fe_map->get_d2xyzdzeta2(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_detadx()

const std::vector<Real>& libMesh::FEAbstract::get_detadx ( ) const
inherited
Returns
The deta/dx entry in the transformation matrix from physical to local coordinates.

Definition at line 338 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

339  { return this->_fe_map->get_detadx(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_detady()

const std::vector<Real>& libMesh::FEAbstract::get_detady ( ) const
inherited
Returns
The deta/dy entry in the transformation matrix from physical to local coordinates.

Definition at line 345 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

346  { return this->_fe_map->get_detady(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_detadz()

const std::vector<Real>& libMesh::FEAbstract::get_detadz ( ) const
inherited
Returns
The deta/dz entry in the transformation matrix from physical to local coordinates.

Definition at line 352 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

353  { return this->_fe_map->get_detadz(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_dim()

unsigned int libMesh::FEAbstract::get_dim ( ) const
inherited
Returns
the dimension of this FE

Definition at line 231 of file fe_abstract.h.

References libMesh::FEAbstract::dim.

232  { return dim; }
const unsigned int dim
The dimensionality of the object.
Definition: fe_abstract.h:531

◆ get_div_phi()

const std::vector<std::vector<OutputDivergence> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_div_phi ( ) const
inherited
Returns
The divergence of the shape function at the quadrature points.

Definition at line 231 of file fe_base.h.

References libMesh::FEAbstract::calculate_div_phi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::div_phi.

232  { libmesh_assert(!calculations_started || calculate_div_phi);
233  calculate_div_phi = calculate_dphiref = true; return div_phi; }
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
bool calculate_div_phi
Should we calculate shape function divergences?
Definition: fe_abstract.h:562
std::vector< std::vector< OutputDivergence > > div_phi
Shape function divergence values.
Definition: fe_base.h:513
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_dphase()

const std::vector<OutputGradient>& libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphase ( ) const
inherited
Returns
The global first derivative of the phase term which is used in infinite elements, evaluated at the quadrature points.

In case of the general finite element class FE this field is initialized to all zero, so that the variational formulation for an infinite element produces correct element matrices for a mesh using both finite and infinite elements.

Definition at line 403 of file fe_base.h.

References libMesh::FEGenericBase< OutputType >::dphase.

404  { return dphase; }
std::vector< OutputGradient > dphase
Used for certain infinite element families: the first derivatives of the phase term in global coordin...
Definition: fe_base.h:629

◆ get_dphi()

const std::vector<std::vector<OutputGradient> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphi ( ) const
inherited
Returns
The shape function derivatives at the quadrature points.

Definition at line 215 of file fe_base.h.

References libMesh::FEAbstract::calculate_dphi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::dphi.

216  { libmesh_assert(!calculations_started || calculate_dphi);
217  calculate_dphi = calculate_dphiref = true; return dphi; }
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567
std::vector< std::vector< OutputGradient > > dphi
Shape function derivative values.
Definition: fe_base.h:503
bool calculate_dphi
Should we calculate shape function gradients?
Definition: fe_abstract.h:547

◆ get_dphideta()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphideta ( ) const
inherited
Returns
The shape function eta-derivative at the quadrature points.

Definition at line 271 of file fe_base.h.

References libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::dphideta.

272  { libmesh_assert(!calculations_started || calculate_dphiref);
273  calculate_dphiref = true; return dphideta; }
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567
std::vector< std::vector< OutputShape > > dphideta
Shape function derivatives in the eta direction.
Definition: fe_base.h:523

◆ get_dphidx()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidx ( ) const
inherited
Returns
The shape function x-derivative at the quadrature points.

Definition at line 239 of file fe_base.h.

References libMesh::FEAbstract::calculate_dphi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::dphidx.

240  { libmesh_assert(!calculations_started || calculate_dphi);
241  calculate_dphi = calculate_dphiref = true; return dphidx; }
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
std::vector< std::vector< OutputShape > > dphidx
Shape function derivatives in the x direction.
Definition: fe_base.h:533
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567
bool calculate_dphi
Should we calculate shape function gradients?
Definition: fe_abstract.h:547

◆ get_dphidxi()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidxi ( ) const
inherited
Returns
The shape function xi-derivative at the quadrature points.

Definition at line 263 of file fe_base.h.

References libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::dphidxi.

264  { libmesh_assert(!calculations_started || calculate_dphiref);
265  calculate_dphiref = true; return dphidxi; }
std::vector< std::vector< OutputShape > > dphidxi
Shape function derivatives in the xi direction.
Definition: fe_base.h:518
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_dphidy()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidy ( ) const
inherited
Returns
The shape function y-derivative at the quadrature points.

Definition at line 247 of file fe_base.h.

References libMesh::FEAbstract::calculate_dphi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::dphidy.

248  { libmesh_assert(!calculations_started || calculate_dphi);
249  calculate_dphi = calculate_dphiref = true; return dphidy; }
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
std::vector< std::vector< OutputShape > > dphidy
Shape function derivatives in the y direction.
Definition: fe_base.h:538
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567
bool calculate_dphi
Should we calculate shape function gradients?
Definition: fe_abstract.h:547

◆ get_dphidz()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidz ( ) const
inherited
Returns
The shape function z-derivative at the quadrature points.

Definition at line 255 of file fe_base.h.

References libMesh::FEAbstract::calculate_dphi, libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::dphidz.

256  { libmesh_assert(!calculations_started || calculate_dphi);
257  calculate_dphi = calculate_dphiref = true; return dphidz; }
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567
bool calculate_dphi
Should we calculate shape function gradients?
Definition: fe_abstract.h:547
std::vector< std::vector< OutputShape > > dphidz
Shape function derivatives in the z direction.
Definition: fe_base.h:543

◆ get_dphidzeta()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidzeta ( ) const
inherited
Returns
The shape function zeta-derivative at the quadrature points.

Definition at line 279 of file fe_base.h.

References libMesh::FEAbstract::calculate_dphiref, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::dphidzeta.

280  { libmesh_assert(!calculations_started || calculate_dphiref);
281  calculate_dphiref = true; return dphidzeta; }
std::vector< std::vector< OutputShape > > dphidzeta
Shape function derivatives in the zeta direction.
Definition: fe_base.h:528
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
bool calculate_dphiref
Should we calculate reference shape function gradients?
Definition: fe_abstract.h:567

◆ get_dxidx()

const std::vector<Real>& libMesh::FEAbstract::get_dxidx ( ) const
inherited
Returns
The dxi/dx entry in the transformation matrix from physical to local coordinates.

Definition at line 317 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

318  { return this->_fe_map->get_dxidx(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_dxidy()

const std::vector<Real>& libMesh::FEAbstract::get_dxidy ( ) const
inherited
Returns
The dxi/dy entry in the transformation matrix from physical to local coordinates.

Definition at line 324 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

325  { return this->_fe_map->get_dxidy(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_dxidz()

const std::vector<Real>& libMesh::FEAbstract::get_dxidz ( ) const
inherited
Returns
The dxi/dz entry in the transformation matrix from physical to local coordinates.

Definition at line 331 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

332  { return this->_fe_map->get_dxidz(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_dxyzdeta()

const std::vector<RealGradient>& libMesh::FEAbstract::get_dxyzdeta ( ) const
inherited
Returns
The element tangents in eta-direction at the quadrature points.

Definition at line 259 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

260  { return this->_fe_map->get_dxyzdeta(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_dxyzdxi()

const std::vector<RealGradient>& libMesh::FEAbstract::get_dxyzdxi ( ) const
inherited
Returns
The element tangents in xi-direction at the quadrature points.

Definition at line 252 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

253  { return this->_fe_map->get_dxyzdxi(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_dxyzdzeta()

const std::vector<RealGradient>& libMesh::FEAbstract::get_dxyzdzeta ( ) const
inherited
Returns
The element tangents in zeta-direction at the quadrature points.

Definition at line 266 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

267  { return _fe_map->get_dxyzdzeta(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_dzetadx()

const std::vector<Real>& libMesh::FEAbstract::get_dzetadx ( ) const
inherited
Returns
The dzeta/dx entry in the transformation matrix from physical to local coordinates.

Definition at line 359 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

360  { return this->_fe_map->get_dzetadx(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_dzetady()

const std::vector<Real>& libMesh::FEAbstract::get_dzetady ( ) const
inherited
Returns
The dzeta/dy entry in the transformation matrix from physical to local coordinates.

Definition at line 366 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

367  { return this->_fe_map->get_dzetady(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_dzetadz()

const std::vector<Real>& libMesh::FEAbstract::get_dzetadz ( ) const
inherited
Returns
The dzeta/dz entry in the transformation matrix from physical to local coordinates.

Definition at line 373 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

374  { return this->_fe_map->get_dzetadz(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_family()

FEFamily libMesh::FEAbstract::get_family ( ) const
inherited
Returns
The finite element family of this element.

Definition at line 455 of file fe_abstract.h.

References libMesh::FEType::family, and libMesh::FEAbstract::fe_type.

455 { return fe_type.family; }
FEFamily family
The type of finite element.
Definition: fe_type.h:204
FEType fe_type
The finite element type for this object.
Definition: fe_abstract.h:575

◆ get_fe_map()

const FEMap& libMesh::FEAbstract::get_fe_map ( ) const
inherited
Returns
The mapping object

Definition at line 460 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

460 { return *_fe_map.get(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_fe_type()

FEType libMesh::FEAbstract::get_fe_type ( ) const
inherited
Returns
The FE Type (approximation order and family) of the finite element.

Definition at line 429 of file fe_abstract.h.

References libMesh::FEAbstract::fe_type.

Referenced by libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::operator()(), FETest< order, family, elem_type >::testGradU(), FETest< order, family, elem_type >::testGradUComp(), and FETest< order, family, elem_type >::testU().

429 { return fe_type; }
FEType fe_type
The finite element type for this object.
Definition: fe_abstract.h:575

◆ get_info()

static std::string libMesh::ReferenceCounter::get_info ( )
staticinherited

Gets a string containing the reference information.

◆ get_JxW()

const std::vector<Real>& libMesh::FEAbstract::get_JxW ( ) const
inherited
Returns
The element Jacobian times the quadrature weight for each quadrature point.

Definition at line 245 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

Referenced by ElasticityRBConstruction::init_context(), and libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::operator()().

246  { return this->_fe_map->get_JxW(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_normals()

const std::vector<Point>& libMesh::FEAbstract::get_normals ( ) const
inherited
Returns
The outward pointing normal vectors for face integration.

Definition at line 385 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

Referenced by libMesh::ParsedFEMFunction< T >::eval_args(), and libMesh::ParsedFEMFunction< T >::init_context().

386  { return this->_fe_map->get_normals(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_order()

Order libMesh::FEAbstract::get_order ( ) const
inherited
Returns
The approximation order of the finite element.

Definition at line 434 of file fe_abstract.h.

References libMesh::FEAbstract::_p_level, libMesh::FEAbstract::fe_type, and libMesh::FEType::order.

434 { return static_cast<Order>(fe_type.order + _p_level); }
Order
defines an enum for polynomial orders.
Definition: enum_order.h:40
unsigned int _p_level
The p refinement level the current data structures are set up for.
Definition: fe_abstract.h:587
OrderWrapper order
The approximation order of the element.
Definition: fe_type.h:198
FEType fe_type
The finite element type for this object.
Definition: fe_abstract.h:575

◆ get_p_level()

unsigned int libMesh::FEAbstract::get_p_level ( ) const
inherited
Returns
The p refinement level that the current shape functions have been calculated for.

Definition at line 424 of file fe_abstract.h.

References libMesh::FEAbstract::_p_level.

424 { return _p_level; }
unsigned int _p_level
The p refinement level the current data structures are set up for.
Definition: fe_abstract.h:587

◆ get_phi()

const std::vector<std::vector<OutputShape> >& libMesh::FEGenericBase< FEOutputType< T >::type >::get_phi ( ) const
inherited
Returns
The shape function values at the quadrature points on the element.

Definition at line 207 of file fe_base.h.

References libMesh::FEAbstract::calculate_phi, libMesh::FEAbstract::calculations_started, and libMesh::FEGenericBase< OutputType >::phi.

208  { libmesh_assert(!calculations_started || calculate_phi);
209  calculate_phi = true; return phi; }
bool calculations_started
Have calculations with this object already been started? Then all get_* functions should already have...
Definition: fe_abstract.h:537
bool calculate_phi
Should we calculate shape functions?
Definition: fe_abstract.h:542
std::vector< std::vector< OutputShape > > phi
Shape function values.
Definition: fe_base.h:498

◆ get_refspace_nodes()

static void libMesh::FEAbstract::get_refspace_nodes ( const ElemType  t,
std::vector< Point > &  nodes 
)
staticinherited
Returns
The reference space coordinates of nodes based on the element type.

◆ get_Sobolev_dweight()

const std::vector<RealGradient>& libMesh::FEGenericBase< FEOutputType< T >::type >::get_Sobolev_dweight ( ) const
inherited
Returns
The first global derivative of the multiplicative weight at each quadrature point. See get_Sobolev_weight() for details. In case of FE initialized to all zero.

Definition at line 427 of file fe_base.h.

References libMesh::FEGenericBase< OutputType >::dweight.

428  { return dweight; }
std::vector< RealGradient > dweight
Used for certain infinite element families: the global derivative of the additional radial weight ...
Definition: fe_base.h:636

◆ get_Sobolev_weight()

const std::vector<Real>& libMesh::FEGenericBase< FEOutputType< T >::type >::get_Sobolev_weight ( ) const
inherited
Returns
The multiplicative weight at each quadrature point. This weight is used for certain infinite element weak formulations, so that weighted Sobolev spaces are used for the trial function space. This renders the variational form easily computable.

In case of the general finite element class FE this field is initialized to all ones, so that the variational formulation for an infinite element produces correct element matrices for a mesh using both finite and infinite elements.

Definition at line 419 of file fe_base.h.

References libMesh::FEGenericBase< OutputType >::weight.

420  { return weight; }
std::vector< Real > weight
Used for certain infinite element families: the additional radial weight in local coordinates...
Definition: fe_base.h:643

◆ get_tangents()

const std::vector<std::vector<Point> >& libMesh::FEAbstract::get_tangents ( ) const
inherited
Returns
The tangent vectors for face integration.

Definition at line 379 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

380  { return this->_fe_map->get_tangents(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ get_type()

ElemType libMesh::FEAbstract::get_type ( ) const
inherited
Returns
The element type that the current shape functions have been calculated for. Useful in determining when shape functions must be recomputed.

Definition at line 418 of file fe_abstract.h.

References libMesh::FEAbstract::elem_type.

418 { return elem_type; }
ElemType elem_type
The element type the current data structures are set up for.
Definition: fe_abstract.h:581

◆ get_xyz()

const std::vector<Point>& libMesh::FEAbstract::get_xyz ( ) const
inherited
Returns
The xyz spatial locations of the quadrature points on the element.

Definition at line 238 of file fe_abstract.h.

References libMesh::FEAbstract::_fe_map.

Referenced by libMesh::ParsedFEMFunction< T >::eval_args(), libMesh::ParsedFEMFunction< T >::init_context(), and libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::operator()().

239  { return this->_fe_map->get_xyz(); }
std::unique_ptr< FEMap > _fe_map
Definition: fe_abstract.h:525

◆ increment_constructor_count()

void libMesh::ReferenceCounter::increment_constructor_count ( const std::string &  name)
protectedinherited

Increments the construction counter.

Should be called in the constructor of any derived class that will be reference counted.

Definition at line 181 of file reference_counter.h.

References libMesh::ReferenceCounter::_counts, libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::ReferenceCountedObject().

182 {
183  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
184  std::pair<unsigned int, unsigned int> & p = _counts[name];
185 
186  p.first++;
187 }
std::string name(const ElemQuality q)
static Counts _counts
Actually holds the data.
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.

◆ increment_destructor_count()

void libMesh::ReferenceCounter::increment_destructor_count ( const std::string &  name)
protectedinherited

Increments the destruction counter.

Should be called in the destructor of any derived class that will be reference counted.

Definition at line 194 of file reference_counter.h.

References libMesh::ReferenceCounter::_counts, libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::~ReferenceCountedObject().

195 {
196  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
197  std::pair<unsigned int, unsigned int> & p = _counts[name];
198 
199  p.second++;
200 }
std::string name(const ElemQuality q)
static Counts _counts
Actually holds the data.
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.

◆ init_base_shape_functions()

virtual void libMesh::FE< Dim, T >::init_base_shape_functions ( const std::vector< Point > &  qp,
const Elem e 
)
overrideprotectedvirtualinherited

Initialize the data fields for the base of an an infinite element.

Implements libMesh::FEGenericBase< FEOutputType< T >::type >.

◆ init_shape_functions()

template<unsigned int Dim>
virtual void libMesh::FEXYZ< Dim >::init_shape_functions ( const std::vector< Point > &  qp,
const Elem e 
)
overrideprotectedvirtual

Update the various member data fields phi, dphidxi, dphideta, dphidzeta, etc.

for the current element. These data will be computed at the points qp, which are generally (but need not be) the quadrature points.

Reimplemented from libMesh::FE< Dim, XYZ >.

◆ inverse_map() [1/2]

static Point libMesh::FE< Dim, T >::inverse_map ( const Elem elem,
const Point p,
const Real  tolerance = TOLERANCE,
const bool  secure = true 
)
staticinherited
Returns
The location (on the reference element) of the point p located in physical space. This function requires inverting the (possibly nonlinear) transformation map, so it is not trivial. The optional parameter tolerance defines how close is "good enough." The map inversion iteration computes the sequence $ \{ p_n \} $, and the iteration is terminated when $ \|p - p_n\| < \mbox{\texttt{tolerance}} $

◆ inverse_map() [2/2]

static void libMesh::FE< Dim, T >::inverse_map ( const Elem elem,
const std::vector< Point > &  physical_points,
std::vector< Point > &  reference_points,
const Real  tolerance = TOLERANCE,
const bool  secure = true 
)
staticinherited

Takes a number points in physical space (in the physical_points vector) and finds their location on the reference element for the input element elem.

The values on the reference element are returned in the vector reference_points. The optional parameter tolerance defines how close is "good enough." The map inversion iteration computes the sequence $ \{ p_n \} $, and the iteration is terminated when $ \|p - p_n\| < \mbox{\texttt{tolerance}} $

◆ is_hierarchic()

virtual bool libMesh::FE< Dim, T >::is_hierarchic ( ) const
overridevirtualinherited
Returns
true if the finite element's higher order shape functions are hierarchic

Implements libMesh::FEAbstract.

◆ map()

static Point libMesh::FE< Dim, T >::map ( const Elem elem,
const Point reference_point 
)
staticinherited
Returns
The location (in physical space) of the point p located on the reference element.

◆ map_eta()

static Point libMesh::FE< Dim, T >::map_eta ( const Elem elem,
const Point reference_point 
)
staticinherited
Returns
d(xyz)/deta (in physical space) of the point p located on the reference element.

◆ map_xi()

static Point libMesh::FE< Dim, T >::map_xi ( const Elem elem,
const Point reference_point 
)
staticinherited
Returns
d(xyz)/dxi (in physical space) of the point p located on the reference element.

◆ map_zeta()

static Point libMesh::FE< Dim, T >::map_zeta ( const Elem elem,
const Point reference_point 
)
staticinherited
Returns
d(xyz)/dzeta (in physical space) of the point p located on the reference element.

◆ n_dofs()

static unsigned int libMesh::FE< Dim, T >::n_dofs ( const ElemType  t,
const Order  o 
)
staticinherited
Returns
The number of shape functions associated with this finite element.

On a p-refined element, o should be the total order of the element.

◆ n_dofs_at_node()

static unsigned int libMesh::FE< Dim, T >::n_dofs_at_node ( const ElemType  t,
const Order  o,
const unsigned int  n 
)
staticinherited
Returns
The number of dofs at node n for a finite element of type t and order o.

On a p-refined element, o should be the total order of the element.

◆ n_dofs_per_elem()

static unsigned int libMesh::FE< Dim, T >::n_dofs_per_elem ( const ElemType  t,
const Order  o 
)
staticinherited
Returns
The number of dofs interior to the element, not associated with any interior nodes.

On a p-refined element, o should be the total order of the element.

◆ n_objects()

static unsigned int libMesh::ReferenceCounter::n_objects ( )
staticinherited

Prints the number of outstanding (created, but not yet destroyed) objects.

Definition at line 83 of file reference_counter.h.

References libMesh::ReferenceCounter::_n_objects.

84  { return _n_objects; }
static Threads::atomic< unsigned int > _n_objects
The number of objects.

◆ n_quadrature_points()

virtual unsigned int libMesh::FE< Dim, T >::n_quadrature_points ( ) const
overridevirtualinherited
Returns
The total number of quadrature points. Call this to get an upper bound for the for loop in your simulation for matrix assembly of the current element.

Implements libMesh::FEAbstract.

◆ n_shape_functions() [1/2]

virtual unsigned int libMesh::FE< Dim, T >::n_shape_functions ( ) const
overridevirtualinherited
Returns
The number of shape functions associated with this finite element.

Implements libMesh::FEAbstract.

◆ n_shape_functions() [2/2]

static unsigned int libMesh::FE< Dim, T >::n_shape_functions ( const ElemType  t,
const Order  o 
)
staticinherited
Returns
The number of shape functions associated with a finite element of type t and approximation order o.

On a p-refined element, o should be the total order of the element.

Definition at line 228 of file fe.h.

230  { return FE<Dim,T>::n_dofs (t,o); }

◆ nodal_soln()

static void libMesh::FE< Dim, T >::nodal_soln ( const Elem elem,
const Order  o,
const std::vector< Number > &  elem_soln,
std::vector< Number > &  nodal_soln 
)
staticinherited

Build the nodal soln from the element soln.

This is the solution that will be plotted.

On a p-refined element, o should be the base order of the element.

◆ on_reference_element()

static bool libMesh::FEAbstract::on_reference_element ( const Point p,
const ElemType  t,
const Real  eps = TOLERANCE 
)
staticinherited
Returns
true if the point p is located on the reference element for element type t, false otherwise. Since we are doing floating point comparisons here the parameter eps can be specified to indicate a tolerance. For example, $ x \le 1 $ becomes $ x \le 1 + \epsilon $.

◆ print_d2phi()

void libMesh::FEGenericBase< FEOutputType< T >::type >::print_d2phi ( std::ostream &  os) const
virtualinherited

Prints the value of each shape function's second derivatives at each quadrature point.

Implements libMesh::FEAbstract.

◆ print_dphi()

void libMesh::FEGenericBase< FEOutputType< T >::type >::print_dphi ( std::ostream &  os) const
virtualinherited

Prints the value of each shape function's derivative at each quadrature point.

Implements libMesh::FEAbstract.

◆ print_info() [1/2]

static void libMesh::ReferenceCounter::print_info ( std::ostream &  out = libMesh::out)
staticinherited

Prints the reference information, by default to libMesh::out.

◆ print_info() [2/2]

void libMesh::FEAbstract::print_info ( std::ostream &  os) const
inherited

Prints all the relevant information about the current element.

◆ print_JxW()

void libMesh::FEAbstract::print_JxW ( std::ostream &  os) const
inherited

Prints the Jacobian times the weight for each quadrature point.

◆ print_phi()

void libMesh::FEGenericBase< FEOutputType< T >::type >::print_phi ( std::ostream &  os) const
virtualinherited

Prints the value of each shape function at each quadrature point.

Implements libMesh::FEAbstract.

◆ print_xyz()

void libMesh::FEAbstract::print_xyz ( std::ostream &  os) const
inherited

Prints the spatial location of each quadrature point (on the physical element).

◆ reinit() [1/2]

template<unsigned int Dim>
virtual void libMesh::FEXYZ< Dim >::reinit ( const Elem elem,
const std::vector< Point > *const  pts = nullptr,
const std::vector< Real > *const  weights = nullptr 
)
overridevirtual

Explicitly call base class method.

This prevents some compilers being confused by partially overriding this virtual function.

Reimplemented from libMesh::FE< Dim, XYZ >.

Definition at line 841 of file fe.h.

References libMesh::FE< Dim, T >::reinit().

844  { FE<Dim,XYZ>::reinit (elem, pts, weights); }
virtual void reinit(const Elem *elem, const std::vector< Point > *const pts=nullptr, const std::vector< Real > *const weights=nullptr) override
This is at the core of this class.

◆ reinit() [2/2]

template<unsigned int Dim>
virtual void libMesh::FEXYZ< Dim >::reinit ( const Elem elem,
const unsigned int  side,
const Real  tolerance = TOLERANCE,
const std::vector< Point > *const  pts = nullptr,
const std::vector< Real > *const  weights = nullptr 
)
overridevirtual

Reinitializes all the physical element-dependent data based on the side of face.

Reimplemented from libMesh::FE< Dim, XYZ >.

◆ set_fe_order()

void libMesh::FEAbstract::set_fe_order ( int  new_order)
inherited

Sets the base FE order of the finite element.

Definition at line 439 of file fe_abstract.h.

References libMesh::FEAbstract::fe_type, and libMesh::FEType::order.

439 { fe_type.order = new_order; }
OrderWrapper order
The approximation order of the element.
Definition: fe_type.h:198
FEType fe_type
The finite element type for this object.
Definition: fe_abstract.h:575

◆ shape() [1/3]

static OutputShape libMesh::FE< Dim, T >::shape ( const ElemType  t,
const Order  o,
const unsigned int  i,
const Point p 
)
staticinherited
Returns
The value of the $ i^{th} $ shape function at point p. This method allows you to specify the dimension, element type, and order directly. This allows the method to be static.

On a p-refined element, o should be the total order of the element.

◆ shape() [2/3]

static OutputShape libMesh::FE< Dim, T >::shape ( const Elem elem,
const Order  o,
const unsigned int  i,
const Point p 
)
staticinherited
Returns
The value of the $ i^{th} $ shape function at point p. This method allows you to specify the dimension, element type, and order directly. This allows the method to be static.

On a p-refined element, o should be the base order of the element.

◆ shape() [3/3]

Real libMesh::FE< 2, SUBDIVISION >::shape ( const Elem elem,
const Order  order,
const unsigned int  i,
const Point p 
)
inherited

Subdivision finite elements.

Template specialization prototypes are needed for calling from inside FESubdivision::init_shape_functions

◆ shape_deriv() [1/3]

static OutputShape libMesh::FE< Dim, T >::shape_deriv ( const ElemType  t,
const Order  o,
const unsigned int  i,
const unsigned int  j,
const Point p 
)
staticinherited
Returns
The $ j^{th} $ derivative of the $ i^{th} $ shape function at point p. This method allows you to specify the dimension, element type, and order directly.

On a p-refined element, o should be the total order of the element.

◆ shape_deriv() [2/3]

static OutputShape libMesh::FE< Dim, T >::shape_deriv ( const Elem elem,
const Order  o,
const unsigned int  i,
const unsigned int  j,
const Point p 
)
staticinherited
Returns
The $ j^{th} $ derivative of the $ i^{th} $ shape function. You must specify element type, and order directly.

On a p-refined element, o should be the base order of the element.

◆ shape_deriv() [3/3]

Real libMesh::FE< 2, SUBDIVISION >::shape_deriv ( const Elem elem,
const Order  order,
const unsigned int  i,
const unsigned int  j,
const Point p 
)
inherited

◆ shape_second_deriv() [1/3]

static OutputShape libMesh::FE< Dim, T >::shape_second_deriv ( const ElemType  t,
const Order  o,
const unsigned int  i,
const unsigned int  j,
const Point p 
)
staticinherited
Returns
The second $ j^{th} $ derivative of the $ i^{th} $ shape function at the point p.
Note
Cross-derivatives are indexed according to: j = 0 ==> d^2 phi / dxi^2 j = 1 ==> d^2 phi / dxi deta j = 2 ==> d^2 phi / deta^2 j = 3 ==> d^2 phi / dxi dzeta j = 4 ==> d^2 phi / deta dzeta j = 5 ==> d^2 phi / dzeta^2
Computing second derivatives is not currently supported for all element types: $ C^1 $ (Clough, Hermite and Subdivision), Lagrange, Hierarchic, L2_Hierarchic, and Monomial are supported. All other element types return an error when asked for second derivatives.

On a p-refined element, o should be the total order of the element.

◆ shape_second_deriv() [2/3]

static OutputShape libMesh::FE< Dim, T >::shape_second_deriv ( const Elem elem,
const Order  o,
const unsigned int  i,
const unsigned int  j,
const Point p 
)
staticinherited
Returns
The second $ j^{th} $ derivative of the $ i^{th} $ shape function at the point p.
Note
Cross-derivatives are indexed according to: j = 0 ==> d^2 phi / dxi^2 j = 1 ==> d^2 phi / dxi deta j = 2 ==> d^2 phi / deta^2 j = 3 ==> d^2 phi / dxi dzeta j = 4 ==> d^2 phi / deta dzeta j = 5 ==> d^2 phi / dzeta^2
Computing second derivatives is not currently supported for all element types: $ C^1 $ (Clough, Hermite and Subdivision), Lagrange, Hierarchic, L2_Hierarchic, and Monomial are supported. All other element types return an error when asked for second derivatives.

On a p-refined element, o should be the base order of the element.

◆ shape_second_deriv() [3/3]

Real libMesh::FE< 2, SUBDIVISION >::shape_second_deriv ( const Elem elem,
const Order  order,
const unsigned int  i,
const unsigned int  j,
const Point p 
)
inherited

◆ shapes_need_reinit()

virtual bool libMesh::FE< Dim, T >::shapes_need_reinit ( ) const
overridevirtualinherited
Returns
true when the shape functions (for this FEFamily) depend on the particular element, and therefore needs to be re-initialized for each new element. false otherwise.

Implements libMesh::FEAbstract.

◆ side_map()

virtual void libMesh::FE< Dim, T >::side_map ( const Elem elem,
const Elem side,
const unsigned int  s,
const std::vector< Point > &  reference_side_points,
std::vector< Point > &  reference_points 
)
overridevirtualinherited

Computes the reference space quadrature points on the side of an element based on the side quadrature points.

Implements libMesh::FEAbstract.

Member Data Documentation

◆ _counts

Counts libMesh::ReferenceCounter::_counts
staticprotectedinherited

◆ _enable_print_counter

bool libMesh::ReferenceCounter::_enable_print_counter
staticprotectedinherited

Flag to control whether reference count information is printed when print_info is called.

Definition at line 141 of file reference_counter.h.

◆ _fe_map

std::unique_ptr<FEMap> libMesh::FEAbstract::_fe_map
protectedinherited

◆ _fe_trans

std::unique_ptr<FETransformationBase<FEOutputType< T >::type > > libMesh::FEGenericBase< FEOutputType< T >::type >::_fe_trans
protectedinherited

Object that handles computing shape function values, gradients, etc in the physical domain.

Definition at line 493 of file fe_base.h.

◆ _mutex

Threads::spin_mutex libMesh::ReferenceCounter::_mutex
staticprotectedinherited

Mutual exclusion object to enable thread-safe reference counting.

Definition at line 135 of file reference_counter.h.

◆ _n_objects

Threads::atomic<unsigned int> libMesh::ReferenceCounter::_n_objects
staticprotectedinherited

The number of objects.

Print the reference count information when the number returns to 0.

Definition at line 130 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::n_objects(), libMesh::ReferenceCounter::ReferenceCounter(), and libMesh::ReferenceCounter::~ReferenceCounter().

◆ _p_level

unsigned int libMesh::FEAbstract::_p_level
protectedinherited

The p refinement level the current data structures are set up for.

Definition at line 587 of file fe_abstract.h.

Referenced by libMesh::FEAbstract::get_order(), and libMesh::FEAbstract::get_p_level().

◆ cached_nodes

std::vector<Point> libMesh::FE< Dim, T >::cached_nodes
protectedinherited

An array of the node locations on the last element we computed on.

Definition at line 475 of file fe.h.

◆ calculate_curl_phi

bool libMesh::FEAbstract::calculate_curl_phi
mutableprotectedinherited

Should we calculate shape function curls?

Definition at line 557 of file fe_abstract.h.

Referenced by libMesh::FEGenericBase< FEOutputType< T >::type >::get_curl_phi().

◆ calculate_d2phi

bool libMesh::FEAbstract::calculate_d2phi
mutableprotectedinherited

◆ calculate_div_phi

bool libMesh::FEAbstract::calculate_div_phi
mutableprotectedinherited

Should we calculate shape function divergences?

Definition at line 562 of file fe_abstract.h.

Referenced by libMesh::FEGenericBase< FEOutputType< T >::type >::get_div_phi().

◆ calculate_dphi

bool libMesh::FEAbstract::calculate_dphi
mutableprotectedinherited

◆ calculate_dphiref

bool libMesh::FEAbstract::calculate_dphiref
mutableprotectedinherited

Should we calculate reference shape function gradients?

Definition at line 567 of file fe_abstract.h.

Referenced by libMesh::FEGenericBase< FEOutputType< T >::type >::get_curl_phi(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phi(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phideta2(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidetadzeta(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidx2(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxdy(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxdz(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxi2(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxideta(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxidzeta(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidy2(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidydz(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidz2(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidzeta2(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_div_phi(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphi(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphideta(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidx(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidxi(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidy(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidz(), and libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidzeta().

◆ calculate_phi

bool libMesh::FEAbstract::calculate_phi
mutableprotectedinherited

Should we calculate shape functions?

Definition at line 542 of file fe_abstract.h.

Referenced by libMesh::FEGenericBase< FEOutputType< T >::type >::get_phi().

◆ calculations_started

bool libMesh::FEAbstract::calculations_started
mutableprotectedinherited

Have calculations with this object already been started? Then all get_* functions should already have been called.

Definition at line 537 of file fe_abstract.h.

Referenced by libMesh::FEGenericBase< FEOutputType< T >::type >::get_curl_phi(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phi(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phideta2(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidetadzeta(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidx2(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxdy(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxdz(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxi2(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxideta(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidxidzeta(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidy2(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidydz(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidz2(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_d2phidzeta2(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_div_phi(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphi(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphideta(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidx(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidxi(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidy(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidz(), libMesh::FEGenericBase< FEOutputType< T >::type >::get_dphidzeta(), and libMesh::FEGenericBase< FEOutputType< T >::type >::get_phi().

◆ curl_phi

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::curl_phi
protectedinherited

Shape function curl values.

Only defined for vector types.

Definition at line 508 of file fe_base.h.

◆ d2phi

std::vector<std::vector<OutputTensor> > libMesh::FEGenericBase< FEOutputType< T >::type >::d2phi
protectedinherited

Shape function second derivative values.

Definition at line 551 of file fe_base.h.

◆ d2phideta2

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::d2phideta2
protectedinherited

Shape function second derivatives in the eta direction.

Definition at line 571 of file fe_base.h.

◆ d2phidetadzeta

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::d2phidetadzeta
protectedinherited

Shape function second derivatives in the eta-zeta direction.

Definition at line 576 of file fe_base.h.

◆ d2phidx2

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::d2phidx2
protectedinherited

Shape function second derivatives in the x direction.

Definition at line 586 of file fe_base.h.

◆ d2phidxdy

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::d2phidxdy
protectedinherited

Shape function second derivatives in the x-y direction.

Definition at line 591 of file fe_base.h.

◆ d2phidxdz

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::d2phidxdz
protectedinherited

Shape function second derivatives in the x-z direction.

Definition at line 596 of file fe_base.h.

◆ d2phidxi2

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::d2phidxi2
protectedinherited

Shape function second derivatives in the xi direction.

Definition at line 556 of file fe_base.h.

◆ d2phidxideta

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::d2phidxideta
protectedinherited

Shape function second derivatives in the xi-eta direction.

Definition at line 561 of file fe_base.h.

◆ d2phidxidzeta

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::d2phidxidzeta
protectedinherited

Shape function second derivatives in the xi-zeta direction.

Definition at line 566 of file fe_base.h.

◆ d2phidy2

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::d2phidy2
protectedinherited

Shape function second derivatives in the y direction.

Definition at line 601 of file fe_base.h.

◆ d2phidydz

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::d2phidydz
protectedinherited

Shape function second derivatives in the y-z direction.

Definition at line 606 of file fe_base.h.

◆ d2phidz2

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::d2phidz2
protectedinherited

Shape function second derivatives in the z direction.

Definition at line 611 of file fe_base.h.

◆ d2phidzeta2

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::d2phidzeta2
protectedinherited

Shape function second derivatives in the zeta direction.

Definition at line 581 of file fe_base.h.

◆ dim

const unsigned int libMesh::FEAbstract::dim
protectedinherited

The dimensionality of the object.

Definition at line 531 of file fe_abstract.h.

Referenced by libMesh::FEAbstract::get_dim().

◆ div_phi

std::vector<std::vector<OutputDivergence> > libMesh::FEGenericBase< FEOutputType< T >::type >::div_phi
protectedinherited

Shape function divergence values.

Only defined for vector types.

Definition at line 513 of file fe_base.h.

◆ dphase

std::vector<OutputGradient> libMesh::FEGenericBase< FEOutputType< T >::type >::dphase
protectedinherited

Used for certain infinite element families: the first derivatives of the phase term in global coordinates, over all quadrature points.

Definition at line 629 of file fe_base.h.

◆ dphi

std::vector<std::vector<OutputGradient> > libMesh::FEGenericBase< FEOutputType< T >::type >::dphi
protectedinherited

Shape function derivative values.

Definition at line 503 of file fe_base.h.

◆ dphideta

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::dphideta
protectedinherited

Shape function derivatives in the eta direction.

Definition at line 523 of file fe_base.h.

◆ dphidx

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::dphidx
protectedinherited

Shape function derivatives in the x direction.

Definition at line 533 of file fe_base.h.

◆ dphidxi

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::dphidxi
protectedinherited

Shape function derivatives in the xi direction.

Definition at line 518 of file fe_base.h.

◆ dphidy

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::dphidy
protectedinherited

Shape function derivatives in the y direction.

Definition at line 538 of file fe_base.h.

◆ dphidz

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::dphidz
protectedinherited

Shape function derivatives in the z direction.

Definition at line 543 of file fe_base.h.

◆ dphidzeta

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::dphidzeta
protectedinherited

Shape function derivatives in the zeta direction.

Definition at line 528 of file fe_base.h.

◆ dweight

std::vector<RealGradient> libMesh::FEGenericBase< FEOutputType< T >::type >::dweight
protectedinherited

Used for certain infinite element families: the global derivative of the additional radial weight $ 1/{r^2} $, over all quadrature points.

Definition at line 636 of file fe_base.h.

◆ elem_type

ElemType libMesh::FEAbstract::elem_type
protectedinherited

The element type the current data structures are set up for.

Definition at line 581 of file fe_abstract.h.

Referenced by libMesh::FEAbstract::get_type().

◆ fe_type

FEType libMesh::FEAbstract::fe_type
protectedinherited

The finite element type for this object.

Note
This should be constant for the object.

Definition at line 575 of file fe_abstract.h.

Referenced by libMesh::FEAbstract::get_family(), libMesh::FEAbstract::get_fe_type(), libMesh::FEAbstract::get_order(), and libMesh::FEAbstract::set_fe_order().

◆ last_edge

unsigned int libMesh::FE< Dim, T >::last_edge
protectedinherited

Definition at line 482 of file fe.h.

◆ last_side

ElemType libMesh::FE< Dim, T >::last_side
protectedinherited

The last side and last edge we did a reinit on.

Definition at line 480 of file fe.h.

◆ phi

std::vector<std::vector<OutputShape> > libMesh::FEGenericBase< FEOutputType< T >::type >::phi
protectedinherited

Shape function values.

Definition at line 498 of file fe_base.h.

◆ qrule

QBase* libMesh::FEAbstract::qrule
protectedinherited

A pointer to the quadrature rule employed.

Definition at line 592 of file fe_abstract.h.

◆ shapes_on_quadrature

bool libMesh::FEAbstract::shapes_on_quadrature
protectedinherited

A flag indicating if current data structures correspond to quadrature rule points.

Definition at line 598 of file fe_abstract.h.

◆ weight

std::vector<Real> libMesh::FEGenericBase< FEOutputType< T >::type >::weight
protectedinherited

Used for certain infinite element families: the additional radial weight $ 1/{r^2} $ in local coordinates, over all quadrature points.

Definition at line 643 of file fe_base.h.


The documentation for this class was generated from the following file: