www.mooseframework.org
Public Member Functions | Static Public Member Functions | Public Attributes | Protected Member Functions | List of all members
TensorMechanicsPlasticModel Class Referenceabstract

Plastic Model base class The virtual functions written below must be over-ridden in derived classes to provide actual values. More...

#include <TensorMechanicsPlasticModel.h>

Inheritance diagram for TensorMechanicsPlasticModel:
[legend]

Public Member Functions

 TensorMechanicsPlasticModel (const InputParameters &parameters)
 
void initialize ()
 
void execute ()
 
void finalize ()
 
virtual unsigned int numberSurfaces () const
 The number of yield surfaces for this plasticity model. More...
 
virtual void yieldFunctionV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
 Calculates the yield functions. More...
 
virtual void dyieldFunction_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &df_dstress) const
 The derivative of yield functions with respect to stress. More...
 
virtual void dyieldFunction_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &df_dintnl) const
 The derivative of yield functions with respect to the internal parameter. More...
 
virtual void flowPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &r) const
 The flow potentials. More...
 
virtual void dflowPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankFourTensor > &dr_dstress) const
 The derivative of the flow potential with respect to stress. More...
 
virtual void dflowPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dr_dintnl) const
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual void hardPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &h) const
 The hardening potential. More...
 
virtual void dhardPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dh_dstress) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual void dhardPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &dh_dintnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual void activeConstraints (const std::vector< Real > &f, const RankTwoTensor &stress, Real intnl, const RankFourTensor &Eijkl, std::vector< bool > &act, RankTwoTensor &returned_stress) const
 The active yield surfaces, given a vector of yield functions. More...
 
virtual std::string modelName () const =0
 
virtual bool useCustomReturnMap () const
 Returns false. You will want to override this in your derived class if you write a custom returnMap function. More...
 
virtual bool useCustomCTO () const
 Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function. More...
 
virtual bool returnMap (const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const
 Performs a custom return-map. More...
 
virtual RankFourTensor consistentTangentOperator (const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const
 Calculates a custom consistent tangent operator. More...
 
bool KuhnTuckerSingleSurface (Real yf, Real dpm, Real dpm_tol) const
 Returns true if the Kuhn-Tucker conditions for the single surface are satisfied. More...
 

Static Public Member Functions

static InputParameters validParams ()
 

Public Attributes

const Real _f_tol
 Tolerance on yield function. More...
 
const Real _ic_tol
 Tolerance on internal constraint. More...
 

Protected Member Functions

virtual Real yieldFunction (const RankTwoTensor &stress, Real intnl) const
 The following functions are what you should override when building single-plasticity models. More...
 
virtual RankTwoTensor dyieldFunction_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of yield function with respect to stress. More...
 
virtual Real dyieldFunction_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of yield function with respect to the internal parameter. More...
 
virtual RankTwoTensor flowPotential (const RankTwoTensor &stress, Real intnl) const
 The flow potential. More...
 
virtual RankFourTensor dflowPotential_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of the flow potential with respect to stress. More...
 
virtual RankTwoTensor dflowPotential_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual Real hardPotential (const RankTwoTensor &stress, Real intnl) const
 The hardening potential. More...
 
virtual RankTwoTensor dhardPotential_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual Real dhardPotential_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 

Detailed Description

Plastic Model base class The virtual functions written below must be over-ridden in derived classes to provide actual values.

It is assumed there is only one internal parameter, and that is a function of the plastic multiplier, with rate given by hardPotential

For better or worse, I have created two versions of all functions (eg yieldFunction, flowPotential, etc). This is so that for single-surface plasticity you can just override the 'protected' functions: Real yieldFunction(stress, intnl) (and similar), and don't have to worry about all the multi-surface stuff, since in multi-surface yieldFunction (etc) return std::vectors of stuff. In the case of multi-surface plasticity models you DO need to override the 'public' functions (with a 'V' in their name): void yieldFunctionV(stress, intnl, f) versions.

Definition at line 42 of file TensorMechanicsPlasticModel.h.

Constructor & Destructor Documentation

◆ TensorMechanicsPlasticModel()

TensorMechanicsPlasticModel::TensorMechanicsPlasticModel ( const InputParameters &  parameters)

Definition at line 34 of file TensorMechanicsPlasticModel.C.

35  : GeneralUserObject(parameters),
36  _f_tol(getParam<Real>("yield_function_tolerance")),
37  _ic_tol(getParam<Real>("internal_constraint_tolerance"))
38 {
39 }

Member Function Documentation

◆ activeConstraints()

void TensorMechanicsPlasticModel::activeConstraints ( const std::vector< Real > &  f,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor Eijkl,
std::vector< bool > &  act,
RankTwoTensor returned_stress 
) const
virtual

The active yield surfaces, given a vector of yield functions.

This is used by FiniteStrainMultiPlasticity to determine the initial set of active constraints at the trial (stress, intnl) configuration. It is up to you (the coder) to determine how accurate you want the returned_stress to be. Currently it is only used by FiniteStrainMultiPlasticity to estimate a good starting value for the Newton-Rahson procedure, so currently it may not need to be super perfect.

Parameters
fvalues of the yield functions
stressstress tensor
intnlinternal parameter
Eijklelasticity tensor (stress = Eijkl*strain)
[out]actact[i] = true if the i_th yield function is active
[out]returned_stressApproximate value of the returned stress

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticWeakPlaneShear, and TensorMechanicsPlasticWeakPlaneTensile.

Definition at line 188 of file TensorMechanicsPlasticModel.C.

194 {
195  mooseAssert(f.size() == numberSurfaces(),
196  "f incorrectly sized at " << f.size() << " in activeConstraints");
197  act.resize(numberSurfaces());
198  for (unsigned surface = 0; surface < numberSurfaces(); ++surface)
199  act[surface] = (f[surface] > _f_tol);
200 }

◆ consistentTangentOperator()

RankFourTensor TensorMechanicsPlasticModel::consistentTangentOperator ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor E_ijkl,
const std::vector< Real > &  cumulative_pm 
) const
virtual

Calculates a custom consistent tangent operator.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class.

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
stress_oldtrial stress before returning
intnl_oldinternal parameter before returning
stresscurrent returned stress state
intnlinternal parameter
E_ijklelasticity tensor
cumulative_pmthe cumulative plastic multipliers
Returns
the consistent tangent operator: E_ijkl if not over-ridden

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticDruckerPragerHyperbolic, TensorMechanicsPlasticMeanCapTC, and TensorMechanicsPlasticJ2.

Definition at line 254 of file TensorMechanicsPlasticModel.C.

261 {
262  return E_ijkl;
263 }

Referenced by TensorMechanicsPlasticJ2::consistentTangentOperator(), TensorMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator(), TensorMechanicsPlasticMeanCapTC::consistentTangentOperator(), and TensorMechanicsPlasticTensileMulti::consistentTangentOperator().

◆ dflowPotential_dintnl()

RankTwoTensor TensorMechanicsPlasticModel::dflowPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtual

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dintnl(i, j) = dr(i, j)/dintnl

Reimplemented in TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPrager, TensorMechanicsPlasticJ2, TensorMechanicsPlasticWeakPlaneShear, TensorMechanicsPlasticWeakPlaneTensile, TensorMechanicsPlasticMohrCoulomb, TensorMechanicsPlasticTensile, TensorMechanicsPlasticMeanCap, TensorMechanicsPlasticSimpleTester, and TensorMechanicsPlasticWeakPlaneTensileN.

Definition at line 133 of file TensorMechanicsPlasticModel.C.

135 {
136  return RankTwoTensor();
137 }

Referenced by dflowPotential_dintnlV().

◆ dflowPotential_dintnlV()

void TensorMechanicsPlasticModel::dflowPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dr_dintnl 
) const
virtual

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dintnldr_dintnl[alpha](i, j) = dr[alpha](i, j)/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 139 of file TensorMechanicsPlasticModel.C.

142 {
143  return dr_dintnl.assign(1, dflowPotential_dintnl(stress, intnl));
144 }

◆ dflowPotential_dstress()

RankFourTensor TensorMechanicsPlasticModel::dflowPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtual

◆ dflowPotential_dstressV()

void TensorMechanicsPlasticModel::dflowPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankFourTensor > &  dr_dstress 
) const
virtual

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dstressdr_dstress[alpha](i, j, k, l) = dr[alpha](i, j)/dstress(k, l)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 125 of file TensorMechanicsPlasticModel.C.

128 {
129  return dr_dstress.assign(1, dflowPotential_dstress(stress, intnl));
130 }

◆ dhardPotential_dintnl()

Real TensorMechanicsPlasticModel::dhardPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtual

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
the derivative

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 174 of file TensorMechanicsPlasticModel.C.

176 {
177  return 0.0;
178 }

Referenced by dhardPotential_dintnlV().

◆ dhardPotential_dintnlV()

void TensorMechanicsPlasticModel::dhardPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  dh_dintnl 
) const
virtual

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dintnldh_dintnl[alpha] = dh[alpha]/dintnl

Definition at line 180 of file TensorMechanicsPlasticModel.C.

183 {
184  dh_dintnl.resize(numberSurfaces(), dhardPotential_dintnl(stress, intnl));
185 }

◆ dhardPotential_dstress()

RankTwoTensor TensorMechanicsPlasticModel::dhardPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtual

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
dh_dstress(i, j) = dh/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 160 of file TensorMechanicsPlasticModel.C.

162 {
163  return RankTwoTensor();
164 }

Referenced by dhardPotential_dstressV().

◆ dhardPotential_dstressV()

void TensorMechanicsPlasticModel::dhardPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dh_dstress 
) const
virtual

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dstressdh_dstress[alpha](i, j) = dh[alpha]/dstress(i, j)

Definition at line 166 of file TensorMechanicsPlasticModel.C.

169 {
170  dh_dstress.assign(numberSurfaces(), dhardPotential_dstress(stress, intnl));
171 }

◆ dyieldFunction_dintnl()

Real TensorMechanicsPlasticModel::dyieldFunction_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtual

The derivative of yield function with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the derivative

Reimplemented in TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPrager, TensorMechanicsPlasticJ2, TensorMechanicsPlasticWeakPlaneShear, TensorMechanicsPlasticWeakPlaneTensile, TensorMechanicsPlasticMohrCoulomb, TensorMechanicsPlasticTensile, TensorMechanicsPlasticMeanCap, TensorMechanicsPlasticSimpleTester, and TensorMechanicsPlasticWeakPlaneTensileN.

Definition at line 92 of file TensorMechanicsPlasticModel.C.

94 {
95  return 0.0;
96 }

Referenced by dyieldFunction_dintnlV().

◆ dyieldFunction_dintnlV()

void TensorMechanicsPlasticModel::dyieldFunction_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  df_dintnl 
) const
virtual

The derivative of yield functions with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dintnldf_dintnl[alpha] = df[alpha]/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 98 of file TensorMechanicsPlasticModel.C.

101 {
102  return df_dintnl.assign(1, dyieldFunction_dintnl(stress, intnl));
103 }

◆ dyieldFunction_dstress()

RankTwoTensor TensorMechanicsPlasticModel::dyieldFunction_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtual

The derivative of yield function with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
df_dstress(i, j) = dyieldFunction/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticIsotropicSD, TensorMechanicsPlasticDruckerPrager, TensorMechanicsPlasticJ2, TensorMechanicsPlasticOrthotropic, TensorMechanicsPlasticWeakPlaneShear, TensorMechanicsPlasticWeakPlaneTensile, TensorMechanicsPlasticMohrCoulomb, TensorMechanicsPlasticTensile, TensorMechanicsPlasticMeanCap, TensorMechanicsPlasticSimpleTester, and TensorMechanicsPlasticWeakPlaneTensileN.

Definition at line 77 of file TensorMechanicsPlasticModel.C.

79 {
80  return RankTwoTensor();
81 }

Referenced by dyieldFunction_dstressV().

◆ dyieldFunction_dstressV()

void TensorMechanicsPlasticModel::dyieldFunction_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  df_dstress 
) const
virtual

The derivative of yield functions with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dstressdf_dstress[alpha](i, j) = dyieldFunction[alpha]/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 84 of file TensorMechanicsPlasticModel.C.

87 {
88  df_dstress.assign(1, dyieldFunction_dstress(stress, intnl));
89 }

◆ execute()

void TensorMechanicsPlasticModel::execute ( )

Definition at line 47 of file TensorMechanicsPlasticModel.C.

48 {
49 }

◆ finalize()

void TensorMechanicsPlasticModel::finalize ( )

Definition at line 52 of file TensorMechanicsPlasticModel.C.

53 {
54 }

◆ flowPotential()

RankTwoTensor TensorMechanicsPlasticModel::flowPotential ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtual

◆ flowPotentialV()

void TensorMechanicsPlasticModel::flowPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  r 
) const
virtual

The flow potentials.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]rr[alpha] is the flow potential for the "alpha" yield function

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 111 of file TensorMechanicsPlasticModel.C.

114 {
115  return r.assign(1, flowPotential(stress, intnl));
116 }

◆ hardPotential()

Real TensorMechanicsPlasticModel::hardPotential ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtual

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
Returns
the hardening potential

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 147 of file TensorMechanicsPlasticModel.C.

148 {
149  return -1.0;
150 }

Referenced by hardPotentialV().

◆ hardPotentialV()

void TensorMechanicsPlasticModel::hardPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  h 
) const
virtual

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
[out]hh[alpha] is the hardening potential for the "alpha" yield function

Definition at line 152 of file TensorMechanicsPlasticModel.C.

155 {
156  h.assign(numberSurfaces(), hardPotential(stress, intnl));
157 }

◆ initialize()

void TensorMechanicsPlasticModel::initialize ( )

Definition at line 42 of file TensorMechanicsPlasticModel.C.

43 {
44 }

◆ KuhnTuckerSingleSurface()

bool TensorMechanicsPlasticModel::KuhnTuckerSingleSurface ( Real  yf,
Real  dpm,
Real  dpm_tol 
) const

Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.

Parameters
yfYield function value
dpmplastic multiplier
dpm_toltolerance on plastic multiplier: viz dpm>-dpm_tol means "dpm is non-negative"

Definition at line 248 of file TensorMechanicsPlasticModel.C.

249 {
250  return (dpm == 0 && yf <= _f_tol) || (dpm > -dpm_tol && yf <= _f_tol && yf >= -_f_tol);
251 }

Referenced by TensorMechanicsPlasticMohrCoulombMulti::KuhnTuckerOK(), TensorMechanicsPlasticTensileMulti::KuhnTuckerOK(), and returnMap().

◆ modelName()

std::string TensorMechanicsPlasticModel::modelName ( ) const
pure virtual

◆ numberSurfaces()

unsigned TensorMechanicsPlasticModel::numberSurfaces ( ) const
virtual

The number of yield surfaces for this plasticity model.

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 57 of file TensorMechanicsPlasticModel.C.

58 {
59  return 1;
60 }

Referenced by activeConstraints(), dhardPotential_dintnlV(), dhardPotential_dstressV(), hardPotentialV(), and returnMap().

◆ returnMap()

bool TensorMechanicsPlasticModel::returnMap ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankFourTensor E_ijkl,
Real  ep_plastic_tolerance,
RankTwoTensor returned_stress,
Real &  returned_intnl,
std::vector< Real > &  dpm,
RankTwoTensor delta_dp,
std::vector< Real > &  yf,
bool &  trial_stress_inadmissible 
) const
virtual

Performs a custom return-map.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class, and you may implement the return-map algorithm in any way that suits you. Eg, using a Newton-Raphson approach, or a radial-return, etc. This may also be used as a quick way of ascertaining whether (trial_stress, intnl_old) is in fact admissible.

For over-riding this function, please note the following.

(1) Denoting the return value of the function by "successful_return", the only possible output values should be: (A) trial_stress_inadmissible=false, successful_return=true. That is, (trial_stress, intnl_old) is in fact admissible (in the elastic domain). (B) trial_stress_inadmissible=true, successful_return=false. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), and you didn't return to the yield surface. (C) trial_stress_inadmissible=true, successful_return=true. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), but you did return to the yield surface. The default implementation only handles case (A) and (B): it does not attempt to do a return-map algorithm.

(2) you must correctly signal "successful_return" using the return value of this function. Don't assume the calling function will do Kuhn-Tucker checking and so forth!

(3) In cases (A) and (B) you needn't set returned_stress, returned_intnl, delta_dp, or dpm. This is for computational efficiency.

(4) In cases (A) and (B), you MUST place the yield function values at (trial_stress, intnl_old) into yf so the calling function can use this information optimally. You will have already calculated these yield function values, which can be quite expensive, and it's not very optimal for the calling function to have to re-calculate them.

(5) In case (C), you need to set: returned_stress (the returned value of stress) returned_intnl (the returned value of the internal variable) delta_dp (the change in plastic strain) dpm (the plastic multipliers needed to bring about the return) yf (yield function values at the returned configuration)

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
trial_stressThe trial stress
intnl_oldValue of the internal parameter
E_ijklElasticity tensor
ep_plastic_toleranceTolerance defined by the user for the plastic strain
[out]returned_stressIn case (C): lies on the yield surface after returning and produces the correct plastic strain (normality condition). Otherwise: not defined
[out]returned_intnlIn case (C): the value of the internal parameter after returning. Otherwise: not defined
[out]dpmIn case (C): the plastic multipliers needed to bring about the return. Otherwise: not defined
[out]delta_dpIn case (C): The change in plastic strain induced by the return process. Otherwise: not defined
[out]yfIn case (C): the yield function at (returned_stress, returned_intnl). Otherwise: the yield function at (trial_stress, intnl_old)
[out]trial_stress_inadmissibleShould be set to false if the trial_stress is admissible, and true if the trial_stress is inadmissible. This can be used by the calling prorgram
Returns
true if a successful return (or a return-map not needed), false if the trial_stress is inadmissible but the return process failed

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticDruckerPragerHyperbolic, TensorMechanicsPlasticMeanCapTC, and TensorMechanicsPlasticJ2.

Definition at line 221 of file TensorMechanicsPlasticModel.C.

231 {
232  trial_stress_inadmissible = false;
233  yieldFunctionV(trial_stress, intnl_old, yf);
234 
235  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
236  if (yf[sf] > _f_tol)
237  trial_stress_inadmissible = true;
238 
239  // example of checking Kuhn-Tucker
240  std::vector<Real> dpm(numberSurfaces(), 0);
241  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
242  if (!KuhnTuckerSingleSurface(yf[sf], dpm[sf], 0))
243  return false;
244  return true;
245 }

Referenced by TensorMechanicsPlasticJ2::returnMap(), TensorMechanicsPlasticDruckerPragerHyperbolic::returnMap(), TensorMechanicsPlasticMeanCapTC::returnMap(), TensorMechanicsPlasticMohrCoulombMulti::returnMap(), and TensorMechanicsPlasticTensileMulti::returnMap().

◆ useCustomCTO()

bool TensorMechanicsPlasticModel::useCustomCTO ( ) const
virtual

Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function.

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPragerHyperbolic, and TensorMechanicsPlasticJ2.

Definition at line 215 of file TensorMechanicsPlasticModel.C.

216 {
217  return false;
218 }

◆ useCustomReturnMap()

bool TensorMechanicsPlasticModel::useCustomReturnMap ( ) const
virtual

Returns false. You will want to override this in your derived class if you write a custom returnMap function.

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPragerHyperbolic, and TensorMechanicsPlasticJ2.

Definition at line 209 of file TensorMechanicsPlasticModel.C.

210 {
211  return false;
212 }

◆ validParams()

InputParameters TensorMechanicsPlasticModel::validParams ( )
static

Definition at line 18 of file TensorMechanicsPlasticModel.C.

19 {
20  InputParameters params = GeneralUserObject::validParams();
21  params.addRequiredRangeCheckedParam<Real>("yield_function_tolerance",
22  "yield_function_tolerance>0",
23  "If the yield function is less than this amount, the "
24  "(stress, internal parameter) are deemed admissible.");
25  params.addRequiredRangeCheckedParam<Real>("internal_constraint_tolerance",
26  "internal_constraint_tolerance>0",
27  "The Newton-Raphson process is only deemed converged "
28  "if the internal constraint is less than this.");
29  params.addClassDescription(
30  "Plastic Model base class. Override the virtual functions in your class");
31  return params;
32 }

Referenced by TensorMechanicsPlasticJ2::validParams(), TensorMechanicsPlasticWeakPlaneTensile::validParams(), TensorMechanicsPlasticTensileMulti::validParams(), TensorMechanicsPlasticWeakPlaneShear::validParams(), TensorMechanicsPlasticMohrCoulombMulti::validParams(), TensorMechanicsPlasticSimpleTester::validParams(), TensorMechanicsPlasticDruckerPrager::validParams(), TensorMechanicsPlasticMeanCap::validParams(), TensorMechanicsPlasticMeanCapTC::validParams(), TensorMechanicsPlasticTensile::validParams(), and TensorMechanicsPlasticMohrCoulomb::validParams().

◆ yieldFunction()

Real TensorMechanicsPlasticModel::yieldFunction ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtual

The following functions are what you should override when building single-plasticity models.

The yield function

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the yield function

Reimplemented in TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticIsotropicSD, TensorMechanicsPlasticDruckerPrager, TensorMechanicsPlasticJ2, TensorMechanicsPlasticOrthotropic, TensorMechanicsPlasticWeakPlaneShear, TensorMechanicsPlasticWeakPlaneTensile, TensorMechanicsPlasticMohrCoulomb, TensorMechanicsPlasticTensile, TensorMechanicsPlasticDruckerPragerHyperbolic, TensorMechanicsPlasticMeanCap, TensorMechanicsPlasticSimpleTester, and TensorMechanicsPlasticWeakPlaneTensileN.

Definition at line 63 of file TensorMechanicsPlasticModel.C.

64 {
65  return 0.0;
66 }

Referenced by yieldFunctionV().

◆ yieldFunctionV()

void TensorMechanicsPlasticModel::yieldFunctionV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  f 
) const
virtual

Calculates the yield functions.

Note that for single-surface plasticity you don't want to override this - override the private yieldFunction below

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]fthe yield functions

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 69 of file TensorMechanicsPlasticModel.C.

72 {
73  f.assign(1, yieldFunction(stress, intnl));
74 }

Referenced by returnMap().

Member Data Documentation

◆ _f_tol

const Real TensorMechanicsPlasticModel::_f_tol

◆ _ic_tol

const Real TensorMechanicsPlasticModel::_ic_tol

Tolerance on internal constraint.

Definition at line 178 of file TensorMechanicsPlasticModel.h.


The documentation for this class was generated from the following files:
TensorMechanicsPlasticModel::numberSurfaces
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
Definition: TensorMechanicsPlasticModel.C:57
TensorMechanicsPlasticModel::dflowPotential_dintnl
virtual RankTwoTensor dflowPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:133
TensorMechanicsPlasticModel::dyieldFunction_dstress
virtual RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to stress.
Definition: TensorMechanicsPlasticModel.C:77
TensorMechanicsPlasticModel::dhardPotential_dintnl
virtual Real dhardPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:174
TensorMechanicsPlasticModel::KuhnTuckerSingleSurface
bool KuhnTuckerSingleSurface(Real yf, Real dpm, Real dpm_tol) const
Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.
Definition: TensorMechanicsPlasticModel.C:248
TensorMechanicsPlasticModel::_f_tol
const Real _f_tol
Tolerance on yield function.
Definition: TensorMechanicsPlasticModel.h:175
TensorMechanicsPlasticModel::hardPotential
virtual Real hardPotential(const RankTwoTensor &stress, Real intnl) const
The hardening potential.
Definition: TensorMechanicsPlasticModel.C:147
TensorMechanicsPlasticModel::yieldFunctionV
virtual void yieldFunctionV(const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
Calculates the yield functions.
Definition: TensorMechanicsPlasticModel.C:69
validParams
InputParameters validParams()
RankTwoTensor
RankTwoTensorTempl< Real > RankTwoTensor
Definition: ACGrGrElasticDrivingForce.h:17
TensorMechanicsPlasticModel::_ic_tol
const Real _ic_tol
Tolerance on internal constraint.
Definition: TensorMechanicsPlasticModel.h:178
TensorMechanicsPlasticModel::dflowPotential_dstress
virtual RankFourTensor dflowPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to stress.
Definition: TensorMechanicsPlasticModel.C:119
TensorMechanicsPlasticModel::yieldFunction
virtual Real yieldFunction(const RankTwoTensor &stress, Real intnl) const
The following functions are what you should override when building single-plasticity models.
Definition: TensorMechanicsPlasticModel.C:63
TensorMechanicsPlasticModel::flowPotential
virtual RankTwoTensor flowPotential(const RankTwoTensor &stress, Real intnl) const
The flow potential.
Definition: TensorMechanicsPlasticModel.C:106
TensorMechanicsPlasticModel::dhardPotential_dstress
virtual RankTwoTensor dhardPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to stress.
Definition: TensorMechanicsPlasticModel.C:160
RankFourTensor
RankFourTensorTempl< Real > RankFourTensor
Definition: ACGrGrElasticDrivingForce.h:20
TensorMechanicsPlasticModel::dyieldFunction_dintnl
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:92