www.mooseframework.org
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | Private Attributes | List of all members
TensorMechanicsPlasticDruckerPragerHyperbolic Class Reference

Rate-independent non-associative Drucker Prager with hardening/softening. More...

#include <TensorMechanicsPlasticDruckerPragerHyperbolic.h>

Inheritance diagram for TensorMechanicsPlasticDruckerPragerHyperbolic:
[legend]

Public Types

enum  FrictionDilation { friction = 0, dilation = 1 }
 bbb (friction) and bbb_flow (dilation) are computed using the same function, onlyB, and this parameter tells that function whether to compute bbb or bbb_flow More...
 

Public Member Functions

 TensorMechanicsPlasticDruckerPragerHyperbolic (const InputParameters &parameters)
 
virtual std::string modelName () const override
 
virtual bool useCustomReturnMap () const override
 Returns false. You will want to override this in your derived class if you write a custom returnMap function. More...
 
virtual bool useCustomCTO () const override
 Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function. More...
 
void bothAB (Real intnl, Real &aaa, Real &bbb) const
 Calculates aaa and bbb as a function of the internal parameter intnl. More...
 
void dbothAB (Real intnl, Real &daaa, Real &dbbb) const
 Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl. More...
 
void onlyB (Real intnl, int fd, Real &bbb) const
 Calculate bbb or bbb_flow. More...
 
void donlyB (Real intnl, int fd, Real &dbbb) const
 Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl) More...
 
void initialize ()
 
void execute ()
 
void finalize ()
 
virtual unsigned int numberSurfaces () const
 The number of yield surfaces for this plasticity model. More...
 
virtual void yieldFunctionV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
 Calculates the yield functions. More...
 
virtual void dyieldFunction_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &df_dstress) const
 The derivative of yield functions with respect to stress. More...
 
virtual void dyieldFunction_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &df_dintnl) const
 The derivative of yield functions with respect to the internal parameter. More...
 
virtual void flowPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &r) const
 The flow potentials. More...
 
virtual void dflowPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankFourTensor > &dr_dstress) const
 The derivative of the flow potential with respect to stress. More...
 
virtual void dflowPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dr_dintnl) const
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual void hardPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &h) const
 The hardening potential. More...
 
virtual void dhardPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dh_dstress) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual void dhardPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &dh_dintnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual void activeConstraints (const std::vector< Real > &f, const RankTwoTensor &stress, Real intnl, const RankFourTensor &Eijkl, std::vector< bool > &act, RankTwoTensor &returned_stress) const
 The active yield surfaces, given a vector of yield functions. More...
 
bool KuhnTuckerSingleSurface (Real yf, Real dpm, Real dpm_tol) const
 Returns true if the Kuhn-Tucker conditions for the single surface are satisfied. More...
 

Static Public Member Functions

static InputParameters validParams ()
 

Public Attributes

const Real _f_tol
 Tolerance on yield function. More...
 
const Real _ic_tol
 Tolerance on internal constraint. More...
 

Protected Member Functions

Real yieldFunction (const RankTwoTensor &stress, Real intnl) const override
 The following functions are what you should override when building single-plasticity models. More...
 
RankFourTensor dflowPotential_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to stress. More...
 
virtual RankTwoTensor df_dsig (const RankTwoTensor &stress, Real bbb) const override
 Function that's used in dyieldFunction_dstress and flowPotential. More...
 
virtual bool returnMap (const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const override
 Performs a custom return-map. More...
 
virtual RankFourTensor consistentTangentOperator (const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const override
 Calculates a custom consistent tangent operator. More...
 
virtual RankTwoTensor dyieldFunction_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to stress. More...
 
virtual Real dyieldFunction_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to the internal parameter. More...
 
virtual RankTwoTensor flowPotential (const RankTwoTensor &stress, Real intnl) const override
 The flow potential. More...
 
virtual RankTwoTensor dflowPotential_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual Real hardPotential (const RankTwoTensor &stress, Real intnl) const
 The hardening potential. More...
 
virtual RankTwoTensor dhardPotential_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual Real dhardPotential_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 

Protected Attributes

const TensorMechanicsHardeningModel_mc_cohesion
 Hardening model for cohesion. More...
 
const TensorMechanicsHardeningModel_mc_phi
 Hardening model for tan(phi) More...
 
const TensorMechanicsHardeningModel_mc_psi
 Hardening model for tan(psi) More...
 
const MooseEnum _mc_interpolation_scheme
 The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface. More...
 
const bool _zero_cohesion_hardening
 True if there is no hardening of cohesion. More...
 
const bool _zero_phi_hardening
 True if there is no hardening of friction angle. More...
 
const bool _zero_psi_hardening
 True if there is no hardening of dilation angle. More...
 

Private Member Functions

void initializeAandB (Real intnl, Real &aaa, Real &bbb) const
 Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker-Prager and Mohr-Coulomb is H Jiang and X Yongli, A note on the Mohr-Coulomb and Drucker-Prager strength criteria, Mechanics Research Communications 38 (2011) 309-314. More...
 
void initializeB (Real intnl, int fd, Real &bbb) const
 Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker-Prager and Mohr-Coulomb is H Jiang and X Yongli, A note on the Mohr-Coulomb and Drucker-Prager strength criteria, Mechanics Research Communications 38 (2011) 309-314. More...
 

Private Attributes

const Real _smoother2
 smoothing parameter for the cone's tip More...
 
const bool _use_custom_returnMap
 whether to use the custom returnMap function More...
 
const bool _use_custom_cto
 Whether to use the custom consistent tangent operator calculation. More...
 
const unsigned _max_iters
 max iters for custom return map loop More...
 
Real _aaa
 
Real _bbb
 
Real _bbb_flow
 

Detailed Description

Rate-independent non-associative Drucker Prager with hardening/softening.

The cone's tip is smoothed in a hyperbolic fashion Most functions (eg flowPotential, etc) are simply inherited from TensorMechanicsPlasticDruckerPrager. Note df_dsig is over-ridden

Definition at line 26 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Member Enumeration Documentation

◆ FrictionDilation

bbb (friction) and bbb_flow (dilation) are computed using the same function, onlyB, and this parameter tells that function whether to compute bbb or bbb_flow

Enumerator
friction 
dilation 

Definition at line 46 of file TensorMechanicsPlasticDruckerPrager.h.

47  {
48  friction = 0,
49  dilation = 1
50  };

Constructor & Destructor Documentation

◆ TensorMechanicsPlasticDruckerPragerHyperbolic()

TensorMechanicsPlasticDruckerPragerHyperbolic::TensorMechanicsPlasticDruckerPragerHyperbolic ( const InputParameters &  parameters)

Definition at line 51 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

54  _smoother2(Utility::pow<2>(getParam<Real>("smoother"))),
55  _use_custom_returnMap(getParam<bool>("use_custom_returnMap")),
56  _use_custom_cto(getParam<bool>("use_custom_cto")),
57  _max_iters(getParam<unsigned>("max_iterations"))
58 {
59 }

Member Function Documentation

◆ activeConstraints()

void TensorMechanicsPlasticModel::activeConstraints ( const std::vector< Real > &  f,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor Eijkl,
std::vector< bool > &  act,
RankTwoTensor returned_stress 
) const
virtualinherited

The active yield surfaces, given a vector of yield functions.

This is used by FiniteStrainMultiPlasticity to determine the initial set of active constraints at the trial (stress, intnl) configuration. It is up to you (the coder) to determine how accurate you want the returned_stress to be. Currently it is only used by FiniteStrainMultiPlasticity to estimate a good starting value for the Newton-Rahson procedure, so currently it may not need to be super perfect.

Parameters
fvalues of the yield functions
stressstress tensor
intnlinternal parameter
Eijklelasticity tensor (stress = Eijkl*strain)
[out]actact[i] = true if the i_th yield function is active
[out]returned_stressApproximate value of the returned stress

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticWeakPlaneShear, and TensorMechanicsPlasticWeakPlaneTensile.

Definition at line 188 of file TensorMechanicsPlasticModel.C.

194 {
195  mooseAssert(f.size() == numberSurfaces(),
196  "f incorrectly sized at " << f.size() << " in activeConstraints");
197  act.resize(numberSurfaces());
198  for (unsigned surface = 0; surface < numberSurfaces(); ++surface)
199  act[surface] = (f[surface] > _f_tol);
200 }

◆ bothAB()

void TensorMechanicsPlasticDruckerPrager::bothAB ( Real  intnl,
Real &  aaa,
Real &  bbb 
) const
inherited

Calculates aaa and bbb as a function of the internal parameter intnl.

Definition at line 149 of file TensorMechanicsPlasticDruckerPrager.C.

150 {
152  {
153  aaa = _aaa;
154  bbb = _bbb;
155  return;
156  }
157  initializeAandB(intnl, aaa, bbb);
158 }

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), CappedDruckerPragerStressUpdate::initializeVars(), returnMap(), yieldFunction(), TensorMechanicsPlasticDruckerPrager::yieldFunction(), and CappedDruckerPragerStressUpdate::yieldFunctionValues().

◆ consistentTangentOperator()

RankFourTensor TensorMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor E_ijkl,
const std::vector< Real > &  cumulative_pm 
) const
overrideprotectedvirtual

Calculates a custom consistent tangent operator.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class.

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
stress_oldtrial stress before returning
intnl_oldinternal parameter before returning
stresscurrent returned stress state
intnlinternal parameter
E_ijklelasticity tensor
cumulative_pmthe cumulative plastic multipliers
Returns
the consistent tangent operator: E_ijkl if not over-ridden

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 201 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

208 {
209  if (!_use_custom_cto)
211  trial_stress, intnl_old, stress, intnl, E_ijkl, cumulative_pm);
212 
213  const Real mu = E_ijkl(0, 1, 0, 1);
214  const Real la = E_ijkl(0, 0, 0, 0) - 2.0 * mu;
215  const Real bulky = 3.0 * la + 2.0 * mu;
216  Real bbb;
217  onlyB(intnl, friction, bbb);
218  Real bbb_flow;
219  onlyB(intnl, dilation, bbb_flow);
220  Real dbbb_flow;
221  donlyB(intnl, dilation, dbbb_flow);
222  const Real bbb_flow_mod = bbb_flow + cumulative_pm[0] * dbbb_flow;
223  const Real J2 = stress.secondInvariant();
224  const RankTwoTensor sij = stress.deviatoric();
225  const Real sq = std::sqrt(J2 + _smoother2);
226 
227  const Real one_over_h =
228  1.0 / (-dyieldFunction_dintnl(stress, intnl) + mu * J2 / Utility::pow<2>(sq) +
229  3.0 * bbb * bbb_flow_mod * bulky); // correct up to hard
230 
231  const RankTwoTensor df_dsig_timesE =
232  mu * sij / sq + bulky * bbb * RankTwoTensor(RankTwoTensor::initIdentity); // correct
233  const RankTwoTensor rmod_timesE =
234  mu * sij / sq +
235  bulky * bbb_flow_mod * RankTwoTensor(RankTwoTensor::initIdentity); // correct up to hard
236 
237  const RankFourTensor coeff_ep =
238  E_ijkl - one_over_h * rmod_timesE.outerProduct(df_dsig_timesE); // correct
239 
240  const RankFourTensor dr_dsig_timesE = -0.5 * mu * sij.outerProduct(sij) / Utility::pow<3>(sq) +
241  mu * stress.d2secondInvariant() / sq; // correct
242  const RankTwoTensor df_dsig_E_dr_dsig =
243  0.5 * mu * _smoother2 * sij / Utility::pow<4>(sq); // correct
244 
245  const RankFourTensor coeff_si =
246  RankFourTensor(RankFourTensor::initIdentitySymmetricFour) +
247  cumulative_pm[0] *
248  (dr_dsig_timesE - one_over_h * rmod_timesE.outerProduct(df_dsig_E_dr_dsig));
249 
250  RankFourTensor s_inv;
251  try
252  {
253  s_inv = coeff_si.invSymm();
254  }
255  catch (MooseException & e)
256  {
257  return coeff_ep; // when coeff_si is singular return the "linear" tangent operator
258  }
259 
260  return s_inv * coeff_ep;
261 }

◆ dbothAB()

void TensorMechanicsPlasticDruckerPrager::dbothAB ( Real  intnl,
Real &  daaa,
Real &  dbbb 
) const
inherited

Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl.

Definition at line 219 of file TensorMechanicsPlasticDruckerPrager.C.

220 {
222  {
223  daaa = 0;
224  dbbb = 0;
225  return;
226  }
227 
228  const Real C = _mc_cohesion.value(intnl);
229  const Real dC = _mc_cohesion.derivative(intnl);
230  const Real cosphi = std::cos(_mc_phi.value(intnl));
231  const Real dcosphi = -std::sin(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl);
232  const Real sinphi = std::sin(_mc_phi.value(intnl));
233  const Real dsinphi = std::cos(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl);
234  switch (_mc_interpolation_scheme)
235  {
236  case 0: // outer_tip
237  daaa = 2.0 * std::sqrt(3.0) *
238  (dC * cosphi / (3.0 - sinphi) + C * dcosphi / (3.0 - sinphi) +
239  C * cosphi * dsinphi / Utility::pow<2>(3.0 - sinphi));
240  dbbb = 2.0 / std::sqrt(3.0) *
241  (dsinphi / (3.0 - sinphi) + sinphi * dsinphi / Utility::pow<2>(3.0 - sinphi));
242  break;
243  case 1: // inner_tip
244  daaa = 2.0 * std::sqrt(3.0) *
245  (dC * cosphi / (3.0 + sinphi) + C * dcosphi / (3.0 + sinphi) -
246  C * cosphi * dsinphi / Utility::pow<2>(3.0 + sinphi));
247  dbbb = 2.0 / std::sqrt(3.0) *
248  (dsinphi / (3.0 + sinphi) - sinphi * dsinphi / Utility::pow<2>(3.0 + sinphi));
249  break;
250  case 2: // lode_zero
251  daaa = dC * cosphi + C * dcosphi;
252  dbbb = dsinphi / 3.0;
253  break;
254  case 3: // inner_edge
255  daaa = 3.0 * dC * cosphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) +
256  3.0 * C * dcosphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) -
257  3.0 * C * cosphi * 3.0 * sinphi * dsinphi /
258  std::pow(9.0 + 3.0 * Utility::pow<2>(sinphi), 1.5);
259  dbbb = dsinphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) -
260  3.0 * sinphi * sinphi * dsinphi / std::pow(9.0 + 3.0 * Utility::pow<2>(sinphi), 1.5);
261  break;
262  case 4: // native
263  daaa = dC;
264  dbbb = dsinphi / cosphi - sinphi * dcosphi / Utility::pow<2>(cosphi);
265  break;
266  }
267 }

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), TensorMechanicsPlasticDruckerPrager::dyieldFunction_dintnl(), and returnMap().

◆ df_dsig()

RankTwoTensor TensorMechanicsPlasticDruckerPragerHyperbolic::df_dsig ( const RankTwoTensor stress,
Real  bbb 
) const
overrideprotectedvirtual

Function that's used in dyieldFunction_dstress and flowPotential.

Reimplemented from TensorMechanicsPlasticDruckerPrager.

Definition at line 72 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

73 {
74  return 0.5 * stress.dsecondInvariant() / std::sqrt(stress.secondInvariant() + _smoother2) +
75  stress.dtrace() * bbb;
76 }

◆ dflowPotential_dintnl()

RankTwoTensor TensorMechanicsPlasticDruckerPrager::dflowPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dintnl(i, j) = dr(i, j)/dintnl

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 134 of file TensorMechanicsPlasticDruckerPrager.C.

136 {
137  Real dbbb;
138  donlyB(intnl, dilation, dbbb);
139  return stress.dtrace() * dbbb;
140 }

◆ dflowPotential_dintnlV()

void TensorMechanicsPlasticModel::dflowPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dr_dintnl 
) const
virtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dintnldr_dintnl[alpha](i, j) = dr[alpha](i, j)/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 139 of file TensorMechanicsPlasticModel.C.

142 {
143  return dr_dintnl.assign(1, dflowPotential_dintnl(stress, intnl));
144 }

◆ dflowPotential_dstress()

RankFourTensor TensorMechanicsPlasticDruckerPragerHyperbolic::dflowPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dstress(i, j, k, l) = dr(i, j)/dstress(k, l)

Reimplemented from TensorMechanicsPlasticDruckerPrager.

Definition at line 79 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

81 {
82  RankFourTensor dr_dstress;
83  dr_dstress = 0.5 * stress.d2secondInvariant() / std::sqrt(stress.secondInvariant() + _smoother2);
84  dr_dstress += -0.5 * 0.5 * stress.dsecondInvariant().outerProduct(stress.dsecondInvariant()) /
85  std::pow(stress.secondInvariant() + _smoother2, 1.5);
86  return dr_dstress;
87 }

◆ dflowPotential_dstressV()

void TensorMechanicsPlasticModel::dflowPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankFourTensor > &  dr_dstress 
) const
virtualinherited

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dstressdr_dstress[alpha](i, j, k, l) = dr[alpha](i, j)/dstress(k, l)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 125 of file TensorMechanicsPlasticModel.C.

128 {
129  return dr_dstress.assign(1, dflowPotential_dstress(stress, intnl));
130 }

◆ dhardPotential_dintnl()

Real TensorMechanicsPlasticModel::dhardPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
the derivative

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 174 of file TensorMechanicsPlasticModel.C.

176 {
177  return 0.0;
178 }

Referenced by TensorMechanicsPlasticModel::dhardPotential_dintnlV().

◆ dhardPotential_dintnlV()

void TensorMechanicsPlasticModel::dhardPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  dh_dintnl 
) const
virtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dintnldh_dintnl[alpha] = dh[alpha]/dintnl

Definition at line 180 of file TensorMechanicsPlasticModel.C.

183 {
184  dh_dintnl.resize(numberSurfaces(), dhardPotential_dintnl(stress, intnl));
185 }

◆ dhardPotential_dstress()

RankTwoTensor TensorMechanicsPlasticModel::dhardPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
dh_dstress(i, j) = dh/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 160 of file TensorMechanicsPlasticModel.C.

162 {
163  return RankTwoTensor();
164 }

Referenced by TensorMechanicsPlasticModel::dhardPotential_dstressV().

◆ dhardPotential_dstressV()

void TensorMechanicsPlasticModel::dhardPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dh_dstress 
) const
virtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dstressdh_dstress[alpha](i, j) = dh[alpha]/dstress(i, j)

Definition at line 166 of file TensorMechanicsPlasticModel.C.

169 {
170  dh_dstress.assign(numberSurfaces(), dhardPotential_dstress(stress, intnl));
171 }

◆ donlyB()

void TensorMechanicsPlasticDruckerPrager::donlyB ( Real  intnl,
int  fd,
Real &  dbbb 
) const
inherited

Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)

Parameters
intnlthe internal parameter
fdif fd==friction then bbb is calculated. if fd==dilation then bbb_flow is calculated
bbbeither bbb or bbb_flow, depending on fd

Definition at line 177 of file TensorMechanicsPlasticDruckerPrager.C.

178 {
179  if (_zero_phi_hardening && (fd == friction))
180  {
181  dbbb = 0;
182  return;
183  }
184  if (_zero_psi_hardening && (fd == dilation))
185  {
186  dbbb = 0;
187  return;
188  }
189  const Real s = (fd == friction) ? std::sin(_mc_phi.value(intnl)) : std::sin(_mc_psi.value(intnl));
190  const Real ds = (fd == friction) ? std::cos(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl)
191  : std::cos(_mc_psi.value(intnl)) * _mc_psi.derivative(intnl);
192  switch (_mc_interpolation_scheme)
193  {
194  case 0: // outer_tip
195  dbbb = 2.0 / std::sqrt(3.0) * (ds / (3.0 - s) + s * ds / Utility::pow<2>(3.0 - s));
196  break;
197  case 1: // inner_tip
198  dbbb = 2.0 / std::sqrt(3.0) * (ds / (3.0 + s) - s * ds / Utility::pow<2>(3.0 + s));
199  break;
200  case 2: // lode_zero
201  dbbb = ds / 3.0;
202  break;
203  case 3: // inner_edge
204  dbbb = ds / std::sqrt(9.0 + 3.0 * Utility::pow<2>(s)) -
205  3 * s * s * ds / std::pow(9.0 + 3.0 * Utility::pow<2>(s), 1.5);
206  break;
207  case 4: // native
208  const Real c =
209  (fd == friction) ? std::cos(_mc_phi.value(intnl)) : std::cos(_mc_psi.value(intnl));
210  const Real dc = (fd == friction)
211  ? -std::sin(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl)
212  : -std::sin(_mc_psi.value(intnl)) * _mc_psi.derivative(intnl);
213  dbbb = ds / c - s * dc / Utility::pow<2>(c);
214  break;
215  }
216 }

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), consistentTangentOperator(), TensorMechanicsPlasticDruckerPrager::dflowPotential_dintnl(), returnMap(), and CappedDruckerPragerStressUpdate::setIntnlDerivatives().

◆ dyieldFunction_dintnl()

Real TensorMechanicsPlasticDruckerPrager::dyieldFunction_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The derivative of yield function with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the derivative

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 105 of file TensorMechanicsPlasticDruckerPrager.C.

107 {
108  Real daaa;
109  Real dbbb;
110  dbothAB(intnl, daaa, dbbb);
111  return stress.trace() * dbbb - daaa;
112 }

Referenced by consistentTangentOperator().

◆ dyieldFunction_dintnlV()

void TensorMechanicsPlasticModel::dyieldFunction_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  df_dintnl 
) const
virtualinherited

The derivative of yield functions with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dintnldf_dintnl[alpha] = df[alpha]/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 98 of file TensorMechanicsPlasticModel.C.

101 {
102  return df_dintnl.assign(1, dyieldFunction_dintnl(stress, intnl));
103 }

◆ dyieldFunction_dstress()

RankTwoTensor TensorMechanicsPlasticDruckerPrager::dyieldFunction_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The derivative of yield function with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
df_dstress(i, j) = dyieldFunction/dstress(i, j)

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 96 of file TensorMechanicsPlasticDruckerPrager.C.

98 {
99  Real bbb;
100  onlyB(intnl, friction, bbb);
101  return df_dsig(stress, bbb);
102 }

◆ dyieldFunction_dstressV()

void TensorMechanicsPlasticModel::dyieldFunction_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  df_dstress 
) const
virtualinherited

The derivative of yield functions with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dstressdf_dstress[alpha](i, j) = dyieldFunction[alpha]/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 84 of file TensorMechanicsPlasticModel.C.

87 {
88  df_dstress.assign(1, dyieldFunction_dstress(stress, intnl));
89 }

◆ execute()

void TensorMechanicsPlasticModel::execute ( )
inherited

Definition at line 47 of file TensorMechanicsPlasticModel.C.

48 {
49 }

◆ finalize()

void TensorMechanicsPlasticModel::finalize ( )
inherited

Definition at line 52 of file TensorMechanicsPlasticModel.C.

53 {
54 }

◆ flowPotential()

RankTwoTensor TensorMechanicsPlasticDruckerPrager::flowPotential ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The flow potential.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
the flow potential

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 115 of file TensorMechanicsPlasticDruckerPrager.C.

116 {
117  Real bbb_flow;
118  onlyB(intnl, dilation, bbb_flow);
119  return df_dsig(stress, bbb_flow);
120 }

◆ flowPotentialV()

void TensorMechanicsPlasticModel::flowPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  r 
) const
virtualinherited

The flow potentials.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]rr[alpha] is the flow potential for the "alpha" yield function

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 111 of file TensorMechanicsPlasticModel.C.

114 {
115  return r.assign(1, flowPotential(stress, intnl));
116 }

◆ hardPotential()

Real TensorMechanicsPlasticModel::hardPotential ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
Returns
the hardening potential

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 147 of file TensorMechanicsPlasticModel.C.

148 {
149  return -1.0;
150 }

Referenced by TensorMechanicsPlasticModel::hardPotentialV().

◆ hardPotentialV()

void TensorMechanicsPlasticModel::hardPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  h 
) const
virtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
[out]hh[alpha] is the hardening potential for the "alpha" yield function

Definition at line 152 of file TensorMechanicsPlasticModel.C.

155 {
156  h.assign(numberSurfaces(), hardPotential(stress, intnl));
157 }

◆ initialize()

void TensorMechanicsPlasticModel::initialize ( )
inherited

Definition at line 42 of file TensorMechanicsPlasticModel.C.

43 {
44 }

◆ initializeAandB()

void TensorMechanicsPlasticDruckerPrager::initializeAandB ( Real  intnl,
Real &  aaa,
Real &  bbb 
) const
privateinherited

Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker-Prager and Mohr-Coulomb is H Jiang and X Yongli, A note on the Mohr-Coulomb and Drucker-Prager strength criteria, Mechanics Research Communications 38 (2011) 309-314.

This function uses Table1 in that reference, with the following translations aaa = k bbb = -alpha/3

Parameters
intnlThe internal parameter
[out]aaaThe Drucker-Prager aaa quantity
[out]bbbThe Drucker-Prager bbb quantity

Definition at line 270 of file TensorMechanicsPlasticDruckerPrager.C.

271 {
272  const Real C = _mc_cohesion.value(intnl);
273  const Real cosphi = std::cos(_mc_phi.value(intnl));
274  const Real sinphi = std::sin(_mc_phi.value(intnl));
275  switch (_mc_interpolation_scheme)
276  {
277  case 0: // outer_tip
278  aaa = 2.0 * std::sqrt(3.0) * C * cosphi / (3.0 - sinphi);
279  bbb = 2.0 * sinphi / std::sqrt(3.0) / (3.0 - sinphi);
280  break;
281  case 1: // inner_tip
282  aaa = 2.0 * std::sqrt(3.0) * C * cosphi / (3.0 + sinphi);
283  bbb = 2.0 * sinphi / std::sqrt(3.0) / (3.0 + sinphi);
284  break;
285  case 2: // lode_zero
286  aaa = C * cosphi;
287  bbb = sinphi / 3.0;
288  break;
289  case 3: // inner_edge
290  aaa = 3.0 * C * cosphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi));
291  bbb = sinphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi));
292  break;
293  case 4: // native
294  aaa = C;
295  bbb = sinphi / cosphi;
296  break;
297  }
298 }

Referenced by TensorMechanicsPlasticDruckerPrager::bothAB(), and TensorMechanicsPlasticDruckerPrager::TensorMechanicsPlasticDruckerPrager().

◆ initializeB()

void TensorMechanicsPlasticDruckerPrager::initializeB ( Real  intnl,
int  fd,
Real &  bbb 
) const
privateinherited

Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker-Prager and Mohr-Coulomb is H Jiang and X Yongli, A note on the Mohr-Coulomb and Drucker-Prager strength criteria, Mechanics Research Communications 38 (2011) 309-314.

This function uses Table1 in that reference, with the following translations aaa = k bbb = -alpha/3

Parameters
intnlThe internal parameter
fdIf fd == frction then the friction angle is used to set bbb, otherwise the dilation angle is used
[out]bbbThe Drucker-Prager bbb quantity

Definition at line 301 of file TensorMechanicsPlasticDruckerPrager.C.

302 {
303  const Real s = (fd == friction) ? std::sin(_mc_phi.value(intnl)) : std::sin(_mc_psi.value(intnl));
304  switch (_mc_interpolation_scheme)
305  {
306  case 0: // outer_tip
307  bbb = 2.0 * s / std::sqrt(3.0) / (3.0 - s);
308  break;
309  case 1: // inner_tip
310  bbb = 2.0 * s / std::sqrt(3.0) / (3.0 + s);
311  break;
312  case 2: // lode_zero
313  bbb = s / 3.0;
314  break;
315  case 3: // inner_edge
316  bbb = s / std::sqrt(9.0 + 3.0 * Utility::pow<2>(s));
317  break;
318  case 4: // native
319  const Real c =
320  (fd == friction) ? std::cos(_mc_phi.value(intnl)) : std::cos(_mc_psi.value(intnl));
321  bbb = s / c;
322  break;
323  }
324 }

Referenced by TensorMechanicsPlasticDruckerPrager::onlyB(), and TensorMechanicsPlasticDruckerPrager::TensorMechanicsPlasticDruckerPrager().

◆ KuhnTuckerSingleSurface()

bool TensorMechanicsPlasticModel::KuhnTuckerSingleSurface ( Real  yf,
Real  dpm,
Real  dpm_tol 
) const
inherited

Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.

Parameters
yfYield function value
dpmplastic multiplier
dpm_toltolerance on plastic multiplier: viz dpm>-dpm_tol means "dpm is non-negative"

Definition at line 248 of file TensorMechanicsPlasticModel.C.

249 {
250  return (dpm == 0 && yf <= _f_tol) || (dpm > -dpm_tol && yf <= _f_tol && yf >= -_f_tol);
251 }

Referenced by TensorMechanicsPlasticMohrCoulombMulti::KuhnTuckerOK(), TensorMechanicsPlasticTensileMulti::KuhnTuckerOK(), and TensorMechanicsPlasticModel::returnMap().

◆ modelName()

std::string TensorMechanicsPlasticDruckerPragerHyperbolic::modelName ( ) const
overridevirtual

Reimplemented from TensorMechanicsPlasticDruckerPrager.

Definition at line 90 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

91 {
92  return "DruckerPragerHyperbolic";
93 }

◆ numberSurfaces()

unsigned TensorMechanicsPlasticModel::numberSurfaces ( ) const
virtualinherited

◆ onlyB()

void TensorMechanicsPlasticDruckerPrager::onlyB ( Real  intnl,
int  fd,
Real &  bbb 
) const
inherited

Calculate bbb or bbb_flow.

Parameters
intnlthe internal parameter
fdif fd==friction then bbb is calculated. if fd==dilation then bbb_flow is calculated
bbbeither bbb or bbb_flow, depending on fd

Definition at line 161 of file TensorMechanicsPlasticDruckerPrager.C.

162 {
163  if (_zero_phi_hardening && (fd == friction))
164  {
165  bbb = _bbb;
166  return;
167  }
168  if (_zero_psi_hardening && (fd == dilation))
169  {
170  bbb = _bbb_flow;
171  return;
172  }
173  initializeB(intnl, fd, bbb);
174 }

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), consistentTangentOperator(), TensorMechanicsPlasticDruckerPrager::dyieldFunction_dstress(), TensorMechanicsPlasticDruckerPrager::flowPotential(), CappedDruckerPragerStressUpdate::initializeVars(), returnMap(), CappedDruckerPragerStressUpdate::setIntnlDerivatives(), and CappedDruckerPragerStressUpdate::setIntnlValues().

◆ returnMap()

bool TensorMechanicsPlasticDruckerPragerHyperbolic::returnMap ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankFourTensor E_ijkl,
Real  ep_plastic_tolerance,
RankTwoTensor returned_stress,
Real &  returned_intnl,
std::vector< Real > &  dpm,
RankTwoTensor delta_dp,
std::vector< Real > &  yf,
bool &  trial_stress_inadmissible 
) const
overrideprotectedvirtual

Performs a custom return-map.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class, and you may implement the return-map algorithm in any way that suits you. Eg, using a Newton-Raphson approach, or a radial-return, etc. This may also be used as a quick way of ascertaining whether (trial_stress, intnl_old) is in fact admissible.

For over-riding this function, please note the following.

(1) Denoting the return value of the function by "successful_return", the only possible output values should be: (A) trial_stress_inadmissible=false, successful_return=true. That is, (trial_stress, intnl_old) is in fact admissible (in the elastic domain). (B) trial_stress_inadmissible=true, successful_return=false. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), and you didn't return to the yield surface. (C) trial_stress_inadmissible=true, successful_return=true. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), but you did return to the yield surface. The default implementation only handles case (A) and (B): it does not attempt to do a return-map algorithm.

(2) you must correctly signal "successful_return" using the return value of this function. Don't assume the calling function will do Kuhn-Tucker checking and so forth!

(3) In cases (A) and (B) you needn't set returned_stress, returned_intnl, delta_dp, or dpm. This is for computational efficiency.

(4) In cases (A) and (B), you MUST place the yield function values at (trial_stress, intnl_old) into yf so the calling function can use this information optimally. You will have already calculated these yield function values, which can be quite expensive, and it's not very optimal for the calling function to have to re-calculate them.

(5) In case (C), you need to set: returned_stress (the returned value of stress) returned_intnl (the returned value of the internal variable) delta_dp (the change in plastic strain) dpm (the plastic multipliers needed to bring about the return) yf (yield function values at the returned configuration)

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
trial_stressThe trial stress
intnl_oldValue of the internal parameter
E_ijklElasticity tensor
ep_plastic_toleranceTolerance defined by the user for the plastic strain
[out]returned_stressIn case (C): lies on the yield surface after returning and produces the correct plastic strain (normality condition). Otherwise: not defined
[out]returned_intnlIn case (C): the value of the internal parameter after returning. Otherwise: not defined
[out]dpmIn case (C): the plastic multipliers needed to bring about the return. Otherwise: not defined
[out]delta_dpIn case (C): The change in plastic strain induced by the return process. Otherwise: not defined
[out]yfIn case (C): the yield function at (returned_stress, returned_intnl). Otherwise: the yield function at (trial_stress, intnl_old)
[out]trial_stress_inadmissibleShould be set to false if the trial_stress is admissible, and true if the trial_stress is inadmissible. This can be used by the calling prorgram
Returns
true if a successful return (or a return-map not needed), false if the trial_stress is inadmissible but the return process failed

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 96 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

106 {
107  if (!(_use_custom_returnMap))
108  return TensorMechanicsPlasticModel::returnMap(trial_stress,
109  intnl_old,
110  E_ijkl,
111  ep_plastic_tolerance,
112  returned_stress,
113  returned_intnl,
114  dpm,
115  delta_dp,
116  yf,
117  trial_stress_inadmissible);
118 
119  yf.resize(1);
120 
121  yf[0] = yieldFunction(trial_stress, intnl_old);
122 
123  if (yf[0] < _f_tol)
124  {
125  // the trial_stress is admissible
126  trial_stress_inadmissible = false;
127  return true;
128  }
129 
130  trial_stress_inadmissible = true;
131  const Real mu = E_ijkl(0, 1, 0, 1);
132  const Real lambda = E_ijkl(0, 0, 0, 0) - 2.0 * mu;
133  const Real bulky = 3.0 * lambda + 2.0 * mu;
134  const Real Tr_trial = trial_stress.trace();
135  const Real J2trial = trial_stress.secondInvariant();
136 
137  // Perform a Newton-Raphson to find dpm when
138  // residual = (1 + dpm*mu/ll)sqrt(ll^2 - s^2) - sqrt(J2trial) = 0, with s=smoother
139  // with ll = sqrt(J2 + s^2) = aaa - bbb*Tr(stress) = aaa - bbb(Tr_trial - p*3*bulky*bbb_flow)
140  Real aaa;
141  Real daaa;
142  Real bbb;
143  Real dbbb;
144  Real bbb_flow;
145  Real dbbb_flow;
146  Real ll;
147  Real dll;
148  Real residual;
149  Real jac;
150  dpm[0] = 0;
151  unsigned int iter = 0;
152  do
153  {
154  bothAB(intnl_old + dpm[0], aaa, bbb);
155  dbothAB(intnl_old + dpm[0], daaa, dbbb);
156  onlyB(intnl_old + dpm[0], dilation, bbb_flow);
157  donlyB(intnl_old + dpm[0], dilation, dbbb_flow);
158  ll = aaa - bbb * (Tr_trial - dpm[0] * bulky * 3 * bbb_flow);
159  dll = daaa - dbbb * (Tr_trial - dpm[0] * bulky * 3 * bbb_flow) +
160  bbb * bulky * 3 * (bbb_flow + dpm[0] * dbbb_flow);
161  residual = bbb * (Tr_trial - dpm[0] * bulky * 3 * bbb_flow) - aaa +
162  std::sqrt(J2trial / Utility::pow<2>(1 + dpm[0] * mu / ll) + _smoother2);
163  jac = dbbb * (Tr_trial - dpm[0] * bulky * 3 * bbb_flow) -
164  bbb * bulky * 3 * (bbb_flow + dpm[0] * dbbb_flow) - daaa +
165  0.5 * J2trial * (-2.0) * (mu / ll - dpm[0] * mu * dll / ll / ll) /
166  Utility::pow<3>(1 + dpm[0] * mu / ll) /
167  std::sqrt(J2trial / Utility::pow<2>(1.0 + dpm[0] * mu / ll) + _smoother2);
168  dpm[0] += -residual / jac;
169  if (iter > _max_iters) // not converging
170  return false;
171  iter++;
172  } while (residual * residual > _f_tol * _f_tol);
173 
174  // set the returned values
175  yf[0] = 0;
176  returned_intnl = intnl_old + dpm[0];
177 
178  bothAB(returned_intnl, aaa, bbb);
179  onlyB(returned_intnl, dilation, bbb_flow);
180  ll = aaa - bbb * (Tr_trial - dpm[0] * bulky * 3.0 * bbb_flow);
181  returned_stress =
182  trial_stress.deviatoric() / (1.0 + dpm[0] * mu / ll); // this is the deviatoric part only
183 
184  RankTwoTensor rij = 0.5 * returned_stress.deviatoric() /
185  ll; // this is the derivatoric part the flow potential only
186 
187  // form the returned stress and the full flow potential
188  const Real returned_trace_over_3 = (aaa - ll) / bbb / 3.0;
189  for (unsigned i = 0; i < 3; ++i)
190  {
191  returned_stress(i, i) += returned_trace_over_3;
192  rij(i, i) += bbb_flow;
193  }
194 
195  delta_dp = rij * dpm[0];
196 
197  return true;
198 }

◆ useCustomCTO()

bool TensorMechanicsPlasticDruckerPragerHyperbolic::useCustomCTO ( ) const
overridevirtual

Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function.

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 270 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

271 {
272  return _use_custom_cto;
273 }

◆ useCustomReturnMap()

bool TensorMechanicsPlasticDruckerPragerHyperbolic::useCustomReturnMap ( ) const
overridevirtual

Returns false. You will want to override this in your derived class if you write a custom returnMap function.

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 264 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

265 {
266  return _use_custom_returnMap;
267 }

◆ validParams()

InputParameters TensorMechanicsPlasticDruckerPragerHyperbolic::validParams ( )
static

Definition at line 19 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

20 {
21  InputParameters params = TensorMechanicsPlasticDruckerPrager::validParams();
22  params.addParam<bool>("use_custom_returnMap",
23  true,
24  "Whether to use the custom returnMap "
25  "algorithm. Set to true if you are using "
26  "isotropic elasticity.");
27  params.addParam<bool>("use_custom_cto",
28  true,
29  "Whether to use the custom consistent tangent "
30  "operator computations. Set to true if you are "
31  "using isotropic elasticity.");
32  params.addClassDescription("J2 plasticity, associative, with hardening");
33  params.addRangeCheckedParam<Real>("smoother",
34  0.0,
35  "smoother>=0",
36  "The cone vertex at J2=0 is smoothed. The maximum mean "
37  "stress possible, which is Cohesion*Cot(friction_angle) for "
38  "smoother=0, becomes (Cohesion - "
39  "smoother/3)*Cot(friction_angle). This is a non-hardening "
40  "parameter");
41  params.addRangeCheckedParam<unsigned>(
42  "max_iterations",
43  40,
44  "max_iterations>0",
45  "Maximum iterations to use in the custom return map function");
46  params.addClassDescription(
47  "Non-associative Drucker Prager plasticity with hyperbolic smoothing of the cone tip.");
48  return params;
49 }

◆ yieldFunction()

Real TensorMechanicsPlasticDruckerPragerHyperbolic::yieldFunction ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The following functions are what you should override when building single-plasticity models.

The yield function

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the yield function

Reimplemented from TensorMechanicsPlasticDruckerPrager.

Definition at line 62 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

64 {
65  Real aaa;
66  Real bbb;
67  bothAB(intnl, aaa, bbb);
68  return std::sqrt(stress.secondInvariant() + _smoother2) + stress.trace() * bbb - aaa;
69 }

Referenced by returnMap().

◆ yieldFunctionV()

void TensorMechanicsPlasticModel::yieldFunctionV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  f 
) const
virtualinherited

Calculates the yield functions.

Note that for single-surface plasticity you don't want to override this - override the private yieldFunction below

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]fthe yield functions

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 69 of file TensorMechanicsPlasticModel.C.

72 {
73  f.assign(1, yieldFunction(stress, intnl));
74 }

Referenced by TensorMechanicsPlasticModel::returnMap().

Member Data Documentation

◆ _aaa

Real TensorMechanicsPlasticDruckerPrager::_aaa
privateinherited

◆ _bbb

Real TensorMechanicsPlasticDruckerPrager::_bbb
privateinherited

◆ _bbb_flow

Real TensorMechanicsPlasticDruckerPrager::_bbb_flow
privateinherited

◆ _f_tol

const Real TensorMechanicsPlasticModel::_f_tol
inherited

◆ _ic_tol

const Real TensorMechanicsPlasticModel::_ic_tol
inherited

Tolerance on internal constraint.

Definition at line 178 of file TensorMechanicsPlasticModel.h.

◆ _max_iters

const unsigned TensorMechanicsPlasticDruckerPragerHyperbolic::_max_iters
private

max iters for custom return map loop

Definition at line 77 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Referenced by returnMap().

◆ _mc_cohesion

const TensorMechanicsHardeningModel& TensorMechanicsPlasticDruckerPrager::_mc_cohesion
protectedinherited

◆ _mc_interpolation_scheme

const MooseEnum TensorMechanicsPlasticDruckerPrager::_mc_interpolation_scheme
protectedinherited

The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.

Various matching schemes may be used and this parameter holds the user's choice.

Definition at line 98 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by TensorMechanicsPlasticDruckerPrager::dbothAB(), TensorMechanicsPlasticDruckerPrager::donlyB(), TensorMechanicsPlasticDruckerPrager::initializeAandB(), and TensorMechanicsPlasticDruckerPrager::initializeB().

◆ _mc_phi

const TensorMechanicsHardeningModel& TensorMechanicsPlasticDruckerPrager::_mc_phi
protectedinherited

◆ _mc_psi

const TensorMechanicsHardeningModel& TensorMechanicsPlasticDruckerPrager::_mc_psi
protectedinherited

◆ _smoother2

const Real TensorMechanicsPlasticDruckerPragerHyperbolic::_smoother2
private

smoothing parameter for the cone's tip

Definition at line 68 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Referenced by consistentTangentOperator(), df_dsig(), dflowPotential_dstress(), returnMap(), and yieldFunction().

◆ _use_custom_cto

const bool TensorMechanicsPlasticDruckerPragerHyperbolic::_use_custom_cto
private

Whether to use the custom consistent tangent operator calculation.

Definition at line 74 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Referenced by consistentTangentOperator(), and useCustomCTO().

◆ _use_custom_returnMap

const bool TensorMechanicsPlasticDruckerPragerHyperbolic::_use_custom_returnMap
private

whether to use the custom returnMap function

Definition at line 71 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Referenced by returnMap(), and useCustomReturnMap().

◆ _zero_cohesion_hardening

const bool TensorMechanicsPlasticDruckerPrager::_zero_cohesion_hardening
protectedinherited

True if there is no hardening of cohesion.

Definition at line 101 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by TensorMechanicsPlasticDruckerPrager::bothAB(), and TensorMechanicsPlasticDruckerPrager::dbothAB().

◆ _zero_phi_hardening

const bool TensorMechanicsPlasticDruckerPrager::_zero_phi_hardening
protectedinherited

◆ _zero_psi_hardening

const bool TensorMechanicsPlasticDruckerPrager::_zero_psi_hardening
protectedinherited

True if there is no hardening of dilation angle.

Definition at line 107 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by TensorMechanicsPlasticDruckerPrager::donlyB(), and TensorMechanicsPlasticDruckerPrager::onlyB().


The documentation for this class was generated from the following files:
TensorMechanicsPlasticDruckerPrager::initializeB
void initializeB(Real intnl, int fd, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...
Definition: TensorMechanicsPlasticDruckerPrager.C:301
TensorMechanicsPlasticModel::numberSurfaces
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
Definition: TensorMechanicsPlasticModel.C:57
TensorMechanicsPlasticDruckerPrager::_bbb_flow
Real _bbb_flow
Definition: TensorMechanicsPlasticDruckerPrager.h:115
TensorMechanicsPlasticModel::dflowPotential_dintnl
virtual RankTwoTensor dflowPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:133
TensorMechanicsPlasticDruckerPrager::_zero_psi_hardening
const bool _zero_psi_hardening
True if there is no hardening of dilation angle.
Definition: TensorMechanicsPlasticDruckerPrager.h:107
TensorMechanicsPlasticDruckerPrager::onlyB
void onlyB(Real intnl, int fd, Real &bbb) const
Calculate bbb or bbb_flow.
Definition: TensorMechanicsPlasticDruckerPrager.C:161
pow
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
Definition: ExpressionBuilder.h:673
TensorMechanicsPlasticDruckerPrager::donlyB
void donlyB(Real intnl, int fd, Real &dbbb) const
Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)
Definition: TensorMechanicsPlasticDruckerPrager.C:177
TensorMechanicsPlasticModel::dyieldFunction_dstress
virtual RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to stress.
Definition: TensorMechanicsPlasticModel.C:77
TensorMechanicsPlasticModel::dhardPotential_dintnl
virtual Real dhardPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:174
TensorMechanicsPlasticDruckerPrager::df_dsig
virtual RankTwoTensor df_dsig(const RankTwoTensor &stress, Real bbb) const
Function that's used in dyieldFunction_dstress and flowPotential.
Definition: TensorMechanicsPlasticDruckerPrager.C:89
TensorMechanicsPlasticDruckerPrager::TensorMechanicsPlasticDruckerPrager
TensorMechanicsPlasticDruckerPrager(const InputParameters &parameters)
Definition: TensorMechanicsPlasticDruckerPrager.C:54
TensorMechanicsPlasticDruckerPragerHyperbolic::_use_custom_returnMap
const bool _use_custom_returnMap
whether to use the custom returnMap function
Definition: TensorMechanicsPlasticDruckerPragerHyperbolic.h:71
TensorMechanicsPlasticDruckerPragerHyperbolic::_use_custom_cto
const bool _use_custom_cto
Whether to use the custom consistent tangent operator calculation.
Definition: TensorMechanicsPlasticDruckerPragerHyperbolic.h:74
TensorMechanicsPlasticDruckerPrager::dilation
Definition: TensorMechanicsPlasticDruckerPrager.h:49
TensorMechanicsPlasticDruckerPrager::_zero_phi_hardening
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
Definition: TensorMechanicsPlasticDruckerPrager.h:104
TensorMechanicsPlasticDruckerPrager::_bbb
Real _bbb
Definition: TensorMechanicsPlasticDruckerPrager.h:114
TensorMechanicsPlasticDruckerPrager::_mc_phi
const TensorMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
Definition: TensorMechanicsPlasticDruckerPrager.h:73
TensorMechanicsPlasticDruckerPragerHyperbolic::_max_iters
const unsigned _max_iters
max iters for custom return map loop
Definition: TensorMechanicsPlasticDruckerPragerHyperbolic.h:77
TensorMechanicsPlasticDruckerPragerHyperbolic::yieldFunction
Real yieldFunction(const RankTwoTensor &stress, Real intnl) const override
The following functions are what you should override when building single-plasticity models.
Definition: TensorMechanicsPlasticDruckerPragerHyperbolic.C:62
TensorMechanicsPlasticDruckerPrager::_aaa
Real _aaa
Definition: TensorMechanicsPlasticDruckerPrager.h:113
TensorMechanicsPlasticDruckerPrager::friction
Definition: TensorMechanicsPlasticDruckerPrager.h:48
TensorMechanicsPlasticModel::_f_tol
const Real _f_tol
Tolerance on yield function.
Definition: TensorMechanicsPlasticModel.h:175
TensorMechanicsPlasticDruckerPrager::_zero_cohesion_hardening
const bool _zero_cohesion_hardening
True if there is no hardening of cohesion.
Definition: TensorMechanicsPlasticDruckerPrager.h:101
TensorMechanicsHardeningModel::derivative
virtual Real derivative(Real intnl) const
Definition: TensorMechanicsHardeningModel.C:47
TensorMechanicsPlasticModel::hardPotential
virtual Real hardPotential(const RankTwoTensor &stress, Real intnl) const
The hardening potential.
Definition: TensorMechanicsPlasticModel.C:147
TensorMechanicsPlasticDruckerPrager::dyieldFunction_dintnl
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const override
The derivative of yield function with respect to the internal parameter.
Definition: TensorMechanicsPlasticDruckerPrager.C:105
TensorMechanicsPlasticModel::returnMap
virtual bool returnMap(const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const
Performs a custom return-map.
Definition: TensorMechanicsPlasticModel.C:221
TensorMechanicsPlasticDruckerPrager::_mc_psi
const TensorMechanicsHardeningModel & _mc_psi
Hardening model for tan(psi)
Definition: TensorMechanicsPlasticDruckerPrager.h:76
TensorMechanicsHardeningModel::value
virtual Real value(Real intnl) const
Definition: TensorMechanicsHardeningModel.C:45
RankTwoTensor
RankTwoTensorTempl< Real > RankTwoTensor
Definition: ACGrGrElasticDrivingForce.h:17
TensorMechanicsPlasticModel::consistentTangentOperator
virtual RankFourTensor consistentTangentOperator(const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const
Calculates a custom consistent tangent operator.
Definition: TensorMechanicsPlasticModel.C:254
TensorMechanicsPlasticDruckerPragerHyperbolic::_smoother2
const Real _smoother2
smoothing parameter for the cone's tip
Definition: TensorMechanicsPlasticDruckerPragerHyperbolic.h:68
TensorMechanicsPlasticDruckerPrager::_mc_interpolation_scheme
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.
Definition: TensorMechanicsPlasticDruckerPrager.h:98
RankFourTensorTempl
Definition: ACGrGrElasticDrivingForce.h:20
TensorMechanicsPlasticModel::dflowPotential_dstress
virtual RankFourTensor dflowPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to stress.
Definition: TensorMechanicsPlasticModel.C:119
TensorMechanicsPlasticDruckerPrager::_mc_cohesion
const TensorMechanicsHardeningModel & _mc_cohesion
Hardening model for cohesion.
Definition: TensorMechanicsPlasticDruckerPrager.h:70
TensorMechanicsPlasticModel::yieldFunction
virtual Real yieldFunction(const RankTwoTensor &stress, Real intnl) const
The following functions are what you should override when building single-plasticity models.
Definition: TensorMechanicsPlasticModel.C:63
TensorMechanicsPlasticModel::flowPotential
virtual RankTwoTensor flowPotential(const RankTwoTensor &stress, Real intnl) const
The flow potential.
Definition: TensorMechanicsPlasticModel.C:106
RankTwoTensorTempl< Real >
TensorMechanicsPlasticDruckerPrager::validParams
static InputParameters validParams()
Definition: TensorMechanicsPlasticDruckerPrager.C:19
TensorMechanicsPlasticDruckerPrager::dbothAB
void dbothAB(Real intnl, Real &daaa, Real &dbbb) const
Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl.
Definition: TensorMechanicsPlasticDruckerPrager.C:219
TensorMechanicsPlasticModel::dhardPotential_dstress
virtual RankTwoTensor dhardPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to stress.
Definition: TensorMechanicsPlasticModel.C:160
TensorMechanicsPlasticDruckerPrager::initializeAandB
void initializeAandB(Real intnl, Real &aaa, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...
Definition: TensorMechanicsPlasticDruckerPrager.C:270
TensorMechanicsPlasticDruckerPrager::bothAB
void bothAB(Real intnl, Real &aaa, Real &bbb) const
Calculates aaa and bbb as a function of the internal parameter intnl.
Definition: TensorMechanicsPlasticDruckerPrager.C:149
RankFourTensor
RankFourTensorTempl< Real > RankFourTensor
Definition: ACGrGrElasticDrivingForce.h:20
TensorMechanicsPlasticModel::dyieldFunction_dintnl
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:92