www.mooseframework.org
Public Member Functions | Static Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | List of all members
TensorMechanicsPlasticMohrCoulomb Class Reference

Mohr-Coulomb plasticity, nonassociative with hardening/softening. More...

#include <TensorMechanicsPlasticMohrCoulomb.h>

Inheritance diagram for TensorMechanicsPlasticMohrCoulomb:
[legend]

Public Member Functions

 TensorMechanicsPlasticMohrCoulomb (const InputParameters &parameters)
 
virtual std::string modelName () const override
 
void initialize ()
 
void execute ()
 
void finalize ()
 
virtual unsigned int numberSurfaces () const
 The number of yield surfaces for this plasticity model. More...
 
virtual void yieldFunctionV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
 Calculates the yield functions. More...
 
virtual void dyieldFunction_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &df_dstress) const
 The derivative of yield functions with respect to stress. More...
 
virtual void dyieldFunction_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &df_dintnl) const
 The derivative of yield functions with respect to the internal parameter. More...
 
virtual void flowPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &r) const
 The flow potentials. More...
 
virtual void dflowPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankFourTensor > &dr_dstress) const
 The derivative of the flow potential with respect to stress. More...
 
virtual void dflowPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dr_dintnl) const
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual void hardPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &h) const
 The hardening potential. More...
 
virtual void dhardPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dh_dstress) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual void dhardPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &dh_dintnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual void activeConstraints (const std::vector< Real > &f, const RankTwoTensor &stress, Real intnl, const RankFourTensor &Eijkl, std::vector< bool > &act, RankTwoTensor &returned_stress) const
 The active yield surfaces, given a vector of yield functions. More...
 
virtual bool useCustomReturnMap () const
 Returns false. You will want to override this in your derived class if you write a custom returnMap function. More...
 
virtual bool useCustomCTO () const
 Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function. More...
 
virtual bool returnMap (const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const
 Performs a custom return-map. More...
 
virtual RankFourTensor consistentTangentOperator (const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const
 Calculates a custom consistent tangent operator. More...
 
bool KuhnTuckerSingleSurface (Real yf, Real dpm, Real dpm_tol) const
 Returns true if the Kuhn-Tucker conditions for the single surface are satisfied. More...
 

Static Public Member Functions

static InputParameters validParams ()
 

Public Attributes

const Real _f_tol
 Tolerance on yield function. More...
 
const Real _ic_tol
 Tolerance on internal constraint. More...
 

Protected Member Functions

Real yieldFunction (const RankTwoTensor &stress, Real intnl) const override
 The following functions are what you should override when building single-plasticity models. More...
 
RankTwoTensor dyieldFunction_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to stress. More...
 
Real dyieldFunction_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to the internal parameter. More...
 
RankTwoTensor flowPotential (const RankTwoTensor &stress, Real intnl) const override
 The flow potential. More...
 
RankFourTensor dflowPotential_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to stress. More...
 
RankTwoTensor dflowPotential_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual Real smooth (const RankTwoTensor &stress) const
 returns the 'a' parameter - see doco for _tip_scheme More...
 
virtual Real dsmooth (const RankTwoTensor &stress) const
 returns the da/dstress_mean - see doco for _tip_scheme More...
 
virtual Real d2smooth (const RankTwoTensor &stress) const
 returns the d^2a/dstress_mean^2 - see doco for _tip_scheme More...
 
virtual Real cohesion (const Real internal_param) const
 cohesion as a function of internal parameter More...
 
virtual Real dcohesion (const Real internal_param) const
 d(cohesion)/d(internal_param); More...
 
virtual Real phi (const Real internal_param) const
 friction angle as a function of internal parameter More...
 
virtual Real dphi (const Real internal_param) const
 d(phi)/d(internal_param); More...
 
virtual Real psi (const Real internal_param) const
 dilation angle as a function of internal parameter More...
 
virtual Real dpsi (const Real internal_param) const
 d(psi)/d(internal_param); More...
 
virtual Real hardPotential (const RankTwoTensor &stress, Real intnl) const
 The hardening potential. More...
 
virtual RankTwoTensor dhardPotential_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual Real dhardPotential_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 

Protected Attributes

const TensorMechanicsHardeningModel_cohesion
 Hardening model for cohesion. More...
 
const TensorMechanicsHardeningModel_phi
 Hardening model for phi. More...
 
const TensorMechanicsHardeningModel_psi
 Hardening model for psi. More...
 
MooseEnum _tip_scheme
 The yield function is modified to f = s_m*sinphi + sqrt(a + s_bar^2 K^2) - C*cosphi where "a" depends on the tip_scheme. More...
 
Real _small_smoother2
 Square of tip smoothing parameter to smooth the cone at mean_stress = T. More...
 
Real _cap_start
 smoothing parameter dictating when the 'cap' will start - see doco for _tip_scheme More...
 
Real _cap_rate
 dictates how quickly the 'cap' degenerates to a hemisphere - see doco for _tip_scheme More...
 
Real _tt
 edge smoothing parameter, in radians More...
 
Real _costt
 cos(_tt) More...
 
Real _sintt
 sin(_tt) More...
 
Real _cos3tt
 cos(3*_tt) More...
 
Real _sin3tt
 sin(3*_tt) - useful for making comparisons with Lode angle More...
 
Real _cos6tt
 cos(6*_tt) More...
 
Real _sin6tt
 sin(6*_tt) More...
 
Real _lode_cutoff
 if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-loss More...
 

Private Member Functions

void abbo (const Real sin3lode, const Real sin_angle, Real &aaa, Real &bbb, Real &ccc) const
 Computes Abbo et al's A, B and C parameters. More...
 
void dabbo (const Real sin3lode, const Real sin_angle, Real &daaa, Real &dbbb, Real &dccc) const
 Computes derivatives of Abbo et al's A, B and C parameters wrt sin_angle. More...
 
RankTwoTensor df_dsig (const RankTwoTensor &stress, const Real sin_angle) const
 d(yieldFunction)/d(stress), but with the ability to put friction or dilation angle into the result More...
 

Detailed Description

Mohr-Coulomb plasticity, nonassociative with hardening/softening.

For 'hyperbolic' smoothing, the smoothing of the tip of the yield-surface cone is described in Zienkiewicz and Prande "Some useful forms of isotropic yield surfaces for soil and rock mechanics" (1977) In G Gudehus (editor) "Finite Elements in Geomechanics" Wile, Chichester, pp 179-190. For 'cap' smoothing, additional smoothing is performed. The smoothing of the edges of the cone is described in AJ Abbo, AV Lyamin, SW Sloan, JP Hambleton "A C2 continuous approximation to the Mohr-Coulomb yield surface" International Journal of Solids and Structures 48 (2011) 3001-3010

Definition at line 33 of file TensorMechanicsPlasticMohrCoulomb.h.

Constructor & Destructor Documentation

◆ TensorMechanicsPlasticMohrCoulomb()

TensorMechanicsPlasticMohrCoulomb::TensorMechanicsPlasticMohrCoulomb ( const InputParameters &  parameters)

Definition at line 71 of file TensorMechanicsPlasticMohrCoulomb.C.

73  : TensorMechanicsPlasticModel(parameters),
74  _cohesion(getUserObject<TensorMechanicsHardeningModel>("cohesion")),
75  _phi(getUserObject<TensorMechanicsHardeningModel>("friction_angle")),
76  _psi(getUserObject<TensorMechanicsHardeningModel>("dilation_angle")),
77  _tip_scheme(getParam<MooseEnum>("tip_scheme")),
78  _small_smoother2(Utility::pow<2>(getParam<Real>("mc_tip_smoother"))),
79  _cap_start(getParam<Real>("cap_start")),
80  _cap_rate(getParam<Real>("cap_rate")),
81  _tt(getParam<Real>("mc_edge_smoother") * libMesh::pi / 180.0),
82  _costt(std::cos(_tt)),
83  _sintt(std::sin(_tt)),
84  _cos3tt(std::cos(3 * _tt)),
85  _sin3tt(std::sin(3 * _tt)),
86  _cos6tt(std::cos(6 * _tt)),
87  _sin6tt(std::sin(6 * _tt)),
88  _lode_cutoff(parameters.isParamValid("mc_lode_cutoff") ? getParam<Real>("mc_lode_cutoff")
89  : 1.0E-5 * Utility::pow<2>(_f_tol))
90 
91 {
92  if (_lode_cutoff < 0)
93  mooseError("mc_lode_cutoff must not be negative");
94 
95  // With arbitary UserObjects, it is impossible to check everything, and
96  // I think this is the best I can do
97  if (phi(0) < 0 || psi(0) < 0 || phi(0) > libMesh::pi / 2.0 || psi(0) > libMesh::pi / 2.0)
98  mooseError("Mohr-Coulomb friction and dilation angles must lie in [0, Pi/2]");
99  if (phi(0) < psi(0))
100  mooseError("Mohr-Coulomb friction angle must not be less than Mohr-Coulomb dilation angle");
101  if (cohesion(0) < 0)
102  mooseError("Mohr-Coulomb cohesion must not be negative");
103 
104  // check Abbo et al's convexity constraint (Eqn c.18 in their paper)
105  // With an arbitrary UserObject, it is impossible to check for all angles
106  // I think the following is the best we can do
107  Real sin_angle = std::sin(std::max(phi(0), psi(0)));
108  sin_angle = std::max(sin_angle, std::sin(std::max(phi(1E6), psi(1E6))));
109  Real rhs = std::sqrt(3) * (35 * std::sin(_tt) + 14 * std::sin(5 * _tt) - 5 * std::sin(7 * _tt)) /
110  16 / Utility::pow<5>(std::cos(_tt)) / (11 - 10 * std::cos(2 * _tt));
111  if (rhs <= sin_angle)
112  mooseError("Mohr-Coulomb edge smoothing angle is too small and a non-convex yield surface will "
113  "result. Please choose a larger value");
114 }

Member Function Documentation

◆ abbo()

void TensorMechanicsPlasticMohrCoulomb::abbo ( const Real  sin3lode,
const Real  sin_angle,
Real &  aaa,
Real &  bbb,
Real &  ccc 
) const
private

Computes Abbo et al's A, B and C parameters.

Parameters
sin3lodesin(3*(lode angle))
sin_anglesin(friction_angle) (for yield function), or sin(dilation_angle) (for potential function)
[out]aaaAbbo's A
[out]bbbAbbo's B
[out]cccAbbo's C

Definition at line 411 of file TensorMechanicsPlasticMohrCoulomb.C.

413 {
414  Real tmp1 = (sin3lode >= 0 ? _costt - sin_angle * _sintt / std::sqrt(3.0)
415  : _costt + sin_angle * _sintt / std::sqrt(3.0));
416  Real tmp2 = (sin3lode >= 0 ? _sintt + sin_angle * _costt / std::sqrt(3.0)
417  : -_sintt + sin_angle * _costt / std::sqrt(3.0));
418 
419  ccc = -_cos3tt * tmp1;
420  ccc += (sin3lode >= 0 ? -3 * _sin3tt * tmp2 : 3 * _sin3tt * tmp2);
421  ccc /= 18 * Utility::pow<3>(_cos3tt);
422 
423  bbb = (sin3lode >= 0 ? _sin6tt * tmp1 : -_sin6tt * tmp1);
424  bbb -= 6 * _cos6tt * tmp2;
425  bbb /= 18 * Utility::pow<3>(_cos3tt);
426 
427  aaa = (sin3lode >= 0 ? -sin_angle * _sintt / std::sqrt(3.0) - bbb * _sin3tt
428  : sin_angle * _sintt / std::sqrt(3.0) + bbb * _sin3tt);
429  aaa += -ccc * Utility::pow<2>(_sin3tt) + _costt;
430 }

Referenced by df_dsig(), dflowPotential_dintnl(), dflowPotential_dstress(), dyieldFunction_dintnl(), and yieldFunction().

◆ activeConstraints()

void TensorMechanicsPlasticModel::activeConstraints ( const std::vector< Real > &  f,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor Eijkl,
std::vector< bool > &  act,
RankTwoTensor returned_stress 
) const
virtualinherited

The active yield surfaces, given a vector of yield functions.

This is used by FiniteStrainMultiPlasticity to determine the initial set of active constraints at the trial (stress, intnl) configuration. It is up to you (the coder) to determine how accurate you want the returned_stress to be. Currently it is only used by FiniteStrainMultiPlasticity to estimate a good starting value for the Newton-Rahson procedure, so currently it may not need to be super perfect.

Parameters
fvalues of the yield functions
stressstress tensor
intnlinternal parameter
Eijklelasticity tensor (stress = Eijkl*strain)
[out]actact[i] = true if the i_th yield function is active
[out]returned_stressApproximate value of the returned stress

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticWeakPlaneShear, and TensorMechanicsPlasticWeakPlaneTensile.

Definition at line 188 of file TensorMechanicsPlasticModel.C.

194 {
195  mooseAssert(f.size() == numberSurfaces(),
196  "f incorrectly sized at " << f.size() << " in activeConstraints");
197  act.resize(numberSurfaces());
198  for (unsigned surface = 0; surface < numberSurfaces(); ++surface)
199  act[surface] = (f[surface] > _f_tol);
200 }

◆ cohesion()

Real TensorMechanicsPlasticMohrCoulomb::cohesion ( const Real  internal_param) const
protectedvirtual

cohesion as a function of internal parameter

Definition at line 375 of file TensorMechanicsPlasticMohrCoulomb.C.

376 {
377  return _cohesion.value(internal_param);
378 }

Referenced by dyieldFunction_dintnl(), TensorMechanicsPlasticMohrCoulomb(), and yieldFunction().

◆ consistentTangentOperator()

RankFourTensor TensorMechanicsPlasticModel::consistentTangentOperator ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor E_ijkl,
const std::vector< Real > &  cumulative_pm 
) const
virtualinherited

Calculates a custom consistent tangent operator.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class.

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
stress_oldtrial stress before returning
intnl_oldinternal parameter before returning
stresscurrent returned stress state
intnlinternal parameter
E_ijklelasticity tensor
cumulative_pmthe cumulative plastic multipliers
Returns
the consistent tangent operator: E_ijkl if not over-ridden

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticDruckerPragerHyperbolic, TensorMechanicsPlasticMeanCapTC, and TensorMechanicsPlasticJ2.

Definition at line 254 of file TensorMechanicsPlasticModel.C.

261 {
262  return E_ijkl;
263 }

Referenced by TensorMechanicsPlasticJ2::consistentTangentOperator(), TensorMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator(), TensorMechanicsPlasticMeanCapTC::consistentTangentOperator(), and TensorMechanicsPlasticTensileMulti::consistentTangentOperator().

◆ d2smooth()

Real TensorMechanicsPlasticMohrCoulomb::d2smooth ( const RankTwoTensor stress) const
protectedvirtual

returns the d^2a/dstress_mean^2 - see doco for _tip_scheme

Definition at line 487 of file TensorMechanicsPlasticMohrCoulomb.C.

488 {
489  Real d2smoother2 = 0;
490  if (_tip_scheme == "cap")
491  {
492  Real x = stress.trace() / 3.0 - _cap_start;
493  Real p = 0;
494  Real dp_dx = 0;
495  Real d2p_dx2 = 0;
496  if (x > 0)
497  {
498  p = x * (1 - std::exp(-_cap_rate * x));
499  dp_dx = (1 - std::exp(-_cap_rate * x)) + x * _cap_rate * std::exp(-_cap_rate * x);
500  d2p_dx2 = 2 * _cap_rate * std::exp(-_cap_rate * x) -
501  x * Utility::pow<2>(_cap_rate) * std::exp(-_cap_rate * x);
502  }
503  d2smoother2 += 2 * Utility::pow<2>(dp_dx) + 2 * p * d2p_dx2;
504  }
505  return d2smoother2;
506 }

Referenced by dflowPotential_dstress().

◆ dabbo()

void TensorMechanicsPlasticMohrCoulomb::dabbo ( const Real  sin3lode,
const Real  sin_angle,
Real &  daaa,
Real &  dbbb,
Real &  dccc 
) const
private

Computes derivatives of Abbo et al's A, B and C parameters wrt sin_angle.

Parameters
sin3lodesin(3*(lode angle))
sin_anglesin(friction_angle) (for yield function), or sin(dilation_angle) (for potential function)
[out]daaad(Abbo's A)/d(sin_angle)
[out]dbbbd(Abbo's B)/d(sin_angle)
[out]dcccd(Abbo's C)/d(sin_angle)

Definition at line 433 of file TensorMechanicsPlasticMohrCoulomb.C.

435 {
436  Real dtmp1 = (sin3lode >= 0 ? -_sintt / std::sqrt(3.0) : _sintt / std::sqrt(3.0));
437  Real dtmp2 = _costt / std::sqrt(3.0);
438 
439  dccc = -_cos3tt * dtmp1;
440  dccc += (sin3lode >= 0 ? -3 * _sin3tt * dtmp2 : 3 * _sin3tt * dtmp2);
441  dccc /= 18 * Utility::pow<3>(_cos3tt);
442 
443  dbbb = (sin3lode >= 0 ? _sin6tt * dtmp1 : -_sin6tt * dtmp1);
444  dbbb -= 6 * _cos6tt * dtmp2;
445  dbbb /= 18 * Utility::pow<3>(_cos3tt);
446 
447  daaa = (sin3lode >= 0 ? -_sintt / std::sqrt(3.0) - dbbb * _sin3tt
448  : _sintt / std::sqrt(3.0) + dbbb * _sin3tt);
449  daaa += -dccc * Utility::pow<2>(_sin3tt);
450 }

Referenced by dflowPotential_dintnl(), and dyieldFunction_dintnl().

◆ dcohesion()

Real TensorMechanicsPlasticMohrCoulomb::dcohesion ( const Real  internal_param) const
protectedvirtual

d(cohesion)/d(internal_param);

Definition at line 381 of file TensorMechanicsPlasticMohrCoulomb.C.

382 {
383  return _cohesion.derivative(internal_param);
384 }

Referenced by dyieldFunction_dintnl().

◆ df_dsig()

RankTwoTensor TensorMechanicsPlasticMohrCoulomb::df_dsig ( const RankTwoTensor stress,
const Real  sin_angle 
) const
private

d(yieldFunction)/d(stress), but with the ability to put friction or dilation angle into the result

Parameters
stressthe stress at which to calculate
sin_angleeither sin(friction angle) or sin(dilation angle)

Definition at line 147 of file TensorMechanicsPlasticMohrCoulomb.C.

148 {
149  Real mean_stress = stress.trace() / 3.0;
150  RankTwoTensor dmean_stress = stress.dtrace() / 3.0;
151  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
152  if (std::abs(sin3Lode) <= _sin3tt)
153  {
154  // the non-edge-smoothed version
155  std::vector<Real> eigvals;
156  std::vector<RankTwoTensor> deigvals;
157  stress.dsymmetricEigenvalues(eigvals, deigvals);
158  Real tmp = eigvals[2] - eigvals[0] + (eigvals[2] + eigvals[0] - 2.0 * mean_stress) * sin_angle;
159  RankTwoTensor dtmp =
160  deigvals[2] - deigvals[0] + (deigvals[2] + deigvals[0] - 2.0 * dmean_stress) * sin_angle;
161  Real denom = std::sqrt(smooth(stress) + 0.25 * Utility::pow<2>(tmp));
162  return dmean_stress * sin_angle +
163  (0.5 * dsmooth(stress) * dmean_stress + 0.25 * tmp * dtmp) / denom;
164  }
165  else
166  {
167  // the edge-smoothed version
168  Real aaa, bbb, ccc;
169  abbo(sin3Lode, sin_angle, aaa, bbb, ccc);
170  Real kk = aaa + bbb * sin3Lode + ccc * Utility::pow<2>(sin3Lode);
171  RankTwoTensor dkk = (bbb + 2 * ccc * sin3Lode) * stress.dsin3Lode(_lode_cutoff);
172  Real sibar2 = stress.secondInvariant();
173  RankTwoTensor dsibar2 = stress.dsecondInvariant();
174  Real denom = std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk));
175  return dmean_stress * sin_angle + (0.5 * dsmooth(stress) * dmean_stress +
176  0.5 * dsibar2 * Utility::pow<2>(kk) + sibar2 * kk * dkk) /
177  denom;
178  }
179 }

Referenced by dyieldFunction_dstress(), and flowPotential().

◆ dflowPotential_dintnl()

RankTwoTensor TensorMechanicsPlasticMohrCoulomb::dflowPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dintnl(i, j) = dr(i, j)/dintnl

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 318 of file TensorMechanicsPlasticMohrCoulomb.C.

320 {
321  Real sin_angle = std::sin(psi(intnl));
322  Real dsin_angle = std::cos(psi(intnl)) * dpsi(intnl);
323 
324  Real mean_stress = stress.trace() / 3.0;
325  RankTwoTensor dmean_stress = stress.dtrace() / 3.0;
326  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
327 
328  if (std::abs(sin3Lode) <= _sin3tt)
329  {
330  // the non-edge-smoothed version
331  std::vector<Real> eigvals;
332  std::vector<RankTwoTensor> deigvals;
333  stress.dsymmetricEigenvalues(eigvals, deigvals);
334  Real tmp = eigvals[2] - eigvals[0] + (eigvals[2] + eigvals[0] - 2.0 * mean_stress) * sin_angle;
335  Real dtmp_dintnl = (eigvals[2] + eigvals[0] - 2 * mean_stress) * dsin_angle;
336  RankTwoTensor dtmp_dstress =
337  deigvals[2] - deigvals[0] + (deigvals[2] + deigvals[0] - 2.0 * dmean_stress) * sin_angle;
338  RankTwoTensor d2tmp_dstress_dintnl =
339  (deigvals[2] + deigvals[0] - 2.0 * dmean_stress) * dsin_angle;
340  Real denom = std::sqrt(smooth(stress) + 0.25 * Utility::pow<2>(tmp));
341  return dmean_stress * dsin_angle + 0.25 * dtmp_dintnl * dtmp_dstress / denom +
342  0.25 * tmp * d2tmp_dstress_dintnl / denom -
343  0.5 * (dsmooth(stress) * dmean_stress + 0.5 * tmp * dtmp_dstress) * 0.25 * tmp *
344  dtmp_dintnl / Utility::pow<3>(denom);
345  }
346  else
347  {
348  // the edge-smoothed version
349  Real aaa, bbb, ccc;
350  abbo(sin3Lode, sin_angle, aaa, bbb, ccc);
351  Real kk = aaa + bbb * sin3Lode + ccc * Utility::pow<2>(sin3Lode);
352 
353  Real daaa, dbbb, dccc;
354  dabbo(sin3Lode, sin_angle, daaa, dbbb, dccc);
355  Real dkk_dintnl = (daaa + dbbb * sin3Lode + dccc * Utility::pow<2>(sin3Lode)) * dsin_angle;
356  RankTwoTensor dkk_dstress = (bbb + 2 * ccc * sin3Lode) * stress.dsin3Lode(_lode_cutoff);
357  RankTwoTensor d2kk_dstress_dintnl =
358  (dbbb + 2 * dccc * sin3Lode) * stress.dsin3Lode(_lode_cutoff) * dsin_angle;
359 
360  Real sibar2 = stress.secondInvariant();
361  RankTwoTensor dsibar2 = stress.dsecondInvariant();
362  Real denom = std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk));
363 
364  return dmean_stress * dsin_angle +
365  (dsibar2 * kk * dkk_dintnl + sibar2 * dkk_dintnl * dkk_dstress +
366  sibar2 * kk * d2kk_dstress_dintnl) /
367  denom -
368  (0.5 * dsmooth(stress) * dmean_stress + 0.5 * dsibar2 * Utility::pow<2>(kk) +
369  sibar2 * kk * dkk_dstress) *
370  sibar2 * kk * dkk_dintnl / Utility::pow<3>(denom);
371  }
372 }

◆ dflowPotential_dintnlV()

void TensorMechanicsPlasticModel::dflowPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dr_dintnl 
) const
virtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dintnldr_dintnl[alpha](i, j) = dr[alpha](i, j)/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 139 of file TensorMechanicsPlasticModel.C.

142 {
143  return dr_dintnl.assign(1, dflowPotential_dintnl(stress, intnl));
144 }

◆ dflowPotential_dstress()

RankFourTensor TensorMechanicsPlasticMohrCoulomb::dflowPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dstress(i, j, k, l) = dr(i, j)/dstress(k, l)

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 235 of file TensorMechanicsPlasticMohrCoulomb.C.

237 {
238  RankFourTensor dr_dstress;
239  Real sin_angle = std::sin(psi(intnl));
240  Real mean_stress = stress.trace() / 3.0;
241  RankTwoTensor dmean_stress = stress.dtrace() / 3.0;
242  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
243  if (std::abs(sin3Lode) <= _sin3tt)
244  {
245  // the non-edge-smoothed version
246  std::vector<Real> eigvals;
247  std::vector<RankTwoTensor> deigvals;
248  std::vector<RankFourTensor> d2eigvals;
249  stress.dsymmetricEigenvalues(eigvals, deigvals);
250  stress.d2symmetricEigenvalues(d2eigvals);
251 
252  Real tmp = eigvals[2] - eigvals[0] + (eigvals[2] + eigvals[0] - 2.0 * mean_stress) * sin_angle;
253  RankTwoTensor dtmp =
254  deigvals[2] - deigvals[0] + (deigvals[2] + deigvals[0] - 2.0 * dmean_stress) * sin_angle;
255  Real denom = std::sqrt(smooth(stress) + 0.25 * Utility::pow<2>(tmp));
256  Real denom3 = Utility::pow<3>(denom);
257  Real d2smooth_over_denom = d2smooth(stress) / denom;
258  RankTwoTensor numer = dsmooth(stress) * dmean_stress + 0.5 * tmp * dtmp;
259 
260  dr_dstress = 0.25 * tmp *
261  (d2eigvals[2] - d2eigvals[0] + (d2eigvals[2] + d2eigvals[0]) * sin_angle) / denom;
262 
263  for (unsigned i = 0; i < 3; ++i)
264  for (unsigned j = 0; j < 3; ++j)
265  for (unsigned k = 0; k < 3; ++k)
266  for (unsigned l = 0; l < 3; ++l)
267  {
268  dr_dstress(i, j, k, l) +=
269  0.5 * d2smooth_over_denom * dmean_stress(i, j) * dmean_stress(k, l);
270  dr_dstress(i, j, k, l) += 0.25 * dtmp(i, j) * dtmp(k, l) / denom;
271  dr_dstress(i, j, k, l) -= 0.25 * numer(i, j) * numer(k, l) / denom3;
272  }
273  }
274  else
275  {
276  // the edge-smoothed version
277  Real aaa, bbb, ccc;
278  abbo(sin3Lode, sin_angle, aaa, bbb, ccc);
279  RankTwoTensor dsin3Lode = stress.dsin3Lode(_lode_cutoff);
280  Real kk = aaa + bbb * sin3Lode + ccc * Utility::pow<2>(sin3Lode);
281  RankTwoTensor dkk = (bbb + 2 * ccc * sin3Lode) * dsin3Lode;
282  RankFourTensor d2kk = (bbb + 2 * ccc * sin3Lode) * stress.d2sin3Lode(_lode_cutoff);
283  for (unsigned i = 0; i < 3; ++i)
284  for (unsigned j = 0; j < 3; ++j)
285  for (unsigned k = 0; k < 3; ++k)
286  for (unsigned l = 0; l < 3; ++l)
287  d2kk(i, j, k, l) += 2 * ccc * dsin3Lode(i, j) * dsin3Lode(k, l);
288 
289  Real sibar2 = stress.secondInvariant();
290  RankTwoTensor dsibar2 = stress.dsecondInvariant();
291  RankFourTensor d2sibar2 = stress.d2secondInvariant();
292 
293  Real denom = std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk));
294  Real denom3 = Utility::pow<3>(denom);
295  Real d2smooth_over_denom = d2smooth(stress) / denom;
296  RankTwoTensor numer_full =
297  0.5 * dsmooth(stress) * dmean_stress + 0.5 * dsibar2 * kk * kk + sibar2 * kk * dkk;
298 
299  dr_dstress = (0.5 * d2sibar2 * Utility::pow<2>(kk) + sibar2 * kk * d2kk) / denom;
300  for (unsigned i = 0; i < 3; ++i)
301  for (unsigned j = 0; j < 3; ++j)
302  for (unsigned k = 0; k < 3; ++k)
303  for (unsigned l = 0; l < 3; ++l)
304  {
305  dr_dstress(i, j, k, l) +=
306  0.5 * d2smooth_over_denom * dmean_stress(i, j) * dmean_stress(k, l);
307  dr_dstress(i, j, k, l) +=
308  (dsibar2(i, j) * dkk(k, l) * kk + dkk(i, j) * dsibar2(k, l) * kk +
309  sibar2 * dkk(i, j) * dkk(k, l)) /
310  denom;
311  dr_dstress(i, j, k, l) -= numer_full(i, j) * numer_full(k, l) / denom3;
312  }
313  }
314  return dr_dstress;
315 }

◆ dflowPotential_dstressV()

void TensorMechanicsPlasticModel::dflowPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankFourTensor > &  dr_dstress 
) const
virtualinherited

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dstressdr_dstress[alpha](i, j, k, l) = dr[alpha](i, j)/dstress(k, l)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 125 of file TensorMechanicsPlasticModel.C.

128 {
129  return dr_dstress.assign(1, dflowPotential_dstress(stress, intnl));
130 }

◆ dhardPotential_dintnl()

Real TensorMechanicsPlasticModel::dhardPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
the derivative

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 174 of file TensorMechanicsPlasticModel.C.

176 {
177  return 0.0;
178 }

Referenced by TensorMechanicsPlasticModel::dhardPotential_dintnlV().

◆ dhardPotential_dintnlV()

void TensorMechanicsPlasticModel::dhardPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  dh_dintnl 
) const
virtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dintnldh_dintnl[alpha] = dh[alpha]/dintnl

Definition at line 180 of file TensorMechanicsPlasticModel.C.

183 {
184  dh_dintnl.resize(numberSurfaces(), dhardPotential_dintnl(stress, intnl));
185 }

◆ dhardPotential_dstress()

RankTwoTensor TensorMechanicsPlasticModel::dhardPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
dh_dstress(i, j) = dh/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 160 of file TensorMechanicsPlasticModel.C.

162 {
163  return RankTwoTensor();
164 }

Referenced by TensorMechanicsPlasticModel::dhardPotential_dstressV().

◆ dhardPotential_dstressV()

void TensorMechanicsPlasticModel::dhardPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dh_dstress 
) const
virtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dstressdh_dstress[alpha](i, j) = dh[alpha]/dstress(i, j)

Definition at line 166 of file TensorMechanicsPlasticModel.C.

169 {
170  dh_dstress.assign(numberSurfaces(), dhardPotential_dstress(stress, intnl));
171 }

◆ dphi()

Real TensorMechanicsPlasticMohrCoulomb::dphi ( const Real  internal_param) const
protectedvirtual

d(phi)/d(internal_param);

Definition at line 393 of file TensorMechanicsPlasticMohrCoulomb.C.

394 {
395  return _phi.derivative(internal_param);
396 }

Referenced by dyieldFunction_dintnl().

◆ dpsi()

Real TensorMechanicsPlasticMohrCoulomb::dpsi ( const Real  internal_param) const
protectedvirtual

d(psi)/d(internal_param);

Definition at line 405 of file TensorMechanicsPlasticMohrCoulomb.C.

406 {
407  return _psi.derivative(internal_param);
408 }

Referenced by dflowPotential_dintnl().

◆ dsmooth()

Real TensorMechanicsPlasticMohrCoulomb::dsmooth ( const RankTwoTensor stress) const
protectedvirtual

returns the da/dstress_mean - see doco for _tip_scheme

Definition at line 468 of file TensorMechanicsPlasticMohrCoulomb.C.

469 {
470  Real dsmoother2 = 0;
471  if (_tip_scheme == "cap")
472  {
473  Real x = stress.trace() / 3.0 - _cap_start;
474  Real p = 0;
475  Real dp_dx = 0;
476  if (x > 0)
477  {
478  p = x * (1 - std::exp(-_cap_rate * x));
479  dp_dx = (1 - std::exp(-_cap_rate * x)) + x * _cap_rate * std::exp(-_cap_rate * x);
480  }
481  dsmoother2 += 2 * p * dp_dx;
482  }
483  return dsmoother2;
484 }

Referenced by df_dsig(), dflowPotential_dintnl(), and dflowPotential_dstress().

◆ dyieldFunction_dintnl()

Real TensorMechanicsPlasticMohrCoulomb::dyieldFunction_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the derivative

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 190 of file TensorMechanicsPlasticMohrCoulomb.C.

192 {
193  Real sin_angle = std::sin(phi(intnl));
194  Real cos_angle = std::cos(phi(intnl));
195  Real dsin_angle = cos_angle * dphi(intnl);
196  Real dcos_angle = -sin_angle * dphi(intnl);
197 
198  Real mean_stress = stress.trace() / 3.0;
199  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
200  if (std::abs(sin3Lode) <= _sin3tt)
201  {
202  // the non-edge-smoothed version
203  std::vector<Real> eigvals;
204  stress.symmetricEigenvalues(eigvals);
205  Real tmp = eigvals[2] - eigvals[0] + (eigvals[2] + eigvals[0] - 2 * mean_stress) * sin_angle;
206  Real dtmp = (eigvals[2] + eigvals[0] - 2 * mean_stress) * dsin_angle;
207  Real denom = std::sqrt(smooth(stress) + 0.25 * Utility::pow<2>(tmp));
208  return mean_stress * dsin_angle + 0.25 * tmp * dtmp / denom - dcohesion(intnl) * cos_angle -
209  cohesion(intnl) * dcos_angle;
210  }
211  else
212  {
213  // the edge-smoothed version
214  Real aaa, bbb, ccc;
215  abbo(sin3Lode, sin_angle, aaa, bbb, ccc);
216  Real daaa, dbbb, dccc;
217  dabbo(sin3Lode, sin_angle, daaa, dbbb, dccc);
218  Real kk = aaa + bbb * sin3Lode + ccc * Utility::pow<2>(sin3Lode);
219  Real dkk = (daaa + dbbb * sin3Lode + dccc * Utility::pow<2>(sin3Lode)) * dsin_angle;
220  Real sibar2 = stress.secondInvariant();
221  Real denom = std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk));
222  return mean_stress * dsin_angle + sibar2 * kk * dkk / denom - dcohesion(intnl) * cos_angle -
223  cohesion(intnl) * dcos_angle;
224  }
225 }

◆ dyieldFunction_dintnlV()

void TensorMechanicsPlasticModel::dyieldFunction_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  df_dintnl 
) const
virtualinherited

The derivative of yield functions with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dintnldf_dintnl[alpha] = df[alpha]/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 98 of file TensorMechanicsPlasticModel.C.

101 {
102  return df_dintnl.assign(1, dyieldFunction_dintnl(stress, intnl));
103 }

◆ dyieldFunction_dstress()

RankTwoTensor TensorMechanicsPlasticMohrCoulomb::dyieldFunction_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
df_dstress(i, j) = dyieldFunction/dstress(i, j)

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 182 of file TensorMechanicsPlasticMohrCoulomb.C.

184 {
185  Real sinphi = std::sin(phi(intnl));
186  return df_dsig(stress, sinphi);
187 }

◆ dyieldFunction_dstressV()

void TensorMechanicsPlasticModel::dyieldFunction_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  df_dstress 
) const
virtualinherited

The derivative of yield functions with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dstressdf_dstress[alpha](i, j) = dyieldFunction[alpha]/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 84 of file TensorMechanicsPlasticModel.C.

87 {
88  df_dstress.assign(1, dyieldFunction_dstress(stress, intnl));
89 }

◆ execute()

void TensorMechanicsPlasticModel::execute ( )
inherited

Definition at line 47 of file TensorMechanicsPlasticModel.C.

48 {
49 }

◆ finalize()

void TensorMechanicsPlasticModel::finalize ( )
inherited

Definition at line 52 of file TensorMechanicsPlasticModel.C.

53 {
54 }

◆ flowPotential()

RankTwoTensor TensorMechanicsPlasticMohrCoulomb::flowPotential ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The flow potential.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
the flow potential

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 228 of file TensorMechanicsPlasticMohrCoulomb.C.

229 {
230  Real sinpsi = std::sin(psi(intnl));
231  return df_dsig(stress, sinpsi);
232 }

◆ flowPotentialV()

void TensorMechanicsPlasticModel::flowPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  r 
) const
virtualinherited

The flow potentials.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]rr[alpha] is the flow potential for the "alpha" yield function

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 111 of file TensorMechanicsPlasticModel.C.

114 {
115  return r.assign(1, flowPotential(stress, intnl));
116 }

◆ hardPotential()

Real TensorMechanicsPlasticModel::hardPotential ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
Returns
the hardening potential

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 147 of file TensorMechanicsPlasticModel.C.

148 {
149  return -1.0;
150 }

Referenced by TensorMechanicsPlasticModel::hardPotentialV().

◆ hardPotentialV()

void TensorMechanicsPlasticModel::hardPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  h 
) const
virtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
[out]hh[alpha] is the hardening potential for the "alpha" yield function

Definition at line 152 of file TensorMechanicsPlasticModel.C.

155 {
156  h.assign(numberSurfaces(), hardPotential(stress, intnl));
157 }

◆ initialize()

void TensorMechanicsPlasticModel::initialize ( )
inherited

Definition at line 42 of file TensorMechanicsPlasticModel.C.

43 {
44 }

◆ KuhnTuckerSingleSurface()

bool TensorMechanicsPlasticModel::KuhnTuckerSingleSurface ( Real  yf,
Real  dpm,
Real  dpm_tol 
) const
inherited

Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.

Parameters
yfYield function value
dpmplastic multiplier
dpm_toltolerance on plastic multiplier: viz dpm>-dpm_tol means "dpm is non-negative"

Definition at line 248 of file TensorMechanicsPlasticModel.C.

249 {
250  return (dpm == 0 && yf <= _f_tol) || (dpm > -dpm_tol && yf <= _f_tol && yf >= -_f_tol);
251 }

Referenced by TensorMechanicsPlasticMohrCoulombMulti::KuhnTuckerOK(), TensorMechanicsPlasticTensileMulti::KuhnTuckerOK(), and TensorMechanicsPlasticModel::returnMap().

◆ modelName()

std::string TensorMechanicsPlasticMohrCoulomb::modelName ( ) const
overridevirtual

Implements TensorMechanicsPlasticModel.

Definition at line 509 of file TensorMechanicsPlasticMohrCoulomb.C.

510 {
511  return "MohrCoulomb";
512 }

◆ numberSurfaces()

unsigned TensorMechanicsPlasticModel::numberSurfaces ( ) const
virtualinherited

◆ phi()

Real TensorMechanicsPlasticMohrCoulomb::phi ( const Real  internal_param) const
protectedvirtual

friction angle as a function of internal parameter

Definition at line 387 of file TensorMechanicsPlasticMohrCoulomb.C.

388 {
389  return _phi.value(internal_param);
390 }

Referenced by dyieldFunction_dintnl(), dyieldFunction_dstress(), TensorMechanicsPlasticMohrCoulomb(), and yieldFunction().

◆ psi()

Real TensorMechanicsPlasticMohrCoulomb::psi ( const Real  internal_param) const
protectedvirtual

dilation angle as a function of internal parameter

Definition at line 399 of file TensorMechanicsPlasticMohrCoulomb.C.

400 {
401  return _psi.value(internal_param);
402 }

Referenced by dflowPotential_dintnl(), dflowPotential_dstress(), flowPotential(), and TensorMechanicsPlasticMohrCoulomb().

◆ returnMap()

bool TensorMechanicsPlasticModel::returnMap ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankFourTensor E_ijkl,
Real  ep_plastic_tolerance,
RankTwoTensor returned_stress,
Real &  returned_intnl,
std::vector< Real > &  dpm,
RankTwoTensor delta_dp,
std::vector< Real > &  yf,
bool &  trial_stress_inadmissible 
) const
virtualinherited

Performs a custom return-map.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class, and you may implement the return-map algorithm in any way that suits you. Eg, using a Newton-Raphson approach, or a radial-return, etc. This may also be used as a quick way of ascertaining whether (trial_stress, intnl_old) is in fact admissible.

For over-riding this function, please note the following.

(1) Denoting the return value of the function by "successful_return", the only possible output values should be: (A) trial_stress_inadmissible=false, successful_return=true. That is, (trial_stress, intnl_old) is in fact admissible (in the elastic domain). (B) trial_stress_inadmissible=true, successful_return=false. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), and you didn't return to the yield surface. (C) trial_stress_inadmissible=true, successful_return=true. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), but you did return to the yield surface. The default implementation only handles case (A) and (B): it does not attempt to do a return-map algorithm.

(2) you must correctly signal "successful_return" using the return value of this function. Don't assume the calling function will do Kuhn-Tucker checking and so forth!

(3) In cases (A) and (B) you needn't set returned_stress, returned_intnl, delta_dp, or dpm. This is for computational efficiency.

(4) In cases (A) and (B), you MUST place the yield function values at (trial_stress, intnl_old) into yf so the calling function can use this information optimally. You will have already calculated these yield function values, which can be quite expensive, and it's not very optimal for the calling function to have to re-calculate them.

(5) In case (C), you need to set: returned_stress (the returned value of stress) returned_intnl (the returned value of the internal variable) delta_dp (the change in plastic strain) dpm (the plastic multipliers needed to bring about the return) yf (yield function values at the returned configuration)

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
trial_stressThe trial stress
intnl_oldValue of the internal parameter
E_ijklElasticity tensor
ep_plastic_toleranceTolerance defined by the user for the plastic strain
[out]returned_stressIn case (C): lies on the yield surface after returning and produces the correct plastic strain (normality condition). Otherwise: not defined
[out]returned_intnlIn case (C): the value of the internal parameter after returning. Otherwise: not defined
[out]dpmIn case (C): the plastic multipliers needed to bring about the return. Otherwise: not defined
[out]delta_dpIn case (C): The change in plastic strain induced by the return process. Otherwise: not defined
[out]yfIn case (C): the yield function at (returned_stress, returned_intnl). Otherwise: the yield function at (trial_stress, intnl_old)
[out]trial_stress_inadmissibleShould be set to false if the trial_stress is admissible, and true if the trial_stress is inadmissible. This can be used by the calling prorgram
Returns
true if a successful return (or a return-map not needed), false if the trial_stress is inadmissible but the return process failed

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticDruckerPragerHyperbolic, TensorMechanicsPlasticMeanCapTC, and TensorMechanicsPlasticJ2.

Definition at line 221 of file TensorMechanicsPlasticModel.C.

231 {
232  trial_stress_inadmissible = false;
233  yieldFunctionV(trial_stress, intnl_old, yf);
234 
235  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
236  if (yf[sf] > _f_tol)
237  trial_stress_inadmissible = true;
238 
239  // example of checking Kuhn-Tucker
240  std::vector<Real> dpm(numberSurfaces(), 0);
241  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
242  if (!KuhnTuckerSingleSurface(yf[sf], dpm[sf], 0))
243  return false;
244  return true;
245 }

Referenced by TensorMechanicsPlasticJ2::returnMap(), TensorMechanicsPlasticDruckerPragerHyperbolic::returnMap(), TensorMechanicsPlasticMeanCapTC::returnMap(), TensorMechanicsPlasticMohrCoulombMulti::returnMap(), and TensorMechanicsPlasticTensileMulti::returnMap().

◆ smooth()

Real TensorMechanicsPlasticMohrCoulomb::smooth ( const RankTwoTensor stress) const
protectedvirtual

returns the 'a' parameter - see doco for _tip_scheme

Definition at line 453 of file TensorMechanicsPlasticMohrCoulomb.C.

454 {
455  Real smoother2 = _small_smoother2;
456  if (_tip_scheme == "cap")
457  {
458  Real x = stress.trace() / 3.0 - _cap_start;
459  Real p = 0;
460  if (x > 0)
461  p = x * (1 - std::exp(-_cap_rate * x));
462  smoother2 += Utility::pow<2>(p);
463  }
464  return smoother2;
465 }

Referenced by df_dsig(), dflowPotential_dintnl(), dflowPotential_dstress(), dyieldFunction_dintnl(), and yieldFunction().

◆ useCustomCTO()

bool TensorMechanicsPlasticModel::useCustomCTO ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function.

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPragerHyperbolic, and TensorMechanicsPlasticJ2.

Definition at line 215 of file TensorMechanicsPlasticModel.C.

216 {
217  return false;
218 }

◆ useCustomReturnMap()

bool TensorMechanicsPlasticModel::useCustomReturnMap ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom returnMap function.

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPragerHyperbolic, and TensorMechanicsPlasticJ2.

Definition at line 209 of file TensorMechanicsPlasticModel.C.

210 {
211  return false;
212 }

◆ validParams()

InputParameters TensorMechanicsPlasticMohrCoulomb::validParams ( )
static

Definition at line 19 of file TensorMechanicsPlasticMohrCoulomb.C.

20 {
21  InputParameters params = TensorMechanicsPlasticModel::validParams();
22  params.addRequiredParam<UserObjectName>(
23  "cohesion",
24  "A TensorMechanicsHardening UserObject that defines hardening of the cohesion. "
25  "Physically the cohesion should not be negative.");
26  params.addRequiredParam<UserObjectName>(
27  "friction_angle",
28  "A TensorMechanicsHardening UserObject that defines hardening of the "
29  "friction angle (in radians). Physically the friction angle should be "
30  "between 0 and 90deg.");
31  params.addRequiredParam<UserObjectName>(
32  "dilation_angle",
33  "A TensorMechanicsHardening UserObject that defines hardening of the "
34  "dilation angle (in radians). Usually the dilation angle is not greater "
35  "than the friction angle, and it is between 0 and 90deg.");
36  params.addRangeCheckedParam<Real>(
37  "mc_edge_smoother",
38  25.0,
39  "mc_edge_smoother>=0 & mc_edge_smoother<=30",
40  "Smoothing parameter: the edges of the cone are smoothed by the given amount.");
41  MooseEnum tip_scheme("hyperbolic cap", "hyperbolic");
42  params.addParam<MooseEnum>(
43  "tip_scheme", tip_scheme, "Scheme by which the pyramid's tip will be smoothed.");
44  params.addRequiredRangeCheckedParam<Real>("mc_tip_smoother",
45  "mc_tip_smoother>=0",
46  "Smoothing parameter: the cone vertex at mean = "
47  "cohesion*cot(friction_angle), will be smoothed by "
48  "the given amount. Typical value is 0.1*cohesion");
49  params.addParam<Real>(
50  "cap_start",
51  0.0,
52  "For the 'cap' tip_scheme, smoothing is performed in the stress_mean > cap_start region");
53  params.addRangeCheckedParam<Real>("cap_rate",
54  0.0,
55  "cap_rate>=0",
56  "For the 'cap' tip_scheme, this controls how quickly the cap "
57  "degenerates to a hemisphere: small values mean a slow "
58  "degeneration to a hemisphere (and zero means the 'cap' will "
59  "be totally inactive). Typical value is 1/tensile_strength");
60  params.addParam<Real>("mc_lode_cutoff",
61  "If the second invariant of stress is less than this "
62  "amount, the Lode angle is assumed to be zero. This is "
63  "to gaurd against precision-loss problems, and this "
64  "parameter should be set small. Default = "
65  "0.00001*((yield_Function_tolerance)^2)");
66  params.addClassDescription("Non-associative Mohr-Coulomb plasticity with hardening/softening");
67 
68  return params;
69 }

◆ yieldFunction()

Real TensorMechanicsPlasticMohrCoulomb::yieldFunction ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The following functions are what you should override when building single-plasticity models.

The yield function

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the yield function

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 117 of file TensorMechanicsPlasticMohrCoulomb.C.

118 {
119  Real mean_stress = stress.trace() / 3.0;
120  Real sinphi = std::sin(phi(intnl));
121  Real cosphi = std::cos(phi(intnl));
122  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
123  if (std::abs(sin3Lode) <= _sin3tt)
124  {
125  // the non-edge-smoothed version
126  std::vector<Real> eigvals;
127  stress.symmetricEigenvalues(eigvals);
128  return mean_stress * sinphi +
129  std::sqrt(smooth(stress) +
130  0.25 * Utility::pow<2>(eigvals[2] - eigvals[0] +
131  (eigvals[2] + eigvals[0] - 2 * mean_stress) * sinphi)) -
132  cohesion(intnl) * cosphi;
133  }
134  else
135  {
136  // the edge-smoothed version
137  Real aaa, bbb, ccc;
138  abbo(sin3Lode, sinphi, aaa, bbb, ccc);
139  Real kk = aaa + bbb * sin3Lode + ccc * Utility::pow<2>(sin3Lode);
140  Real sibar2 = stress.secondInvariant();
141  return mean_stress * sinphi + std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk)) -
142  cohesion(intnl) * cosphi;
143  }
144 }

◆ yieldFunctionV()

void TensorMechanicsPlasticModel::yieldFunctionV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  f 
) const
virtualinherited

Calculates the yield functions.

Note that for single-surface plasticity you don't want to override this - override the private yieldFunction below

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]fthe yield functions

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 69 of file TensorMechanicsPlasticModel.C.

72 {
73  f.assign(1, yieldFunction(stress, intnl));
74 }

Referenced by TensorMechanicsPlasticModel::returnMap().

Member Data Documentation

◆ _cap_rate

Real TensorMechanicsPlasticMohrCoulomb::_cap_rate
protected

dictates how quickly the 'cap' degenerates to a hemisphere - see doco for _tip_scheme

Definition at line 81 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by d2smooth(), dsmooth(), and smooth().

◆ _cap_start

Real TensorMechanicsPlasticMohrCoulomb::_cap_start
protected

smoothing parameter dictating when the 'cap' will start - see doco for _tip_scheme

Definition at line 78 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by d2smooth(), dsmooth(), and smooth().

◆ _cohesion

const TensorMechanicsHardeningModel& TensorMechanicsPlasticMohrCoulomb::_cohesion
protected

Hardening model for cohesion.

Definition at line 56 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by cohesion(), and dcohesion().

◆ _cos3tt

Real TensorMechanicsPlasticMohrCoulomb::_cos3tt
protected

cos(3*_tt)

Definition at line 93 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by abbo(), and dabbo().

◆ _cos6tt

Real TensorMechanicsPlasticMohrCoulomb::_cos6tt
protected

cos(6*_tt)

Definition at line 99 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by abbo(), and dabbo().

◆ _costt

Real TensorMechanicsPlasticMohrCoulomb::_costt
protected

cos(_tt)

Definition at line 87 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by abbo(), and dabbo().

◆ _f_tol

const Real TensorMechanicsPlasticModel::_f_tol
inherited

◆ _ic_tol

const Real TensorMechanicsPlasticModel::_ic_tol
inherited

Tolerance on internal constraint.

Definition at line 178 of file TensorMechanicsPlasticModel.h.

◆ _lode_cutoff

Real TensorMechanicsPlasticMohrCoulomb::_lode_cutoff
protected

if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-loss

Definition at line 105 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by df_dsig(), dflowPotential_dintnl(), dflowPotential_dstress(), dyieldFunction_dintnl(), TensorMechanicsPlasticMohrCoulomb(), and yieldFunction().

◆ _phi

const TensorMechanicsHardeningModel& TensorMechanicsPlasticMohrCoulomb::_phi
protected

Hardening model for phi.

Definition at line 59 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by dphi(), and phi().

◆ _psi

const TensorMechanicsHardeningModel& TensorMechanicsPlasticMohrCoulomb::_psi
protected

Hardening model for psi.

Definition at line 62 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by dpsi(), and psi().

◆ _sin3tt

Real TensorMechanicsPlasticMohrCoulomb::_sin3tt
protected

sin(3*_tt) - useful for making comparisons with Lode angle

Definition at line 96 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by abbo(), dabbo(), df_dsig(), dflowPotential_dintnl(), dflowPotential_dstress(), dyieldFunction_dintnl(), and yieldFunction().

◆ _sin6tt

Real TensorMechanicsPlasticMohrCoulomb::_sin6tt
protected

sin(6*_tt)

Definition at line 102 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by abbo(), and dabbo().

◆ _sintt

Real TensorMechanicsPlasticMohrCoulomb::_sintt
protected

sin(_tt)

Definition at line 90 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by abbo(), and dabbo().

◆ _small_smoother2

Real TensorMechanicsPlasticMohrCoulomb::_small_smoother2
protected

Square of tip smoothing parameter to smooth the cone at mean_stress = T.

Definition at line 75 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by smooth().

◆ _tip_scheme

MooseEnum TensorMechanicsPlasticMohrCoulomb::_tip_scheme
protected

The yield function is modified to f = s_m*sinphi + sqrt(a + s_bar^2 K^2) - C*cosphi where "a" depends on the tip_scheme.

Currently _tip_scheme is 'hyperbolic', where a = _small_smoother2 'cap' where a = _small_smoother2 + (p(stress_mean - _cap_start))^2 with the function p(x)=x(1-exp(-_cap_rate*x)) for x>0, and p=0 otherwise

Definition at line 72 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by d2smooth(), dsmooth(), and smooth().

◆ _tt

Real TensorMechanicsPlasticMohrCoulomb::_tt
protected

edge smoothing parameter, in radians

Definition at line 84 of file TensorMechanicsPlasticMohrCoulomb.h.

Referenced by TensorMechanicsPlasticMohrCoulomb().


The documentation for this class was generated from the following files:
TensorMechanicsPlasticModel::numberSurfaces
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
Definition: TensorMechanicsPlasticModel.C:57
TensorMechanicsPlasticMohrCoulomb::phi
virtual Real phi(const Real internal_param) const
friction angle as a function of internal parameter
Definition: TensorMechanicsPlasticMohrCoulomb.C:387
TensorMechanicsPlasticMohrCoulomb::_lode_cutoff
Real _lode_cutoff
if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-los...
Definition: TensorMechanicsPlasticMohrCoulomb.h:105
TensorMechanicsPlasticModel::dflowPotential_dintnl
virtual RankTwoTensor dflowPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:133
TensorMechanicsPlasticModel::validParams
static InputParameters validParams()
Definition: TensorMechanicsPlasticModel.C:18
pow
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
Definition: ExpressionBuilder.h:673
TensorMechanicsPlasticModel::dyieldFunction_dstress
virtual RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to stress.
Definition: TensorMechanicsPlasticModel.C:77
TensorMechanicsPlasticModel::dhardPotential_dintnl
virtual Real dhardPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:174
TensorMechanicsPlasticMohrCoulomb::_sintt
Real _sintt
sin(_tt)
Definition: TensorMechanicsPlasticMohrCoulomb.h:90
TensorMechanicsPlasticMohrCoulomb::df_dsig
RankTwoTensor df_dsig(const RankTwoTensor &stress, const Real sin_angle) const
d(yieldFunction)/d(stress), but with the ability to put friction or dilation angle into the result
Definition: TensorMechanicsPlasticMohrCoulomb.C:147
TensorMechanicsPlasticMohrCoulomb::_costt
Real _costt
cos(_tt)
Definition: TensorMechanicsPlasticMohrCoulomb.h:87
TensorMechanicsPlasticMohrCoulomb::_phi
const TensorMechanicsHardeningModel & _phi
Hardening model for phi.
Definition: TensorMechanicsPlasticMohrCoulomb.h:59
TensorMechanicsPlasticMohrCoulomb::_cohesion
const TensorMechanicsHardeningModel & _cohesion
Hardening model for cohesion.
Definition: TensorMechanicsPlasticMohrCoulomb.h:56
TensorMechanicsPlasticMohrCoulomb::_sin6tt
Real _sin6tt
sin(6*_tt)
Definition: TensorMechanicsPlasticMohrCoulomb.h:102
TensorMechanicsPlasticModel::KuhnTuckerSingleSurface
bool KuhnTuckerSingleSurface(Real yf, Real dpm, Real dpm_tol) const
Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.
Definition: TensorMechanicsPlasticModel.C:248
TensorMechanicsPlasticMohrCoulomb::_tt
Real _tt
edge smoothing parameter, in radians
Definition: TensorMechanicsPlasticMohrCoulomb.h:84
TensorMechanicsPlasticMohrCoulomb::_small_smoother2
Real _small_smoother2
Square of tip smoothing parameter to smooth the cone at mean_stress = T.
Definition: TensorMechanicsPlasticMohrCoulomb.h:75
TensorMechanicsPlasticMohrCoulomb::_tip_scheme
MooseEnum _tip_scheme
The yield function is modified to f = s_m*sinphi + sqrt(a + s_bar^2 K^2) - C*cosphi where "a" depends...
Definition: TensorMechanicsPlasticMohrCoulomb.h:72
TensorMechanicsPlasticMohrCoulomb::_psi
const TensorMechanicsHardeningModel & _psi
Hardening model for psi.
Definition: TensorMechanicsPlasticMohrCoulomb.h:62
TensorMechanicsPlasticMohrCoulomb::dpsi
virtual Real dpsi(const Real internal_param) const
d(psi)/d(internal_param);
Definition: TensorMechanicsPlasticMohrCoulomb.C:405
TensorMechanicsPlasticMohrCoulomb::smooth
virtual Real smooth(const RankTwoTensor &stress) const
returns the 'a' parameter - see doco for _tip_scheme
Definition: TensorMechanicsPlasticMohrCoulomb.C:453
TensorMechanicsPlasticMohrCoulomb::abbo
void abbo(const Real sin3lode, const Real sin_angle, Real &aaa, Real &bbb, Real &ccc) const
Computes Abbo et al's A, B and C parameters.
Definition: TensorMechanicsPlasticMohrCoulomb.C:411
TensorMechanicsPlasticMohrCoulomb::_sin3tt
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
Definition: TensorMechanicsPlasticMohrCoulomb.h:96
TensorMechanicsPlasticModel::_f_tol
const Real _f_tol
Tolerance on yield function.
Definition: TensorMechanicsPlasticModel.h:175
TensorMechanicsPlasticMohrCoulomb::dabbo
void dabbo(const Real sin3lode, const Real sin_angle, Real &daaa, Real &dbbb, Real &dccc) const
Computes derivatives of Abbo et al's A, B and C parameters wrt sin_angle.
Definition: TensorMechanicsPlasticMohrCoulomb.C:433
TensorMechanicsPlasticMohrCoulomb::_cap_start
Real _cap_start
smoothing parameter dictating when the 'cap' will start - see doco for _tip_scheme
Definition: TensorMechanicsPlasticMohrCoulomb.h:78
TensorMechanicsPlasticMohrCoulomb::_cos3tt
Real _cos3tt
cos(3*_tt)
Definition: TensorMechanicsPlasticMohrCoulomb.h:93
TensorMechanicsPlasticMohrCoulomb::d2smooth
virtual Real d2smooth(const RankTwoTensor &stress) const
returns the d^2a/dstress_mean^2 - see doco for _tip_scheme
Definition: TensorMechanicsPlasticMohrCoulomb.C:487
TensorMechanicsPlasticModel::TensorMechanicsPlasticModel
TensorMechanicsPlasticModel(const InputParameters &parameters)
Definition: TensorMechanicsPlasticModel.C:34
TensorMechanicsHardeningModel::derivative
virtual Real derivative(Real intnl) const
Definition: TensorMechanicsHardeningModel.C:47
TensorMechanicsPlasticModel::hardPotential
virtual Real hardPotential(const RankTwoTensor &stress, Real intnl) const
The hardening potential.
Definition: TensorMechanicsPlasticModel.C:147
TensorMechanicsPlasticModel::yieldFunctionV
virtual void yieldFunctionV(const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
Calculates the yield functions.
Definition: TensorMechanicsPlasticModel.C:69
TensorMechanicsHardeningModel::value
virtual Real value(Real intnl) const
Definition: TensorMechanicsHardeningModel.C:45
RankTwoTensor
RankTwoTensorTempl< Real > RankTwoTensor
Definition: ACGrGrElasticDrivingForce.h:17
TensorMechanicsPlasticMohrCoulomb::_cos6tt
Real _cos6tt
cos(6*_tt)
Definition: TensorMechanicsPlasticMohrCoulomb.h:99
TensorMechanicsPlasticMohrCoulomb::_cap_rate
Real _cap_rate
dictates how quickly the 'cap' degenerates to a hemisphere - see doco for _tip_scheme
Definition: TensorMechanicsPlasticMohrCoulomb.h:81
TensorMechanicsPlasticMohrCoulomb::dsmooth
virtual Real dsmooth(const RankTwoTensor &stress) const
returns the da/dstress_mean - see doco for _tip_scheme
Definition: TensorMechanicsPlasticMohrCoulomb.C:468
RankFourTensorTempl
Definition: ACGrGrElasticDrivingForce.h:20
TensorMechanicsPlasticMohrCoulomb::cohesion
virtual Real cohesion(const Real internal_param) const
cohesion as a function of internal parameter
Definition: TensorMechanicsPlasticMohrCoulomb.C:375
TensorMechanicsPlasticMohrCoulomb::psi
virtual Real psi(const Real internal_param) const
dilation angle as a function of internal parameter
Definition: TensorMechanicsPlasticMohrCoulomb.C:399
TensorMechanicsPlasticModel::dflowPotential_dstress
virtual RankFourTensor dflowPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to stress.
Definition: TensorMechanicsPlasticModel.C:119
TensorMechanicsPlasticMohrCoulomb::dcohesion
virtual Real dcohesion(const Real internal_param) const
d(cohesion)/d(internal_param);
Definition: TensorMechanicsPlasticMohrCoulomb.C:381
TensorMechanicsPlasticMohrCoulomb::dphi
virtual Real dphi(const Real internal_param) const
d(phi)/d(internal_param);
Definition: TensorMechanicsPlasticMohrCoulomb.C:393
TensorMechanicsPlasticModel::yieldFunction
virtual Real yieldFunction(const RankTwoTensor &stress, Real intnl) const
The following functions are what you should override when building single-plasticity models.
Definition: TensorMechanicsPlasticModel.C:63
TensorMechanicsPlasticModel::flowPotential
virtual RankTwoTensor flowPotential(const RankTwoTensor &stress, Real intnl) const
The flow potential.
Definition: TensorMechanicsPlasticModel.C:106
RankTwoTensorTempl< Real >
TensorMechanicsPlasticModel::dhardPotential_dstress
virtual RankTwoTensor dhardPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to stress.
Definition: TensorMechanicsPlasticModel.C:160
TensorMechanicsPlasticModel::dyieldFunction_dintnl
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:92