www.mooseframework.org
Public Member Functions | Static Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | List of all members
TensorMechanicsPlasticTensile Class Reference

FiniteStrainTensile implements rate-independent associative tensile failure with hardening/softening in the finite-strain framework. More...

#include <TensorMechanicsPlasticTensile.h>

Inheritance diagram for TensorMechanicsPlasticTensile:
[legend]

Public Member Functions

 TensorMechanicsPlasticTensile (const InputParameters &parameters)
 
virtual std::string modelName () const override
 
void initialize ()
 
void execute ()
 
void finalize ()
 
virtual unsigned int numberSurfaces () const
 The number of yield surfaces for this plasticity model. More...
 
virtual void yieldFunctionV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
 Calculates the yield functions. More...
 
virtual void dyieldFunction_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &df_dstress) const
 The derivative of yield functions with respect to stress. More...
 
virtual void dyieldFunction_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &df_dintnl) const
 The derivative of yield functions with respect to the internal parameter. More...
 
virtual void flowPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &r) const
 The flow potentials. More...
 
virtual void dflowPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankFourTensor > &dr_dstress) const
 The derivative of the flow potential with respect to stress. More...
 
virtual void dflowPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dr_dintnl) const
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual void hardPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &h) const
 The hardening potential. More...
 
virtual void dhardPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dh_dstress) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual void dhardPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &dh_dintnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual void activeConstraints (const std::vector< Real > &f, const RankTwoTensor &stress, Real intnl, const RankFourTensor &Eijkl, std::vector< bool > &act, RankTwoTensor &returned_stress) const
 The active yield surfaces, given a vector of yield functions. More...
 
virtual bool useCustomReturnMap () const
 Returns false. You will want to override this in your derived class if you write a custom returnMap function. More...
 
virtual bool useCustomCTO () const
 Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function. More...
 
virtual bool returnMap (const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const
 Performs a custom return-map. More...
 
virtual RankFourTensor consistentTangentOperator (const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const
 Calculates a custom consistent tangent operator. More...
 
bool KuhnTuckerSingleSurface (Real yf, Real dpm, Real dpm_tol) const
 Returns true if the Kuhn-Tucker conditions for the single surface are satisfied. More...
 

Static Public Member Functions

static InputParameters validParams ()
 

Public Attributes

const Real _f_tol
 Tolerance on yield function. More...
 
const Real _ic_tol
 Tolerance on internal constraint. More...
 

Protected Member Functions

Real yieldFunction (const RankTwoTensor &stress, Real intnl) const override
 The following functions are what you should override when building single-plasticity models. More...
 
RankTwoTensor dyieldFunction_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to stress. More...
 
Real dyieldFunction_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to the internal parameter. More...
 
RankTwoTensor flowPotential (const RankTwoTensor &stress, Real intnl) const override
 The flow potential. More...
 
RankFourTensor dflowPotential_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to stress. More...
 
RankTwoTensor dflowPotential_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual Real smooth (const RankTwoTensor &stress) const
 returns the 'a' parameter - see doco for _tip_scheme More...
 
virtual Real dsmooth (const RankTwoTensor &stress) const
 returns the da/dstress_mean - see doco for _tip_scheme More...
 
virtual Real d2smooth (const RankTwoTensor &stress) const
 returns the d^2a/dstress_mean^2 - see doco for _tip_scheme More...
 
virtual Real tensile_strength (const Real internal_param) const
 tensile strength as a function of residual value, rate, and internal_param More...
 
virtual Real dtensile_strength (const Real internal_param) const
 d(tensile strength)/d(internal_param) as a function of residual value, rate, and internal_param More...
 
virtual Real hardPotential (const RankTwoTensor &stress, Real intnl) const
 The hardening potential. More...
 
virtual RankTwoTensor dhardPotential_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual Real dhardPotential_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 

Protected Attributes

const TensorMechanicsHardeningModel_strength
 
MooseEnum _tip_scheme
 The yield function is modified to f = s_m + sqrt(a + s_bar^2 K^2) - tensile_strength where "a" depends on the tip_scheme. More...
 
Real _small_smoother2
 Square of tip smoothing parameter to smooth the cone at mean_stress = T. More...
 
Real _cap_start
 smoothing parameter dictating when the 'cap' will start - see doco for _tip_scheme More...
 
Real _cap_rate
 dictates how quickly the 'cap' degenerates to a hemisphere - see doco for _tip_scheme More...
 
Real _tt
 edge smoothing parameter, in radians More...
 
Real _sin3tt
 sin(3*_tt) - useful for making comparisons with Lode angle More...
 
Real _lode_cutoff
 if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-loss More...
 
Real _ccc
 Abbo et al's C parameter. More...
 
Real _bbb
 Abbo et al's B parameter. More...
 
Real _aaa
 Abbo et al's A parameter. More...
 

Detailed Description

FiniteStrainTensile implements rate-independent associative tensile failure with hardening/softening in the finite-strain framework.

For 'hyperbolic' smoothing, the smoothing of the tip of the yield-surface cone is described in Zienkiewicz and Prande "Some useful forms of isotropic yield surfaces for soil and rock mechanics" (1977) In G Gudehus (editor) "Finite Elements in Geomechanics" Wile, Chichester, pp 179-190. For 'cap' smoothing, additional smoothing is performed. The smoothing of the edges of the cone is described in AJ Abbo, AV Lyamin, SW Sloan, JP Hambleton "A C2 continuous approximation to the Mohr-Coulomb yield surface" International Journal of Solids and Structures 48 (2011) 3001-3010

Definition at line 32 of file TensorMechanicsPlasticTensile.h.

Constructor & Destructor Documentation

◆ TensorMechanicsPlasticTensile()

TensorMechanicsPlasticTensile::TensorMechanicsPlasticTensile ( const InputParameters &  parameters)

Definition at line 62 of file TensorMechanicsPlasticTensile.C.

63  : TensorMechanicsPlasticModel(parameters),
64  _strength(getUserObject<TensorMechanicsHardeningModel>("tensile_strength")),
65  _tip_scheme(getParam<MooseEnum>("tip_scheme")),
66  _small_smoother2(Utility::pow<2>(getParam<Real>("tensile_tip_smoother"))),
67  _cap_start(getParam<Real>("cap_start")),
68  _cap_rate(getParam<Real>("cap_rate")),
69  _tt(getParam<Real>("tensile_edge_smoother") * libMesh::pi / 180.0),
70  _sin3tt(std::sin(3.0 * _tt)),
71  _lode_cutoff(parameters.isParamValid("tensile_lode_cutoff")
72  ? getParam<Real>("tensile_lode_cutoff")
73  : 1.0e-5 * Utility::pow<2>(_f_tol))
74 
75 {
76  if (_lode_cutoff < 0)
77  mooseError("tensile_lode_cutoff must not be negative");
78  _ccc = (-std::cos(3.0 * _tt) * (std::cos(_tt) - std::sin(_tt) / std::sqrt(3.0)) -
79  3.0 * _sin3tt * (std::sin(_tt) + std::cos(_tt) / std::sqrt(3.0))) /
80  (18.0 * Utility::pow<3>(std::cos(3.0 * _tt)));
81  _bbb = (std::sin(6.0 * _tt) * (std::cos(_tt) - std::sin(_tt) / std::sqrt(3.0)) -
82  6.0 * std::cos(6.0 * _tt) * (std::sin(_tt) + std::cos(_tt) / std::sqrt(3.0))) /
83  (18.0 * Utility::pow<3>(std::cos(3.0 * _tt)));
84  _aaa = -std::sin(_tt) / std::sqrt(3.0) - _bbb * _sin3tt - _ccc * Utility::pow<2>(_sin3tt) +
85  std::cos(_tt);
86 }

Member Function Documentation

◆ activeConstraints()

void TensorMechanicsPlasticModel::activeConstraints ( const std::vector< Real > &  f,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor Eijkl,
std::vector< bool > &  act,
RankTwoTensor returned_stress 
) const
virtualinherited

The active yield surfaces, given a vector of yield functions.

This is used by FiniteStrainMultiPlasticity to determine the initial set of active constraints at the trial (stress, intnl) configuration. It is up to you (the coder) to determine how accurate you want the returned_stress to be. Currently it is only used by FiniteStrainMultiPlasticity to estimate a good starting value for the Newton-Rahson procedure, so currently it may not need to be super perfect.

Parameters
fvalues of the yield functions
stressstress tensor
intnlinternal parameter
Eijklelasticity tensor (stress = Eijkl*strain)
[out]actact[i] = true if the i_th yield function is active
[out]returned_stressApproximate value of the returned stress

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticWeakPlaneShear, and TensorMechanicsPlasticWeakPlaneTensile.

Definition at line 188 of file TensorMechanicsPlasticModel.C.

194 {
195  mooseAssert(f.size() == numberSurfaces(),
196  "f incorrectly sized at " << f.size() << " in activeConstraints");
197  act.resize(numberSurfaces());
198  for (unsigned surface = 0; surface < numberSurfaces(); ++surface)
199  act[surface] = (f[surface] > _f_tol);
200 }

◆ consistentTangentOperator()

RankFourTensor TensorMechanicsPlasticModel::consistentTangentOperator ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor E_ijkl,
const std::vector< Real > &  cumulative_pm 
) const
virtualinherited

Calculates a custom consistent tangent operator.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class.

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
stress_oldtrial stress before returning
intnl_oldinternal parameter before returning
stresscurrent returned stress state
intnlinternal parameter
E_ijklelasticity tensor
cumulative_pmthe cumulative plastic multipliers
Returns
the consistent tangent operator: E_ijkl if not over-ridden

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticDruckerPragerHyperbolic, TensorMechanicsPlasticMeanCapTC, and TensorMechanicsPlasticJ2.

Definition at line 254 of file TensorMechanicsPlasticModel.C.

261 {
262  return E_ijkl;
263 }

Referenced by TensorMechanicsPlasticJ2::consistentTangentOperator(), TensorMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator(), TensorMechanicsPlasticMeanCapTC::consistentTangentOperator(), and TensorMechanicsPlasticTensileMulti::consistentTangentOperator().

◆ d2smooth()

Real TensorMechanicsPlasticTensile::d2smooth ( const RankTwoTensor stress) const
protectedvirtual

returns the d^2a/dstress_mean^2 - see doco for _tip_scheme

Definition at line 288 of file TensorMechanicsPlasticTensile.C.

289 {
290  Real d2smoother2 = 0;
291  if (_tip_scheme == "cap")
292  {
293  Real x = stress.trace() / 3.0 - _cap_start;
294  Real p = 0;
295  Real dp_dx = 0;
296  Real d2p_dx2 = 0;
297  if (x > 0)
298  {
299  p = x * (1 - std::exp(-_cap_rate * x));
300  dp_dx = (1 - std::exp(-_cap_rate * x)) + x * _cap_rate * std::exp(-_cap_rate * x);
301  d2p_dx2 = 2.0 * _cap_rate * std::exp(-_cap_rate * x) -
302  x * Utility::pow<2>(_cap_rate) * std::exp(-_cap_rate * x);
303  }
304  d2smoother2 += 2.0 * Utility::pow<2>(dp_dx) + 2.0 * p * d2p_dx2;
305  }
306  return d2smoother2;
307 }

Referenced by dflowPotential_dstress().

◆ dflowPotential_dintnl()

RankTwoTensor TensorMechanicsPlasticTensile::dflowPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dintnl(i, j) = dr(i, j)/dintnl

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 235 of file TensorMechanicsPlasticTensile.C.

237 {
238  return RankTwoTensor();
239 }

◆ dflowPotential_dintnlV()

void TensorMechanicsPlasticModel::dflowPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dr_dintnl 
) const
virtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dintnldr_dintnl[alpha](i, j) = dr[alpha](i, j)/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 139 of file TensorMechanicsPlasticModel.C.

142 {
143  return dr_dintnl.assign(1, dflowPotential_dintnl(stress, intnl));
144 }

◆ dflowPotential_dstress()

RankFourTensor TensorMechanicsPlasticTensile::dflowPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dstress(i, j, k, l) = dr(i, j)/dstress(k, l)

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 158 of file TensorMechanicsPlasticTensile.C.

160 {
161  Real mean_stress = stress.trace() / 3.0;
162  RankTwoTensor dmean_stress = stress.dtrace() / 3.0;
163  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
164  if (sin3Lode <= _sin3tt)
165  {
166  // the non-edge-smoothed version
167  std::vector<Real> eigvals;
168  std::vector<RankTwoTensor> deigvals;
169  std::vector<RankFourTensor> d2eigvals;
170  stress.dsymmetricEigenvalues(eigvals, deigvals);
171  stress.d2symmetricEigenvalues(d2eigvals);
172 
173  Real denom = std::sqrt(smooth(stress) + Utility::pow<2>(eigvals[2] - mean_stress));
174  Real denom3 = Utility::pow<3>(denom);
175  RankTwoTensor numer_part = deigvals[2] - dmean_stress;
176  RankTwoTensor numer_full =
177  0.5 * dsmooth(stress) * dmean_stress + (eigvals[2] - mean_stress) * numer_part;
178  Real d2smooth_over_denom = d2smooth(stress) / denom;
179 
180  RankFourTensor dr_dstress = (eigvals[2] - mean_stress) * d2eigvals[2] / denom;
181  for (unsigned i = 0; i < 3; ++i)
182  for (unsigned j = 0; j < 3; ++j)
183  for (unsigned k = 0; k < 3; ++k)
184  for (unsigned l = 0; l < 3; ++l)
185  {
186  dr_dstress(i, j, k, l) +=
187  0.5 * d2smooth_over_denom * dmean_stress(i, j) * dmean_stress(k, l);
188  dr_dstress(i, j, k, l) += numer_part(i, j) * numer_part(k, l) / denom;
189  dr_dstress(i, j, k, l) -= numer_full(i, j) * numer_full(k, l) / denom3;
190  }
191  return dr_dstress;
192  }
193  else
194  {
195  // the edge-smoothed version
196  RankTwoTensor dsin3Lode = stress.dsin3Lode(_lode_cutoff);
197  Real kk = _aaa + _bbb * sin3Lode + _ccc * Utility::pow<2>(sin3Lode);
198  RankTwoTensor dkk = (_bbb + 2.0 * _ccc * sin3Lode) * dsin3Lode;
199  RankFourTensor d2kk = (_bbb + 2.0 * _ccc * sin3Lode) * stress.d2sin3Lode(_lode_cutoff);
200  for (unsigned i = 0; i < 3; ++i)
201  for (unsigned j = 0; j < 3; ++j)
202  for (unsigned k = 0; k < 3; ++k)
203  for (unsigned l = 0; l < 3; ++l)
204  d2kk(i, j, k, l) += 2.0 * _ccc * dsin3Lode(i, j) * dsin3Lode(k, l);
205 
206  Real sibar2 = stress.secondInvariant();
207  RankTwoTensor dsibar2 = stress.dsecondInvariant();
208  RankFourTensor d2sibar2 = stress.d2secondInvariant();
209 
210  Real denom = std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk));
211  Real denom3 = Utility::pow<3>(denom);
212  Real d2smooth_over_denom = d2smooth(stress) / denom;
213  RankTwoTensor numer_full =
214  0.5 * dsmooth(stress) * dmean_stress + 0.5 * dsibar2 * kk * kk + sibar2 * kk * dkk;
215 
216  RankFourTensor dr_dstress = (0.5 * d2sibar2 * Utility::pow<2>(kk) + sibar2 * kk * d2kk) / denom;
217  for (unsigned i = 0; i < 3; ++i)
218  for (unsigned j = 0; j < 3; ++j)
219  for (unsigned k = 0; k < 3; ++k)
220  for (unsigned l = 0; l < 3; ++l)
221  {
222  dr_dstress(i, j, k, l) +=
223  0.5 * d2smooth_over_denom * dmean_stress(i, j) * dmean_stress(k, l);
224  dr_dstress(i, j, k, l) +=
225  (dsibar2(i, j) * dkk(k, l) * kk + dkk(i, j) * dsibar2(k, l) * kk +
226  sibar2 * dkk(i, j) * dkk(k, l)) /
227  denom;
228  dr_dstress(i, j, k, l) -= numer_full(i, j) * numer_full(k, l) / denom3;
229  }
230  return dr_dstress;
231  }
232 }

◆ dflowPotential_dstressV()

void TensorMechanicsPlasticModel::dflowPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankFourTensor > &  dr_dstress 
) const
virtualinherited

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dstressdr_dstress[alpha](i, j, k, l) = dr[alpha](i, j)/dstress(k, l)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 125 of file TensorMechanicsPlasticModel.C.

128 {
129  return dr_dstress.assign(1, dflowPotential_dstress(stress, intnl));
130 }

◆ dhardPotential_dintnl()

Real TensorMechanicsPlasticModel::dhardPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
the derivative

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 174 of file TensorMechanicsPlasticModel.C.

176 {
177  return 0.0;
178 }

Referenced by TensorMechanicsPlasticModel::dhardPotential_dintnlV().

◆ dhardPotential_dintnlV()

void TensorMechanicsPlasticModel::dhardPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  dh_dintnl 
) const
virtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dintnldh_dintnl[alpha] = dh[alpha]/dintnl

Definition at line 180 of file TensorMechanicsPlasticModel.C.

183 {
184  dh_dintnl.resize(numberSurfaces(), dhardPotential_dintnl(stress, intnl));
185 }

◆ dhardPotential_dstress()

RankTwoTensor TensorMechanicsPlasticModel::dhardPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
dh_dstress(i, j) = dh/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 160 of file TensorMechanicsPlasticModel.C.

162 {
163  return RankTwoTensor();
164 }

Referenced by TensorMechanicsPlasticModel::dhardPotential_dstressV().

◆ dhardPotential_dstressV()

void TensorMechanicsPlasticModel::dhardPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dh_dstress 
) const
virtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dstressdh_dstress[alpha](i, j) = dh[alpha]/dstress(i, j)

Definition at line 166 of file TensorMechanicsPlasticModel.C.

169 {
170  dh_dstress.assign(numberSurfaces(), dhardPotential_dstress(stress, intnl));
171 }

◆ dsmooth()

Real TensorMechanicsPlasticTensile::dsmooth ( const RankTwoTensor stress) const
protectedvirtual

returns the da/dstress_mean - see doco for _tip_scheme

Definition at line 269 of file TensorMechanicsPlasticTensile.C.

270 {
271  Real dsmoother2 = 0;
272  if (_tip_scheme == "cap")
273  {
274  Real x = stress.trace() / 3.0 - _cap_start;
275  Real p = 0;
276  Real dp_dx = 0;
277  if (x > 0)
278  {
279  p = x * (1 - std::exp(-_cap_rate * x));
280  dp_dx = (1 - std::exp(-_cap_rate * x)) + x * _cap_rate * std::exp(-_cap_rate * x);
281  }
282  dsmoother2 += 2.0 * p * dp_dx;
283  }
284  return dsmoother2;
285 }

Referenced by dflowPotential_dstress(), and dyieldFunction_dstress().

◆ dtensile_strength()

Real TensorMechanicsPlasticTensile::dtensile_strength ( const Real  internal_param) const
protectedvirtual

d(tensile strength)/d(internal_param) as a function of residual value, rate, and internal_param

Definition at line 248 of file TensorMechanicsPlasticTensile.C.

249 {
250  return _strength.derivative(internal_param);
251 }

Referenced by dyieldFunction_dintnl().

◆ dyieldFunction_dintnl()

Real TensorMechanicsPlasticTensile::dyieldFunction_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the derivative

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 144 of file TensorMechanicsPlasticTensile.C.

146 {
147  return -dtensile_strength(intnl);
148 }

◆ dyieldFunction_dintnlV()

void TensorMechanicsPlasticModel::dyieldFunction_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  df_dintnl 
) const
virtualinherited

The derivative of yield functions with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dintnldf_dintnl[alpha] = df[alpha]/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 98 of file TensorMechanicsPlasticModel.C.

101 {
102  return df_dintnl.assign(1, dyieldFunction_dintnl(stress, intnl));
103 }

◆ dyieldFunction_dstress()

RankTwoTensor TensorMechanicsPlasticTensile::dyieldFunction_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
df_dstress(i, j) = dyieldFunction/dstress(i, j)

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 112 of file TensorMechanicsPlasticTensile.C.

114 {
115  Real mean_stress = stress.trace() / 3.0;
116  RankTwoTensor dmean_stress = stress.dtrace() / 3.0;
117  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
118  if (sin3Lode <= _sin3tt)
119  {
120  // the non-edge-smoothed version
121  std::vector<Real> eigvals;
122  std::vector<RankTwoTensor> deigvals;
123  stress.dsymmetricEigenvalues(eigvals, deigvals);
124  Real denom = std::sqrt(smooth(stress) + Utility::pow<2>(eigvals[2] - mean_stress));
125  return dmean_stress + (0.5 * dsmooth(stress) * dmean_stress +
126  (eigvals[2] - mean_stress) * (deigvals[2] - dmean_stress)) /
127  denom;
128  }
129  else
130  {
131  // the edge-smoothed version
132  Real kk = _aaa + _bbb * sin3Lode + _ccc * Utility::pow<2>(sin3Lode);
133  RankTwoTensor dkk = (_bbb + 2.0 * _ccc * sin3Lode) * stress.dsin3Lode(_lode_cutoff);
134  Real sibar2 = stress.secondInvariant();
135  RankTwoTensor dsibar2 = stress.dsecondInvariant();
136  Real denom = std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk));
137  return dmean_stress + (0.5 * dsmooth(stress) * dmean_stress +
138  0.5 * dsibar2 * Utility::pow<2>(kk) + sibar2 * kk * dkk) /
139  denom;
140  }
141 }

Referenced by flowPotential().

◆ dyieldFunction_dstressV()

void TensorMechanicsPlasticModel::dyieldFunction_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  df_dstress 
) const
virtualinherited

The derivative of yield functions with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dstressdf_dstress[alpha](i, j) = dyieldFunction[alpha]/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 84 of file TensorMechanicsPlasticModel.C.

87 {
88  df_dstress.assign(1, dyieldFunction_dstress(stress, intnl));
89 }

◆ execute()

void TensorMechanicsPlasticModel::execute ( )
inherited

Definition at line 47 of file TensorMechanicsPlasticModel.C.

48 {
49 }

◆ finalize()

void TensorMechanicsPlasticModel::finalize ( )
inherited

Definition at line 52 of file TensorMechanicsPlasticModel.C.

53 {
54 }

◆ flowPotential()

RankTwoTensor TensorMechanicsPlasticTensile::flowPotential ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The flow potential.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
the flow potential

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 151 of file TensorMechanicsPlasticTensile.C.

152 {
153  // This plasticity is associative so
154  return dyieldFunction_dstress(stress, intnl);
155 }

◆ flowPotentialV()

void TensorMechanicsPlasticModel::flowPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  r 
) const
virtualinherited

The flow potentials.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]rr[alpha] is the flow potential for the "alpha" yield function

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 111 of file TensorMechanicsPlasticModel.C.

114 {
115  return r.assign(1, flowPotential(stress, intnl));
116 }

◆ hardPotential()

Real TensorMechanicsPlasticModel::hardPotential ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
Returns
the hardening potential

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 147 of file TensorMechanicsPlasticModel.C.

148 {
149  return -1.0;
150 }

Referenced by TensorMechanicsPlasticModel::hardPotentialV().

◆ hardPotentialV()

void TensorMechanicsPlasticModel::hardPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  h 
) const
virtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
[out]hh[alpha] is the hardening potential for the "alpha" yield function

Definition at line 152 of file TensorMechanicsPlasticModel.C.

155 {
156  h.assign(numberSurfaces(), hardPotential(stress, intnl));
157 }

◆ initialize()

void TensorMechanicsPlasticModel::initialize ( )
inherited

Definition at line 42 of file TensorMechanicsPlasticModel.C.

43 {
44 }

◆ KuhnTuckerSingleSurface()

bool TensorMechanicsPlasticModel::KuhnTuckerSingleSurface ( Real  yf,
Real  dpm,
Real  dpm_tol 
) const
inherited

Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.

Parameters
yfYield function value
dpmplastic multiplier
dpm_toltolerance on plastic multiplier: viz dpm>-dpm_tol means "dpm is non-negative"

Definition at line 248 of file TensorMechanicsPlasticModel.C.

249 {
250  return (dpm == 0 && yf <= _f_tol) || (dpm > -dpm_tol && yf <= _f_tol && yf >= -_f_tol);
251 }

Referenced by TensorMechanicsPlasticMohrCoulombMulti::KuhnTuckerOK(), TensorMechanicsPlasticTensileMulti::KuhnTuckerOK(), and TensorMechanicsPlasticModel::returnMap().

◆ modelName()

std::string TensorMechanicsPlasticTensile::modelName ( ) const
overridevirtual

Implements TensorMechanicsPlasticModel.

Definition at line 310 of file TensorMechanicsPlasticTensile.C.

311 {
312  return "Tensile";
313 }

◆ numberSurfaces()

unsigned TensorMechanicsPlasticModel::numberSurfaces ( ) const
virtualinherited

◆ returnMap()

bool TensorMechanicsPlasticModel::returnMap ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankFourTensor E_ijkl,
Real  ep_plastic_tolerance,
RankTwoTensor returned_stress,
Real &  returned_intnl,
std::vector< Real > &  dpm,
RankTwoTensor delta_dp,
std::vector< Real > &  yf,
bool &  trial_stress_inadmissible 
) const
virtualinherited

Performs a custom return-map.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class, and you may implement the return-map algorithm in any way that suits you. Eg, using a Newton-Raphson approach, or a radial-return, etc. This may also be used as a quick way of ascertaining whether (trial_stress, intnl_old) is in fact admissible.

For over-riding this function, please note the following.

(1) Denoting the return value of the function by "successful_return", the only possible output values should be: (A) trial_stress_inadmissible=false, successful_return=true. That is, (trial_stress, intnl_old) is in fact admissible (in the elastic domain). (B) trial_stress_inadmissible=true, successful_return=false. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), and you didn't return to the yield surface. (C) trial_stress_inadmissible=true, successful_return=true. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), but you did return to the yield surface. The default implementation only handles case (A) and (B): it does not attempt to do a return-map algorithm.

(2) you must correctly signal "successful_return" using the return value of this function. Don't assume the calling function will do Kuhn-Tucker checking and so forth!

(3) In cases (A) and (B) you needn't set returned_stress, returned_intnl, delta_dp, or dpm. This is for computational efficiency.

(4) In cases (A) and (B), you MUST place the yield function values at (trial_stress, intnl_old) into yf so the calling function can use this information optimally. You will have already calculated these yield function values, which can be quite expensive, and it's not very optimal for the calling function to have to re-calculate them.

(5) In case (C), you need to set: returned_stress (the returned value of stress) returned_intnl (the returned value of the internal variable) delta_dp (the change in plastic strain) dpm (the plastic multipliers needed to bring about the return) yf (yield function values at the returned configuration)

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
trial_stressThe trial stress
intnl_oldValue of the internal parameter
E_ijklElasticity tensor
ep_plastic_toleranceTolerance defined by the user for the plastic strain
[out]returned_stressIn case (C): lies on the yield surface after returning and produces the correct plastic strain (normality condition). Otherwise: not defined
[out]returned_intnlIn case (C): the value of the internal parameter after returning. Otherwise: not defined
[out]dpmIn case (C): the plastic multipliers needed to bring about the return. Otherwise: not defined
[out]delta_dpIn case (C): The change in plastic strain induced by the return process. Otherwise: not defined
[out]yfIn case (C): the yield function at (returned_stress, returned_intnl). Otherwise: the yield function at (trial_stress, intnl_old)
[out]trial_stress_inadmissibleShould be set to false if the trial_stress is admissible, and true if the trial_stress is inadmissible. This can be used by the calling prorgram
Returns
true if a successful return (or a return-map not needed), false if the trial_stress is inadmissible but the return process failed

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticDruckerPragerHyperbolic, TensorMechanicsPlasticMeanCapTC, and TensorMechanicsPlasticJ2.

Definition at line 221 of file TensorMechanicsPlasticModel.C.

231 {
232  trial_stress_inadmissible = false;
233  yieldFunctionV(trial_stress, intnl_old, yf);
234 
235  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
236  if (yf[sf] > _f_tol)
237  trial_stress_inadmissible = true;
238 
239  // example of checking Kuhn-Tucker
240  std::vector<Real> dpm(numberSurfaces(), 0);
241  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
242  if (!KuhnTuckerSingleSurface(yf[sf], dpm[sf], 0))
243  return false;
244  return true;
245 }

Referenced by TensorMechanicsPlasticJ2::returnMap(), TensorMechanicsPlasticDruckerPragerHyperbolic::returnMap(), TensorMechanicsPlasticMeanCapTC::returnMap(), TensorMechanicsPlasticMohrCoulombMulti::returnMap(), and TensorMechanicsPlasticTensileMulti::returnMap().

◆ smooth()

Real TensorMechanicsPlasticTensile::smooth ( const RankTwoTensor stress) const
protectedvirtual

returns the 'a' parameter - see doco for _tip_scheme

Definition at line 254 of file TensorMechanicsPlasticTensile.C.

255 {
256  Real smoother2 = _small_smoother2;
257  if (_tip_scheme == "cap")
258  {
259  Real x = stress.trace() / 3.0 - _cap_start;
260  Real p = 0;
261  if (x > 0)
262  p = x * (1 - std::exp(-_cap_rate * x));
263  smoother2 += Utility::pow<2>(p);
264  }
265  return smoother2;
266 }

Referenced by dflowPotential_dstress(), dyieldFunction_dstress(), and yieldFunction().

◆ tensile_strength()

Real TensorMechanicsPlasticTensile::tensile_strength ( const Real  internal_param) const
protectedvirtual

tensile strength as a function of residual value, rate, and internal_param

Definition at line 242 of file TensorMechanicsPlasticTensile.C.

243 {
244  return _strength.value(internal_param);
245 }

Referenced by yieldFunction().

◆ useCustomCTO()

bool TensorMechanicsPlasticModel::useCustomCTO ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function.

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPragerHyperbolic, and TensorMechanicsPlasticJ2.

Definition at line 215 of file TensorMechanicsPlasticModel.C.

216 {
217  return false;
218 }

◆ useCustomReturnMap()

bool TensorMechanicsPlasticModel::useCustomReturnMap ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom returnMap function.

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPragerHyperbolic, and TensorMechanicsPlasticJ2.

Definition at line 209 of file TensorMechanicsPlasticModel.C.

210 {
211  return false;
212 }

◆ validParams()

InputParameters TensorMechanicsPlasticTensile::validParams ( )
static

Definition at line 19 of file TensorMechanicsPlasticTensile.C.

20 {
21  InputParameters params = TensorMechanicsPlasticModel::validParams();
22  params.addRequiredParam<UserObjectName>(
23  "tensile_strength",
24  "A TensorMechanicsHardening UserObject that defines hardening of the tensile strength");
25  params.addRangeCheckedParam<Real>(
26  "tensile_edge_smoother",
27  25.0,
28  "tensile_edge_smoother>=0 & tensile_edge_smoother<=30",
29  "Smoothing parameter: the edges of the cone are smoothed by the given amount.");
30  MooseEnum tip_scheme("hyperbolic cap", "hyperbolic");
31  params.addParam<MooseEnum>(
32  "tip_scheme", tip_scheme, "Scheme by which the pyramid's tip will be smoothed.");
33  params.addRequiredRangeCheckedParam<Real>("tensile_tip_smoother",
34  "tensile_tip_smoother>=0",
35  "For the 'hyperbolic' tip_scheme, the pyramid vertex "
36  "will be smoothed by the given amount. For the 'cap' "
37  "tip_scheme, additional smoothing will occur. Typical "
38  "value is 0.1*tensile_strength");
39  params.addParam<Real>(
40  "cap_start",
41  0.0,
42  "For the 'cap' tip_scheme, smoothing is performed in the stress_mean > cap_start region");
43  params.addRangeCheckedParam<Real>("cap_rate",
44  0.0,
45  "cap_rate>=0",
46  "For the 'cap' tip_scheme, this controls how quickly the cap "
47  "degenerates to a hemisphere: small values mean a slow "
48  "degeneration to a hemisphere (and zero means the 'cap' will "
49  "be totally inactive). Typical value is 1/tensile_strength");
50  params.addParam<Real>("tensile_lode_cutoff",
51  "If the second invariant of stress is less than "
52  "this amount, the Lode angle is assumed to be zero. "
53  "This is to guard against precision-loss problems, "
54  "and this parameter should be set small. Default = "
55  "0.00001*((yield_Function_tolerance)^2)");
56  params.addClassDescription(
57  "Associative tensile plasticity with hardening/softening, and tensile_strength = 1");
58 
59  return params;
60 }

◆ yieldFunction()

Real TensorMechanicsPlasticTensile::yieldFunction ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The following functions are what you should override when building single-plasticity models.

The yield function

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the yield function

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 89 of file TensorMechanicsPlasticTensile.C.

90 {
91  Real mean_stress = stress.trace() / 3.0;
92  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
93  if (sin3Lode <= _sin3tt)
94  {
95  // the non-edge-smoothed version
96  std::vector<Real> eigvals;
97  stress.symmetricEigenvalues(eigvals);
98  return mean_stress + std::sqrt(smooth(stress) + Utility::pow<2>(eigvals[2] - mean_stress)) -
99  tensile_strength(intnl);
100  }
101  else
102  {
103  // the edge-smoothed version
104  Real kk = _aaa + _bbb * sin3Lode + _ccc * Utility::pow<2>(sin3Lode);
105  Real sibar2 = stress.secondInvariant();
106  return mean_stress + std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk)) -
107  tensile_strength(intnl);
108  }
109 }

◆ yieldFunctionV()

void TensorMechanicsPlasticModel::yieldFunctionV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  f 
) const
virtualinherited

Calculates the yield functions.

Note that for single-surface plasticity you don't want to override this - override the private yieldFunction below

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]fthe yield functions

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 69 of file TensorMechanicsPlasticModel.C.

72 {
73  f.assign(1, yieldFunction(stress, intnl));
74 }

Referenced by TensorMechanicsPlasticModel::returnMap().

Member Data Documentation

◆ _aaa

Real TensorMechanicsPlasticTensile::_aaa
protected

◆ _bbb

Real TensorMechanicsPlasticTensile::_bbb
protected

◆ _cap_rate

Real TensorMechanicsPlasticTensile::_cap_rate
protected

dictates how quickly the 'cap' degenerates to a hemisphere - see doco for _tip_scheme

Definition at line 73 of file TensorMechanicsPlasticTensile.h.

Referenced by d2smooth(), dsmooth(), and smooth().

◆ _cap_start

Real TensorMechanicsPlasticTensile::_cap_start
protected

smoothing parameter dictating when the 'cap' will start - see doco for _tip_scheme

Definition at line 70 of file TensorMechanicsPlasticTensile.h.

Referenced by d2smooth(), dsmooth(), and smooth().

◆ _ccc

Real TensorMechanicsPlasticTensile::_ccc
protected

◆ _f_tol

const Real TensorMechanicsPlasticModel::_f_tol
inherited

◆ _ic_tol

const Real TensorMechanicsPlasticModel::_ic_tol
inherited

Tolerance on internal constraint.

Definition at line 178 of file TensorMechanicsPlasticModel.h.

◆ _lode_cutoff

Real TensorMechanicsPlasticTensile::_lode_cutoff
protected

if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-loss

Definition at line 82 of file TensorMechanicsPlasticTensile.h.

Referenced by dflowPotential_dstress(), dyieldFunction_dstress(), TensorMechanicsPlasticTensile(), and yieldFunction().

◆ _sin3tt

Real TensorMechanicsPlasticTensile::_sin3tt
protected

sin(3*_tt) - useful for making comparisons with Lode angle

Definition at line 79 of file TensorMechanicsPlasticTensile.h.

Referenced by dflowPotential_dstress(), dyieldFunction_dstress(), TensorMechanicsPlasticTensile(), and yieldFunction().

◆ _small_smoother2

Real TensorMechanicsPlasticTensile::_small_smoother2
protected

Square of tip smoothing parameter to smooth the cone at mean_stress = T.

Definition at line 67 of file TensorMechanicsPlasticTensile.h.

Referenced by smooth().

◆ _strength

const TensorMechanicsHardeningModel& TensorMechanicsPlasticTensile::_strength
protected

Definition at line 54 of file TensorMechanicsPlasticTensile.h.

Referenced by dtensile_strength(), and tensile_strength().

◆ _tip_scheme

MooseEnum TensorMechanicsPlasticTensile::_tip_scheme
protected

The yield function is modified to f = s_m + sqrt(a + s_bar^2 K^2) - tensile_strength where "a" depends on the tip_scheme.

Currently _tip_scheme is 'hyperbolic', where a = _small_smoother2 'cap' where a = _small_smoother2 + (p(stress_mean - _cap_start))^2 with the function p(x)=x(1-exp(-_cap_rate*x)) for x>0, and p=0 otherwise

Definition at line 64 of file TensorMechanicsPlasticTensile.h.

Referenced by d2smooth(), dsmooth(), and smooth().

◆ _tt

Real TensorMechanicsPlasticTensile::_tt
protected

edge smoothing parameter, in radians

Definition at line 76 of file TensorMechanicsPlasticTensile.h.

Referenced by TensorMechanicsPlasticTensile().


The documentation for this class was generated from the following files:
TensorMechanicsPlasticModel::numberSurfaces
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
Definition: TensorMechanicsPlasticModel.C:57
TensorMechanicsPlasticTensile::_tip_scheme
MooseEnum _tip_scheme
The yield function is modified to f = s_m + sqrt(a + s_bar^2 K^2) - tensile_strength where "a" depend...
Definition: TensorMechanicsPlasticTensile.h:64
TensorMechanicsPlasticModel::dflowPotential_dintnl
virtual RankTwoTensor dflowPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:133
TensorMechanicsPlasticTensile::_lode_cutoff
Real _lode_cutoff
if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-los...
Definition: TensorMechanicsPlasticTensile.h:82
TensorMechanicsPlasticTensile::_strength
const TensorMechanicsHardeningModel & _strength
Definition: TensorMechanicsPlasticTensile.h:54
TensorMechanicsPlasticModel::validParams
static InputParameters validParams()
Definition: TensorMechanicsPlasticModel.C:18
TensorMechanicsPlasticTensile::d2smooth
virtual Real d2smooth(const RankTwoTensor &stress) const
returns the d^2a/dstress_mean^2 - see doco for _tip_scheme
Definition: TensorMechanicsPlasticTensile.C:288
pow
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
Definition: ExpressionBuilder.h:673
TensorMechanicsPlasticModel::dyieldFunction_dstress
virtual RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to stress.
Definition: TensorMechanicsPlasticModel.C:77
TensorMechanicsPlasticModel::dhardPotential_dintnl
virtual Real dhardPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:174
TensorMechanicsPlasticTensile::dyieldFunction_dstress
RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const override
The derivative of yield function with respect to stress.
Definition: TensorMechanicsPlasticTensile.C:112
TensorMechanicsPlasticTensile::_bbb
Real _bbb
Abbo et al's B parameter.
Definition: TensorMechanicsPlasticTensile.h:88
TensorMechanicsPlasticTensile::_ccc
Real _ccc
Abbo et al's C parameter.
Definition: TensorMechanicsPlasticTensile.h:85
TensorMechanicsPlasticTensile::_sin3tt
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
Definition: TensorMechanicsPlasticTensile.h:79
TensorMechanicsPlasticModel::KuhnTuckerSingleSurface
bool KuhnTuckerSingleSurface(Real yf, Real dpm, Real dpm_tol) const
Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.
Definition: TensorMechanicsPlasticModel.C:248
TensorMechanicsPlasticTensile::_tt
Real _tt
edge smoothing parameter, in radians
Definition: TensorMechanicsPlasticTensile.h:76
TensorMechanicsPlasticTensile::_small_smoother2
Real _small_smoother2
Square of tip smoothing parameter to smooth the cone at mean_stress = T.
Definition: TensorMechanicsPlasticTensile.h:67
TensorMechanicsPlasticTensile::smooth
virtual Real smooth(const RankTwoTensor &stress) const
returns the 'a' parameter - see doco for _tip_scheme
Definition: TensorMechanicsPlasticTensile.C:254
TensorMechanicsPlasticTensile::dtensile_strength
virtual Real dtensile_strength(const Real internal_param) const
d(tensile strength)/d(internal_param) as a function of residual value, rate, and internal_param
Definition: TensorMechanicsPlasticTensile.C:248
TensorMechanicsPlasticModel::_f_tol
const Real _f_tol
Tolerance on yield function.
Definition: TensorMechanicsPlasticModel.h:175
TensorMechanicsPlasticModel::TensorMechanicsPlasticModel
TensorMechanicsPlasticModel(const InputParameters &parameters)
Definition: TensorMechanicsPlasticModel.C:34
TensorMechanicsHardeningModel::derivative
virtual Real derivative(Real intnl) const
Definition: TensorMechanicsHardeningModel.C:47
TensorMechanicsPlasticModel::hardPotential
virtual Real hardPotential(const RankTwoTensor &stress, Real intnl) const
The hardening potential.
Definition: TensorMechanicsPlasticModel.C:147
TensorMechanicsPlasticModel::yieldFunctionV
virtual void yieldFunctionV(const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
Calculates the yield functions.
Definition: TensorMechanicsPlasticModel.C:69
TensorMechanicsPlasticTensile::dsmooth
virtual Real dsmooth(const RankTwoTensor &stress) const
returns the da/dstress_mean - see doco for _tip_scheme
Definition: TensorMechanicsPlasticTensile.C:269
TensorMechanicsPlasticTensile::tensile_strength
virtual Real tensile_strength(const Real internal_param) const
tensile strength as a function of residual value, rate, and internal_param
Definition: TensorMechanicsPlasticTensile.C:242
TensorMechanicsHardeningModel::value
virtual Real value(Real intnl) const
Definition: TensorMechanicsHardeningModel.C:45
RankTwoTensor
RankTwoTensorTempl< Real > RankTwoTensor
Definition: ACGrGrElasticDrivingForce.h:17
TensorMechanicsPlasticTensile::_cap_start
Real _cap_start
smoothing parameter dictating when the 'cap' will start - see doco for _tip_scheme
Definition: TensorMechanicsPlasticTensile.h:70
RankFourTensorTempl
Definition: ACGrGrElasticDrivingForce.h:20
TensorMechanicsPlasticModel::dflowPotential_dstress
virtual RankFourTensor dflowPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to stress.
Definition: TensorMechanicsPlasticModel.C:119
TensorMechanicsPlasticModel::yieldFunction
virtual Real yieldFunction(const RankTwoTensor &stress, Real intnl) const
The following functions are what you should override when building single-plasticity models.
Definition: TensorMechanicsPlasticModel.C:63
TensorMechanicsPlasticModel::flowPotential
virtual RankTwoTensor flowPotential(const RankTwoTensor &stress, Real intnl) const
The flow potential.
Definition: TensorMechanicsPlasticModel.C:106
TensorMechanicsPlasticTensile::_aaa
Real _aaa
Abbo et al's A parameter.
Definition: TensorMechanicsPlasticTensile.h:91
RankTwoTensorTempl< Real >
TensorMechanicsPlasticModel::dhardPotential_dstress
virtual RankTwoTensor dhardPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to stress.
Definition: TensorMechanicsPlasticModel.C:160
TensorMechanicsPlasticTensile::_cap_rate
Real _cap_rate
dictates how quickly the 'cap' degenerates to a hemisphere - see doco for _tip_scheme
Definition: TensorMechanicsPlasticTensile.h:73
TensorMechanicsPlasticModel::dyieldFunction_dintnl
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:92