www.mooseframework.org
Public Member Functions | Static Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Attributes | List of all members
TensorMechanicsPlasticIsotropicSD Class Reference

IsotropicSD plasticity model from Yoon (2013) the name of the paper is "Asymmetric yield function based on the stress invariants for pressure sensitive metals" published 4th December 2013. More...

#include <TensorMechanicsPlasticIsotropicSD.h>

Inheritance diagram for TensorMechanicsPlasticIsotropicSD:
[legend]

Public Member Functions

 TensorMechanicsPlasticIsotropicSD (const InputParameters &parameters)
 
virtual std::string modelName () const override
 
virtual bool useCustomReturnMap () const override
 Returns false. You will want to override this in your derived class if you write a custom returnMap function. More...
 
virtual bool useCustomCTO () const override
 Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function. More...
 
virtual bool returnMap (const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const override
 Performs a custom return-map. More...
 
virtual RankFourTensor consistentTangentOperator (const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const override
 Calculates a custom consistent tangent operator. More...
 
void initialize ()
 
void execute ()
 
void finalize ()
 
virtual unsigned int numberSurfaces () const
 The number of yield surfaces for this plasticity model. More...
 
virtual void yieldFunctionV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
 Calculates the yield functions. More...
 
virtual void dyieldFunction_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &df_dstress) const
 The derivative of yield functions with respect to stress. More...
 
virtual void dyieldFunction_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &df_dintnl) const
 The derivative of yield functions with respect to the internal parameter. More...
 
virtual void flowPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &r) const
 The flow potentials. More...
 
virtual void dflowPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankFourTensor > &dr_dstress) const
 The derivative of the flow potential with respect to stress. More...
 
virtual void dflowPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dr_dintnl) const
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual void hardPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &h) const
 The hardening potential. More...
 
virtual void dhardPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dh_dstress) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual void dhardPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &dh_dintnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual void activeConstraints (const std::vector< Real > &f, const RankTwoTensor &stress, Real intnl, const RankFourTensor &Eijkl, std::vector< bool > &act, RankTwoTensor &returned_stress) const
 The active yield surfaces, given a vector of yield functions. More...
 
bool KuhnTuckerSingleSurface (Real yf, Real dpm, Real dpm_tol) const
 Returns true if the Kuhn-Tucker conditions for the single surface are satisfied. More...
 

Static Public Member Functions

static InputParameters validParams ()
 

Public Attributes

const Real _f_tol
 Tolerance on yield function. More...
 
const Real _ic_tol
 Tolerance on internal constraint. More...
 

Protected Member Functions

Real dphi_dj2 (const Real j2, const Real j3) const
 derivative of phi with respect to J2, phi is b*I1 + (J2^{3/2} - c*J3)^{1/3} More...
 
Real dphi_dj3 (const Real j2, const Real j3) const
 derivative of phi with respect to J3 More...
 
Real dfj2_dj2 (const Real j2, const Real j3) const
 derivative of dphi_dJ2 with respect to J2 More...
 
Real dfj2_dj3 (const Real j2, const Real j3) const
 derivative of dphi_dJ2 with respect to J3 More...
 
Real dfj3_dj2 (const Real j2, const Real j3) const
 derivative of dphi_dJ3 with respect to J2 More...
 
Real dfj3_dj3 (const Real j2, const Real j3) const
 derivative of dphi_dJ3 with respect to J3 More...
 
RankTwoTensor dI_sigma () const
 derivative of the trace with respect to sigma rank two tensor More...
 
RankTwoTensor dj2_dSkl (const RankTwoTensor &stress) const
 derivative of the second invariant with respect to the stress deviatoric tensor More...
 
Real yieldFunction (const RankTwoTensor &stress, Real intnl) const override
 Yield_function = a[b*I1 + (J2^{3/2} - c*J3)^{1/3}] - yield_strength. More...
 
RankTwoTensor dyieldFunction_dstress (const RankTwoTensor &stress, Real intnl) const override
 Tensor derivative of the yield_function with respect to the stress tensor. More...
 
RankFourTensor dflowPotential_dstress (const RankTwoTensor &stress, Real intnl) const override
 Tensor derivative of the tensor derivative of the yield_function with respect to the stress tensor. More...
 
RankTwoTensor flowPotential (const RankTwoTensor &stress, Real intnl) const override
 Receives the flag for associative or non-associative and calculates the flow potential accordingly. More...
 
Real dyieldFunction_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to the internal parameter. More...
 
RankTwoTensor dflowPotential_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual Real yieldStrength (Real intnl) const
 YieldStrength. More...
 
virtual Real dyieldStrength (Real intnl) const
 d(yieldStrength)/d(intnl) More...
 
virtual Real hardPotential (const RankTwoTensor &stress, Real intnl) const
 The hardening potential. More...
 
virtual RankTwoTensor dhardPotential_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual Real dhardPotential_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 

Protected Attributes

const Real _b
 A constant to model the influence of pressure. More...
 
Real _c
 A constant to model the influence of strength differential effect. More...
 
const bool _associative
 Flag for flow-rule, true if not specified. More...
 
RankFourTensor _h
 Comes from transforming the stress tensor to the deviatoric stress tensor. More...
 
Real _a
 A constant used in the constructor that depends on _b and _c. More...
 

Private Attributes

const TensorMechanicsHardeningModel_strength
 yield strength, from user input More...
 
const unsigned _max_iters
 max iters for custom return map loop More...
 
const bool _use_custom_returnMap
 Whether to use the custom return-map algorithm. More...
 
const bool _use_custom_cto
 Whether to use the custom consistent tangent operator calculation. More...
 

Detailed Description

IsotropicSD plasticity model from Yoon (2013) the name of the paper is "Asymmetric yield function based on the stress invariants for pressure sensitive metals" published 4th December 2013.

This model accounts for sensitivity in pressure and for the strength differential effect Yield_function = \( a[b*I_{1} + (J2^{3/2} - c*J3)^{1/3}]\) - yield_strength The last three functions are the main functions that call all other functions in this module for the Newton-Raphson method.

Definition at line 31 of file TensorMechanicsPlasticIsotropicSD.h.

Constructor & Destructor Documentation

◆ TensorMechanicsPlasticIsotropicSD()

TensorMechanicsPlasticIsotropicSD::TensorMechanicsPlasticIsotropicSD ( const InputParameters &  parameters)

Definition at line 29 of file TensorMechanicsPlasticIsotropicSD.C.

31  : TensorMechanicsPlasticJ2(parameters),
32  _b(getParam<Real>("b")),
33  _c(getParam<Real>("c")),
34  _associative(getParam<bool>("associative"))
35 {
36  _a = 1.0 / (_b + std::pow(1.0 / std::sqrt(27.0) - _c / 27.0, 1.0 / 3.0));
37  for (unsigned i = 0; i < 3; ++i)
38  for (unsigned j = 0; j < 3; ++j)
39  for (unsigned k = 0; k < 3; ++k)
40  for (unsigned l = 0; l < 3; ++l)
41  _h(i, j, k, l) = ((i == k) * (j == l) - 1.0 / 3.0 * (i == j) * (k == l));
42 }

Member Function Documentation

◆ activeConstraints()

void TensorMechanicsPlasticModel::activeConstraints ( const std::vector< Real > &  f,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor Eijkl,
std::vector< bool > &  act,
RankTwoTensor returned_stress 
) const
virtualinherited

The active yield surfaces, given a vector of yield functions.

This is used by FiniteStrainMultiPlasticity to determine the initial set of active constraints at the trial (stress, intnl) configuration. It is up to you (the coder) to determine how accurate you want the returned_stress to be. Currently it is only used by FiniteStrainMultiPlasticity to estimate a good starting value for the Newton-Rahson procedure, so currently it may not need to be super perfect.

Parameters
fvalues of the yield functions
stressstress tensor
intnlinternal parameter
Eijklelasticity tensor (stress = Eijkl*strain)
[out]actact[i] = true if the i_th yield function is active
[out]returned_stressApproximate value of the returned stress

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticWeakPlaneShear, and TensorMechanicsPlasticWeakPlaneTensile.

Definition at line 188 of file TensorMechanicsPlasticModel.C.

194 {
195  mooseAssert(f.size() == numberSurfaces(),
196  "f incorrectly sized at " << f.size() << " in activeConstraints");
197  act.resize(numberSurfaces());
198  for (unsigned surface = 0; surface < numberSurfaces(); ++surface)
199  act[surface] = (f[surface] > _f_tol);
200 }

◆ consistentTangentOperator()

RankFourTensor TensorMechanicsPlasticJ2::consistentTangentOperator ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor E_ijkl,
const std::vector< Real > &  cumulative_pm 
) const
overridevirtualinherited

Calculates a custom consistent tangent operator.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class.

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
stress_oldtrial stress before returning
intnl_oldinternal parameter before returning
stresscurrent returned stress state
intnlinternal parameter
E_ijklelasticity tensor
cumulative_pmthe cumulative plastic multipliers
Returns
the consistent tangent operator: E_ijkl if not over-ridden

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 193 of file TensorMechanicsPlasticJ2.C.

199 {
200  if (!_use_custom_cto)
202  trial_stress, intnl_old, stress, intnl, E_ijkl, cumulative_pm);
203 
204  Real mu = E_ijkl(0, 1, 0, 1);
205 
206  Real h = 3 * mu + dyieldStrength(intnl);
207  RankTwoTensor sij = stress.deviatoric();
208  Real sII = stress.secondInvariant();
209  Real equivalent_stress = std::sqrt(3.0 * sII);
210  Real zeta = cumulative_pm[0] / (1.0 + 3.0 * mu * cumulative_pm[0] / equivalent_stress);
211 
212  return E_ijkl - 3.0 * mu * mu / sII / h * sij.outerProduct(sij) -
213  4.0 * mu * mu * zeta * dflowPotential_dstress(stress, intnl);
214 }

◆ dfj2_dj2()

Real TensorMechanicsPlasticIsotropicSD::dfj2_dj2 ( const Real  j2,
const Real  j3 
) const
protected

derivative of dphi_dJ2 with respect to J2

Definition at line 57 of file TensorMechanicsPlasticIsotropicSD.C.

58 {
59  return std::pow(j2, -1.0 / 2.0) / (4 * std::pow(std::pow(j2, 3.0 / 2.0) - _c * j3, 2.0 / 3.0)) -
60  j2 / (2 * std::pow(std::pow(j2, 3.0 / 2.0) - _c * j3, 5.0 / 3.0));
61 }

Referenced by TensorMechanicsPlasticOrthotropic::dflowPotential_dstress(), and dflowPotential_dstress().

◆ dfj2_dj3()

Real TensorMechanicsPlasticIsotropicSD::dfj2_dj3 ( const Real  j2,
const Real  j3 
) const
protected

derivative of dphi_dJ2 with respect to J3

Definition at line 64 of file TensorMechanicsPlasticIsotropicSD.C.

65 {
66  return _c * std::pow(j2, 1.0 / 2.0) /
67  (3 * std::pow(std::pow(j2, 3.0 / 2.0) - _c * j3, 5.0 / 3.0));
68 }

Referenced by TensorMechanicsPlasticOrthotropic::dflowPotential_dstress(), and dflowPotential_dstress().

◆ dfj3_dj2()

Real TensorMechanicsPlasticIsotropicSD::dfj3_dj2 ( const Real  j2,
const Real  j3 
) const
protected

derivative of dphi_dJ3 with respect to J2

Definition at line 71 of file TensorMechanicsPlasticIsotropicSD.C.

72 {
73  return _c * std::pow(j2, 1.0 / 2.0) /
74  (3 * std::pow(std::pow(j2, 3.0 / 2.0) - _c * j3, 5.0 / 3.0));
75 }

Referenced by TensorMechanicsPlasticOrthotropic::dflowPotential_dstress(), and dflowPotential_dstress().

◆ dfj3_dj3()

Real TensorMechanicsPlasticIsotropicSD::dfj3_dj3 ( const Real  j2,
const Real  j3 
) const
protected

derivative of dphi_dJ3 with respect to J3

Definition at line 78 of file TensorMechanicsPlasticIsotropicSD.C.

79 {
80  return -_c * _c * 2.0 / (9 * std::pow(std::pow(j2, 3.0 / 2.0) - _c * j3, 5.0 / 3.0));
81 }

Referenced by TensorMechanicsPlasticOrthotropic::dflowPotential_dstress(), and dflowPotential_dstress().

◆ dflowPotential_dintnl()

RankTwoTensor TensorMechanicsPlasticJ2::dflowPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dintnl(i, j) = dr(i, j)/dintnl

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 97 of file TensorMechanicsPlasticJ2.C.

99 {
100  return RankTwoTensor();
101 }

◆ dflowPotential_dintnlV()

void TensorMechanicsPlasticModel::dflowPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dr_dintnl 
) const
virtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dintnldr_dintnl[alpha](i, j) = dr[alpha](i, j)/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 139 of file TensorMechanicsPlasticModel.C.

142 {
143  return dr_dintnl.assign(1, dflowPotential_dintnl(stress, intnl));
144 }

◆ dflowPotential_dstress()

RankFourTensor TensorMechanicsPlasticIsotropicSD::dflowPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

Tensor derivative of the tensor derivative of the yield_function with respect to the stress tensor.

Reimplemented from TensorMechanicsPlasticJ2.

Reimplemented in TensorMechanicsPlasticOrthotropic.

Definition at line 122 of file TensorMechanicsPlasticIsotropicSD.C.

124 {
125  if (_associative)
126  {
127  const RankTwoTensor sDev = stress.deviatoric();
128  const RankTwoTensor dj2 = dj2_dSkl(sDev);
129  const RankTwoTensor dj3 = sDev.ddet();
130  const Real j2 = stress.secondInvariant();
131  const Real j3 = stress.thirdInvariant();
132  return _a * (dfj2_dj2(j2, j3) *
133  _h.innerProductTranspose(dj2).outerProduct(_h.innerProductTranspose(dj2)) +
134  dfj2_dj3(j2, j3) *
135  _h.innerProductTranspose(dj2).outerProduct(_h.innerProductTranspose(dj3)) +
136  dfj3_dj2(j2, j3) *
137  _h.innerProductTranspose(dj3).outerProduct(_h.innerProductTranspose(dj2)) +
138  dfj3_dj3(j2, j3) *
139  _h.innerProductTranspose(dj3).outerProduct(_h.innerProductTranspose(dj3)));
140  }
141  else
143 }

◆ dflowPotential_dstressV()

void TensorMechanicsPlasticModel::dflowPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankFourTensor > &  dr_dstress 
) const
virtualinherited

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dstressdr_dstress[alpha](i, j, k, l) = dr[alpha](i, j)/dstress(k, l)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 125 of file TensorMechanicsPlasticModel.C.

128 {
129  return dr_dstress.assign(1, dflowPotential_dstress(stress, intnl));
130 }

◆ dhardPotential_dintnl()

Real TensorMechanicsPlasticModel::dhardPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
the derivative

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 174 of file TensorMechanicsPlasticModel.C.

176 {
177  return 0.0;
178 }

Referenced by TensorMechanicsPlasticModel::dhardPotential_dintnlV().

◆ dhardPotential_dintnlV()

void TensorMechanicsPlasticModel::dhardPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  dh_dintnl 
) const
virtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dintnldh_dintnl[alpha] = dh[alpha]/dintnl

Definition at line 180 of file TensorMechanicsPlasticModel.C.

183 {
184  dh_dintnl.resize(numberSurfaces(), dhardPotential_dintnl(stress, intnl));
185 }

◆ dhardPotential_dstress()

RankTwoTensor TensorMechanicsPlasticModel::dhardPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
dh_dstress(i, j) = dh/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 160 of file TensorMechanicsPlasticModel.C.

162 {
163  return RankTwoTensor();
164 }

Referenced by TensorMechanicsPlasticModel::dhardPotential_dstressV().

◆ dhardPotential_dstressV()

void TensorMechanicsPlasticModel::dhardPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dh_dstress 
) const
virtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dstressdh_dstress[alpha](i, j) = dh[alpha]/dstress(i, j)

Definition at line 166 of file TensorMechanicsPlasticModel.C.

169 {
170  dh_dstress.assign(numberSurfaces(), dhardPotential_dstress(stress, intnl));
171 }

◆ dI_sigma()

RankTwoTensor TensorMechanicsPlasticIsotropicSD::dI_sigma ( ) const
protected

derivative of the trace with respect to sigma rank two tensor

Definition at line 84 of file TensorMechanicsPlasticIsotropicSD.C.

85 {
86  return RankTwoTensor(RankTwoTensor::initIdentity);
87 }

Referenced by TensorMechanicsPlasticOrthotropic::dflowPotential_dstress(), TensorMechanicsPlasticOrthotropic::dyieldFunction_dstress(), and dyieldFunction_dstress().

◆ dj2_dSkl()

RankTwoTensor TensorMechanicsPlasticIsotropicSD::dj2_dSkl ( const RankTwoTensor stress) const
protected

derivative of the second invariant with respect to the stress deviatoric tensor

Definition at line 90 of file TensorMechanicsPlasticIsotropicSD.C.

91 {
92  RankTwoTensor a;
93  const Real trace = stress.trace();
94  for (unsigned i = 0; i < 3; ++i)
95  for (unsigned j = 0; j < 3; ++j)
96  a(i, j) = (trace - stress(i, j)) * -1 * (i == j) + stress(i, j) * (i != j);
97 
98  return a;
99 }

Referenced by TensorMechanicsPlasticOrthotropic::dflowPotential_dstress(), dflowPotential_dstress(), TensorMechanicsPlasticOrthotropic::dyieldFunction_dstress(), and dyieldFunction_dstress().

◆ dphi_dj2()

Real TensorMechanicsPlasticIsotropicSD::dphi_dj2 ( const Real  j2,
const Real  j3 
) const
protected

derivative of phi with respect to J2, phi is b*I1 + (J2^{3/2} - c*J3)^{1/3}

Definition at line 45 of file TensorMechanicsPlasticIsotropicSD.C.

46 {
47  return std::pow(j2, 1.0 / 2.0) / (2 * std::pow(std::pow(j2, 3.0 / 2.0) - _c * j3, 2.0 / 3.0));
48 }

Referenced by TensorMechanicsPlasticOrthotropic::dflowPotential_dstress(), TensorMechanicsPlasticOrthotropic::dyieldFunction_dstress(), and dyieldFunction_dstress().

◆ dphi_dj3()

Real TensorMechanicsPlasticIsotropicSD::dphi_dj3 ( const Real  j2,
const Real  j3 
) const
protected

derivative of phi with respect to J3

Definition at line 51 of file TensorMechanicsPlasticIsotropicSD.C.

52 {
53  return -_c / (3 * std::pow(std::pow(j2, 3.0 / 2.0) - _c * j3, 2.0 / 3.0));
54 }

Referenced by TensorMechanicsPlasticOrthotropic::dflowPotential_dstress(), TensorMechanicsPlasticOrthotropic::dyieldFunction_dstress(), and dyieldFunction_dstress().

◆ dyieldFunction_dintnl()

Real TensorMechanicsPlasticJ2::dyieldFunction_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The derivative of yield function with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the derivative

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 67 of file TensorMechanicsPlasticJ2.C.

68 {
69  return -dyieldStrength(intnl);
70 }

◆ dyieldFunction_dintnlV()

void TensorMechanicsPlasticModel::dyieldFunction_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  df_dintnl 
) const
virtualinherited

The derivative of yield functions with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dintnldf_dintnl[alpha] = df[alpha]/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 98 of file TensorMechanicsPlasticModel.C.

101 {
102  return df_dintnl.assign(1, dyieldFunction_dintnl(stress, intnl));
103 }

◆ dyieldFunction_dstress()

RankTwoTensor TensorMechanicsPlasticIsotropicSD::dyieldFunction_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

Tensor derivative of the yield_function with respect to the stress tensor.

Reimplemented from TensorMechanicsPlasticJ2.

Reimplemented in TensorMechanicsPlasticOrthotropic.

Definition at line 111 of file TensorMechanicsPlasticIsotropicSD.C.

113 {
114  const RankTwoTensor sDev = stress.deviatoric();
115  const Real j2 = stress.secondInvariant();
116  const Real j3 = stress.thirdInvariant();
117  return _a * (_b * dI_sigma() + dphi_dj2(j2, j3) * _h.innerProductTranspose(dj2_dSkl(sDev)) +
118  dphi_dj3(j2, j3) * _h.innerProductTranspose(sDev.ddet()));
119 }

Referenced by flowPotential().

◆ dyieldFunction_dstressV()

void TensorMechanicsPlasticModel::dyieldFunction_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  df_dstress 
) const
virtualinherited

The derivative of yield functions with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dstressdf_dstress[alpha](i, j) = dyieldFunction[alpha]/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 84 of file TensorMechanicsPlasticModel.C.

87 {
88  df_dstress.assign(1, dyieldFunction_dstress(stress, intnl));
89 }

◆ dyieldStrength()

Real TensorMechanicsPlasticJ2::dyieldStrength ( Real  intnl) const
protectedvirtualinherited

◆ execute()

void TensorMechanicsPlasticModel::execute ( )
inherited

Definition at line 47 of file TensorMechanicsPlasticModel.C.

48 {
49 }

◆ finalize()

void TensorMechanicsPlasticModel::finalize ( )
inherited

Definition at line 52 of file TensorMechanicsPlasticModel.C.

53 {
54 }

◆ flowPotential()

RankTwoTensor TensorMechanicsPlasticIsotropicSD::flowPotential ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

Receives the flag for associative or non-associative and calculates the flow potential accordingly.

Reimplemented from TensorMechanicsPlasticJ2.

Reimplemented in TensorMechanicsPlasticOrthotropic.

Definition at line 146 of file TensorMechanicsPlasticIsotropicSD.C.

147 {
148  if (_associative)
149  return dyieldFunction_dstress(stress, intnl);
150  else
152 }

◆ flowPotentialV()

void TensorMechanicsPlasticModel::flowPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  r 
) const
virtualinherited

The flow potentials.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]rr[alpha] is the flow potential for the "alpha" yield function

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 111 of file TensorMechanicsPlasticModel.C.

114 {
115  return r.assign(1, flowPotential(stress, intnl));
116 }

◆ hardPotential()

Real TensorMechanicsPlasticModel::hardPotential ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
Returns
the hardening potential

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 147 of file TensorMechanicsPlasticModel.C.

148 {
149  return -1.0;
150 }

Referenced by TensorMechanicsPlasticModel::hardPotentialV().

◆ hardPotentialV()

void TensorMechanicsPlasticModel::hardPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  h 
) const
virtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
[out]hh[alpha] is the hardening potential for the "alpha" yield function

Definition at line 152 of file TensorMechanicsPlasticModel.C.

155 {
156  h.assign(numberSurfaces(), hardPotential(stress, intnl));
157 }

◆ initialize()

void TensorMechanicsPlasticModel::initialize ( )
inherited

Definition at line 42 of file TensorMechanicsPlasticModel.C.

43 {
44 }

◆ KuhnTuckerSingleSurface()

bool TensorMechanicsPlasticModel::KuhnTuckerSingleSurface ( Real  yf,
Real  dpm,
Real  dpm_tol 
) const
inherited

Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.

Parameters
yfYield function value
dpmplastic multiplier
dpm_toltolerance on plastic multiplier: viz dpm>-dpm_tol means "dpm is non-negative"

Definition at line 248 of file TensorMechanicsPlasticModel.C.

249 {
250  return (dpm == 0 && yf <= _f_tol) || (dpm > -dpm_tol && yf <= _f_tol && yf >= -_f_tol);
251 }

Referenced by TensorMechanicsPlasticMohrCoulombMulti::KuhnTuckerOK(), TensorMechanicsPlasticTensileMulti::KuhnTuckerOK(), and TensorMechanicsPlasticModel::returnMap().

◆ modelName()

std::string TensorMechanicsPlasticJ2::modelName ( ) const
overridevirtualinherited

Implements TensorMechanicsPlasticModel.

Definition at line 116 of file TensorMechanicsPlasticJ2.C.

117 {
118  return "J2";
119 }

◆ numberSurfaces()

unsigned TensorMechanicsPlasticModel::numberSurfaces ( ) const
virtualinherited

◆ returnMap()

bool TensorMechanicsPlasticJ2::returnMap ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankFourTensor E_ijkl,
Real  ep_plastic_tolerance,
RankTwoTensor returned_stress,
Real &  returned_intnl,
std::vector< Real > &  dpm,
RankTwoTensor delta_dp,
std::vector< Real > &  yf,
bool &  trial_stress_inadmissible 
) const
overridevirtualinherited

Performs a custom return-map.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class, and you may implement the return-map algorithm in any way that suits you. Eg, using a Newton-Raphson approach, or a radial-return, etc. This may also be used as a quick way of ascertaining whether (trial_stress, intnl_old) is in fact admissible.

For over-riding this function, please note the following.

(1) Denoting the return value of the function by "successful_return", the only possible output values should be: (A) trial_stress_inadmissible=false, successful_return=true. That is, (trial_stress, intnl_old) is in fact admissible (in the elastic domain). (B) trial_stress_inadmissible=true, successful_return=false. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), and you didn't return to the yield surface. (C) trial_stress_inadmissible=true, successful_return=true. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), but you did return to the yield surface. The default implementation only handles case (A) and (B): it does not attempt to do a return-map algorithm.

(2) you must correctly signal "successful_return" using the return value of this function. Don't assume the calling function will do Kuhn-Tucker checking and so forth!

(3) In cases (A) and (B) you needn't set returned_stress, returned_intnl, delta_dp, or dpm. This is for computational efficiency.

(4) In cases (A) and (B), you MUST place the yield function values at (trial_stress, intnl_old) into yf so the calling function can use this information optimally. You will have already calculated these yield function values, which can be quite expensive, and it's not very optimal for the calling function to have to re-calculate them.

(5) In case (C), you need to set: returned_stress (the returned value of stress) returned_intnl (the returned value of the internal variable) delta_dp (the change in plastic strain) dpm (the plastic multipliers needed to bring about the return) yf (yield function values at the returned configuration)

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
trial_stressThe trial stress
intnl_oldValue of the internal parameter
E_ijklElasticity tensor
ep_plastic_toleranceTolerance defined by the user for the plastic strain
[out]returned_stressIn case (C): lies on the yield surface after returning and produces the correct plastic strain (normality condition). Otherwise: not defined
[out]returned_intnlIn case (C): the value of the internal parameter after returning. Otherwise: not defined
[out]dpmIn case (C): the plastic multipliers needed to bring about the return. Otherwise: not defined
[out]delta_dpIn case (C): The change in plastic strain induced by the return process. Otherwise: not defined
[out]yfIn case (C): the yield function at (returned_stress, returned_intnl). Otherwise: the yield function at (trial_stress, intnl_old)
[out]trial_stress_inadmissibleShould be set to false if the trial_stress is admissible, and true if the trial_stress is inadmissible. This can be used by the calling prorgram
Returns
true if a successful return (or a return-map not needed), false if the trial_stress is inadmissible but the return process failed

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 122 of file TensorMechanicsPlasticJ2.C.

132 {
133  if (!(_use_custom_returnMap))
134  return TensorMechanicsPlasticModel::returnMap(trial_stress,
135  intnl_old,
136  E_ijkl,
137  ep_plastic_tolerance,
138  returned_stress,
139  returned_intnl,
140  dpm,
141  delta_dp,
142  yf,
143  trial_stress_inadmissible);
144 
145  yf.resize(1);
146 
147  Real yf_orig = yieldFunction(trial_stress, intnl_old);
148 
149  yf[0] = yf_orig;
150 
151  if (yf_orig < _f_tol)
152  {
153  // the trial_stress is admissible
154  trial_stress_inadmissible = false;
155  return true;
156  }
157 
158  trial_stress_inadmissible = true;
159  Real mu = E_ijkl(0, 1, 0, 1);
160 
161  // Perform a Newton-Raphson to find dpm when
162  // residual = 3*mu*dpm - trial_equivalent_stress + yieldStrength(intnl_old + dpm) = 0
163  Real trial_equivalent_stress = yf_orig + yieldStrength(intnl_old);
164  Real residual;
165  Real jac;
166  dpm[0] = 0;
167  unsigned int iter = 0;
168  do
169  {
170  residual = 3.0 * mu * dpm[0] - trial_equivalent_stress + yieldStrength(intnl_old + dpm[0]);
171  jac = 3.0 * mu + dyieldStrength(intnl_old + dpm[0]);
172  dpm[0] += -residual / jac;
173  if (iter > _max_iters) // not converging
174  return false;
175  iter++;
176  } while (residual * residual > _f_tol * _f_tol);
177 
178  // set the returned values
179  yf[0] = 0;
180  returned_intnl = intnl_old + dpm[0];
181  RankTwoTensor nn = 1.5 * trial_stress.deviatoric() /
182  trial_equivalent_stress; // = dyieldFunction_dstress(trial_stress, intnl_old) =
183  // the normal to the yield surface, at the trial
184  // stress
185  returned_stress = 2.0 / 3.0 * nn * yieldStrength(returned_intnl);
186  returned_stress.addIa(1.0 / 3.0 * trial_stress.trace());
187  delta_dp = nn * dpm[0];
188 
189  return true;
190 }

◆ useCustomCTO()

bool TensorMechanicsPlasticJ2::useCustomCTO ( ) const
overridevirtualinherited

Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function.

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 223 of file TensorMechanicsPlasticJ2.C.

224 {
225  return _use_custom_cto;
226 }

◆ useCustomReturnMap()

bool TensorMechanicsPlasticJ2::useCustomReturnMap ( ) const
overridevirtualinherited

Returns false. You will want to override this in your derived class if you write a custom returnMap function.

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 217 of file TensorMechanicsPlasticJ2.C.

218 {
219  return _use_custom_returnMap;
220 }

◆ validParams()

InputParameters TensorMechanicsPlasticIsotropicSD::validParams ( )
static

Definition at line 17 of file TensorMechanicsPlasticIsotropicSD.C.

18 {
19  InputParameters params = TensorMechanicsPlasticJ2::validParams();
20  params.addRequiredParam<Real>("b", "A constant to model the influence of pressure");
21  params.addParam<Real>(
22  "c", 0.0, "A constant to model the influence of strength differential effect");
23  params.addParam<bool>("associative", true, "Flag for flow-rule, true if not specified");
24  params.addClassDescription("IsotropicSD plasticity for pressure sensitive materials and also "
25  "models the strength differential effect");
26  return params;
27 }

Referenced by TensorMechanicsPlasticOrthotropic::validParams().

◆ yieldFunction()

Real TensorMechanicsPlasticIsotropicSD::yieldFunction ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

Yield_function = a[b*I1 + (J2^{3/2} - c*J3)^{1/3}] - yield_strength.

Reimplemented from TensorMechanicsPlasticJ2.

Reimplemented in TensorMechanicsPlasticOrthotropic.

Definition at line 102 of file TensorMechanicsPlasticIsotropicSD.C.

103 {
104  return _a * (_b * stress.trace() +
105  std::pow(std::pow(stress.secondInvariant(), 1.5) - _c * stress.thirdInvariant(),
106  1.0 / 3.0)) -
107  yieldStrength(intnl);
108 }

◆ yieldFunctionV()

void TensorMechanicsPlasticModel::yieldFunctionV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  f 
) const
virtualinherited

Calculates the yield functions.

Note that for single-surface plasticity you don't want to override this - override the private yieldFunction below

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]fthe yield functions

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 69 of file TensorMechanicsPlasticModel.C.

72 {
73  f.assign(1, yieldFunction(stress, intnl));
74 }

Referenced by TensorMechanicsPlasticModel::returnMap().

◆ yieldStrength()

Real TensorMechanicsPlasticJ2::yieldStrength ( Real  intnl) const
protectedvirtualinherited

YieldStrength.

The yield function is sqrt(3*J2) - yieldStrength. In this class yieldStrength = 1, but this may be over-ridden by derived classes with nontrivial hardning

Definition at line 104 of file TensorMechanicsPlasticJ2.C.

105 {
106  return _strength.value(intnl);
107 }

Referenced by TensorMechanicsPlasticJ2::returnMap(), TensorMechanicsPlasticOrthotropic::yieldFunction(), TensorMechanicsPlasticJ2::yieldFunction(), and yieldFunction().

Member Data Documentation

◆ _a

Real TensorMechanicsPlasticIsotropicSD::_a
protected

A constant used in the constructor that depends on _b and _c.

Definition at line 52 of file TensorMechanicsPlasticIsotropicSD.h.

Referenced by dflowPotential_dstress(), dyieldFunction_dstress(), TensorMechanicsPlasticIsotropicSD(), and yieldFunction().

◆ _associative

const bool TensorMechanicsPlasticIsotropicSD::_associative
protected

◆ _b

const Real TensorMechanicsPlasticIsotropicSD::_b
protected

◆ _c

Real TensorMechanicsPlasticIsotropicSD::_c
protected

◆ _f_tol

const Real TensorMechanicsPlasticModel::_f_tol
inherited

◆ _h

RankFourTensor TensorMechanicsPlasticIsotropicSD::_h
protected

Comes from transforming the stress tensor to the deviatoric stress tensor.

Definition at line 49 of file TensorMechanicsPlasticIsotropicSD.h.

Referenced by dflowPotential_dstress(), dyieldFunction_dstress(), and TensorMechanicsPlasticIsotropicSD().

◆ _ic_tol

const Real TensorMechanicsPlasticModel::_ic_tol
inherited

Tolerance on internal constraint.

Definition at line 178 of file TensorMechanicsPlasticModel.h.

◆ _max_iters

const unsigned TensorMechanicsPlasticJ2::_max_iters
privateinherited

max iters for custom return map loop

Definition at line 86 of file TensorMechanicsPlasticJ2.h.

Referenced by TensorMechanicsPlasticJ2::returnMap().

◆ _strength

const TensorMechanicsHardeningModel& TensorMechanicsPlasticJ2::_strength
privateinherited

yield strength, from user input

Definition at line 83 of file TensorMechanicsPlasticJ2.h.

Referenced by TensorMechanicsPlasticJ2::dyieldStrength(), and TensorMechanicsPlasticJ2::yieldStrength().

◆ _use_custom_cto

const bool TensorMechanicsPlasticJ2::_use_custom_cto
privateinherited

Whether to use the custom consistent tangent operator calculation.

Definition at line 92 of file TensorMechanicsPlasticJ2.h.

Referenced by TensorMechanicsPlasticJ2::consistentTangentOperator(), and TensorMechanicsPlasticJ2::useCustomCTO().

◆ _use_custom_returnMap

const bool TensorMechanicsPlasticJ2::_use_custom_returnMap
privateinherited

Whether to use the custom return-map algorithm.

Definition at line 89 of file TensorMechanicsPlasticJ2.h.

Referenced by TensorMechanicsPlasticJ2::returnMap(), and TensorMechanicsPlasticJ2::useCustomReturnMap().


The documentation for this class was generated from the following files:
TensorMechanicsPlasticIsotropicSD::_b
const Real _b
A constant to model the influence of pressure.
Definition: TensorMechanicsPlasticIsotropicSD.h:40
TensorMechanicsPlasticModel::numberSurfaces
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
Definition: TensorMechanicsPlasticModel.C:57
TensorMechanicsPlasticJ2::dyieldStrength
virtual Real dyieldStrength(Real intnl) const
d(yieldStrength)/d(intnl)
Definition: TensorMechanicsPlasticJ2.C:110
TensorMechanicsPlasticModel::dflowPotential_dintnl
virtual RankTwoTensor dflowPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:133
TensorMechanicsPlasticIsotropicSD::_c
Real _c
A constant to model the influence of strength differential effect.
Definition: TensorMechanicsPlasticIsotropicSD.h:43
pow
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
Definition: ExpressionBuilder.h:673
TensorMechanicsPlasticJ2::TensorMechanicsPlasticJ2
TensorMechanicsPlasticJ2(const InputParameters &parameters)
Definition: TensorMechanicsPlasticJ2.C:41
TensorMechanicsPlasticModel::dyieldFunction_dstress
virtual RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to stress.
Definition: TensorMechanicsPlasticModel.C:77
TensorMechanicsPlasticModel::dhardPotential_dintnl
virtual Real dhardPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:174
TensorMechanicsPlasticJ2::yieldStrength
virtual Real yieldStrength(Real intnl) const
YieldStrength.
Definition: TensorMechanicsPlasticJ2.C:104
TensorMechanicsPlasticJ2::dyieldFunction_dstress
virtual RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const override
The derivative of yield function with respect to stress.
Definition: TensorMechanicsPlasticJ2.C:57
TensorMechanicsPlasticJ2::yieldFunction
virtual Real yieldFunction(const RankTwoTensor &stress, Real intnl) const override
The following functions are what you should override when building single-plasticity models.
Definition: TensorMechanicsPlasticJ2.C:51
TensorMechanicsPlasticIsotropicSD::dphi_dj3
Real dphi_dj3(const Real j2, const Real j3) const
derivative of phi with respect to J3
Definition: TensorMechanicsPlasticIsotropicSD.C:51
TensorMechanicsPlasticModel::_f_tol
const Real _f_tol
Tolerance on yield function.
Definition: TensorMechanicsPlasticModel.h:175
TensorMechanicsPlasticJ2::validParams
static InputParameters validParams()
Definition: TensorMechanicsPlasticJ2.C:18
TensorMechanicsPlasticIsotropicSD::_h
RankFourTensor _h
Comes from transforming the stress tensor to the deviatoric stress tensor.
Definition: TensorMechanicsPlasticIsotropicSD.h:49
TensorMechanicsPlasticJ2::dflowPotential_dstress
virtual RankFourTensor dflowPotential_dstress(const RankTwoTensor &stress, Real intnl) const override
The derivative of the flow potential with respect to stress.
Definition: TensorMechanicsPlasticJ2.C:79
TensorMechanicsPlasticIsotropicSD::dphi_dj2
Real dphi_dj2(const Real j2, const Real j3) const
derivative of phi with respect to J2, phi is b*I1 + (J2^{3/2} - c*J3)^{1/3}
Definition: TensorMechanicsPlasticIsotropicSD.C:45
TensorMechanicsPlasticIsotropicSD::dfj3_dj3
Real dfj3_dj3(const Real j2, const Real j3) const
derivative of dphi_dJ3 with respect to J3
Definition: TensorMechanicsPlasticIsotropicSD.C:78
TensorMechanicsHardeningModel::derivative
virtual Real derivative(Real intnl) const
Definition: TensorMechanicsHardeningModel.C:47
TensorMechanicsPlasticIsotropicSD::_a
Real _a
A constant used in the constructor that depends on _b and _c.
Definition: TensorMechanicsPlasticIsotropicSD.h:52
TensorMechanicsPlasticModel::hardPotential
virtual Real hardPotential(const RankTwoTensor &stress, Real intnl) const
The hardening potential.
Definition: TensorMechanicsPlasticModel.C:147
TensorMechanicsPlasticJ2::_strength
const TensorMechanicsHardeningModel & _strength
yield strength, from user input
Definition: TensorMechanicsPlasticJ2.h:83
TensorMechanicsPlasticModel::returnMap
virtual bool returnMap(const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const
Performs a custom return-map.
Definition: TensorMechanicsPlasticModel.C:221
TensorMechanicsPlasticIsotropicSD::dfj3_dj2
Real dfj3_dj2(const Real j2, const Real j3) const
derivative of dphi_dJ3 with respect to J2
Definition: TensorMechanicsPlasticIsotropicSD.C:71
TensorMechanicsHardeningModel::value
virtual Real value(Real intnl) const
Definition: TensorMechanicsHardeningModel.C:45
RankTwoTensor
RankTwoTensorTempl< Real > RankTwoTensor
Definition: ACGrGrElasticDrivingForce.h:17
TensorMechanicsPlasticModel::consistentTangentOperator
virtual RankFourTensor consistentTangentOperator(const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const
Calculates a custom consistent tangent operator.
Definition: TensorMechanicsPlasticModel.C:254
TensorMechanicsPlasticJ2::_use_custom_cto
const bool _use_custom_cto
Whether to use the custom consistent tangent operator calculation.
Definition: TensorMechanicsPlasticJ2.h:92
TensorMechanicsPlasticIsotropicSD::dfj2_dj2
Real dfj2_dj2(const Real j2, const Real j3) const
derivative of dphi_dJ2 with respect to J2
Definition: TensorMechanicsPlasticIsotropicSD.C:57
TensorMechanicsPlasticIsotropicSD::dyieldFunction_dstress
RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const override
Tensor derivative of the yield_function with respect to the stress tensor.
Definition: TensorMechanicsPlasticIsotropicSD.C:111
TensorMechanicsPlasticJ2::_max_iters
const unsigned _max_iters
max iters for custom return map loop
Definition: TensorMechanicsPlasticJ2.h:86
TensorMechanicsPlasticModel::dflowPotential_dstress
virtual RankFourTensor dflowPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to stress.
Definition: TensorMechanicsPlasticModel.C:119
TensorMechanicsPlasticModel::yieldFunction
virtual Real yieldFunction(const RankTwoTensor &stress, Real intnl) const
The following functions are what you should override when building single-plasticity models.
Definition: TensorMechanicsPlasticModel.C:63
TensorMechanicsPlasticModel::flowPotential
virtual RankTwoTensor flowPotential(const RankTwoTensor &stress, Real intnl) const
The flow potential.
Definition: TensorMechanicsPlasticModel.C:106
RankTwoTensorTempl< Real >
TensorMechanicsPlasticJ2::_use_custom_returnMap
const bool _use_custom_returnMap
Whether to use the custom return-map algorithm.
Definition: TensorMechanicsPlasticJ2.h:89
TensorMechanicsPlasticModel::dhardPotential_dstress
virtual RankTwoTensor dhardPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to stress.
Definition: TensorMechanicsPlasticModel.C:160
TensorMechanicsPlasticIsotropicSD::dI_sigma
RankTwoTensor dI_sigma() const
derivative of the trace with respect to sigma rank two tensor
Definition: TensorMechanicsPlasticIsotropicSD.C:84
TensorMechanicsPlasticIsotropicSD::_associative
const bool _associative
Flag for flow-rule, true if not specified.
Definition: TensorMechanicsPlasticIsotropicSD.h:46
TensorMechanicsPlasticIsotropicSD::dj2_dSkl
RankTwoTensor dj2_dSkl(const RankTwoTensor &stress) const
derivative of the second invariant with respect to the stress deviatoric tensor
Definition: TensorMechanicsPlasticIsotropicSD.C:90
TensorMechanicsPlasticIsotropicSD::dfj2_dj3
Real dfj2_dj3(const Real j2, const Real j3) const
derivative of dphi_dJ2 with respect to J3
Definition: TensorMechanicsPlasticIsotropicSD.C:64
TensorMechanicsPlasticModel::dyieldFunction_dintnl
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to the internal parameter.
Definition: TensorMechanicsPlasticModel.C:92