https://mooseframework.inl.gov
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | List of all members
SIMPLESolveNonlinearAssembly Class Reference

SIMPLE-based solution object with nonlinear FV system assembly. More...

#include <SIMPLESolveNonlinearAssembly.h>

Inheritance diagram for SIMPLESolveNonlinearAssembly:
[legend]

Public Types

typedef DataFileName DataFileParameterType
 

Public Member Functions

 SIMPLESolveNonlinearAssembly (Executioner &ex)
 
virtual void linkRhieChowUserObject () override
 Fetch the Rhie Chow user object that is reponsible for determining face velocities and mass flux. More...
 
virtual void checkIntegrity () override
 Check if the user defined time kernels. More...
 
virtual bool solve () override
 Performs the momentum pressure coupling. More...
 
virtual void setInnerSolve (SolveObject &) override
 
void setupPressurePin ()
 Setup pressure pin if there is need for one. More...
 
virtual void initialSetup ()
 
virtual bool enabled () const
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
MooseAppgetMooseApp () const
 
const std::string & type () const
 
virtual const std::string & name () const
 
std::string typeAndName () const
 
std::string errorPrefix (const std::string &error_type) const
 
void callMooseError (std::string msg, const bool with_prefix) const
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
const InputParametersparameters () const
 
MooseObjectName uniqueName () const
 
const T & getParam (const std::string &name) const
 
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 
const T * queryParam (const std::string &name) const
 
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 
bool isParamValid (const std::string &name) const
 
bool isParamSetByUser (const std::string &nm) const
 
void paramError (const std::string &param, Args... args) const
 
void paramWarning (const std::string &param, Args... args) const
 
void paramInfo (const std::string &param, Args... args) const
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 
void mooseError (Args &&... args) const
 
void mooseErrorNonPrefixed (Args &&... args) const
 
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
void mooseWarning (Args &&... args) const
 
void mooseWarningNonPrefixed (Args &&... args) const
 
void mooseDeprecated (Args &&... args) const
 
void mooseInfo (Args &&... args) const
 
std::string getDataFileName (const std::string &param) const
 
std::string getDataFileNameByName (const std::string &relative_path) const
 
std::string getDataFilePath (const std::string &relative_path) const
 
PerfGraphperfGraph ()
 
bool isDefaultPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessor (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessorByName (const PostprocessorName &name) const
 
std::size_t coupledPostprocessors (const std::string &param_name) const
 
const PostprocessorName & getPostprocessorName (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
const Parallel::Communicator & comm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
UserObjectName getUserObjectName (const std::string &param_name) const
 
const T & getUserObject (const std::string &param_name, bool is_dependency=true) const
 
const T & getUserObjectByName (const UserObjectName &object_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBase (const std::string &param_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBaseByName (const UserObjectName &object_name, bool is_dependency=true) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 

Static Public Member Functions

static InputParameters validParams ()
 

Public Attributes

const ConsoleStream _console
 

Protected Member Functions

virtual std::vector< std::pair< unsigned int, Real > > solveMomentumPredictor () override
 Solve a momentum predictor step with a fixed pressure field. More...
 
virtual std::pair< unsigned int, RealsolvePressureCorrector () override
 Solve a pressure corrector step. More...
 
virtual void checkTimeKernels (NonlinearSystemBase &system)
 Check if the system contains time kernels. More...
 
std::pair< unsigned int, RealsolveAdvectedSystem (const unsigned int system_num, NonlinearSystemBase &system, const Real relaxation_factor, libMesh::SolverConfiguration &solver_config, const Real abs_tol)
 Solve an equation which contains an advection term that depends on the solution of the segregated Navier-Stokes equations. More...
 
std::pair< unsigned int, RealsolveSolidEnergySystem ()
 Solve the solid energy conservation equation. More...
 
void checkDependentParameterError (const std::string &main_parameter, const std::vector< std::string > &dependent_parameters, const bool should_be_defined)
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 
std::string timedSectionName (const std::string &section_name) const
 
virtual void addPostprocessorDependencyHelper (const PostprocessorName &) const
 
virtual void addUserObjectDependencyHelper (const UserObject &) const
 

Protected Attributes

std::vector< unsigned int_momentum_system_numbers
 The number(s) of the system(s) corresponding to the momentum equation(s) More...
 
std::vector< NonlinearSystemBase * > _momentum_systems
 Pointer(s) to the system(s) corresponding to the momentum equation(s) More...
 
const unsigned int _pressure_sys_number
 The number of the system corresponding to the pressure equation. More...
 
NonlinearSystemBase_pressure_system
 Reference to the nonlinear system corresponding to the pressure equation. More...
 
const bool _has_turbulence_systems
 Boolean for easy check if turbulence systems shall be solved or not. More...
 
const unsigned int _energy_sys_number
 The number of the system corresponding to the energy equation. More...
 
NonlinearSystemBase_energy_system
 Pointer to the nonlinear system corresponding to the fluid energy equation. More...
 
const unsigned int _solid_energy_sys_number
 The number of the system corresponding to the solid energy equation. More...
 
NonlinearSystemBase_solid_energy_system
 Pointer to the nonlinear system corresponding to the solid energy equation. More...
 
std::vector< NonlinearSystemBase * > _passive_scalar_systems
 Pointer(s) to the system(s) corresponding to the passive scalar equation(s) More...
 
const std::vector< SolverSystemName > & _turbulence_system_names
 The names of the turbulence scalar systems. More...
 
std::vector< unsigned int_turbulence_system_numbers
 
std::vector< NonlinearSystemBase * > _turbulence_systems
 Pointer(s) to the system(s) corresponding to the turbulence equation(s) More...
 
const std::vector< Real_turbulence_equation_relaxation
 The user-defined relaxation parameter(s) for the turbulence equation(s) More...
 
std::vector< Real_turbulence_field_min_limit
 The user-defined lower limit for turbulent quantities e.g. k, eps/omega, etc.. More...
 
Moose::PetscSupport::PetscOptions _turbulence_petsc_options
 Options which hold the petsc settings for the turbulence equation(s) More...
 
SIMPLESolverConfiguration _turbulence_linear_control
 Options for the linear solver of the turbulence equation(s) More...
 
const Real _turbulence_l_abs_tol
 Absolute linear tolerance for the turbulence equation(s). More...
 
const std::vector< Real_turbulence_absolute_tolerance
 The user-defined absolute tolerance for determining the convergence in turbulence equations. More...
 
INSFVRhieChowInterpolatorSegregated_rc_uo
 Pointer to the segregated RhieChow interpolation object. More...
 
const TagName _pressure_tag_name
 The name of the vector tag which corresponds to the pressure gradient terms in the momentum equation. More...
 
const TagID _pressure_tag_id
 The ID of the tag which corresponds to the pressure gradient terms in the momentum equation. More...
 
const std::vector< SolverSystemName > & _momentum_system_names
 The names of the momentum systems. More...
 
SIMPLESolverConfiguration _momentum_linear_control
 Options for the linear solver of the momentum equation. More...
 
const Real _momentum_l_abs_tol
 Absolute linear tolerance for the momentum equation(s). More...
 
Moose::PetscSupport::PetscOptions _momentum_petsc_options
 Options which hold the petsc settings for the momentum equation. More...
 
const Real _momentum_equation_relaxation
 The user-defined relaxation parameter for the momentum equation. More...
 
const SolverSystemName & _pressure_system_name
 The name of the pressure system. More...
 
SIMPLESolverConfiguration _pressure_linear_control
 Options for the linear solver of the pressure equation. More...
 
const Real _pressure_l_abs_tol
 Absolute linear tolerance for the pressure equation. More...
 
Moose::PetscSupport::PetscOptions _pressure_petsc_options
 Options which hold the petsc settings for the pressure equation. More...
 
const Real _pressure_variable_relaxation
 The user-defined relaxation parameter for the pressure variable. More...
 
const bool _pin_pressure
 If the pressure needs to be pinned. More...
 
const Real _pressure_pin_value
 The value we want to enforce for pressure. More...
 
dof_id_type _pressure_pin_dof
 The dof ID where the pressure needs to be pinned. More...
 
const bool _has_energy_system
 Boolean for easy check if a fluid energy system shall be solved or not. More...
 
const Real _energy_equation_relaxation
 The user-defined relaxation parameter for the energy equation. More...
 
Moose::PetscSupport::PetscOptions _energy_petsc_options
 Options which hold the petsc settings for the fluid energy equation. More...
 
SIMPLESolverConfiguration _energy_linear_control
 Options for the linear solver of the energy equation. More...
 
const Real _energy_l_abs_tol
 Absolute linear tolerance for the energy equations. More...
 
const bool _has_solid_energy_system
 Boolean for easy check if a solid energy system shall be solved or not. More...
 
Moose::PetscSupport::PetscOptions _solid_energy_petsc_options
 Options which hold the petsc settings for the fluid energy equation. More...
 
SIMPLESolverConfiguration _solid_energy_linear_control
 Options for the linear solver of the energy equation. More...
 
const Real _solid_energy_l_abs_tol
 Absolute linear tolerance for the energy equations. More...
 
const std::vector< SolverSystemName > & _passive_scalar_system_names
 The names of the passive scalar systems. More...
 
const bool _has_passive_scalar_systems
 Boolean for easy check if a passive scalar systems shall be solved or not. More...
 
std::vector< unsigned int_passive_scalar_system_numbers
 
const std::vector< Real_passive_scalar_equation_relaxation
 The user-defined relaxation parameter(s) for the passive scalar equation(s) More...
 
Moose::PetscSupport::PetscOptions _passive_scalar_petsc_options
 Options which hold the petsc settings for the passive scalar equation(s) More...
 
SIMPLESolverConfiguration _passive_scalar_linear_control
 Options for the linear solver of the passive scalar equation(s) More...
 
const Real _passive_scalar_l_abs_tol
 Absolute linear tolerance for the passive scalar equation(s). More...
 
std::vector< Real_turbulence_field_relaxation
 The user-defined relaxation parameter(s) for the turbulence field(s) More...
 
const Real _momentum_absolute_tolerance
 The user-defined absolute tolerance for determining the convergence in momentum. More...
 
const Real _pressure_absolute_tolerance
 The user-defined absolute tolerance for determining the convergence in pressure. More...
 
const Real _energy_absolute_tolerance
 The user-defined absolute tolerance for determining the convergence in energy. More...
 
const Real _solid_energy_absolute_tolerance
 The user-defined absolute tolerance for determining the convergence in solid energy. More...
 
const std::vector< Real_passive_scalar_absolute_tolerance
 The user-defined absolute tolerance for determining the convergence in passive scalars. More...
 
const unsigned int _num_iterations
 The maximum number of momentum-pressure iterations. More...
 
const bool _continue_on_max_its
 If solve should continue if maximum number of iterations is hit. More...
 
const bool _print_fields
 Debug parameter which allows printing the coupling and solution vectors/matrices. More...
 
Executioner_executioner
 
FEProblemBase_problem
 
DisplacedProblem_displaced_problem
 
MooseMesh_mesh
 
MooseMesh_displaced_mesh
 
SystemBase_solver_sys
 
AuxiliarySystem_aux
 
SolveObject_inner_solve
 
const bool & _enabled
 
MooseApp_app
 
const std::string _type
 
const std::string _name
 
const InputParameters_pars
 
Factory_factory
 
ActionFactory_action_factory
 
MooseApp_pg_moose_app
 
const std::string _prefix
 
const Parallel::Communicator & _communicator
 

Detailed Description

SIMPLE-based solution object with nonlinear FV system assembly.

Definition at line 20 of file SIMPLESolveNonlinearAssembly.h.

Constructor & Destructor Documentation

◆ SIMPLESolveNonlinearAssembly()

SIMPLESolveNonlinearAssembly::SIMPLESolveNonlinearAssembly ( Executioner ex)

Definition at line 32 of file SIMPLESolveNonlinearAssembly.C.

33  : SIMPLESolveBase(ex),
34  _pressure_sys_number(_problem.nlSysNum(getParam<SolverSystemName>("pressure_system"))),
36  _has_turbulence_systems(!getParam<std::vector<SolverSystemName>>("turbulence_systems").empty()),
38  ? _problem.nlSysNum(getParam<SolverSystemName>("energy_system"))
41  : nullptr),
44  ? _problem.nlSysNum(getParam<SolverSystemName>("solid_energy_system"))
48  : nullptr),
49  _turbulence_system_names(getParam<std::vector<SolverSystemName>>("turbulence_systems")),
50  _turbulence_equation_relaxation(getParam<std::vector<Real>>("turbulence_equation_relaxation")),
51  _turbulence_field_min_limit(getParam<std::vector<Real>>("turbulence_field_min_limit")),
52  _turbulence_l_abs_tol(getParam<Real>("turbulence_l_abs_tol")),
53  _turbulence_absolute_tolerance(getParam<std::vector<Real>>("turbulence_absolute_tolerance")),
54  _pressure_tag_name(getParam<TagName>("pressure_gradient_tag")),
56 {
57  // We disable this considering that this object passes petsc options a little differently
59 
60  // We fetch the system numbers for the momentum components plus add vectors
61  // for removing the contribution from the pressure gradient terms.
62  for (auto system_i : index_range(_momentum_system_names))
63  {
65  _momentum_systems.push_back(
67  _momentum_systems[system_i]->addVector(_pressure_tag_id, false, ParallelType::PARALLEL);
68 
69  // We disable this considering that this object passes petsc options a little differently
70  _momentum_systems[system_i]->system().prefix_with_name(false);
71  }
72 
74  for (auto system_i : index_range(_passive_scalar_system_names))
75  {
78  _passive_scalar_systems.push_back(
80 
81  // We disable this considering that this object passes petsc options a little differently
82  _passive_scalar_systems[system_i]->system().prefix_with_name(false);
83  }
84 
86  {
87  for (auto system_i : index_range(_turbulence_system_names))
88  {
90  _turbulence_systems.push_back(
92 
93  // We disable this considering that this object passes petsc options a little differently
94  _turbulence_systems[system_i]->system().prefix_with_name(false);
95  }
96 
97  // We check for input errors with regards to the turbulence equations. At the same time, we
98  // set up the corresponding system numbers
100  paramError("turbulence_equation_relaxation",
101  "The number of equation relaxation parameters does not match the number of "
102  "turbulence scalar equations!");
104  paramError("turbulence_absolute_tolerance",
105  "The number of absolute tolerances does not match the number of "
106  "turbulence equations!");
107  if (_turbulence_field_min_limit.empty())
108  // If no minimum bounds are given, initialize to default value 1e-8
110  else if (_turbulence_system_names.size() != _turbulence_field_min_limit.size())
111  paramError("turbulence_field_min_limit",
112  "The number of lower bounds for turbulent quantities does not match the "
113  "number of turbulence equations!");
114  }
115 
116  if (isParamValid("solid_energy_system") && !_has_energy_system)
117  paramError(
118  "solid_energy_system",
119  "We cannot solve a solid energy system without solving for the fluid energy as well!");
120 
122  {
123  const auto & turbulence_petsc_options = getParam<MultiMooseEnum>("turbulence_petsc_options");
124  const auto & turbulence_petsc_pair_options = getParam<MooseEnumItem, std::string>(
125  "turbulence_petsc_options_iname", "turbulence_petsc_options_value");
127  turbulence_petsc_options, "-", *this, _turbulence_petsc_options);
128  Moose::PetscSupport::addPetscPairsToPetscOptions(turbulence_petsc_pair_options,
129  _problem.mesh().dimension(),
130  "-",
131  *this,
133 
134  _turbulence_linear_control.real_valued_data["rel_tol"] = getParam<Real>("turbulence_l_tol");
135  _turbulence_linear_control.real_valued_data["abs_tol"] = getParam<Real>("turbulence_l_abs_tol");
137  getParam<unsigned int>("turbulence_l_max_its");
138  }
139  else
140  checkDependentParameterError("turbulence_system",
141  {"turbulence_petsc_options",
142  "turbulence_petsc_options_iname",
143  "turbulence_petsc_options_value",
144  "turbulence_l_tol",
145  "turbulence_l_abs_tol",
146  "turbulence_l_max_its",
147  "turbulence_equation_relaxation",
148  "turbulence_absolute_tolerance"},
149  false);
150 }
const unsigned int _energy_sys_number
The number of the system corresponding to the energy equation.
FEProblemBase & _problem
const TagID _pressure_tag_id
The ID of the tag which corresponds to the pressure gradient terms in the momentum equation...
const unsigned int invalid_uint
const bool _has_energy_system
Boolean for easy check if a fluid energy system shall be solved or not.
std::vector< Real > _turbulence_field_min_limit
The user-defined lower limit for turbulent quantities e.g. k, eps/omega, etc..
virtual TagID addVectorTag(const TagName &tag_name, const Moose::VectorTagType type=Moose::VECTOR_TAG_RESIDUAL)
std::vector< unsigned int > _turbulence_system_numbers
void checkDependentParameterError(const std::string &main_parameter, const std::vector< std::string > &dependent_parameters, const bool should_be_defined)
const unsigned int _solid_energy_sys_number
The number of the system corresponding to the solid energy equation.
const Real _turbulence_l_abs_tol
Absolute linear tolerance for the turbulence equation(s).
NonlinearSystemBase & _pressure_system
Reference to the nonlinear system corresponding to the pressure equation.
std::map< std::string, Real > real_valued_data
bool isParamValid(const std::string &name) const
const TagName _pressure_tag_name
The name of the vector tag which corresponds to the pressure gradient terms in the momentum equation...
const std::vector< SolverSystemName > & _passive_scalar_system_names
The names of the passive scalar systems.
SIMPLESolverConfiguration _turbulence_linear_control
Options for the linear solver of the turbulence equation(s)
virtual unsigned int dimension() const
std::map< std::string, int > int_valued_data
const bool _has_turbulence_systems
Boolean for easy check if turbulence systems shall be solved or not.
const T & getParam(const std::string &name) const
const std::vector< SolverSystemName > & _turbulence_system_names
The names of the turbulence scalar systems.
NonlinearSystemBase & getNonlinearSystemBase(const unsigned int sys_num)
void paramError(const std::string &param, Args... args) const
const std::vector< SolverSystemName > & _momentum_system_names
The names of the momentum systems.
NonlinearSystemBase * _solid_energy_system
Pointer to the nonlinear system corresponding to the solid energy equation.
SIMPLESolveBase(Executioner &ex)
NonlinearSystemBase * _energy_system
Pointer to the nonlinear system corresponding to the fluid energy equation.
void addPetscPairsToPetscOptions(const std::vector< std::pair< MooseEnumItem, std::string >> &petsc_pair_options, const unsigned int mesh_dimension, const std::string &prefix, const ParallelParamObject &param_object, PetscOptions &petsc_options)
std::vector< NonlinearSystemBase * > _momentum_systems
Pointer(s) to the system(s) corresponding to the momentum equation(s)
virtual MooseMesh & mesh() override
const bool _has_passive_scalar_systems
Boolean for easy check if a passive scalar systems shall be solved or not.
void addPetscFlagsToPetscOptions(const MultiMooseEnum &petsc_flags, const std::string &prefix, const ParallelParamObject &param_object, PetscOptions &petsc_options)
Moose::PetscSupport::PetscOptions _turbulence_petsc_options
Options which hold the petsc settings for the turbulence equation(s)
const unsigned int _pressure_sys_number
The number of the system corresponding to the pressure equation.
void prefix_with_name(bool value)
const std::vector< Real > _turbulence_absolute_tolerance
The user-defined absolute tolerance for determining the convergence in turbulence equations...
const std::vector< Real > _turbulence_equation_relaxation
The user-defined relaxation parameter(s) for the turbulence equation(s)
std::vector< NonlinearSystemBase * > _passive_scalar_systems
Pointer(s) to the system(s) corresponding to the passive scalar equation(s)
auto index_range(const T &sizable)
std::vector< NonlinearSystemBase * > _turbulence_systems
Pointer(s) to the system(s) corresponding to the turbulence equation(s)
std::vector< unsigned int > _momentum_system_numbers
The number(s) of the system(s) corresponding to the momentum equation(s)
std::vector< unsigned int > _passive_scalar_system_numbers
virtual unsigned int nlSysNum(const NonlinearSystemName &nl_sys_name) const override
const bool _has_solid_energy_system
Boolean for easy check if a solid energy system shall be solved or not.
virtual libMesh::System & system() override

Member Function Documentation

◆ checkDependentParameterError()

void SIMPLESolveBase::checkDependentParameterError ( const std::string &  main_parameter,
const std::vector< std::string > &  dependent_parameters,
const bool  should_be_defined 
)
protectedinherited

Definition at line 606 of file SIMPLESolveBase.C.

Referenced by SIMPLESolveBase::SIMPLESolveBase(), and SIMPLESolveNonlinearAssembly().

609 {
610  for (const auto & param : dependent_parameters)
611  if (parameters().isParamSetByUser(param) == !should_be_defined)
612  paramError(param,
613  "This parameter should " + std::string(should_be_defined ? "" : "not") +
614  " be given by the user with the corresponding " + main_parameter +
615  " setting!");
616 }
void paramError(const std::string &param, Args... args) const
bool isParamSetByUser(const std::string &nm) const
const InputParameters & parameters() const

◆ checkIntegrity()

void SIMPLESolveNonlinearAssembly::checkIntegrity ( )
overridevirtual

Check if the user defined time kernels.

Reimplemented from SIMPLESolveBase.

Definition at line 697 of file SIMPLESolveNonlinearAssembly.C.

Referenced by SIMPLENonlinearAssembly::init().

698 {
699  // check to make sure that we don't have any time kernels in this simulation (Steady State)
700  for (const auto system : _momentum_systems)
701  checkTimeKernels(*system);
702 
704 
705  if (_has_energy_system)
706  {
710  }
711 
713  for (const auto system : _passive_scalar_systems)
714  checkTimeKernels(*system);
715 
717  for (const auto system : _turbulence_systems)
718  checkTimeKernels(*system);
719 }
const bool _has_energy_system
Boolean for easy check if a fluid energy system shall be solved or not.
virtual void checkTimeKernels(NonlinearSystemBase &system)
Check if the system contains time kernels.
NonlinearSystemBase & _pressure_system
Reference to the nonlinear system corresponding to the pressure equation.
const bool _has_turbulence_systems
Boolean for easy check if turbulence systems shall be solved or not.
NonlinearSystemBase * _solid_energy_system
Pointer to the nonlinear system corresponding to the solid energy equation.
NonlinearSystemBase * _energy_system
Pointer to the nonlinear system corresponding to the fluid energy equation.
std::vector< NonlinearSystemBase * > _momentum_systems
Pointer(s) to the system(s) corresponding to the momentum equation(s)
const bool _has_passive_scalar_systems
Boolean for easy check if a passive scalar systems shall be solved or not.
std::vector< NonlinearSystemBase * > _passive_scalar_systems
Pointer(s) to the system(s) corresponding to the passive scalar equation(s)
std::vector< NonlinearSystemBase * > _turbulence_systems
Pointer(s) to the system(s) corresponding to the turbulence equation(s)
const bool _has_solid_energy_system
Boolean for easy check if a solid energy system shall be solved or not.

◆ checkTimeKernels()

void SIMPLESolveNonlinearAssembly::checkTimeKernels ( NonlinearSystemBase system)
protectedvirtual

Check if the system contains time kernels.

Definition at line 722 of file SIMPLESolveNonlinearAssembly.C.

Referenced by checkIntegrity().

723 {
724  // check to make sure that we don't have any time kernels in this simulation (Steady State)
725  if (system.containsTimeKernel())
726  mooseError("You have specified time kernels in your steady state simulation in system",
727  system.name());
728 }
virtual const std::string & name() const
virtual bool containsTimeKernel() override
void mooseError(Args &&... args) const

◆ linkRhieChowUserObject()

void SIMPLESolveNonlinearAssembly::linkRhieChowUserObject ( )
overridevirtual

Fetch the Rhie Chow user object that is reponsible for determining face velocities and mass flux.

Implements SIMPLESolveBase.

Definition at line 153 of file SIMPLESolveNonlinearAssembly.C.

Referenced by SIMPLENonlinearAssembly::init().

154 {
155  // Fetch the segregated rhie-chow object and transfer some information about the momentum
156  // system(s)
158  &getUserObject<INSFVRhieChowInterpolatorSegregated>("rhie_chow_user_object"));
160 
161  // Initialize the face velocities in the RC object
163 }
const TagID _pressure_tag_id
The ID of the tag which corresponds to the pressure gradient terms in the momentum equation...
INSFVRhieChowInterpolatorSegregated * _rc_uo
Pointer to the segregated RhieChow interpolation object.
std::vector< NonlinearSystemBase * > _momentum_systems
Pointer(s) to the system(s) corresponding to the momentum equation(s)
std::vector< unsigned int > _momentum_system_numbers
The number(s) of the system(s) corresponding to the momentum equation(s)
A user object which implements the Rhie Chow interpolation for segregated momentum-pressure systems...
void linkMomentumSystem(std::vector< NonlinearSystemBase *> momentum_systems, const std::vector< unsigned int > &momentum_system_numbers, const TagID pressure_gradient_tag)
Update the momentum system-related information.
void initFaceVelocities()
Initialize the container for face velocities.

◆ setInnerSolve()

virtual void SIMPLESolveBase::setInnerSolve ( SolveObject )
inlineoverridevirtualinherited

Reimplemented from SolveObject.

Definition at line 48 of file SIMPLESolveBase.h.

49  {
50  mooseError("Cannot set inner solve object for solves that inherit from SIMPLESolveBase");
51  }
void mooseError(Args &&... args) const

◆ setupPressurePin()

void SIMPLESolveBase::setupPressurePin ( )
inherited

Setup pressure pin if there is need for one.

Definition at line 597 of file SIMPLESolveBase.C.

Referenced by SIMPLE::init(), SIMPLENonlinearAssembly::init(), and PIMPLE::init().

598 {
599  if (_pin_pressure)
601  _problem.mesh(),
602  getParam<Point>("pressure_pin_point"));
603 }
FEProblemBase & _problem
virtual const MooseVariableFieldBase & getVariable(const THREAD_ID tid, const std::string &var_name, Moose::VarKindType expected_var_type=Moose::VarKindType::VAR_ANY, Moose::VarFieldType expected_var_field_type=Moose::VarFieldType::VAR_FIELD_ANY) const override
dof_id_type _pressure_pin_dof
The dof ID where the pressure needs to be pinned.
const bool _pin_pressure
If the pressure needs to be pinned.
dof_id_type findPointDoFID(const MooseVariableFieldBase &variable, const MooseMesh &mesh, const Point &point)
Find the ID of the degree of freedom which corresponds to the variable and a given point on the mesh...
virtual MooseMesh & mesh() override

◆ solve()

bool SIMPLESolveNonlinearAssembly::solve ( )
overridevirtual

Performs the momentum pressure coupling.

Returns
True if solver is converged.

Implements SolveObject.

Definition at line 439 of file SIMPLESolveNonlinearAssembly.C.

440 {
441  // Dummy solver parameter file which is needed for switching petsc options
442  SolverParams solver_params;
443  solver_params._type = Moose::SolveType::ST_LINEAR;
444  solver_params._line_search = Moose::LineSearchType::LS_NONE;
445 
446  // Initialize the quantities which matter in terms of the iteration
447  unsigned int iteration_counter = 0;
448 
449  // Assign residuals to general residual vector
450  unsigned int no_systems =
453  no_systems += _turbulence_systems.size();
454  std::vector<std::pair<unsigned int, Real>> ns_its_residuals(no_systems, std::make_pair(0, 1.0));
455  std::vector<Real> ns_abs_tols(_momentum_systems.size(), _momentum_absolute_tolerance);
456  ns_abs_tols.push_back(_pressure_absolute_tolerance);
457  if (_has_energy_system)
458  {
459  ns_abs_tols.push_back(_energy_absolute_tolerance);
461  ns_abs_tols.push_back(_solid_energy_absolute_tolerance);
462  }
464  for (auto system_i : index_range(_turbulence_absolute_tolerance))
465  ns_abs_tols.push_back(_turbulence_absolute_tolerance[system_i]);
466 
467  bool converged = false;
468  // Loop until converged or hit the maximum allowed iteration number
469  while (iteration_counter < _num_iterations && !converged)
470  {
471  iteration_counter++;
472  // Resdiual index
473  size_t residual_index = 0;
474 
475  // Execute all objects tagged as nonlinear
476  // This will execute everything in the problem at nonlinear, including the aux kernels.
477  // This way we compute the aux kernels before the momentum equations are solved.
478  _problem.execute(EXEC_NONLINEAR);
479 
480  // We clear the caches in the momentum and pressure variables
481  for (auto system_i : index_range(_momentum_systems))
482  _momentum_systems[system_i]->residualSetup();
484 
485  // If we solve for energy, we clear the caches there too
486  if (_has_energy_system)
487  {
491  }
492 
493  // If we solve for turbulence, we clear the caches there too
495  for (auto system_i : index_range(_turbulence_systems))
496  _turbulence_systems[system_i]->residualSetup();
497 
498  // We set the preconditioner/controllable parameters through petsc options. Linear
499  // tolerances will be overridden within the solver. In case of a segregated momentum
500  // solver, we assume that every velocity component uses the same preconditioner
502 
503  // Solve the momentum predictor step
504  auto momentum_residual = solveMomentumPredictor();
505  for (const auto system_i : index_range(momentum_residual))
506  ns_its_residuals[system_i] = momentum_residual[system_i];
507 
508  // Compute the coupling fields between the momentum and pressure equations
510 
511  // We set the preconditioner/controllable parameters for the pressure equations through
512  // petsc options. Linear tolerances will be overridden within the solver.
514 
515  // Solve the pressure corrector
516  ns_its_residuals[momentum_residual.size()] = solvePressureCorrector();
517  // We need this to make sure we evaluate cell gradients for the nonorthogonal correction in
518  // the face velocity update
520 
521  // Compute the face velocity which is used in the advection terms
523 
524  auto & pressure_current_solution = *(_pressure_system.system().current_local_solution.get());
525  auto & pressure_old_solution = *(_pressure_system.solutionPreviousNewton());
526  // Relax the pressure update for the next momentum predictor
528  pressure_current_solution, pressure_old_solution, _pressure_variable_relaxation);
529 
530  // Overwrite old solution
531  pressure_old_solution = pressure_current_solution;
532  _pressure_system.setSolution(pressure_current_solution);
533 
534  // We clear out the caches so that the gradients can be computed with the relaxed solution
536 
537  // Reconstruct the cell velocity as well to accelerate convergence
539 
540  // Update residual index
541  residual_index = momentum_residual.size();
542 
543  // If we have an energy equation, solve it here. We assume the material properties in the
544  // Navier-Stokes equations depend on temperature, therefore we can not solve for temperature
545  // outside of the velocity-pressure loop
546  if (_has_energy_system)
547  {
548  // We set the preconditioner/controllable parameters through petsc options. Linear
549  // tolerances will be overridden within the solver.
551  residual_index += 1;
552  ns_its_residuals[residual_index] = solveAdvectedSystem(_energy_sys_number,
557 
559  {
560  // We set the preconditioner/controllable parameters through petsc options. Linear
561  // tolerances will be overridden within the solver.
563  residual_index += 1;
564  ns_its_residuals[residual_index] = solveSolidEnergySystem();
565  }
566  }
567 
568  // If we have an turbulence equations, we solve it here. We solve it inside the
569  // momentum-pressure loop because it affects the turbulent viscosity
571  {
573 
574  for (auto system_i : index_range(_turbulence_systems))
575  {
576  residual_index += 1;
577  ns_its_residuals[residual_index] =
579  *_turbulence_systems[system_i],
583 
584  auto & current_solution =
585  *(_turbulence_systems[system_i]->system().current_local_solution.get());
586  NS::FV::limitSolutionUpdate(current_solution, _turbulence_field_min_limit[system_i]);
587 
588  // Relax the turbulence update for the next momentum predictor
589  auto & old_solution = *(_turbulence_systems[system_i]->solutionPreviousNewton());
590 
591  // Relax the pressure update for the next momentum predictor
593  current_solution, old_solution, _turbulence_equation_relaxation[system_i]);
594 
595  // Overwrite old solution
596  old_solution = current_solution;
597  _turbulence_systems[system_i]->setSolution(current_solution);
598 
599  // We clear out the caches so that the gradients can be computed with the relaxed solution
600  _turbulence_systems[system_i]->residualSetup();
601  }
602  }
603 
604  // Printing residuals
605  residual_index = 0;
606  _console << "Iteration " << iteration_counter << " Initial residual norms:" << std::endl;
607  for (auto system_i : index_range(_momentum_systems))
608  _console << " Momentum equation:"
609  << (_momentum_systems.size() > 1
610  ? std::string(" Component ") + std::to_string(system_i + 1) +
611  std::string(" ")
612  : std::string(" "))
613  << COLOR_GREEN << ns_its_residuals[system_i].second << COLOR_DEFAULT << std::endl;
614  _console << " Pressure equation: " << COLOR_GREEN
615  << ns_its_residuals[momentum_residual.size()].second << COLOR_DEFAULT << std::endl;
616  residual_index = momentum_residual.size();
617 
618  if (_has_energy_system)
619  {
620  residual_index += 1;
621  _console << " Energy equation: " << COLOR_GREEN << ns_its_residuals[residual_index].second
622  << COLOR_DEFAULT << std::endl;
624  {
625  residual_index += 1;
626  _console << " Solid energy equation: " << COLOR_GREEN
627  << ns_its_residuals[residual_index].second << COLOR_DEFAULT << std::endl;
628  }
629  }
630 
632  {
633  _console << "Turbulence Iteration " << std::endl;
634  for (auto system_i : index_range(_turbulence_systems))
635  {
636  residual_index += 1;
637  _console << _turbulence_systems[system_i]->name() << " " << COLOR_GREEN
638  << ns_its_residuals[residual_index].second << COLOR_DEFAULT << std::endl;
639  }
640  }
641 
642  converged = NS::FV::converged(ns_its_residuals, ns_abs_tols);
643  }
644 
646 
647  // Now we solve for the passive scalar equations, they should not influence the solution of the
648  // system above. The reason why we need more than one iteration is due to the matrix relaxation
649  // which can be used to stabilize the equations
651  {
652  _console << " Passive Scalar Iteration " << iteration_counter << std::endl;
653 
654  // We set the options used by Petsc (preconditioners etc). We assume that every passive
655  // scalar equation uses the same options for now.
657 
658  iteration_counter = 0;
659  std::vector<std::pair<unsigned int, Real>> passive_scalar_residuals(
660  _passive_scalar_systems.size(), std::make_pair(0, 1.0));
661 
662  bool passive_scalar_converged =
663  NS::FV::converged(passive_scalar_residuals, _passive_scalar_absolute_tolerance);
664  while (iteration_counter < _num_iterations && !passive_scalar_converged)
665  {
666  // We clear the caches in the passive scalar variables
667  for (auto system_i : index_range(_passive_scalar_systems))
668  _passive_scalar_systems[system_i]->residualSetup();
669 
670  iteration_counter++;
671 
672  // Solve the passive scalar equations
673  for (auto system_i : index_range(_passive_scalar_systems))
674  passive_scalar_residuals[system_i] =
676  *_passive_scalar_systems[system_i],
680 
681  _console << "Iteration " << iteration_counter << " Initial residual norms:" << std::endl;
682  for (auto system_i : index_range(_passive_scalar_systems))
683  _console << _passive_scalar_systems[system_i]->name() << " " << COLOR_GREEN
684  << passive_scalar_residuals[system_i].second << COLOR_DEFAULT << std::endl;
685 
686  passive_scalar_converged =
687  NS::FV::converged(passive_scalar_residuals, _passive_scalar_absolute_tolerance);
688  }
689 
690  converged = _continue_on_max_its ? true : passive_scalar_converged;
691  }
692 
693  return converged;
694 }
const unsigned int _energy_sys_number
The number of the system corresponding to the energy equation.
FEProblemBase & _problem
const Real _energy_absolute_tolerance
The user-defined absolute tolerance for determining the convergence in energy.
const unsigned int _num_iterations
The maximum number of momentum-pressure iterations.
SIMPLESolverConfiguration _energy_linear_control
Options for the linear solver of the energy equation.
const bool _print_fields
Debug parameter which allows printing the coupling and solution vectors/matrices. ...
INSFVRhieChowInterpolatorSegregated * _rc_uo
Pointer to the segregated RhieChow interpolation object.
const bool _has_energy_system
Boolean for easy check if a fluid energy system shall be solved or not.
Moose::LineSearchType _line_search
const Real _passive_scalar_l_abs_tol
Absolute linear tolerance for the passive scalar equation(s).
std::vector< Real > _turbulence_field_min_limit
The user-defined lower limit for turbulent quantities e.g. k, eps/omega, etc..
std::vector< unsigned int > _turbulence_system_numbers
void setSolution(const NumericVector< Number > &soln)
const Real _turbulence_l_abs_tol
Absolute linear tolerance for the turbulence equation(s).
NonlinearSystemBase & _pressure_system
Reference to the nonlinear system corresponding to the pressure equation.
bool converged(const std::vector< std::pair< unsigned int, Real >> &residuals, const std::vector< Real > &abs_tolerances)
Based on the residuals, determine if the iterative process converged or not.
const Real _pressure_absolute_tolerance
The user-defined absolute tolerance for determining the convergence in pressure.
const Real _pressure_variable_relaxation
The user-defined relaxation parameter for the pressure variable.
const Real _momentum_absolute_tolerance
The user-defined absolute tolerance for determining the convergence in momentum.
SIMPLESolverConfiguration _turbulence_linear_control
Options for the linear solver of the turbulence equation(s)
void computeFaceVelocity()
Update the values of the face velocities in the containers.
SIMPLESolverConfiguration _passive_scalar_linear_control
Options for the linear solver of the passive scalar equation(s)
virtual void execute(const ExecFlagType &exec_type)
Moose::PetscSupport::PetscOptions _energy_petsc_options
Options which hold the petsc settings for the fluid energy equation.
Moose::PetscSupport::PetscOptions _passive_scalar_petsc_options
Options which hold the petsc settings for the passive scalar equation(s)
const bool _has_turbulence_systems
Boolean for easy check if turbulence systems shall be solved or not.
Moose::PetscSupport::PetscOptions _momentum_petsc_options
Options which hold the petsc settings for the momentum equation.
const std::vector< Real > _passive_scalar_absolute_tolerance
The user-defined absolute tolerance for determining the convergence in passive scalars.
Moose::SolveType _type
const Real _energy_l_abs_tol
Absolute linear tolerance for the energy equations.
std::pair< unsigned int, Real > solveSolidEnergySystem()
Solve the solid energy conservation equation.
void petscSetOptions(const PetscOptions &po, const SolverParams &solver_params, FEProblemBase *const problem=nullptr)
NonlinearSystemBase * _solid_energy_system
Pointer to the nonlinear system corresponding to the solid energy equation.
const std::vector< Real > _passive_scalar_equation_relaxation
The user-defined relaxation parameter(s) for the passive scalar equation(s)
NonlinearSystemBase * _energy_system
Pointer to the nonlinear system corresponding to the fluid energy equation.
const Real _energy_equation_relaxation
The user-defined relaxation parameter for the energy equation.
std::vector< NonlinearSystemBase * > _momentum_systems
Pointer(s) to the system(s) corresponding to the momentum equation(s)
void computeCellVelocity()
Update the cell values of the velocity variables.
std::pair< unsigned int, Real > solveAdvectedSystem(const unsigned int system_num, NonlinearSystemBase &system, const Real relaxation_factor, libMesh::SolverConfiguration &solver_config, const Real abs_tol)
Solve an equation which contains an advection term that depends on the solution of the segregated Nav...
std::unique_ptr< NumericVector< Number > > current_local_solution
virtual const NumericVector< Number > * solutionPreviousNewton() const
const bool _has_passive_scalar_systems
Boolean for easy check if a passive scalar systems shall be solved or not.
const ConsoleStream _console
const Real _solid_energy_absolute_tolerance
The user-defined absolute tolerance for determining the convergence in solid energy.
const bool _continue_on_max_its
If solve should continue if maximum number of iterations is hit.
Moose::PetscSupport::PetscOptions _turbulence_petsc_options
Options which hold the petsc settings for the turbulence equation(s)
const std::vector< Real > _turbulence_absolute_tolerance
The user-defined absolute tolerance for determining the convergence in turbulence equations...
void limitSolutionUpdate(NumericVector< Number > &solution, const Real min_limit=std::numeric_limits< Real >::epsilon(), const Real max_limit=1e10)
Limit a solution to its minimum and maximum bounds: $u = min(max(u, min_limit), max_limit)$.
void relaxSolutionUpdate(NumericVector< Number > &vec_new, const NumericVector< Number > &vec_old, const Real relaxation_factor)
Relax the update on a solution field using the following approach: $u = u_{old}+ (u - u_{old})$...
const std::vector< Real > _turbulence_equation_relaxation
The user-defined relaxation parameter(s) for the turbulence equation(s)
void computeHbyA(bool verbose)
Computes the inverse of the digaonal (1/A) of the system matrix plus the H/A components for the press...
std::vector< NonlinearSystemBase * > _passive_scalar_systems
Pointer(s) to the system(s) corresponding to the passive scalar equation(s)
auto index_range(const T &sizable)
std::vector< NonlinearSystemBase * > _turbulence_systems
Pointer(s) to the system(s) corresponding to the turbulence equation(s)
std::vector< unsigned int > _passive_scalar_system_numbers
Moose::PetscSupport::PetscOptions _pressure_petsc_options
Options which hold the petsc settings for the pressure equation.
const bool _has_solid_energy_system
Boolean for easy check if a solid energy system shall be solved or not.
virtual std::vector< std::pair< unsigned int, Real > > solveMomentumPredictor() override
Solve a momentum predictor step with a fixed pressure field.
virtual std::pair< unsigned int, Real > solvePressureCorrector() override
Solve a pressure corrector step.
virtual void residualSetup() override
virtual libMesh::System & system() override

◆ solveAdvectedSystem()

std::pair< unsigned int, Real > SIMPLESolveNonlinearAssembly::solveAdvectedSystem ( const unsigned int  system_num,
NonlinearSystemBase system,
const Real  relaxation_factor,
libMesh::SolverConfiguration solver_config,
const Real  abs_tol 
)
protected

Solve an equation which contains an advection term that depends on the solution of the segregated Navier-Stokes equations.

Parameters
system_numThe number of the system which is solved
systemReference to the system which is solved
relaxation_factorThe relaxation factor for matrix relaxation
solver_configThe solver configuration object for the linear solve
abs_tolThe scaled absolute tolerance for the linear solve
Returns
The normalized residual norm of the equation.

Definition at line 307 of file SIMPLESolveNonlinearAssembly.C.

Referenced by solve().

312 {
314 
315  // We will need some members from the implicit nonlinear system
316  NonlinearImplicitSystem & ni_system =
317  libMesh::cast_ref<NonlinearImplicitSystem &>(system.system());
318 
319  // We will need the solution, the right hand side and the matrix
320  NumericVector<Number> & current_local_solution = *(ni_system.current_local_solution);
321  NumericVector<Number> & solution = *(ni_system.solution);
322  SparseMatrix<Number> & mmat = *(ni_system.matrix);
323  NumericVector<Number> & rhs = *(ni_system.rhs);
324 
325  // We need a vector that stores the (diagonal_relaxed-original_diagonal) vector
326  auto diff_diagonal = solution.zero_clone();
327 
328  // Fetch the linear solver from the system
329  PetscLinearSolver<Real> & linear_solver =
330  libMesh::cast_ref<PetscLinearSolver<Real> &>(*ni_system.get_linear_solver());
331 
332  // We need a zero vector to be able to emulate the Ax=b system by evaluating the
333  // residual and jacobian. Unfortunately, this will leave us with the -b on the right hand side
334  // so we correct it by multiplying it with (-1)
335  auto zero_solution = current_local_solution.zero_clone();
336  _problem.computeResidualAndJacobian(*zero_solution, rhs, mmat);
337  rhs.scale(-1.0);
338 
339  // Go and relax the system matrix and the right hand side
340  NS::FV::relaxMatrix(mmat, relaxation_factor, *diff_diagonal);
341  NS::FV::relaxRightHandSide(rhs, solution, *diff_diagonal);
342 
343  if (_print_fields)
344  {
345  _console << system.name() << " system matrix" << std::endl;
346  mmat.print();
347  _console << system.name() << " RHS vector" << std::endl;
348  rhs.print();
349  }
350 
351  // We compute the normalization factors based on the fluxes
352  Real norm_factor = NS::FV::computeNormalizationFactor(solution, mmat, rhs);
353 
354  // We need the non-preconditioned norm to be consistent with the norm factor
355  LibmeshPetscCall(KSPSetNormType(linear_solver.ksp(), KSP_NORM_UNPRECONDITIONED));
356 
357  // Setting the linear tolerances and maximum iteration counts
358  solver_config.real_valued_data["abs_tol"] = absolute_tol * norm_factor;
359  linear_solver.set_solver_configuration(solver_config);
360 
361  // Solve the system and update current local solution
362  auto its_res_pair = linear_solver.solve(mmat, mmat, solution, rhs);
363  ni_system.update();
364 
365  if (_print_fields)
366  {
367  _console << " rhs when we solve " << system.name() << std::endl;
368  rhs.print();
369  _console << system.name() << " solution " << std::endl;
370  solution.print();
371  _console << " Norm factor " << norm_factor << std::endl;
372  }
373 
374  system.setSolution(current_local_solution);
375 
376  return std::make_pair(its_res_pair.first, linear_solver.get_initial_residual() / norm_factor);
377 }
void relaxMatrix(SparseMatrix< Number > &matrix_in, const Real relaxation_parameter, NumericVector< Number > &diff_diagonal)
Relax the matrix to ensure diagonal dominance, we hold onto the difference in diagonals for later use...
FEProblemBase & _problem
const bool _print_fields
Debug parameter which allows printing the coupling and solution vectors/matrices. ...
Real computeNormalizationFactor(const NumericVector< Number > &solution, const SparseMatrix< Number > &mat, const NumericVector< Number > &rhs)
Compute a normalization factor which is applied to the linear residual to determine convergence...
virtual std::unique_ptr< NumericVector< T > > zero_clone() const=0
NumericVector< Number > * rhs
void setSolution(const NumericVector< Number > &soln)
virtual LinearSolver< Number > * get_linear_solver() const
virtual std::pair< unsigned int, Real > solve(SparseMatrix< T > &matrix_in, NumericVector< T > &solution_in, NumericVector< T > &rhs_in, const std::optional< double > tol=std::nullopt, const std::optional< unsigned int > m_its=std::nullopt) override
void relaxRightHandSide(NumericVector< Number > &rhs_in, const NumericVector< Number > &solution_in, const NumericVector< Number > &diff_diagonal)
Relax the right hand side of an equation, this needs to be called once and the system matrix has been...
std::map< std::string, Real > real_valued_data
virtual const std::string & name() const
virtual void scale(const T factor)=0
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
std::unique_ptr< NumericVector< Number > > solution
virtual void print(std::ostream &os=libMesh::out) const
void set_solver_configuration(SolverConfiguration &solver_configuration)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
SparseMatrix< Number > * matrix
void computeResidualAndJacobian(const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, libMesh::SparseMatrix< libMesh::Number > &jacobian)
std::unique_ptr< NumericVector< Number > > current_local_solution
const ConsoleStream _console
void print(std::ostream &os=libMesh::out, const bool sparse=false) const
virtual libMesh::System & system() override

◆ solveMomentumPredictor()

std::vector< std::pair< unsigned int, Real > > SIMPLESolveNonlinearAssembly::solveMomentumPredictor ( )
overrideprotectedvirtual

Solve a momentum predictor step with a fixed pressure field.

Returns
A vector of (number of linear iterations, normalized residual norm) pairs for the momentum equations. The length of the vector equals the dimensionality of the domain.

Implements SIMPLESolveBase.

Definition at line 166 of file SIMPLESolveNonlinearAssembly.C.

Referenced by solve().

167 {
168  // Temporary storage for the (flux-normalized) residuals form
169  // different momentum components
170  std::vector<std::pair<unsigned int, Real>> its_normalized_residuals;
171 
172  // We can create this here with the assumption that every momentum component has the same number
173  // of dofs
174  auto zero_solution = _momentum_systems[0]->system().current_local_solution->zero_clone();
175 
176  // Solve the momentum equations.
177  // TO DO: These equations are VERY similar. If we can store the differences (things coming from
178  // BCs for example) separately, it is enough to construct one matrix.
179  for (const auto system_i : index_range(_momentum_systems))
180  {
182 
183  // We will need the right hand side and the solution of the next component
184  NonlinearImplicitSystem & momentum_system =
185  libMesh::cast_ref<NonlinearImplicitSystem &>(_momentum_systems[system_i]->system());
186 
187  PetscLinearSolver<Real> & momentum_solver =
188  libMesh::cast_ref<PetscLinearSolver<Real> &>(*momentum_system.get_linear_solver());
189 
190  NumericVector<Number> & solution = *(momentum_system.solution);
191  NumericVector<Number> & rhs = *(momentum_system.rhs);
192  SparseMatrix<Number> & mmat = *(momentum_system.matrix);
193 
194  auto diff_diagonal = solution.zero_clone();
195 
196  // We plug zero in this to get the system matrix and the right hand side of the linear problem
197  _problem.computeResidualAndJacobian(*zero_solution, rhs, mmat);
198  // Sadly, this returns -b so we multiply with -1
199  rhs.scale(-1.0);
200 
201  // Still need to relax the right hand side with the same vector
202  NS::FV::relaxMatrix(mmat, _momentum_equation_relaxation, *diff_diagonal);
203  NS::FV::relaxRightHandSide(rhs, solution, *diff_diagonal);
204 
205  // The normalization factor depends on the right hand side so we need to recompute it for this
206  // component
207  Real norm_factor = NS::FV::computeNormalizationFactor(solution, mmat, rhs);
208 
209  // Very important, for deciding the convergence, we need the unpreconditioned
210  // norms in the linear solve
211  LibmeshPetscCall(KSPSetNormType(momentum_solver.ksp(), KSP_NORM_UNPRECONDITIONED));
212  // Solve this component. We don't update the ghosted solution yet, that will come at the end
213  // of the corrector step. Also setting the linear tolerances and maximum iteration counts.
215  momentum_solver.set_solver_configuration(_momentum_linear_control);
216 
217  // We solve the equation
218  auto its_resid_pair = momentum_solver.solve(mmat, mmat, solution, rhs);
219  momentum_system.update();
220 
221  // Save the normalized residual
222  its_normalized_residuals.push_back(
223  std::make_pair(its_resid_pair.first, momentum_solver.get_initial_residual() / norm_factor));
224 
225  if (_print_fields)
226  {
227  _console << " matrix when we solve " << std::endl;
228  mmat.print();
229  _console << " rhs when we solve " << std::endl;
230  rhs.print();
231  _console << " velocity solution component " << system_i << std::endl;
232  solution.print();
233  _console << "Norm factor " << norm_factor << std::endl;
234  _console << Moose::stringify(momentum_solver.get_initial_residual()) << std::endl;
235  }
236 
237  _momentum_systems[system_i]->setSolution(*(momentum_system.current_local_solution));
238  _momentum_systems[system_i]->copyPreviousNonlinearSolutions();
239  }
240 
241  return its_normalized_residuals;
242 }
void relaxMatrix(SparseMatrix< Number > &matrix_in, const Real relaxation_parameter, NumericVector< Number > &diff_diagonal)
Relax the matrix to ensure diagonal dominance, we hold onto the difference in diagonals for later use...
FEProblemBase & _problem
SIMPLESolverConfiguration _momentum_linear_control
Options for the linear solver of the momentum equation.
const bool _print_fields
Debug parameter which allows printing the coupling and solution vectors/matrices. ...
Real computeNormalizationFactor(const NumericVector< Number > &solution, const SparseMatrix< Number > &mat, const NumericVector< Number > &rhs)
Compute a normalization factor which is applied to the linear residual to determine convergence...
const Real _momentum_equation_relaxation
The user-defined relaxation parameter for the momentum equation.
NumericVector< Number > * rhs
const Real _momentum_l_abs_tol
Absolute linear tolerance for the momentum equation(s).
virtual LinearSolver< Number > * get_linear_solver() const
void relaxRightHandSide(NumericVector< Number > &rhs_in, const NumericVector< Number > &solution_in, const NumericVector< Number > &diff_diagonal)
Relax the right hand side of an equation, this needs to be called once and the system matrix has been...
std::map< std::string, Real > real_valued_data
virtual void scale(const T factor)=0
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
virtual std::unique_ptr< SparseMatrix< T > > zero_clone() const=0
std::unique_ptr< NumericVector< Number > > solution
virtual void print(std::ostream &os=libMesh::out) const
std::string stringify(const T &t)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
SparseMatrix< Number > * matrix
std::vector< NonlinearSystemBase * > _momentum_systems
Pointer(s) to the system(s) corresponding to the momentum equation(s)
void computeResidualAndJacobian(const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, libMesh::SparseMatrix< libMesh::Number > &jacobian)
std::unique_ptr< NumericVector< Number > > current_local_solution
const ConsoleStream _console
auto index_range(const T &sizable)
void print(std::ostream &os=libMesh::out, const bool sparse=false) const
std::vector< unsigned int > _momentum_system_numbers
The number(s) of the system(s) corresponding to the momentum equation(s)

◆ solvePressureCorrector()

std::pair< unsigned int, Real > SIMPLESolveNonlinearAssembly::solvePressureCorrector ( )
overrideprotectedvirtual

Solve a pressure corrector step.

Returns
The number of linear iterations and the normalized residual norm of the pressure equation.

Implements SIMPLESolveBase.

Definition at line 245 of file SIMPLESolveNonlinearAssembly.C.

Referenced by solve().

246 {
248 
249  // We will need some members from the implicit nonlinear system
250  NonlinearImplicitSystem & pressure_system =
251  libMesh::cast_ref<NonlinearImplicitSystem &>(_pressure_system.system());
252 
253  // We will need the solution, the right hand side and the matrix
254  NumericVector<Number> & current_local_solution = *(pressure_system.current_local_solution);
255  NumericVector<Number> & solution = *(pressure_system.solution);
256  SparseMatrix<Number> & mmat = *(pressure_system.matrix);
257  NumericVector<Number> & rhs = *(pressure_system.rhs);
258 
259  // Fetch the linear solver from the system
260  PetscLinearSolver<Real> & pressure_solver =
261  libMesh::cast_ref<PetscLinearSolver<Real> &>(*pressure_system.get_linear_solver());
262 
263  // We need a zero vector to be able to emulate the Ax=b system by evaluating the
264  // residual and jacobian. Unfortunately, this will leave us with the -b on the right hand side
265  // so we correct it by multiplying it with (-1)
266  auto zero_solution = current_local_solution.zero_clone();
267  _problem.computeResidualAndJacobian(*zero_solution, rhs, mmat);
268  rhs.scale(-1.0);
269 
270  if (_print_fields)
271  {
272  _console << "Pressure matrix" << std::endl;
273  mmat.print();
274  }
275 
276  // We compute the normalization factors based on the fluxes
277  Real norm_factor = NS::FV::computeNormalizationFactor(solution, mmat, rhs);
278 
279  // We need the non-preconditioned norm to be consistent with the norm factor
280  LibmeshPetscCall(KSPSetNormType(pressure_solver.ksp(), KSP_NORM_UNPRECONDITIONED));
281 
282  // Setting the linear tolerances and maximum iteration counts
285 
286  if (_pin_pressure)
288 
289  auto its_res_pair = pressure_solver.solve(mmat, mmat, solution, rhs);
290  pressure_system.update();
291 
292  if (_print_fields)
293  {
294  _console << " rhs when we solve pressure " << std::endl;
295  rhs.print();
296  _console << " Pressure " << std::endl;
297  solution.print();
298  _console << "Norm factor " << norm_factor << std::endl;
299  }
300 
301  _pressure_system.setSolution(current_local_solution);
302 
303  return std::make_pair(its_res_pair.first, pressure_solver.get_initial_residual() / norm_factor);
304 }
FEProblemBase & _problem
const bool _print_fields
Debug parameter which allows printing the coupling and solution vectors/matrices. ...
Real computeNormalizationFactor(const NumericVector< Number > &solution, const SparseMatrix< Number > &mat, const NumericVector< Number > &rhs)
Compute a normalization factor which is applied to the linear residual to determine convergence...
NumericVector< Number > * rhs
void setSolution(const NumericVector< Number > &soln)
virtual LinearSolver< Number > * get_linear_solver() const
virtual std::pair< unsigned int, Real > solve(SparseMatrix< T > &matrix_in, NumericVector< T > &solution_in, NumericVector< T > &rhs_in, const std::optional< double > tol=std::nullopt, const std::optional< unsigned int > m_its=std::nullopt) override
NonlinearSystemBase & _pressure_system
Reference to the nonlinear system corresponding to the pressure equation.
std::map< std::string, Real > real_valued_data
virtual void scale(const T factor)=0
SIMPLESolverConfiguration _pressure_linear_control
Options for the linear solver of the pressure equation.
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
const Real _pressure_l_abs_tol
Absolute linear tolerance for the pressure equation.
std::unique_ptr< NumericVector< Number > > solution
dof_id_type _pressure_pin_dof
The dof ID where the pressure needs to be pinned.
virtual void print(std::ostream &os=libMesh::out) const
const bool _pin_pressure
If the pressure needs to be pinned.
void set_solver_configuration(SolverConfiguration &solver_configuration)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
SparseMatrix< Number > * matrix
const Real _pressure_pin_value
The value we want to enforce for pressure.
void computeResidualAndJacobian(const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, libMesh::SparseMatrix< libMesh::Number > &jacobian)
std::unique_ptr< NumericVector< Number > > current_local_solution
const ConsoleStream _console
const unsigned int _pressure_sys_number
The number of the system corresponding to the pressure equation.
void constrainSystem(SparseMatrix< Number > &mx, NumericVector< Number > &rhs, const Real desired_value, const dof_id_type dof_id)
Implicitly constrain the system by adding a factor*(u-u_desired) to it at a desired dof value...
void print(std::ostream &os=libMesh::out, const bool sparse=false) const
virtual libMesh::System & system() override

◆ solveSolidEnergySystem()

std::pair< unsigned int, Real > SIMPLESolveNonlinearAssembly::solveSolidEnergySystem ( )
protected

Solve the solid energy conservation equation.

Returns
The normalized residual norm of the solid equation.

Definition at line 380 of file SIMPLESolveNonlinearAssembly.C.

Referenced by solve().

381 {
383 
384  // We will need some members from the implicit nonlinear system
385  NonlinearImplicitSystem & se_system =
386  libMesh::cast_ref<NonlinearImplicitSystem &>(_solid_energy_system->system());
387 
388  // We will need the solution, the right hand side and the matrix
389  NumericVector<Number> & current_local_solution = *(se_system.current_local_solution);
390  NumericVector<Number> & solution = *(se_system.solution);
391  SparseMatrix<Number> & mat = *(se_system.matrix);
392  NumericVector<Number> & rhs = *(se_system.rhs);
393 
394  // Fetch the linear solver from the system
395  PetscLinearSolver<Real> & se_solver =
396  libMesh::cast_ref<PetscLinearSolver<Real> &>(*se_system.get_linear_solver());
397 
398  // We need a zero vector to be able to emulate the Ax=b system by evaluating the
399  // residual and jacobian. Unfortunately, this will leave us with the -b on the righ hand side
400  // so we correct it by multiplying it with (-1)
401  auto zero_solution = current_local_solution.zero_clone();
402  _problem.computeResidualAndJacobian(*zero_solution, rhs, mat);
403  rhs.scale(-1.0);
404 
405  if (_print_fields)
406  {
407  _console << "Solid energy matrix" << std::endl;
408  mat.print();
409  }
410 
411  // We compute the normalization factors based on the fluxes
412  Real norm_factor = NS::FV::computeNormalizationFactor(solution, mat, rhs);
413 
414  // We need the non-preconditioned norm to be consistent with the norm factor
415  LibmeshPetscCall(KSPSetNormType(se_solver.ksp(), KSP_NORM_UNPRECONDITIONED));
416 
417  // Setting the linear tolerances and maximum iteration counts
420 
421  auto its_res_pair = se_solver.solve(mat, mat, solution, rhs);
422  se_system.update();
423 
424  if (_print_fields)
425  {
426  _console << " Solid energy rhs " << std::endl;
427  rhs.print();
428  _console << " Solid temperature " << std::endl;
429  solution.print();
430  _console << "Norm factor " << norm_factor << std::endl;
431  }
432 
433  _solid_energy_system->setSolution(current_local_solution);
434 
435  return std::make_pair(its_res_pair.first, se_solver.get_initial_residual() / norm_factor);
436 }
FEProblemBase & _problem
const bool _print_fields
Debug parameter which allows printing the coupling and solution vectors/matrices. ...
const Real _solid_energy_l_abs_tol
Absolute linear tolerance for the energy equations.
Real computeNormalizationFactor(const NumericVector< Number > &solution, const SparseMatrix< Number > &mat, const NumericVector< Number > &rhs)
Compute a normalization factor which is applied to the linear residual to determine convergence...
NumericVector< Number > * rhs
const unsigned int _solid_energy_sys_number
The number of the system corresponding to the solid energy equation.
void setSolution(const NumericVector< Number > &soln)
virtual LinearSolver< Number > * get_linear_solver() const
virtual std::pair< unsigned int, Real > solve(SparseMatrix< T > &matrix_in, NumericVector< T > &solution_in, NumericVector< T > &rhs_in, const std::optional< double > tol=std::nullopt, const std::optional< unsigned int > m_its=std::nullopt) override
std::map< std::string, Real > real_valued_data
virtual void scale(const T factor)=0
void setCurrentNonlinearSystem(const unsigned int nl_sys_num)
std::unique_ptr< NumericVector< Number > > solution
virtual void print(std::ostream &os=libMesh::out) const
void set_solver_configuration(SolverConfiguration &solver_configuration)
NonlinearSystemBase * _solid_energy_system
Pointer to the nonlinear system corresponding to the solid energy equation.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
SparseMatrix< Number > * matrix
void computeResidualAndJacobian(const NumericVector< libMesh::Number > &soln, NumericVector< libMesh::Number > &residual, libMesh::SparseMatrix< libMesh::Number > &jacobian)
std::unique_ptr< NumericVector< Number > > current_local_solution
const ConsoleStream _console
SIMPLESolverConfiguration _solid_energy_linear_control
Options for the linear solver of the energy equation.
void print(std::ostream &os=libMesh::out, const bool sparse=false) const
virtual libMesh::System & system() override

◆ validParams()

InputParameters SIMPLESolveNonlinearAssembly::validParams ( )
static

Definition at line 20 of file SIMPLESolveNonlinearAssembly.C.

Referenced by SIMPLENonlinearAssembly::validParams().

21 {
23 
24  params.addParam<TagName>("pressure_gradient_tag",
25  "pressure_momentum_kernels",
26  "The name of the tags associated with the kernels in the momentum "
27  "equations which are not related to the pressure gradient.");
28 
29  return params;
30 }
void addParam(const std::string &name, const std::initializer_list< typename T::value_type > &value, const std::string &doc_string)
static InputParameters validParams()

Member Data Documentation

◆ _continue_on_max_its

const bool SIMPLESolveBase::_continue_on_max_its
protectedinherited

If solve should continue if maximum number of iterations is hit.

Definition at line 235 of file SIMPLESolveBase.h.

Referenced by LinearAssemblySegregatedSolve::solve(), and solve().

◆ _energy_absolute_tolerance

const Real SIMPLESolveBase::_energy_absolute_tolerance
protectedinherited

The user-defined absolute tolerance for determining the convergence in energy.

Definition at line 220 of file SIMPLESolveBase.h.

Referenced by LinearAssemblySegregatedSolve::solve(), and solve().

◆ _energy_equation_relaxation

const Real SIMPLESolveBase::_energy_equation_relaxation
protectedinherited

The user-defined relaxation parameter for the energy equation.

Definition at line 130 of file SIMPLESolveBase.h.

Referenced by LinearAssemblySegregatedSolve::solve(), and solve().

◆ _energy_l_abs_tol

const Real SIMPLESolveBase::_energy_l_abs_tol
protectedinherited

Absolute linear tolerance for the energy equations.

We need to store this, because it needs to be scaled with a representative flux.

Definition at line 140 of file SIMPLESolveBase.h.

Referenced by LinearAssemblySegregatedSolve::solve(), and solve().

◆ _energy_linear_control

SIMPLESolverConfiguration SIMPLESolveBase::_energy_linear_control
protectedinherited

Options for the linear solver of the energy equation.

Definition at line 136 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::SIMPLESolveBase(), solve(), and LinearAssemblySegregatedSolve::solve().

◆ _energy_petsc_options

Moose::PetscSupport::PetscOptions SIMPLESolveBase::_energy_petsc_options
protectedinherited

Options which hold the petsc settings for the fluid energy equation.

Definition at line 133 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::SIMPLESolveBase(), solve(), and LinearAssemblySegregatedSolve::solve().

◆ _energy_sys_number

const unsigned int SIMPLESolveNonlinearAssembly::_energy_sys_number
protected

The number of the system corresponding to the energy equation.

Definition at line 82 of file SIMPLESolveNonlinearAssembly.h.

Referenced by solve().

◆ _energy_system

NonlinearSystemBase* SIMPLESolveNonlinearAssembly::_energy_system
protected

Pointer to the nonlinear system corresponding to the fluid energy equation.

Definition at line 85 of file SIMPLESolveNonlinearAssembly.h.

Referenced by checkIntegrity(), and solve().

◆ _has_energy_system

const bool SIMPLESolveBase::_has_energy_system
protectedinherited

◆ _has_passive_scalar_systems

const bool SIMPLESolveBase::_has_passive_scalar_systems
protectedinherited

◆ _has_solid_energy_system

const bool SIMPLESolveBase::_has_solid_energy_system
protectedinherited

Boolean for easy check if a solid energy system shall be solved or not.

Definition at line 145 of file SIMPLESolveBase.h.

Referenced by checkIntegrity(), LinearAssemblySegregatedSolve::LinearAssemblySegregatedSolve(), SIMPLESolveBase::SIMPLESolveBase(), solve(), and LinearAssemblySegregatedSolve::solve().

◆ _has_turbulence_systems

const bool SIMPLESolveNonlinearAssembly::_has_turbulence_systems
protected

Boolean for easy check if turbulence systems shall be solved or not.

Definition at line 77 of file SIMPLESolveNonlinearAssembly.h.

Referenced by checkIntegrity(), SIMPLESolveNonlinearAssembly(), and solve().

◆ _momentum_absolute_tolerance

const Real SIMPLESolveBase::_momentum_absolute_tolerance
protectedinherited

The user-defined absolute tolerance for determining the convergence in momentum.

Definition at line 214 of file SIMPLESolveBase.h.

Referenced by LinearAssemblySegregatedSolve::solve(), and solve().

◆ _momentum_equation_relaxation

const Real SIMPLESolveBase::_momentum_equation_relaxation
protectedinherited

The user-defined relaxation parameter for the momentum equation.

Definition at line 95 of file SIMPLESolveBase.h.

Referenced by solveMomentumPredictor(), and LinearAssemblySegregatedSolve::solveMomentumPredictor().

◆ _momentum_l_abs_tol

const Real SIMPLESolveBase::_momentum_l_abs_tol
protectedinherited

Absolute linear tolerance for the momentum equation(s).

We need to store this, because it needs to be scaled with a representative flux.

Definition at line 89 of file SIMPLESolveBase.h.

Referenced by solveMomentumPredictor(), and LinearAssemblySegregatedSolve::solveMomentumPredictor().

◆ _momentum_linear_control

SIMPLESolverConfiguration SIMPLESolveBase::_momentum_linear_control
protectedinherited

Options for the linear solver of the momentum equation.

Definition at line 85 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::SIMPLESolveBase(), solveMomentumPredictor(), and LinearAssemblySegregatedSolve::solveMomentumPredictor().

◆ _momentum_petsc_options

Moose::PetscSupport::PetscOptions SIMPLESolveBase::_momentum_petsc_options
protectedinherited

Options which hold the petsc settings for the momentum equation.

Definition at line 92 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::SIMPLESolveBase(), solve(), and LinearAssemblySegregatedSolve::solve().

◆ _momentum_system_names

const std::vector<SolverSystemName>& SIMPLESolveBase::_momentum_system_names
protectedinherited

◆ _momentum_system_numbers

std::vector<unsigned int> SIMPLESolveNonlinearAssembly::_momentum_system_numbers
protected

The number(s) of the system(s) corresponding to the momentum equation(s)

Definition at line 63 of file SIMPLESolveNonlinearAssembly.h.

Referenced by linkRhieChowUserObject(), SIMPLESolveNonlinearAssembly(), and solveMomentumPredictor().

◆ _momentum_systems

std::vector<NonlinearSystemBase *> SIMPLESolveNonlinearAssembly::_momentum_systems
protected

Pointer(s) to the system(s) corresponding to the momentum equation(s)

Definition at line 66 of file SIMPLESolveNonlinearAssembly.h.

Referenced by checkIntegrity(), linkRhieChowUserObject(), SIMPLESolveNonlinearAssembly(), solve(), and solveMomentumPredictor().

◆ _num_iterations

const unsigned int SIMPLESolveBase::_num_iterations
protectedinherited

The maximum number of momentum-pressure iterations.

Definition at line 232 of file SIMPLESolveBase.h.

Referenced by LinearAssemblySegregatedSolve::solve(), and solve().

◆ _passive_scalar_absolute_tolerance

const std::vector<Real> SIMPLESolveBase::_passive_scalar_absolute_tolerance
protectedinherited

The user-defined absolute tolerance for determining the convergence in passive scalars.

Definition at line 226 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::SIMPLESolveBase(), solve(), and LinearAssemblySegregatedSolve::solve().

◆ _passive_scalar_equation_relaxation

const std::vector<Real> SIMPLESolveBase::_passive_scalar_equation_relaxation
protectedinherited

The user-defined relaxation parameter(s) for the passive scalar equation(s)

Definition at line 169 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::SIMPLESolveBase(), solve(), and LinearAssemblySegregatedSolve::solve().

◆ _passive_scalar_l_abs_tol

const Real SIMPLESolveBase::_passive_scalar_l_abs_tol
protectedinherited

Absolute linear tolerance for the passive scalar equation(s).

We need to store this, because it needs to be scaled with a representative flux.

Definition at line 179 of file SIMPLESolveBase.h.

Referenced by LinearAssemblySegregatedSolve::solve(), and solve().

◆ _passive_scalar_linear_control

SIMPLESolverConfiguration SIMPLESolveBase::_passive_scalar_linear_control
protectedinherited

Options for the linear solver of the passive scalar equation(s)

Definition at line 175 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::SIMPLESolveBase(), solve(), and LinearAssemblySegregatedSolve::solve().

◆ _passive_scalar_petsc_options

Moose::PetscSupport::PetscOptions SIMPLESolveBase::_passive_scalar_petsc_options
protectedinherited

Options which hold the petsc settings for the passive scalar equation(s)

Definition at line 172 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::SIMPLESolveBase(), solve(), and LinearAssemblySegregatedSolve::solve().

◆ _passive_scalar_system_names

const std::vector<SolverSystemName>& SIMPLESolveBase::_passive_scalar_system_names
protectedinherited

◆ _passive_scalar_system_numbers

std::vector<unsigned int> SIMPLESolveBase::_passive_scalar_system_numbers
protectedinherited

◆ _passive_scalar_systems

std::vector<NonlinearSystemBase *> SIMPLESolveNonlinearAssembly::_passive_scalar_systems
protected

Pointer(s) to the system(s) corresponding to the passive scalar equation(s)

Definition at line 98 of file SIMPLESolveNonlinearAssembly.h.

Referenced by checkIntegrity(), SIMPLESolveNonlinearAssembly(), and solve().

◆ _pin_pressure

const bool SIMPLESolveBase::_pin_pressure
protectedinherited

If the pressure needs to be pinned.

Definition at line 116 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::setupPressurePin(), solvePressureCorrector(), and LinearAssemblySegregatedSolve::solvePressureCorrector().

◆ _pressure_absolute_tolerance

const Real SIMPLESolveBase::_pressure_absolute_tolerance
protectedinherited

The user-defined absolute tolerance for determining the convergence in pressure.

Definition at line 217 of file SIMPLESolveBase.h.

Referenced by LinearAssemblySegregatedSolve::solve(), and solve().

◆ _pressure_l_abs_tol

const Real SIMPLESolveBase::_pressure_l_abs_tol
protectedinherited

Absolute linear tolerance for the pressure equation.

We need to store this, because it needs to be scaled with a representative flux.

Definition at line 107 of file SIMPLESolveBase.h.

Referenced by solvePressureCorrector(), and LinearAssemblySegregatedSolve::solvePressureCorrector().

◆ _pressure_linear_control

SIMPLESolverConfiguration SIMPLESolveBase::_pressure_linear_control
protectedinherited

Options for the linear solver of the pressure equation.

Definition at line 103 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::SIMPLESolveBase(), solvePressureCorrector(), and LinearAssemblySegregatedSolve::solvePressureCorrector().

◆ _pressure_petsc_options

Moose::PetscSupport::PetscOptions SIMPLESolveBase::_pressure_petsc_options
protectedinherited

Options which hold the petsc settings for the pressure equation.

Definition at line 110 of file SIMPLESolveBase.h.

Referenced by LinearAssemblySegregatedSolve::correctVelocity(), SIMPLESolveBase::SIMPLESolveBase(), and solve().

◆ _pressure_pin_dof

dof_id_type SIMPLESolveBase::_pressure_pin_dof
protectedinherited

The dof ID where the pressure needs to be pinned.

Definition at line 122 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::setupPressurePin(), solvePressureCorrector(), and LinearAssemblySegregatedSolve::solvePressureCorrector().

◆ _pressure_pin_value

const Real SIMPLESolveBase::_pressure_pin_value
protectedinherited

The value we want to enforce for pressure.

Definition at line 119 of file SIMPLESolveBase.h.

Referenced by solvePressureCorrector(), and LinearAssemblySegregatedSolve::solvePressureCorrector().

◆ _pressure_sys_number

const unsigned int SIMPLESolveNonlinearAssembly::_pressure_sys_number
protected

The number of the system corresponding to the pressure equation.

Definition at line 69 of file SIMPLESolveNonlinearAssembly.h.

Referenced by solvePressureCorrector().

◆ _pressure_system

NonlinearSystemBase& SIMPLESolveNonlinearAssembly::_pressure_system
protected

Reference to the nonlinear system corresponding to the pressure equation.

Definition at line 72 of file SIMPLESolveNonlinearAssembly.h.

Referenced by checkIntegrity(), SIMPLESolveNonlinearAssembly(), solve(), and solvePressureCorrector().

◆ _pressure_system_name

const SolverSystemName& SIMPLESolveBase::_pressure_system_name
protectedinherited

The name of the pressure system.

Definition at line 100 of file SIMPLESolveBase.h.

◆ _pressure_tag_id

const TagID SIMPLESolveNonlinearAssembly::_pressure_tag_id
protected

The ID of the tag which corresponds to the pressure gradient terms in the momentum equation.

Definition at line 143 of file SIMPLESolveNonlinearAssembly.h.

Referenced by linkRhieChowUserObject(), and SIMPLESolveNonlinearAssembly().

◆ _pressure_tag_name

const TagName SIMPLESolveNonlinearAssembly::_pressure_tag_name
protected

The name of the vector tag which corresponds to the pressure gradient terms in the momentum equation.

Definition at line 139 of file SIMPLESolveNonlinearAssembly.h.

◆ _pressure_variable_relaxation

const Real SIMPLESolveBase::_pressure_variable_relaxation
protectedinherited

The user-defined relaxation parameter for the pressure variable.

Definition at line 113 of file SIMPLESolveBase.h.

Referenced by LinearAssemblySegregatedSolve::correctVelocity(), and solve().

◆ _print_fields

const bool SIMPLESolveBase::_print_fields
protectedinherited

◆ _rc_uo

INSFVRhieChowInterpolatorSegregated* SIMPLESolveNonlinearAssembly::_rc_uo
protected

Pointer to the segregated RhieChow interpolation object.

Definition at line 135 of file SIMPLESolveNonlinearAssembly.h.

Referenced by linkRhieChowUserObject(), and solve().

◆ _solid_energy_absolute_tolerance

const Real SIMPLESolveBase::_solid_energy_absolute_tolerance
protectedinherited

The user-defined absolute tolerance for determining the convergence in solid energy.

Definition at line 223 of file SIMPLESolveBase.h.

Referenced by LinearAssemblySegregatedSolve::solve(), and solve().

◆ _solid_energy_l_abs_tol

const Real SIMPLESolveBase::_solid_energy_l_abs_tol
protectedinherited

Absolute linear tolerance for the energy equations.

We need to store this, because it needs to be scaled with a representative flux.

Definition at line 155 of file SIMPLESolveBase.h.

Referenced by LinearAssemblySegregatedSolve::solveSolidEnergy(), and solveSolidEnergySystem().

◆ _solid_energy_linear_control

SIMPLESolverConfiguration SIMPLESolveBase::_solid_energy_linear_control
protectedinherited

Options for the linear solver of the energy equation.

Definition at line 151 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::SIMPLESolveBase(), LinearAssemblySegregatedSolve::solveSolidEnergy(), and solveSolidEnergySystem().

◆ _solid_energy_petsc_options

Moose::PetscSupport::PetscOptions SIMPLESolveBase::_solid_energy_petsc_options
protectedinherited

Options which hold the petsc settings for the fluid energy equation.

Definition at line 148 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::SIMPLESolveBase(), and LinearAssemblySegregatedSolve::solve().

◆ _solid_energy_sys_number

const unsigned int SIMPLESolveNonlinearAssembly::_solid_energy_sys_number
protected

The number of the system corresponding to the solid energy equation.

Definition at line 90 of file SIMPLESolveNonlinearAssembly.h.

Referenced by solveSolidEnergySystem().

◆ _solid_energy_system

NonlinearSystemBase* SIMPLESolveNonlinearAssembly::_solid_energy_system
protected

Pointer to the nonlinear system corresponding to the solid energy equation.

Definition at line 93 of file SIMPLESolveNonlinearAssembly.h.

Referenced by checkIntegrity(), solve(), and solveSolidEnergySystem().

◆ _turbulence_absolute_tolerance

const std::vector<Real> SIMPLESolveNonlinearAssembly::_turbulence_absolute_tolerance
protected

The user-defined absolute tolerance for determining the convergence in turbulence equations.

Definition at line 130 of file SIMPLESolveNonlinearAssembly.h.

Referenced by SIMPLESolveNonlinearAssembly(), and solve().

◆ _turbulence_equation_relaxation

const std::vector<Real> SIMPLESolveNonlinearAssembly::_turbulence_equation_relaxation
protected

The user-defined relaxation parameter(s) for the turbulence equation(s)

Definition at line 112 of file SIMPLESolveNonlinearAssembly.h.

Referenced by SIMPLESolveNonlinearAssembly(), and solve().

◆ _turbulence_field_min_limit

std::vector<Real> SIMPLESolveNonlinearAssembly::_turbulence_field_min_limit
protected

The user-defined lower limit for turbulent quantities e.g. k, eps/omega, etc..

Definition at line 115 of file SIMPLESolveNonlinearAssembly.h.

Referenced by SIMPLESolveNonlinearAssembly(), and solve().

◆ _turbulence_field_relaxation

std::vector<Real> SIMPLESolveBase::_turbulence_field_relaxation
protectedinherited

The user-defined relaxation parameter(s) for the turbulence field(s)

Definition at line 196 of file SIMPLESolveBase.h.

Referenced by SIMPLESolveBase::SIMPLESolveBase(), and LinearAssemblySegregatedSolve::solve().

◆ _turbulence_l_abs_tol

const Real SIMPLESolveNonlinearAssembly::_turbulence_l_abs_tol
protected

Absolute linear tolerance for the turbulence equation(s).

We need to store this, because it needs to be scaled with a representative flux.

Definition at line 125 of file SIMPLESolveNonlinearAssembly.h.

Referenced by solve().

◆ _turbulence_linear_control

SIMPLESolverConfiguration SIMPLESolveNonlinearAssembly::_turbulence_linear_control
protected

Options for the linear solver of the turbulence equation(s)

Definition at line 121 of file SIMPLESolveNonlinearAssembly.h.

Referenced by SIMPLESolveNonlinearAssembly(), and solve().

◆ _turbulence_petsc_options

Moose::PetscSupport::PetscOptions SIMPLESolveNonlinearAssembly::_turbulence_petsc_options
protected

Options which hold the petsc settings for the turbulence equation(s)

Definition at line 118 of file SIMPLESolveNonlinearAssembly.h.

Referenced by SIMPLESolveNonlinearAssembly(), and solve().

◆ _turbulence_system_names

const std::vector<SolverSystemName>& SIMPLESolveNonlinearAssembly::_turbulence_system_names
protected

The names of the turbulence scalar systems.

Definition at line 103 of file SIMPLESolveNonlinearAssembly.h.

Referenced by SIMPLESolveNonlinearAssembly().

◆ _turbulence_system_numbers

std::vector<unsigned int> SIMPLESolveNonlinearAssembly::_turbulence_system_numbers
protected

Definition at line 106 of file SIMPLESolveNonlinearAssembly.h.

Referenced by SIMPLESolveNonlinearAssembly(), and solve().

◆ _turbulence_systems

std::vector<NonlinearSystemBase *> SIMPLESolveNonlinearAssembly::_turbulence_systems
protected

Pointer(s) to the system(s) corresponding to the turbulence equation(s)

Definition at line 109 of file SIMPLESolveNonlinearAssembly.h.

Referenced by checkIntegrity(), SIMPLESolveNonlinearAssembly(), and solve().


The documentation for this class was generated from the following files: