www.mooseframework.org
Public Member Functions | Protected Types | Protected Member Functions | Protected Attributes | Static Protected Attributes | List of all members
CappedWeakPlaneCosseratStressUpdate Class Reference

CappedWeakPlaneCosseratStressUpdate performs the return-map algorithm and associated stress updates for plastic models that describe capped weak-plane Cosserat plasticity. More...

#include <CappedWeakPlaneCosseratStressUpdate.h>

Inheritance diagram for CappedWeakPlaneCosseratStressUpdate:
[legend]

Public Member Functions

 CappedWeakPlaneCosseratStressUpdate (const InputParameters &parameters)
 
bool requiresIsotropicTensor () override
 Does the model require the elasticity tensor to be isotropic? More...
 
void setQp (unsigned int qp)
 Sets the value of the global variable _qp for inheriting classes. More...
 
virtual Real computeTimeStepLimit ()
 
void resetQpProperties () final
 Retained as empty methods to avoid a warning from Material.C in framework. These methods are unused in all inheriting classes and should not be overwritten. More...
 
void resetProperties () final
 

Protected Types

enum  StressReturnType { StressReturnType::nothing_special, StressReturnType::no_compression, StressReturnType::no_tension }
 This allows some simplification in the return-map process. More...
 

Protected Member Functions

virtual void consistentTangentOperator (const RankTwoTensor &stress_trial, Real p_trial, Real q_trial, const RankTwoTensor &stress, Real p, Real q, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, bool compute_full_tangent_operator, RankFourTensor &cto) const override
 Calculates the consistent tangent operator. More...
 
virtual void setStressAfterReturn (const RankTwoTensor &stress_trial, Real p_ok, Real q_ok, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, RankTwoTensor &stress) const override
 Sets stress from the admissible parameters. More...
 
virtual RankTwoTensor dqdstress (const RankTwoTensor &stress) const override
 d(q)/d(stress) Derived classes must override this More...
 
virtual RankFourTensor d2qdstress2 (const RankTwoTensor &stress) const override
 d2(q)/d(stress)/d(stress) Derived classes must override this More...
 
virtual void yieldFunctionValues (Real p, Real q, const std::vector< Real > &intnl, std::vector< Real > &yf) const override
 Computes the values of the yield functions, given p, q and intnl parameters. More...
 
virtual void computeAllQ (Real p, Real q, const std::vector< Real > &intnl, std::vector< yieldAndFlow > &all_q) const override
 Completely fills all_q with correct values. More...
 
virtual void preReturnMap (Real p_trial, Real q_trial, const RankTwoTensor &stress_trial, const std::vector< Real > &intnl_old, const std::vector< Real > &yf, const RankFourTensor &Eijkl) override
 Derived classes may employ this function to record stuff or do other computations prior to the return-mapping algorithm. More...
 
virtual void initializeVars (Real p_trial, Real q_trial, const std::vector< Real > &intnl_old, Real &p, Real &q, Real &gaE, std::vector< Real > &intnl) const override
 Sets (p, q, gaE, intnl) at "good guesses" of the solution to the Return-Map algorithm. More...
 
virtual void setIntnlValues (Real p_trial, Real q_trial, Real p, Real q, const std::vector< Real > &intnl_old, std::vector< Real > &intnl) const override
 Sets the internal parameters based on the trial values of p and q, their current values, and the old values of the internal parameters. More...
 
virtual void setIntnlDerivatives (Real p_trial, Real q_trial, Real p, Real q, const std::vector< Real > &intnl, std::vector< std::vector< Real >> &dintnl) const override
 Sets the derivatives of internal parameters, based on the trial values of p and q, their current values, and the old values of the internal parameters. More...
 
virtual void computePQ (const RankTwoTensor &stress, Real &p, Real &q) const override
 Computes p and q, given stress. More...
 
virtual void initializeReturnProcess () override
 Derived classes may use this to perform calculations before any return-map process is performed, for instance, to initialize variables. More...
 
virtual void finalizeReturnProcess (const RankTwoTensor &rotation_increment) override
 Derived classes may use this to perform calculations after the return-map process has completed successfully in stress_param space but before the returned stress tensor has been calculcated. More...
 
virtual void setEppEqq (const RankFourTensor &Eijkl, Real &Epp, Real &Eqq) const override
 Set Epp and Eqq based on the elasticity tensor Derived classes must override this. More...
 
virtual RankTwoTensor dpdstress (const RankTwoTensor &stress) const override
 d(p)/d(stress) Derived classes must override this More...
 
virtual RankFourTensor d2pdstress2 (const RankTwoTensor &stress) const override
 d2(p)/d(stress)/d(stress) Derived classes must override this More...
 
void yieldFunctionValuesV (const std::vector< Real > &stress_params, const std::vector< Real > &intnl, std::vector< Real > &yf) const override
 Computes the values of the yield functions, given stress_params and intnl parameters. More...
 
void computeAllQV (const std::vector< Real > &stress_params, const std::vector< Real > &intnl, std::vector< yieldAndFlow > &all_q) const override
 Completely fills all_q with correct values. More...
 
void preReturnMapV (const std::vector< Real > &trial_stress_params, const RankTwoTensor &stress_trial, const std::vector< Real > &intnl_old, const std::vector< Real > &yf, const RankFourTensor &Eijkl) override
 Derived classes may employ this function to record stuff or do other computations prior to the return-mapping algorithm. More...
 
void initializeVarsV (const std::vector< Real > &trial_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &stress_params, Real &gaE, std::vector< Real > &intnl) const override
 Sets (stress_params, intnl) at "good guesses" of the solution to the Return-Map algorithm. More...
 
void setIntnlValuesV (const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &intnl) const override
 Sets the internal parameters based on the trial values of stress_params, their current values, and the old values of the internal parameters. More...
 
virtual void setIntnlDerivativesV (const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl, std::vector< std::vector< Real >> &dintnl) const override
 Sets the derivatives of internal parameters, based on the trial values of stress_params, their current values, and the current values of the internal parameters. More...
 
virtual void computeStressParams (const RankTwoTensor &stress, std::vector< Real > &stress_params) const override
 Computes stress_params, given stress. More...
 
virtual void setEffectiveElasticity (const RankFourTensor &Eijkl) override
 Sets _Eij and _En and _Cij. More...
 
void setStressAfterReturnV (const RankTwoTensor &stress_trial, const std::vector< Real > &stress_params, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, RankTwoTensor &stress) const override
 Sets stress from the admissible parameters. More...
 
void setInelasticStrainIncrementAfterReturn (const RankTwoTensor &stress_trial, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &elasticity_tensor, const RankTwoTensor &returned_stress, RankTwoTensor &inelastic_strain_increment) const override
 Sets inelastic strain increment from the returned configuration This is called after the return-map process has completed successfully in stress_param space, just after finalizeReturnProcess has been called. More...
 
void consistentTangentOperatorV (const RankTwoTensor &stress_trial, const std::vector< Real > &trial_stress_params, const RankTwoTensor &stress, const std::vector< Real > &stress_params, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, bool compute_full_tangent_operator, const std::vector< std::vector< Real >> &dvar_dtrial, RankFourTensor &cto) override
 Calculates the consistent tangent operator. More...
 
virtual std::vector< RankTwoTensor > dstress_param_dstress (const RankTwoTensor &stress) const override
 d(stress_param[i])/d(stress) at given stress More...
 
virtual std::vector< RankFourTensor > d2stress_param_dstress (const RankTwoTensor &stress) const override
 d2(stress_param[i])/d(stress)/d(stress) at given stress More...
 
virtual void initQpStatefulProperties () override
 
virtual void updateState (RankTwoTensor &strain_increment, RankTwoTensor &inelastic_strain_increment, const RankTwoTensor &rotation_increment, RankTwoTensor &stress_new, const RankTwoTensor &stress_old, const RankFourTensor &elasticity_tensor, const RankTwoTensor &elastic_strain_old, bool compute_full_tangent_operator, RankFourTensor &tangent_operator) override
 Given a strain increment that results in a trial stress, perform some procedure (such as an iterative return-mapping process) to produce an admissible stress, an elastic strain increment and an inelastic strain increment. More...
 
virtual void propagateQpStatefulProperties () override
 If updateState is not called during a timestep, this will be. More...
 
virtual TangentCalculationMethod getTangentCalculationMethod () override
 
Real yieldF (const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
 Computes the smoothed yield function. More...
 
Real yieldF (const std::vector< Real > &yfs) const
 Computes the smoothed yield function. More...
 
Real ismoother (Real f_diff) const
 Smooths yield functions. More...
 
Real smoother (Real f_diff) const
 Derivative of ismoother. More...
 
Real dsmoother (Real f_diff) const
 Derivative of smoother. More...
 
yieldAndFlow smoothAllQuantities (const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
 Calculates all yield functions and derivatives, and then performs the smoothing scheme. More...
 
int lineSearch (Real &res2, std::vector< Real > &stress_params, Real &gaE, const std::vector< Real > &trial_stress_params, yieldAndFlow &smoothed_q, const std::vector< Real > &intnl_ok, std::vector< Real > &intnl, std::vector< Real > &rhs, Real &linesearch_needed) const
 Performs a line-search to find stress_params and gaE Upon entry: More...
 
int nrStep (const yieldAndFlow &smoothed_q, const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, const std::vector< Real > &intnl, Real gaE, std::vector< Real > &rhs) const
 Performs a Newton-Raphson step to attempt to zero rhs Upon return, rhs will contain the solution. More...
 
Real calculateRes2 (const std::vector< Real > &rhs) const
 Calculates the residual-squared for the Newton-Raphson + line-search. More...
 
void calculateRHS (const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, Real gaE, const yieldAndFlow &smoothed_q, std::vector< Real > &rhs) const
 Calculates the RHS in the following 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, j] * dg/dS[j] 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1, j] * dg/dS[j] ... More...
 
void dnRHSdVar (const yieldAndFlow &smoothed_q, const std::vector< std::vector< Real >> &dintnl, const std::vector< Real > &stress_params, Real gaE, std::vector< double > &jac) const
 Derivative of -RHS with respect to the stress_params and gaE, placed into an array ready for solving the linear system using LAPACK gsev. More...
 
virtual void errorHandler (const std::string &message) const
 Performs any necessary cleaning-up, then throw MooseException(message) More...
 
void dVardTrial (bool elastic_only, const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, Real step_size, bool compute_full_tangent_operator, std::vector< std::vector< Real >> &dvar_dtrial) const
 Calculates derivatives of the stress_params and gaE with repect to the trial values of the stress_params for the (sub)strain increment. More...
 
bool precisionLoss (const std::vector< Real > &solution, const std::vector< Real > &stress_params, Real gaE) const
 Check whether precision loss has occurred. More...
 

Protected Attributes

const TensorMechanicsHardeningModel_cohesion
 Hardening model for cohesion. More...
 
const TensorMechanicsHardeningModel_tan_phi
 Hardening model for tan(phi) More...
 
const TensorMechanicsHardeningModel_tan_psi
 Hardening model for tan(psi) More...
 
const TensorMechanicsHardeningModel_tstrength
 Hardening model for tensile strength. More...
 
const TensorMechanicsHardeningModel_cstrength
 Hardening model for compressive strength. More...
 
const Real _small_smoother2
 The cone vertex is smoothed by this amount. More...
 
const bool _perfect_guess
 Initialize the NR proceedure from a guess coming from perfect plasticity. More...
 
enum CappedWeakPlaneStressUpdate::StressReturnType _stress_return_type
 
Real _in_trial02
 trial value of stress(0, 2) More...
 
Real _in_trial12
 trial value of stress(1, 2) More...
 
Real _in_q_trial
 trial value of q More...
 
Real _p_trial
 Trial value of p. More...
 
Real _q_trial
 Trial value of q. More...
 
Real _Epp
 elasticity tensor in p direction More...
 
Real _Eqq
 elasticity tensor in q direction More...
 
Real _dgaE_dpt
 derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculation) More...
 
Real _dgaE_dqt
 derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculation) More...
 
Real _dp_dpt
 derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculation) More...
 
Real _dq_dpt
 derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculation) More...
 
Real _dp_dqt
 derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculation) More...
 
Real _dq_dqt
 derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculation) More...
 
const unsigned _num_sp
 Number of stress parameters. More...
 
const std::vector< Real > _definitely_ok_sp
 An admissible value of stress_params at the initial time. More...
 
std::vector< std::vector< Real > > _Eij
 E[i, j] in the system of equations to be solved. More...
 
Real _En
 normalising factor More...
 
std::vector< std::vector< Real > > _Cij
 _Cij[i, j] * _Eij[j, k] = 1 iff j == k More...
 
const unsigned _num_yf
 Number of yield functions. More...
 
const unsigned _num_intnl
 Number of internal parameters. More...
 
const unsigned _max_nr_its
 Maximum number of Newton-Raphson iterations allowed in the return-map process. More...
 
const bool _perform_finite_strain_rotations
 Whether to perform finite-strain rotations. More...
 
const Real _smoothing_tol
 Smoothing tolerance: edges of the yield surface get smoothed by this amount. More...
 
const Real _f_tol
 The yield-function tolerance. More...
 
const Real _f_tol2
 Square of the yield-function tolerance. More...
 
const Real _min_step_size
 In order to help the Newton-Raphson procedure, the applied strain increment may be applied in sub-increments of size greater than this value. More...
 
bool _step_one
 handles case of initial_stress that is inadmissible being supplied More...
 
const bool _warn_about_precision_loss
 Output a warning message if precision loss is encountered during the return-map process. More...
 
MaterialProperty< RankTwoTensor > & _plastic_strain
 plastic strain More...
 
const MaterialProperty< RankTwoTensor > & _plastic_strain_old
 Old value of plastic strain. More...
 
MaterialProperty< std::vector< Real > > & _intnl
 internal parameters More...
 
const MaterialProperty< std::vector< Real > > & _intnl_old
 old values of internal parameters More...
 
MaterialProperty< std::vector< Real > > & _yf
 yield functions More...
 
MaterialProperty< Real > & _iter
 Number of Newton-Raphson iterations used in the return-map. More...
 
MaterialProperty< Real > & _linesearch_needed
 Whether a line-search was needed in the latest Newton-Raphson process (1 if true, 0 otherwise) More...
 
const std::string _base_name
 Name used as a prefix for all material properties related to the stress update model. More...
 

Static Protected Attributes

static constexpr int _num_pq = 2
 Number of variables = 2 = (p, q) More...
 
static constexpr unsigned _tensor_dimensionality = 3
 Internal dimensionality of tensors (currently this is 3 throughout tensor_mechanics) More...
 

Detailed Description

CappedWeakPlaneCosseratStressUpdate performs the return-map algorithm and associated stress updates for plastic models that describe capped weak-plane Cosserat plasticity.

It assumes various things about the elasticity tensor, viz E(i,i,j,k) = 0 except if k=j E(0,0,i,j) = E(1,1,i,j)

Definition at line 29 of file CappedWeakPlaneCosseratStressUpdate.h.

Member Enumeration Documentation

◆ StressReturnType

enum CappedWeakPlaneStressUpdate::StressReturnType
strongprotectedinherited

This allows some simplification in the return-map process.

If the tensile yield function yf[1] >= 0 at the trial stress then clearly the quadpoint is not going to fail in compression, so _stress_return_type is set to no_compression, and every time the compressive yield function is evaluated it is set -(very large). If the compressive yield function yf[2] >= 0 at the trial stress then clearly the quadpoint is not going to fail in tension, so _stress_return_type is set to no_tension, and every time the tensile yield function is evaluated it is set -(very large). Otherwise (and at the very end after return-map) _stress_return_type is set to nothing_special.

Enumerator
nothing_special 
no_compression 
no_tension 

Definition at line 77 of file CappedWeakPlaneStressUpdate.h.

78  {
79  nothing_special,
80  no_compression,
81  no_tension
enum CappedWeakPlaneStressUpdate::StressReturnType _stress_return_type

Constructor & Destructor Documentation

◆ CappedWeakPlaneCosseratStressUpdate()

CappedWeakPlaneCosseratStressUpdate::CappedWeakPlaneCosseratStressUpdate ( const InputParameters &  parameters)

Definition at line 25 of file CappedWeakPlaneCosseratStressUpdate.C.

27  : CappedWeakPlaneStressUpdate(parameters)
28 {
29 }
CappedWeakPlaneStressUpdate(const InputParameters &parameters)

Member Function Documentation

◆ calculateRes2()

Real MultiParameterPlasticityStressUpdate::calculateRes2 ( const std::vector< Real > &  rhs) const
protectedinherited

Calculates the residual-squared for the Newton-Raphson + line-search.

Parameters
rhs[in]The RHS vector
Returns
sum_i (rhs[i] * rhs[i])

Definition at line 730 of file MultiParameterPlasticityStressUpdate.C.

Referenced by MultiParameterPlasticityStressUpdate::lineSearch(), and MultiParameterPlasticityStressUpdate::updateState().

731 {
732  Real res2 = 0.0;
733  for (const auto & r : rhs)
734  res2 += r * r;
735  return res2;
736 }

◆ calculateRHS()

void MultiParameterPlasticityStressUpdate::calculateRHS ( const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  stress_params,
Real  gaE,
const yieldAndFlow smoothed_q,
std::vector< Real > &  rhs 
) const
protectedinherited

Calculates the RHS in the following 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, j] * dg/dS[j] 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1, j] * dg/dS[j] ...

0 = rhs[N-1] = S[N-1] - S[N-1]^trial + ga * E[N-1, j] * dg/dS[j] 0 = rhs[N] = f(S, intnl) where N = _num_sp

Parameters
trial_stress_params[in]The trial stress parameters for this (sub)strain increment, S[:]^trial
stress_params[in]The current stress parameters, S[:]
gaE[in]ga*_En (the normalisation with _En is so that gaE is of similar magnitude to S)
smoothed_q[in]Holds the current value of yield function and derivatives evaluated at the current stress parameters and the current internal parameters
rhs[out]The result

Definition at line 739 of file MultiParameterPlasticityStressUpdate.C.

Referenced by MultiParameterPlasticityStressUpdate::lineSearch(), and MultiParameterPlasticityStressUpdate::updateState().

744 {
745  const Real ga = gaE / _En;
746  for (unsigned i = 0; i < _num_sp; ++i)
747  {
748  rhs[i] = stress_params[i] - trial_stress_params[i];
749  for (unsigned j = 0; j < _num_sp; ++j)
750  rhs[i] += ga * _Eij[i][j] * smoothed_q.dg[j];
751  }
752  rhs[_num_sp] = smoothed_q.f;
753 }
std::vector< std::vector< Real > > _Eij
E[i, j] in the system of equations to be solved.
const unsigned _num_sp
Number of stress parameters.

◆ computeAllQ()

void CappedWeakPlaneStressUpdate::computeAllQ ( Real  p,
Real  q,
const std::vector< Real > &  intnl,
std::vector< yieldAndFlow > &  all_q 
) const
overrideprotectedvirtualinherited

Completely fills all_q with correct values.

These values are: (1) the yield function values, yf[i] (2) d(yf[i])/d(p, q) (3) d(yf[i])/d(intnl[j]) (4) d(flowPotential[i])/d(p, q) (5) d2(flowPotential[i])/d(p, q)/d(p, q) (6) d2(flowPotential[i])/d(p, q)/d(intnl[j])

Parameters
pp stress
qq stress
intnlThe internal parameters
[out]all_qAll the desired quantities

Implements TwoParameterPlasticityStressUpdate.

Definition at line 282 of file CappedWeakPlaneStressUpdate.C.

286 {
287  // yield function values
288  all_q[0].f = std::sqrt(Utility::pow<2>(q) + _small_smoother2) + p * _tan_phi.value(intnl[0]) -
289  _cohesion.value(intnl[0]);
291  all_q[1].f = std::numeric_limits<Real>::lowest();
292  else
293  all_q[1].f = p - _tstrength.value(intnl[1]);
295  all_q[2].f = std::numeric_limits<Real>::lowest();
296  else
297  all_q[2].f = -p - _cstrength.value(intnl[1]);
298 
299  // d(yield Function)/d(p, q)
300  // derivatives wrt p
301  all_q[0].df[0] = _tan_phi.value(intnl[0]);
302  all_q[1].df[0] = 1.0;
303  all_q[2].df[0] = -1.0;
304 
305  // derivatives wrt q
306  if (_small_smoother2 == 0.0)
307  all_q[0].df[1] = 1.0;
308  else
309  all_q[0].df[1] = q / std::sqrt(Utility::pow<2>(q) + _small_smoother2);
310  all_q[1].df[1] = 0.0;
311  all_q[2].df[1] = 0.0;
312 
313  // d(yield Function)/d(intnl)
314  // derivatives wrt intnl[0] (shear plastic strain)
315  all_q[0].df_di[0] = p * _tan_phi.derivative(intnl[0]) - _cohesion.derivative(intnl[0]);
316  all_q[1].df_di[0] = 0.0;
317  all_q[2].df_di[0] = 0.0;
318  // derivatives wrt intnl[q] (tensile plastic strain)
319  all_q[0].df_di[1] = 0.0;
320  all_q[1].df_di[1] = -_tstrength.derivative(intnl[1]);
321  all_q[2].df_di[1] = -_cstrength.derivative(intnl[1]);
322 
323  // d(flowPotential)/d(p, q)
324  // derivatives wrt p
325  all_q[0].dg[0] = _tan_psi.value(intnl[0]);
326  all_q[1].dg[0] = 1.0;
327  all_q[2].dg[0] = -1.0;
328  // derivatives wrt q
329  if (_small_smoother2 == 0.0)
330  all_q[0].dg[1] = 1.0;
331  else
332  all_q[0].dg[1] = q / std::sqrt(Utility::pow<2>(q) + _small_smoother2);
333  all_q[1].dg[1] = 0.0;
334  all_q[2].dg[1] = 0.0;
335 
336  // d2(flowPotential)/d(p, q)/d(intnl)
337  // d(dg/dp)/dintnl[0]
338  all_q[0].d2g_di[0][0] = _tan_psi.derivative(intnl[0]);
339  all_q[1].d2g_di[0][0] = 0.0;
340  all_q[2].d2g_di[0][0] = 0.0;
341  // d(dg/dp)/dintnl[1]
342  all_q[0].d2g_di[0][1] = 0.0;
343  all_q[1].d2g_di[0][1] = 0.0;
344  all_q[2].d2g_di[0][1] = 0.0;
345  // d(dg/dq)/dintnl[0]
346  all_q[0].d2g_di[1][0] = 0.0;
347  all_q[1].d2g_di[1][0] = 0.0;
348  all_q[2].d2g_di[1][0] = 0.0;
349  // d(dg/dq)/dintnl[1]
350  all_q[0].d2g_di[1][1] = 0.0;
351  all_q[1].d2g_di[1][1] = 0.0;
352  all_q[2].d2g_di[1][1] = 0.0;
353 
354  // d2(flowPotential)/d(p, q)/d(p, q)
355  // d(dg/dp)/dp
356  all_q[0].d2g[0][0] = 0.0;
357  all_q[1].d2g[0][0] = 0.0;
358  all_q[2].d2g[0][0] = 0.0;
359  // d(dg/dp)/dq
360  all_q[0].d2g[0][1] = 0.0;
361  all_q[1].d2g[0][1] = 0.0;
362  all_q[2].d2g[0][1] = 0.0;
363  // d(dg/dq)/dp
364  all_q[0].d2g[1][0] = 0.0;
365  all_q[1].d2g[1][0] = 0.0;
366  all_q[2].d2g[1][0] = 0.0;
367  // d(dg/dq)/dq
368  if (_small_smoother2 == 0.0)
369  all_q[0].d2g[1][1] = 0.0;
370  else
371  all_q[0].d2g[1][1] = _small_smoother2 / std::pow(Utility::pow<2>(q) + _small_smoother2, 1.5);
372  all_q[1].d2g[1][1] = 0.0;
373  all_q[2].d2g[1][1] = 0.0;
374 }
const TensorMechanicsHardeningModel & _cstrength
Hardening model for compressive strength.
const TensorMechanicsHardeningModel & _cohesion
Hardening model for cohesion.
const TensorMechanicsHardeningModel & _tan_phi
Hardening model for tan(phi)
const TensorMechanicsHardeningModel & _tan_psi
Hardening model for tan(psi)
virtual Real derivative(Real intnl) const
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
virtual Real value(Real intnl) const
enum CappedWeakPlaneStressUpdate::StressReturnType _stress_return_type
const Real _small_smoother2
The cone vertex is smoothed by this amount.
const TensorMechanicsHardeningModel & _tstrength
Hardening model for tensile strength.

◆ computeAllQV()

void TwoParameterPlasticityStressUpdate::computeAllQV ( const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl,
std::vector< yieldAndFlow > &  all_q 
) const
overrideprotectedvirtualinherited

Completely fills all_q with correct values.

These values are: (1) the yield function values, yf[i] (2) d(yf[i])/d(stress_params[j]) (3) d(yf[i])/d(intnl[j]) (4) d(flowPotential[i])/d(stress_params[j]) (5) d2(flowPotential[i])/d(stress_params[j])/d(stress_params[k]) (6) d2(flowPotential[i])/d(stress_params[j])/d(intnl[k])

Parameters
stress_params[in]The stress parameters
intnl[in]The internal parameters
[out]all_qAll the desired quantities

Implements MultiParameterPlasticityStressUpdate.

Definition at line 102 of file TwoParameterPlasticityStressUpdate.C.

105 {
106  const Real p = stress_params[0];
107  const Real q = stress_params[1];
108  computeAllQ(p, q, intnl, all_q);
109 }
virtual void computeAllQ(Real p, Real q, const std::vector< Real > &intnl, std::vector< yieldAndFlow > &all_q) const =0
Completely fills all_q with correct values.

◆ computePQ()

void CappedWeakPlaneStressUpdate::computePQ ( const RankTwoTensor &  stress,
Real &  p,
Real &  q 
) const
overrideprotectedvirtualinherited

Computes p and q, given stress.

Derived classes must override this

Parameters
stressStress tensor
pp stress
qq q stress

Implements TwoParameterPlasticityStressUpdate.

Reimplemented in CappedWeakInclinedPlaneStressUpdate.

Definition at line 120 of file CappedWeakPlaneStressUpdate.C.

121 {
122  p = stress(2, 2);
123  // Because the following is not explicitly symmeterised, it is useful for the Cosserat case too
124  q = std::sqrt(Utility::pow<2>(stress(0, 2)) + Utility::pow<2>(stress(1, 2)));
125 }

◆ computeStressParams()

void TwoParameterPlasticityStressUpdate::computeStressParams ( const RankTwoTensor &  stress,
std::vector< Real > &  stress_params 
) const
overrideprotectedvirtualinherited

Computes stress_params, given stress.

Derived classes must override this

Parameters
stress[in]Stress tensor
stress_params[out]The compute stress_params

Implements MultiParameterPlasticityStressUpdate.

Definition at line 155 of file TwoParameterPlasticityStressUpdate.C.

157 {
158  Real p;
159  Real q;
160  computePQ(stress, p, q);
161  stress_params[0] = p;
162  stress_params[1] = q;
163 }
virtual void computePQ(const RankTwoTensor &stress, Real &p, Real &q) const =0
Computes p and q, given stress.

◆ computeTimeStepLimit()

Real StressUpdateBase::computeTimeStepLimit ( )
virtualinherited

Reimplemented in RadialReturnStressUpdate.

Definition at line 55 of file StressUpdateBase.C.

56 {
57  return std::numeric_limits<Real>::max();
58 }

◆ consistentTangentOperator()

void CappedWeakPlaneCosseratStressUpdate::consistentTangentOperator ( const RankTwoTensor &  stress_trial,
Real  p_trial,
Real  q_trial,
const RankTwoTensor &  stress,
Real  p,
Real  q,
Real  gaE,
const yieldAndFlow smoothed_q,
const RankFourTensor &  Eijkl,
bool  compute_full_tangent_operator,
RankFourTensor &  cto 
) const
overrideprotectedvirtual

Calculates the consistent tangent operator.

Derived classes may choose to override this for computational efficiency. The implementation in this class is quite expensive, even though it looks compact and clean, because of all the manipulations of RankFourTensors involved.

Parameters
stress_trialthe trial value of the stress tensor for this strain increment
p_trialthe trial value of p for this strain increment
q_trialthe trial value of q for this strain increment
stressthe returned value of the stress tensor for this strain increment
pthe returned value of p for this strain increment
qthe returned value of q for this strain increment
gaEthe total value of that came from this strain increment
smoothed_qcontains the yield function and derivatives evaluated at (p, q)
EijklThe elasticity tensor
compute_full_tangent_operatortrue if the full consistent tangent operator is needed, otherwise false
[out]ctoThe consistent tangent operator

Reimplemented from CappedWeakPlaneStressUpdate.

Definition at line 57 of file CappedWeakPlaneCosseratStressUpdate.C.

69 {
70  cto = Eijkl;
71  if (!compute_full_tangent_operator)
72  return;
73 
74  const Real Ezzzz = Eijkl(2, 2, 2, 2);
75  const Real Exzxz = Eijkl(0, 2, 0, 2);
76  const Real tanpsi = _tan_psi.value(_intnl[_qp][0]);
77  const Real dintnl0_dq = -1.0 / Exzxz;
78  const Real dintnl0_dqt = 1.0 / Exzxz;
79  const Real dintnl1_dp = -1.0 / Ezzzz;
80  const Real dintnl1_dpt = 1.0 / Ezzzz;
81  const Real dintnl1_dq =
82  tanpsi / Exzxz - (q_trial - q) * _tan_psi.derivative(_intnl[_qp][0]) * dintnl0_dq / Exzxz;
83  const Real dintnl1_dqt =
84  -tanpsi / Exzxz - (q_trial - q) * _tan_psi.derivative(_intnl[_qp][0]) * dintnl0_dqt / Exzxz;
85 
86  for (unsigned i = 0; i < _tensor_dimensionality; ++i)
87  {
88  const Real dpt_depii = Eijkl(2, 2, i, i);
89  cto(2, 2, i, i) = _dp_dpt * dpt_depii;
90  const Real poisson_effect =
91  Eijkl(2, 2, 0, 0) / Ezzzz *
92  (_dgaE_dpt * smoothed_q.dg[0] + gaE * smoothed_q.d2g[0][0] * _dp_dpt +
93  gaE * smoothed_q.d2g[0][1] * _dq_dpt +
94  gaE * smoothed_q.d2g_di[0][0] * (dintnl0_dq * _dq_dpt) +
95  gaE * smoothed_q.d2g_di[0][1] *
96  (dintnl1_dpt + dintnl1_dp * _dp_dpt + dintnl1_dq * _dq_dpt)) *
97  dpt_depii;
98  cto(0, 0, i, i) -= poisson_effect;
99  cto(1, 1, i, i) -= poisson_effect;
100  if (q_trial > 0.0)
101  {
102  cto(0, 2, i, i) = _in_trial02 / q_trial * _dq_dpt * dpt_depii;
103  cto(1, 2, i, i) = _in_trial12 / q_trial * _dq_dpt * dpt_depii;
104  }
105  }
106 
107  const Real poisson_effect =
108  -Eijkl(2, 2, 0, 0) / Ezzzz *
109  (_dgaE_dqt * smoothed_q.dg[0] + gaE * smoothed_q.d2g[0][0] * _dp_dqt +
110  gaE * smoothed_q.d2g[0][1] * _dq_dqt +
111  gaE * smoothed_q.d2g_di[0][0] * (dintnl0_dqt + dintnl0_dq * _dq_dqt) +
112  gaE * smoothed_q.d2g_di[0][1] * (dintnl1_dqt + dintnl1_dp * _dp_dqt + dintnl1_dq * _dq_dqt));
113 
114  const Real dqt_dep02 = (q_trial == 0.0 ? 1.0 : _in_trial02 / q_trial) * Eijkl(0, 2, 0, 2);
115  cto(2, 2, 0, 2) = _dp_dqt * dqt_dep02;
116  cto(0, 0, 0, 2) = cto(1, 1, 0, 2) = poisson_effect * dqt_dep02;
117  if (q_trial > 0.0)
118  {
119  // for q_trial=0, Jacobian_mult is just given by the elastic case
120  cto(0, 2, 0, 2) = Eijkl(0, 2, 0, 2) * q / q_trial +
121  _in_trial02 * (_dq_dqt - q / q_trial) / q_trial * dqt_dep02;
122  cto(1, 2, 0, 2) = _in_trial12 * (_dq_dqt - q / q_trial) / q_trial * dqt_dep02;
123  }
124 
125  const Real dqt_dep20 = (q_trial == 0.0 ? 1.0 : _in_trial02 / q_trial) * Eijkl(0, 2, 2, 0);
126  cto(2, 2, 2, 0) = _dp_dqt * dqt_dep20;
127  cto(0, 0, 2, 0) = cto(1, 1, 2, 0) = poisson_effect * dqt_dep20;
128  if (q_trial > 0.0)
129  {
130  // for q_trial=0, Jacobian_mult is just given by the elastic case
131  cto(0, 2, 2, 0) = Eijkl(0, 2, 2, 0) * q / q_trial +
132  _in_trial02 * (_dq_dqt - q / q_trial) / q_trial * dqt_dep20;
133  cto(1, 2, 2, 0) = _in_trial12 * (_dq_dqt - q / q_trial) / q_trial * dqt_dep20;
134  }
135 
136  const Real dqt_dep12 = (q_trial == 0.0 ? 1.0 : _in_trial12 / q_trial) * Eijkl(1, 2, 1, 2);
137  cto(2, 2, 1, 2) = _dp_dqt * dqt_dep12;
138  cto(0, 0, 1, 2) = cto(1, 1, 1, 2) = poisson_effect * dqt_dep12;
139  if (q_trial > 0.0)
140  {
141  // for q_trial=0, Jacobian_mult is just given by the elastic case
142  cto(0, 2, 1, 2) = _in_trial02 * (_dq_dqt - q / q_trial) / q_trial * dqt_dep12;
143  cto(1, 2, 1, 2) = Eijkl(1, 2, 1, 2) * q / q_trial +
144  _in_trial12 * (_dq_dqt - q / q_trial) / q_trial * dqt_dep12;
145  }
146 
147  const Real dqt_dep21 = (q_trial == 0.0 ? 1.0 : _in_trial12 / q_trial) * Eijkl(1, 2, 2, 1);
148  cto(2, 2, 2, 1) = _dp_dqt * dqt_dep21;
149  cto(0, 0, 2, 1) = cto(1, 1, 2, 1) = poisson_effect * dqt_dep21;
150  if (q_trial > 0.0)
151  {
152  // for q_trial=0, Jacobian_mult is just given by the elastic case
153  cto(0, 2, 2, 1) = _in_trial02 * (_dq_dqt - q / q_trial) / q_trial * dqt_dep21;
154  cto(1, 2, 2, 1) = Eijkl(1, 2, 2, 1) * q / q_trial +
155  _in_trial12 * (_dq_dqt - q / q_trial) / q_trial * dqt_dep21;
156  }
157 }
Real _dp_dpt
derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculatio...
Real _dq_dpt
derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculatio...
Real _dgaE_dqt
derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculatio...
Real _dgaE_dpt
derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculatio...
MaterialProperty< std::vector< Real > > & _intnl
internal parameters
Real _in_trial02
trial value of stress(0, 2)
Real _dq_dqt
derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculatio...
const TensorMechanicsHardeningModel & _tan_psi
Hardening model for tan(psi)
virtual Real derivative(Real intnl) const
virtual Real value(Real intnl) const
Real _dp_dqt
derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculatio...
static constexpr unsigned _tensor_dimensionality
Internal dimensionality of tensors (currently this is 3 throughout tensor_mechanics) ...
Real _in_trial12
trial value of stress(1, 2)

◆ consistentTangentOperatorV()

void TwoParameterPlasticityStressUpdate::consistentTangentOperatorV ( const RankTwoTensor &  stress_trial,
const std::vector< Real > &  trial_stress_params,
const RankTwoTensor &  stress,
const std::vector< Real > &  stress_params,
Real  gaE,
const yieldAndFlow smoothed_q,
const RankFourTensor &  Eijkl,
bool  compute_full_tangent_operator,
const std::vector< std::vector< Real >> &  dvar_dtrial,
RankFourTensor &  cto 
)
overrideprotectedvirtualinherited

Calculates the consistent tangent operator.

Derived classes may choose to override this for computational efficiency. The implementation in this class is quite expensive, even though it looks compact and clean, because of all the manipulations of RankFourTensors involved.

Parameters
stress_trial[in]the trial value of the stress tensor for this strain increment
trial_stress_params[in]the trial values of the stress_params for this strain increment
stress[in]the returned value of the stress tensor for this strain increment
stress_params[in]the returned value of the stress_params for this strain increment
gaE[in]the total value of that came from this strain increment
smoothed_q[in]contains the yield function and derivatives evaluated at (p, q)
Eijkl[in]The elasticity tensor
compute_full_tangent_operator[in]true if the full consistent tangent operator is needed, otherwise false
dvar_dtrial[in]dvar_dtrial[i][j] = d({stress_param[i],gaE})/d(trial_stress_param[j]) for this strain increment
[out]ctoThe consistent tangent operator

Reimplemented from MultiParameterPlasticityStressUpdate.

Definition at line 166 of file TwoParameterPlasticityStressUpdate.C.

177 {
178  const Real p_trial = trial_stress_params[0];
179  const Real q_trial = trial_stress_params[1];
180  const Real p = stress_params[0];
181  const Real q = stress_params[1];
182  _dp_dpt = dvar_dtrial[0][0];
183  _dp_dqt = dvar_dtrial[0][1];
184  _dq_dpt = dvar_dtrial[1][0];
185  _dq_dqt = dvar_dtrial[1][1];
186  _dgaE_dpt = dvar_dtrial[2][0];
187  _dgaE_dqt = dvar_dtrial[2][1];
188  consistentTangentOperator(stress_trial,
189  p_trial,
190  q_trial,
191  stress,
192  p,
193  q,
194  gaE,
195  smoothed_q,
196  Eijkl,
197  compute_full_tangent_operator,
198  cto);
199 }
Real _dp_dpt
derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculatio...
Real _dq_dpt
derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculatio...
virtual void consistentTangentOperator(const RankTwoTensor &stress_trial, Real p_trial, Real q_trial, const RankTwoTensor &stress, Real p, Real q, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, bool compute_full_tangent_operator, RankFourTensor &cto) const
Calculates the consistent tangent operator.
Real _dgaE_dqt
derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculatio...
Real _dgaE_dpt
derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculatio...
Real _dq_dqt
derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculatio...
Real _dp_dqt
derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculatio...

◆ d2pdstress2()

RankFourTensor CappedWeakPlaneStressUpdate::d2pdstress2 ( const RankTwoTensor &  stress) const
overrideprotectedvirtualinherited

d2(p)/d(stress)/d(stress) Derived classes must override this

Parameters
stressstress tensor
Returns
d2(p)/d(stress)/d(stress)

Implements TwoParameterPlasticityStressUpdate.

Definition at line 493 of file CappedWeakPlaneStressUpdate.C.

494 {
495  return RankFourTensor();
496 }

◆ d2qdstress2()

RankFourTensor CappedWeakPlaneCosseratStressUpdate::d2qdstress2 ( const RankTwoTensor &  stress) const
overrideprotectedvirtual

d2(q)/d(stress)/d(stress) Derived classes must override this

Parameters
stressstress tensor
Returns
d2(q)/d(stress)/d(stress)

Reimplemented from CappedWeakPlaneStressUpdate.

Definition at line 179 of file CappedWeakPlaneCosseratStressUpdate.C.

180 {
181  RankFourTensor d2 = RankFourTensor();
182 
183  const Real q = std::sqrt(Utility::pow<2>(stress(0, 2)) + Utility::pow<2>(stress(1, 2)));
184  if (q == 0.0)
185  return d2;
186 
187  const Real dq02 = stress(0, 2) / q;
188  const Real dq12 = stress(1, 2) / q;
189 
190  d2(0, 2, 0, 2) = 1.0 / q - dq02 * dq02 / q;
191  d2(0, 2, 1, 2) = -dq02 * dq12 / q;
192  d2(1, 2, 0, 2) = -dq12 * dq02 / q;
193  d2(1, 2, 1, 2) = 1.0 / q - dq12 * dq12 / q;
194 
195  return d2;
196 }

◆ d2stress_param_dstress()

std::vector< RankFourTensor > TwoParameterPlasticityStressUpdate::d2stress_param_dstress ( const RankTwoTensor &  stress) const
overrideprotectedvirtualinherited

d2(stress_param[i])/d(stress)/d(stress) at given stress

Parameters
stressstress tensor
Returns
d2(stress_param[:])/d(stress)/d(stress)

Implements MultiParameterPlasticityStressUpdate.

Definition at line 300 of file TwoParameterPlasticityStressUpdate.C.

301 {
302  std::vector<RankFourTensor> d2(_num_pq, RankFourTensor());
303  d2[0] = d2pdstress2(stress);
304  d2[1] = d2qdstress2(stress);
305  return d2;
306 }
virtual RankFourTensor d2pdstress2(const RankTwoTensor &stress) const =0
d2(p)/d(stress)/d(stress) Derived classes must override this
static constexpr int _num_pq
Number of variables = 2 = (p, q)
virtual RankFourTensor d2qdstress2(const RankTwoTensor &stress) const =0
d2(q)/d(stress)/d(stress) Derived classes must override this

◆ dnRHSdVar()

void MultiParameterPlasticityStressUpdate::dnRHSdVar ( const yieldAndFlow smoothed_q,
const std::vector< std::vector< Real >> &  dintnl,
const std::vector< Real > &  stress_params,
Real  gaE,
std::vector< double > &  jac 
) const
protectedinherited

Derivative of -RHS with respect to the stress_params and gaE, placed into an array ready for solving the linear system using LAPACK gsev.

Parameters
smoothed_q[in]Holds the current value of yield function and derivatives evaluated at the current values of the stress_params and the internal parameters
dintnl[in]The derivatives of the internal parameters wrt the stress_params
stress_params[in]The current value of the stress_params during the Newton-Raphson process
gaE[in]The current value of gaE
jac[out]The outputted derivatives

Definition at line 756 of file MultiParameterPlasticityStressUpdate.C.

Referenced by MultiParameterPlasticityStressUpdate::dVardTrial(), and MultiParameterPlasticityStressUpdate::nrStep().

761 {
762  for (auto & jac_entry : jac)
763  jac_entry = 0.0;
764 
765  const Real ga = gaE / _En;
766 
767  unsigned ind = 0;
768  for (unsigned var = 0; var < _num_sp; ++var)
769  {
770  for (unsigned rhs = 0; rhs < _num_sp; ++rhs)
771  {
772  if (var == rhs)
773  jac[ind] -= 1.0;
774  for (unsigned j = 0; j < _num_sp; ++j)
775  {
776  jac[ind] -= ga * _Eij[rhs][j] * smoothed_q.d2g[j][var];
777  for (unsigned k = 0; k < _num_intnl; ++k)
778  jac[ind] -= ga * _Eij[rhs][j] * smoothed_q.d2g_di[j][k] * dintnl[k][var];
779  }
780  ind++;
781  }
782  // now rhs = _num_sp (that is, the yield function)
783  jac[ind] -= smoothed_q.df[var];
784  for (unsigned k = 0; k < _num_intnl; ++k)
785  jac[ind] -= smoothed_q.df_di[k] * dintnl[k][var];
786  ind++;
787  }
788 
789  // now var = _num_sp (that is, gaE)
790  for (unsigned rhs = 0; rhs < _num_sp; ++rhs)
791  {
792  for (unsigned j = 0; j < _num_sp; ++j)
793  jac[ind] -= (1.0 / _En) * _Eij[rhs][j] * smoothed_q.dg[j];
794  ind++;
795  }
796  // now rhs = _num_sp (that is, the yield function)
797  jac[ind] = 0.0;
798 }
const unsigned _num_intnl
Number of internal parameters.
std::vector< std::vector< Real > > _Eij
E[i, j] in the system of equations to be solved.
const unsigned _num_sp
Number of stress parameters.

◆ dpdstress()

RankTwoTensor CappedWeakPlaneStressUpdate::dpdstress ( const RankTwoTensor &  stress) const
overrideprotectedvirtualinherited

d(p)/d(stress) Derived classes must override this

Parameters
stressstress tensor
Returns
d(p)/d(stress)

Implements TwoParameterPlasticityStressUpdate.

Reimplemented in CappedWeakInclinedPlaneStressUpdate.

Definition at line 485 of file CappedWeakPlaneStressUpdate.C.

486 {
487  RankTwoTensor deriv = RankTwoTensor();
488  deriv(2, 2) = 1.0;
489  return deriv;
490 }

◆ dqdstress()

RankTwoTensor CappedWeakPlaneCosseratStressUpdate::dqdstress ( const RankTwoTensor &  stress) const
overrideprotectedvirtual

d(q)/d(stress) Derived classes must override this

Parameters
stressstress tensor
Returns
d(q)/d(stress)

Reimplemented from CappedWeakPlaneStressUpdate.

Definition at line 160 of file CappedWeakPlaneCosseratStressUpdate.C.

161 {
162  RankTwoTensor deriv = RankTwoTensor();
163  const Real q = std::sqrt(Utility::pow<2>(stress(0, 2)) + Utility::pow<2>(stress(1, 2)));
164  if (q > 0.0)
165  {
166  deriv(0, 2) = stress(0, 2) / q;
167  deriv(1, 2) = stress(1, 2) / q;
168  }
169  else
170  {
171  // derivative is not defined here. For now i'll set:
172  deriv(0, 2) = 1.0;
173  deriv(1, 2) = 1.0;
174  }
175  return deriv;
176 }

◆ dsmoother()

Real MultiParameterPlasticityStressUpdate::dsmoother ( Real  f_diff) const
protectedinherited

Derivative of smoother.

Definition at line 473 of file MultiParameterPlasticityStressUpdate.C.

Referenced by MultiParameterPlasticityStressUpdate::smoothAllQuantities().

474 {
475  if (std::abs(f_diff) >= _smoothing_tol)
476  return 0.0;
477  return 0.25 * M_PI / _smoothing_tol * std::cos(f_diff * M_PI * 0.5 / _smoothing_tol);
478 }
const Real _smoothing_tol
Smoothing tolerance: edges of the yield surface get smoothed by this amount.

◆ dstress_param_dstress()

std::vector< RankTwoTensor > TwoParameterPlasticityStressUpdate::dstress_param_dstress ( const RankTwoTensor &  stress) const
overrideprotectedvirtualinherited

d(stress_param[i])/d(stress) at given stress

Parameters
stressstress tensor
Returns
d(stress_param[:])/d(stress)

Implements MultiParameterPlasticityStressUpdate.

Definition at line 291 of file TwoParameterPlasticityStressUpdate.C.

292 {
293  std::vector<RankTwoTensor> dsp(_num_pq, RankTwoTensor());
294  dsp[0] = dpdstress(stress);
295  dsp[1] = dqdstress(stress);
296  return dsp;
297 }
static constexpr int _num_pq
Number of variables = 2 = (p, q)
virtual RankTwoTensor dqdstress(const RankTwoTensor &stress) const =0
d(q)/d(stress) Derived classes must override this
virtual RankTwoTensor dpdstress(const RankTwoTensor &stress) const =0
d(p)/d(stress) Derived classes must override this

◆ dVardTrial()

void MultiParameterPlasticityStressUpdate::dVardTrial ( bool  elastic_only,
const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  stress_params,
Real  gaE,
const std::vector< Real > &  intnl,
const yieldAndFlow smoothed_q,
Real  step_size,
bool  compute_full_tangent_operator,
std::vector< std::vector< Real >> &  dvar_dtrial 
) const
protectedinherited

Calculates derivatives of the stress_params and gaE with repect to the trial values of the stress_params for the (sub)strain increment.

After the strain increment has been fully applied, dvar_dtrial will contain the result appropriate to the full strain increment. Before that time (if applying in sub-strain increments) it will contain the result appropriate to the amount of strain increment applied successfully.

Parameters
elastic_only[in]whether this was an elastic step: if so then the updates to dvar_dtrial are fairly trivial
trial_stress_params[in]Trial values of stress_params for this (sub)strain increment
stress_params[in]Returned values of stress_params for this (sub)strain increment
gaE[in]the value of gaE that came from this (sub)strain increment
intnl[in]the value of the internal parameters at the returned position
smoothed_q[in]contains the yield function and derivatives evaluated at (stress_params, intnl)
step_size[in]size of this (sub)strain increment
compute_full_tangent_operator[in]true if the full consistent tangent operator is needed, otherwise false
dvar_dtrial[out]dvar_dtrial[i][j] = d({stress_param[i],gaE})/d(trial_stress_param[j])

Definition at line 801 of file MultiParameterPlasticityStressUpdate.C.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

810 {
811  if (!_fe_problem.currentlyComputingJacobian())
812  return;
813 
814  if (!compute_full_tangent_operator)
815  return;
816 
817  if (elastic_only)
818  {
819  // no change to gaE, and all off-diag stuff remains unchanged from previous step
820  for (unsigned v = 0; v < _num_sp; ++v)
821  dvar_dtrial[v][v] += step_size;
822  return;
823  }
824 
825  const Real ga = gaE / _En;
826 
827  std::vector<std::vector<Real>> dintnl(_num_intnl, std::vector<Real>(_num_sp));
828  setIntnlDerivativesV(trial_stress_params, stress_params, intnl, dintnl);
829 
830  // rhs is described elsewhere, the following are changes in rhs wrt the trial_stress_param
831  // values
832  // In the following we use d(intnl)/d(trial variable) = - d(intnl)/d(variable)
833  std::vector<Real> rhs_cto((_num_sp + 1) * _num_sp);
834 
835  unsigned ind = 0;
836  for (unsigned a = 0; a < _num_sp; ++a)
837  {
838  // change in RHS[b] wrt changes in stress_param_trial[a]
839  for (unsigned b = 0; b < _num_sp; ++b)
840  {
841  if (a == b)
842  rhs_cto[ind] -= 1.0;
843  for (unsigned j = 0; j < _num_sp; ++j)
844  for (unsigned k = 0; k < _num_intnl; ++k)
845  rhs_cto[ind] -= ga * _Eij[b][j] * smoothed_q.d2g_di[j][k] * dintnl[k][a];
846  ind++;
847  }
848  // now b = _num_sp (that is, the yield function)
849  for (unsigned k = 0; k < _num_intnl; ++k)
850  rhs_cto[ind] -= smoothed_q.df_di[k] * dintnl[k][a];
851  ind++;
852  }
853 
854  // jac = d(-rhs)/d(var)
855  std::vector<double> jac((_num_sp + 1) * (_num_sp + 1));
856  dnRHSdVar(smoothed_q, dintnl, stress_params, gaE, jac);
857 
858  std::vector<int> ipiv(_num_sp + 1);
859  int info;
860  const int gesv_num_rhs = _num_sp + 1;
861  const int gesv_num_pq = _num_sp;
862  LAPACKgesv_(&gesv_num_rhs,
863  &gesv_num_pq,
864  &jac[0],
865  &gesv_num_rhs,
866  &ipiv[0],
867  &rhs_cto[0],
868  &gesv_num_rhs,
869  &info);
870  if (info != 0)
871  errorHandler("MultiParameterPlasticityStressUpdate: PETSC LAPACK gsev routine returned with "
872  "error code " +
873  Moose::stringify(info));
874 
875  ind = 0;
876  std::vector<std::vector<Real>> dvarn_dtrialn(_num_sp + 1, std::vector<Real>(_num_sp, 0.0));
877  for (unsigned spt = 0; spt < _num_sp; ++spt) // loop over trial stress-param variables
878  {
879  for (unsigned v = 0; v < _num_sp; ++v) // loop over variables in NR procedure
880  {
881  dvarn_dtrialn[v][spt] = rhs_cto[ind];
882  ind++;
883  }
884  // the final NR variable is gaE
885  dvarn_dtrialn[_num_sp][spt] = rhs_cto[ind];
886  ind++;
887  }
888 
889  const std::vector<std::vector<Real>> dvar_dtrial_old = dvar_dtrial;
890 
891  for (unsigned v = 0; v < _num_sp; ++v) // loop over variables in NR procedure
892  {
893  for (unsigned spt = 0; spt < _num_sp; ++spt) // loop over trial stress-param variables
894  {
895  dvar_dtrial[v][spt] = step_size * dvarn_dtrialn[v][spt];
896  for (unsigned a = 0; a < _num_sp; ++a)
897  dvar_dtrial[v][spt] += dvarn_dtrialn[v][a] * dvar_dtrial_old[a][spt];
898  }
899  }
900  // for gaE the formulae are a little different
901  const unsigned v = _num_sp;
902  for (unsigned spt = 0; spt < _num_sp; ++spt)
903  {
904  dvar_dtrial[v][spt] += step_size * dvarn_dtrialn[v][spt]; // note +=
905  for (unsigned a = 0; a < _num_sp; ++a)
906  dvar_dtrial[v][spt] += dvarn_dtrialn[v][a] * dvar_dtrial_old[a][spt];
907  }
908 }
void dnRHSdVar(const yieldAndFlow &smoothed_q, const std::vector< std::vector< Real >> &dintnl, const std::vector< Real > &stress_params, Real gaE, std::vector< double > &jac) const
Derivative of -RHS with respect to the stress_params and gaE, placed into an array ready for solving ...
virtual void errorHandler(const std::string &message) const
Performs any necessary cleaning-up, then throw MooseException(message)
const unsigned _num_intnl
Number of internal parameters.
std::vector< std::vector< Real > > _Eij
E[i, j] in the system of equations to be solved.
virtual void setIntnlDerivativesV(const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl, std::vector< std::vector< Real >> &dintnl) const =0
Sets the derivatives of internal parameters, based on the trial values of stress_params, their current values, and the current values of the internal parameters.
const unsigned _num_sp
Number of stress parameters.

◆ errorHandler()

void MultiParameterPlasticityStressUpdate::errorHandler ( const std::string &  message) const
protectedvirtualinherited

Performs any necessary cleaning-up, then throw MooseException(message)

Parameters
messageThe message to using in MooseException

Definition at line 589 of file MultiParameterPlasticityStressUpdate.C.

Referenced by MultiParameterPlasticityStressUpdate::dVardTrial(), and MultiParameterPlasticityStressUpdate::updateState().

590 {
591  throw MooseException(message);
592 }

◆ finalizeReturnProcess()

void CappedWeakPlaneStressUpdate::finalizeReturnProcess ( const RankTwoTensor &  rotation_increment)
overrideprotectedvirtualinherited

Derived classes may use this to perform calculations after the return-map process has completed successfully in stress_param space but before the returned stress tensor has been calculcated.

Parameters
rotation_increment[in]The large-strain rotation increment

Reimplemented from MultiParameterPlasticityStressUpdate.

Reimplemented in CappedWeakInclinedPlaneStressUpdate.

Definition at line 94 of file CappedWeakPlaneStressUpdate.C.

Referenced by CappedWeakInclinedPlaneStressUpdate::finalizeReturnProcess().

◆ getTangentCalculationMethod()

virtual TangentCalculationMethod MultiParameterPlasticityStressUpdate::getTangentCalculationMethod ( )
inlineoverrideprotectedvirtualinherited

Reimplemented from StressUpdateBase.

Definition at line 122 of file MultiParameterPlasticityStressUpdate.h.

◆ initializeReturnProcess()

void CappedWeakPlaneStressUpdate::initializeReturnProcess ( )
overrideprotectedvirtualinherited

Derived classes may use this to perform calculations before any return-map process is performed, for instance, to initialize variables.

This is called at the very start of updateState, even before any checking for admissible stresses, etc, is performed

Reimplemented from MultiParameterPlasticityStressUpdate.

Reimplemented in CappedWeakInclinedPlaneStressUpdate.

Definition at line 88 of file CappedWeakPlaneStressUpdate.C.

Referenced by CappedWeakInclinedPlaneStressUpdate::initializeReturnProcess().

◆ initializeVars()

void CappedWeakPlaneStressUpdate::initializeVars ( Real  p_trial,
Real  q_trial,
const std::vector< Real > &  intnl_old,
Real &  p,
Real &  q,
Real &  gaE,
std::vector< Real > &  intnl 
) const
overrideprotectedvirtualinherited

Sets (p, q, gaE, intnl) at "good guesses" of the solution to the Return-Map algorithm.

The purpose of these "good guesses" is to speed up the Newton-Raphson process by providing it with a good initial guess. Derived classes may choose to override this if their plastic models are easy enough to solve approximately. The default values, provided by this class, are simply p=p_trial, etc: that is, the "good guess" is just the trial point for this (sub)strain increment.

Parameters
p_trialThe trial value of p for this (sub)strain increment
q_trialThe trial value of q for this (sub)strain increment
intnl_oldThe internal parameters before applying the (sub)strain increment
p[out]The "good guess" value of p. Default = p_trial
q[out]The "good guess" value of q. Default = q_trial
gaE[out]The "good guess" value of gaE. Default = 0
intnl[out]The "good guess" value of the internal parameters

Reimplemented from TwoParameterPlasticityStressUpdate.

Definition at line 377 of file CappedWeakPlaneStressUpdate.C.

384 {
385  const Real tanpsi = _tan_psi.value(intnl_old[0]);
386 
387  if (!_perfect_guess)
388  {
389  p = p_trial;
390  q = q_trial;
391  gaE = 0.0;
392  }
393  else
394  {
395  const Real coh = _cohesion.value(intnl_old[0]);
396  const Real tanphi = _tan_phi.value(intnl_old[0]);
397  const Real tens = _tstrength.value(intnl_old[1]);
398  const Real comp = _cstrength.value(intnl_old[1]);
399  const Real q_at_T = coh - tens * tanphi;
400  const Real q_at_C = coh + comp * tanphi;
401 
402  if ((p_trial >= tens) && (q_trial <= q_at_T))
403  {
404  // pure tensile failure
405  p = tens;
406  q = q_trial;
407  gaE = p_trial - p;
408  }
409  else if ((p_trial <= -comp) && (q_trial <= q_at_C))
410  {
411  // pure compressive failure
412  p = -comp;
413  q = q_trial;
414  gaE = p - p_trial;
415  }
416  else
417  {
418  // shear failure or a mixture
419  // Calculate ga assuming a pure shear failure
420  const Real ga = (q_trial + p_trial * tanphi - coh) / (_Eqq + _Epp * tanphi * tanpsi);
421  if (ga <= 0 && p_trial <= tens && p_trial >= -comp)
422  {
423  // very close to one of the rounded corners: there is no advantage to guessing the
424  // solution, so:
425  p = p_trial;
426  q = q_trial;
427  gaE = 0.0;
428  }
429  else
430  {
431  q = q_trial - _Eqq * ga;
432  if (q <= 0.0 && q_at_T <= 0.0)
433  {
434  // user has set tensile strength so large that it is irrelevant: return to the tip of the
435  // shear cone
436  q = 0.0;
437  p = coh / tanphi;
438  gaE = (p_trial - p) / tanpsi; // just a guess, based on the angle to the corner
439  }
440  else if (q <= q_at_T)
441  {
442  // pure shear is incorrect: mixture of tension and shear is correct
443  q = q_at_T;
444  p = tens;
445  gaE = (p_trial - p) / tanpsi; // just a guess, based on the angle to the corner
446  }
447  else if (q >= q_at_C)
448  {
449  // pure shear is incorrect: mixture of compression and shear is correct
450  q = q_at_C;
451  p = -comp;
452  if (p - p_trial < _Epp * tanpsi * (q_trial - q) / _Eqq)
453  // trial point is sitting almost directly above corner
454  gaE = (q_trial - q) * _Epp / _Eqq;
455  else
456  // trial point is sitting to the left of the corner
457  gaE = (p - p_trial) / tanpsi;
458  }
459  else
460  {
461  // pure shear was correct
462  p = p_trial - _Epp * ga * tanpsi;
463  gaE = ga * _Epp;
464  }
465  }
466  }
467  }
468  setIntnlValues(p_trial, q_trial, p, q, intnl_old, intnl);
469 }
const TensorMechanicsHardeningModel & _cstrength
Hardening model for compressive strength.
const TensorMechanicsHardeningModel & _cohesion
Hardening model for cohesion.
const TensorMechanicsHardeningModel & _tan_phi
Hardening model for tan(phi)
virtual void setIntnlValues(Real p_trial, Real q_trial, Real p, Real q, const std::vector< Real > &intnl_old, std::vector< Real > &intnl) const override
Sets the internal parameters based on the trial values of p and q, their current values, and the old values of the internal parameters.
const TensorMechanicsHardeningModel & _tan_psi
Hardening model for tan(psi)
const bool _perfect_guess
Initialize the NR proceedure from a guess coming from perfect plasticity.
Real _Epp
elasticity tensor in p direction
virtual Real value(Real intnl) const
Real _Eqq
elasticity tensor in q direction
const TensorMechanicsHardeningModel & _tstrength
Hardening model for tensile strength.

◆ initializeVarsV()

void TwoParameterPlasticityStressUpdate::initializeVarsV ( const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  intnl_old,
std::vector< Real > &  stress_params,
Real &  gaE,
std::vector< Real > &  intnl 
) const
overrideprotectedvirtualinherited

Sets (stress_params, intnl) at "good guesses" of the solution to the Return-Map algorithm.

The purpose of these "good guesses" is to speed up the Newton-Raphson process by providing it with a good initial guess. Derived classes may choose to override this if their plastic models are easy enough to solve approximately. The default values, provided by this class, are simply gaE = 0, stress_params = trial_stress_params, that is, the "good guess" is just the trial point for this (sub)strain increment.

Parameters
trial_stress_params[in]The stress_params at the trial point
intnl_old[in]The internal parameters before applying the (sub)strain increment
stress_params[out]The "good guess" value of the stress_params
gaE[out]The "good guess" value of gaE
intnl[out]The "good guess" value of the internal parameters

Reimplemented from MultiParameterPlasticityStressUpdate.

Definition at line 112 of file TwoParameterPlasticityStressUpdate.C.

117 {
118  const Real p_trial = trial_stress_params[0];
119  const Real q_trial = trial_stress_params[1];
120  Real p;
121  Real q;
122  initializeVars(p_trial, q_trial, intnl_old, p, q, gaE, intnl);
123  stress_params[0] = p;
124  stress_params[1] = q;
125 }
virtual void initializeVars(Real p_trial, Real q_trial, const std::vector< Real > &intnl_old, Real &p, Real &q, Real &gaE, std::vector< Real > &intnl) const
Sets (p, q, gaE, intnl) at "good guesses" of the solution to the Return-Map algorithm.

◆ initQpStatefulProperties()

void MultiParameterPlasticityStressUpdate::initQpStatefulProperties ( )
overrideprotectedvirtualinherited

Reimplemented in CappedWeakInclinedPlaneStressUpdate.

Definition at line 126 of file MultiParameterPlasticityStressUpdate.C.

Referenced by CappedWeakInclinedPlaneStressUpdate::initQpStatefulProperties().

127 {
128  _plastic_strain[_qp].zero();
129  _intnl[_qp].assign(_num_intnl, 0);
130  _yf[_qp].assign(_num_yf, 0);
131  _iter[_qp] = 0.0;
132  _linesearch_needed[_qp] = 0.0;
133 }
MaterialProperty< std::vector< Real > > & _yf
yield functions
const unsigned _num_intnl
Number of internal parameters.
MaterialProperty< std::vector< Real > > & _intnl
internal parameters
const unsigned _num_yf
Number of yield functions.
MaterialProperty< Real > & _iter
Number of Newton-Raphson iterations used in the return-map.
MaterialProperty< RankTwoTensor > & _plastic_strain
plastic strain
MaterialProperty< Real > & _linesearch_needed
Whether a line-search was needed in the latest Newton-Raphson process (1 if true, 0 otherwise) ...

◆ ismoother()

Real MultiParameterPlasticityStressUpdate::ismoother ( Real  f_diff) const
protectedinherited

Smooths yield functions.

The returned value must be zero if abs(f_diff) >= _smoothing_tol and otherwise must satisfy, over -_smoothing_tol <= f_diff <= _smoothing_tol: (1) C2 (2) zero at f_diff = +/- _smoothing_tol (3) derivative is +/-0.5 at f_diff = +/- _smoothing_tol (4) derivative must be in [-0.5, 0.5] (5) second derivative is zero at f_diff = +/- _smoothing_tol (6) second derivative must be non-negative in order to ensure C2 differentiability and convexity of the smoothed yield surface.

Definition at line 457 of file MultiParameterPlasticityStressUpdate.C.

Referenced by MultiParameterPlasticityStressUpdate::smoothAllQuantities(), and MultiParameterPlasticityStressUpdate::yieldF().

458 {
459  if (std::abs(f_diff) >= _smoothing_tol)
460  return 0.0;
461  return -_smoothing_tol / M_PI * std::cos(0.5 * M_PI * f_diff / _smoothing_tol);
462 }
const Real _smoothing_tol
Smoothing tolerance: edges of the yield surface get smoothed by this amount.

◆ lineSearch()

int MultiParameterPlasticityStressUpdate::lineSearch ( Real &  res2,
std::vector< Real > &  stress_params,
Real &  gaE,
const std::vector< Real > &  trial_stress_params,
yieldAndFlow smoothed_q,
const std::vector< Real > &  intnl_ok,
std::vector< Real > &  intnl,
std::vector< Real > &  rhs,
Real &  linesearch_needed 
) const
protectedinherited

Performs a line-search to find stress_params and gaE Upon entry:

  • rhs contains the solution to the Newton-Raphson (ie nrStep should have been called). If a full Newton step is used then stress_params[:] += rhs[0:_num_sp-1] and gaE += rhs[_num_sp]
  • res2 contains the residual-squared before applying any of solution
  • stress_params contains the stress_params before applying any of the solution
  • gaE contains gaE before applying any of the solution (that is contained in rhs) Upon exit:
  • stress_params will be the stress_params after applying the solution
  • gaE will be the stress_params after applying the solution
  • rhs will contain the updated rhs values (after applying the solution) ready for the next Newton-Raphson step,
  • res2 will be the residual-squared after applying the solution
  • intnl will contain the internal variables corresponding to the return from trial_stress_params to stress_params (and starting from intnl_ok)
  • linesearch_needed will be 1.0 if a linesearch was needed
  • smoothed_q will contain the value of the yield function and its derivatives, etc, at (stress_params, intnl)
    Parameters
    res2[in,out]the residual-squared, both as an input and output
    stress_params[in,out]Upon input the value of the stress_params before the current Newton-Raphson process was initiated. Upon exit this will hold the values coming from the line search.
    trial_stress_params[in]Trial value for the stress_params for this (sub)strain increment
    gaE[in,out]Upon input the value of gaE before the current Newton-Raphson iteration was initiated. Upon exit this will hold the value coming from the line-search
    smoothed_q[in,out]Upon input, the value of the smoothed yield function and derivatives at the prior-to-Newton configuration. Upon exit this is evaluated at the new (stress_params, intnl)
    intnl_ok[in]The value of the internal parameters from the start of this (sub)strain increment
    intnl[in,out]The value of the internal parameters after the line-search has converged
    rhs[in,out]Upon entry this contains the solution to the Newton-Raphson. Upon exit this contains the updated rhs values
    Returns
    0 if successful, 1 otherwise

Definition at line 481 of file MultiParameterPlasticityStressUpdate.C.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

490 {
491  const Real res2_old = res2;
492  const std::vector<Real> sp_params_old = stress_params;
493  const Real gaE_old = gaE;
494  const std::vector<Real> delta_nr_params = rhs;
495 
496  Real lam = 1.0; // line-search parameter
497  const Real lam_min = 1E-10; // minimum value of lam allowed
498  const Real slope = -2.0 * res2_old; // "Numerical Recipes" uses -b*A*x, in order to check for
499  // roundoff, but i hope the nrStep would warn if there were
500  // problems
501  Real tmp_lam; // cached value of lam used in quadratic & cubic line search
502  Real f2 = res2_old; // cached value of f = residual2 used in the cubic in the line search
503  Real lam2 = lam; // cached value of lam used in the cubic in the line search
504 
505  while (true)
506  {
507  // update variables using the current line-search parameter
508  for (unsigned i = 0; i < _num_sp; ++i)
509  stress_params[i] = sp_params_old[i] + lam * delta_nr_params[i];
510  gaE = gaE_old + lam * delta_nr_params[_num_sp];
511 
512  // and internal parameters
513  setIntnlValuesV(trial_stress_params, stress_params, intnl_ok, intnl);
514 
515  smoothed_q = smoothAllQuantities(stress_params, intnl);
516 
517  // update rhs for next-time through
518  calculateRHS(trial_stress_params, stress_params, gaE, smoothed_q, rhs);
519  res2 = calculateRes2(rhs);
520 
521  // do the line-search
522  if (res2 < res2_old + 1E-4 * lam * slope)
523  break;
524  else if (lam < lam_min)
525  return 1;
526  else if (lam == 1.0)
527  {
528  // model as a quadratic
529  tmp_lam = -0.5 * slope / (res2 - res2_old - slope);
530  }
531  else
532  {
533  // model as a cubic
534  const Real rhs1 = res2 - res2_old - lam * slope;
535  const Real rhs2 = f2 - res2_old - lam2 * slope;
536  const Real a = (rhs1 / Utility::pow<2>(lam) - rhs2 / Utility::pow<2>(lam2)) / (lam - lam2);
537  const Real b =
538  (-lam2 * rhs1 / Utility::pow<2>(lam) + lam * rhs2 / Utility::pow<2>(lam2)) / (lam - lam2);
539  if (a == 0.0)
540  tmp_lam = -slope / (2.0 * b);
541  else
542  {
543  const Real disc = Utility::pow<2>(b) - 3.0 * a * slope;
544  if (disc < 0)
545  tmp_lam = 0.5 * lam;
546  else if (b <= 0)
547  tmp_lam = (-b + std::sqrt(disc)) / (3.0 * a);
548  else
549  tmp_lam = -slope / (b + std::sqrt(disc));
550  }
551  if (tmp_lam > 0.5 * lam)
552  tmp_lam = 0.5 * lam;
553  }
554  lam2 = lam;
555  f2 = res2;
556  lam = std::max(tmp_lam, 0.1 * lam);
557  }
558 
559  if (lam < 1.0)
560  linesearch_needed = 1.0;
561  return 0;
562 }
virtual void setIntnlValuesV(const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &intnl) const =0
Sets the internal parameters based on the trial values of stress_params, their current values...
void calculateRHS(const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, Real gaE, const yieldAndFlow &smoothed_q, std::vector< Real > &rhs) const
Calculates the RHS in the following 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, j] * dg/dS[j] 0 = rhs[...
yieldAndFlow smoothAllQuantities(const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
Calculates all yield functions and derivatives, and then performs the smoothing scheme.
Real calculateRes2(const std::vector< Real > &rhs) const
Calculates the residual-squared for the Newton-Raphson + line-search.
const unsigned _num_sp
Number of stress parameters.

◆ nrStep()

int MultiParameterPlasticityStressUpdate::nrStep ( const yieldAndFlow smoothed_q,
const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl,
Real  gaE,
std::vector< Real > &  rhs 
) const
protectedinherited

Performs a Newton-Raphson step to attempt to zero rhs Upon return, rhs will contain the solution.

Parameters
smoothed_q[in]The value of the smoothed yield function and derivatives prior to this Newton-Raphson step
trial_stress_params[in]Trial value for the stress_params for this (sub)strain increment
stress_params[in]The current value of the stress_params
intnl[in]The current value of the internal parameters
gaE[in]The current value of gaE
rhs[in,out]Upon entry, the rhs to zero using Newton-Raphson. Upon exit, the solution to the Newton-Raphson problem
Returns
0 if successful, 1 otherwise

Definition at line 565 of file MultiParameterPlasticityStressUpdate.C.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

571 {
572  std::vector<std::vector<Real>> dintnl(_num_intnl, std::vector<Real>(_num_sp));
573  setIntnlDerivativesV(trial_stress_params, stress_params, intnl, dintnl);
574 
575  std::vector<double> jac((_num_sp + 1) * (_num_sp + 1));
576  dnRHSdVar(smoothed_q, dintnl, stress_params, gaE, jac);
577 
578  // use LAPACK to solve the linear system
579  const int nrhs = 1;
580  std::vector<int> ipiv(_num_sp + 1);
581  int info;
582  const int gesv_num_rhs = _num_sp + 1;
583  LAPACKgesv_(
584  &gesv_num_rhs, &nrhs, &jac[0], &gesv_num_rhs, &ipiv[0], &rhs[0], &gesv_num_rhs, &info);
585  return info;
586 }
void dnRHSdVar(const yieldAndFlow &smoothed_q, const std::vector< std::vector< Real >> &dintnl, const std::vector< Real > &stress_params, Real gaE, std::vector< double > &jac) const
Derivative of -RHS with respect to the stress_params and gaE, placed into an array ready for solving ...
const unsigned _num_intnl
Number of internal parameters.
virtual void setIntnlDerivativesV(const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl, std::vector< std::vector< Real >> &dintnl) const =0
Sets the derivatives of internal parameters, based on the trial values of stress_params, their current values, and the current values of the internal parameters.
const unsigned _num_sp
Number of stress parameters.

◆ precisionLoss()

bool MultiParameterPlasticityStressUpdate::precisionLoss ( const std::vector< Real > &  solution,
const std::vector< Real > &  stress_params,
Real  gaE 
) const
protectedinherited

Check whether precision loss has occurred.

Parameters
[in]solutionThe solution to the Newton-Raphson system
[in]stress_paramsThe currect values of the stress_params for this (sub)strain increment
[in]gaEThe currenct value of gaE for this (sub)strain increment
Returns
true if precision loss has occurred

Definition at line 911 of file MultiParameterPlasticityStressUpdate.C.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

914 {
915  if (std::abs(solution[_num_sp]) > 1E-13 * std::abs(gaE))
916  return false;
917  for (unsigned i = 0; i < _num_sp; ++i)
918  if (std::abs(solution[i]) > 1E-13 * std::abs(stress_params[i]))
919  return false;
920  return true;
921 }
const unsigned _num_sp
Number of stress parameters.

◆ preReturnMap()

void CappedWeakPlaneStressUpdate::preReturnMap ( Real  p_trial,
Real  q_trial,
const RankTwoTensor &  stress_trial,
const std::vector< Real > &  intnl_old,
const std::vector< Real > &  yf,
const RankFourTensor &  Eijkl 
)
overrideprotectedvirtualinherited

Derived classes may employ this function to record stuff or do other computations prior to the return-mapping algorithm.

We know that (p_trial, q_trial, intnl_old) is inadmissible.

Parameters
p_trialTrial value of p
q_trialTrial value of q
stress_trialTrial stress tensor
intnl_oldOld value of the internal parameters.
yfThe yield functions at (p_trial, q_trial, intnl_old)
EijklThe elasticity tensor

Reimplemented from TwoParameterPlasticityStressUpdate.

Reimplemented in CappedWeakInclinedPlaneStressUpdate.

Definition at line 100 of file CappedWeakPlaneStressUpdate.C.

106 {
107  // If it's obvious, then simplify the return-type
108  if (yf[1] >= 0)
110  else if (yf[2] >= 0)
112 
113  // The following are useful for the Cosserat case too
114  _in_trial02 = stress_trial(0, 2);
115  _in_trial12 = stress_trial(1, 2);
116  _in_q_trial = q_trial;
117 }
Real _in_trial02
trial value of stress(0, 2)
enum CappedWeakPlaneStressUpdate::StressReturnType _stress_return_type
Real _in_trial12
trial value of stress(1, 2)

◆ preReturnMapV()

void TwoParameterPlasticityStressUpdate::preReturnMapV ( const std::vector< Real > &  trial_stress_params,
const RankTwoTensor &  stress_trial,
const std::vector< Real > &  intnl_old,
const std::vector< Real > &  yf,
const RankFourTensor &  Eijkl 
)
overrideprotectedvirtualinherited

Derived classes may employ this function to record stuff or do other computations prior to the return-mapping algorithm.

We know that (trial_stress_params, intnl_old) is inadmissible when this is called

Parameters
trial_stress_params[in]The trial values of the stress parameters
stress_trial[in]Trial stress tensor
intnl_old[in]Old value of the internal parameters.
yf[in]The yield functions at (p_trial, q_trial, intnl_old)
Eijkl[in]The elasticity tensor

Reimplemented from MultiParameterPlasticityStressUpdate.

Definition at line 64 of file TwoParameterPlasticityStressUpdate.C.

69 {
70  const Real p_trial = trial_stress_params[0];
71  const Real q_trial = trial_stress_params[1];
72  preReturnMap(p_trial, q_trial, stress_trial, intnl_old, yf, Eijkl);
73 }
virtual void preReturnMap(Real p_trial, Real q_trial, const RankTwoTensor &stress_trial, const std::vector< Real > &intnl_old, const std::vector< Real > &yf, const RankFourTensor &Eijkl)
Derived classes may employ this function to record stuff or do other computations prior to the return...

◆ propagateQpStatefulProperties()

void MultiParameterPlasticityStressUpdate::propagateQpStatefulProperties ( )
overrideprotectedvirtualinherited

If updateState is not called during a timestep, this will be.

This method allows derived classes to set internal parameters from their Old values, for instance

Reimplemented from StressUpdateBase.

Definition at line 136 of file MultiParameterPlasticityStressUpdate.C.

137 {
139  for (unsigned i = 0; i < _num_intnl; ++i)
140  _intnl[_qp][i] = _intnl_old[_qp][i];
141 }
const unsigned _num_intnl
Number of internal parameters.
MaterialProperty< std::vector< Real > > & _intnl
internal parameters
const MaterialProperty< std::vector< Real > > & _intnl_old
old values of internal parameters
MaterialProperty< RankTwoTensor > & _plastic_strain
plastic strain
const MaterialProperty< RankTwoTensor > & _plastic_strain_old
Old value of plastic strain.

◆ requiresIsotropicTensor()

bool CappedWeakPlaneCosseratStressUpdate::requiresIsotropicTensor ( )
inlineoverridevirtual

Does the model require the elasticity tensor to be isotropic?

Implements StressUpdateBase.

Definition at line 37 of file CappedWeakPlaneCosseratStressUpdate.h.

37 { return false; }

◆ resetProperties()

void StressUpdateBase::resetProperties ( )
inlinefinalinherited

Definition at line 117 of file StressUpdateBase.h.

117 {}

◆ resetQpProperties()

void StressUpdateBase::resetQpProperties ( )
inlinefinalinherited

Retained as empty methods to avoid a warning from Material.C in framework. These methods are unused in all inheriting classes and should not be overwritten.

Definition at line 116 of file StressUpdateBase.h.

116 {}

◆ setEffectiveElasticity()

void TwoParameterPlasticityStressUpdate::setEffectiveElasticity ( const RankFourTensor &  Eijkl)
overrideprotectedvirtualinherited

Sets _Eij and _En and _Cij.

Implements MultiParameterPlasticityStressUpdate.

Definition at line 51 of file TwoParameterPlasticityStressUpdate.C.

52 {
53  setEppEqq(Eijkl, _Epp, _Eqq);
54  _Eij[0][0] = _Epp;
55  _Eij[1][0] = _Eij[0][1] = 0.0;
56  _Eij[1][1] = _Eqq;
57  _En = _Epp;
58  _Cij[0][0] = 1.0 / _Epp;
59  _Cij[1][0] = _Cij[0][1] = 0.0;
60  _Cij[1][1] = 1.0 / _Eqq;
61 }
virtual void setEppEqq(const RankFourTensor &Eijkl, Real &Epp, Real &Eqq) const =0
Set Epp and Eqq based on the elasticity tensor Derived classes must override this.
std::vector< std::vector< Real > > _Cij
_Cij[i, j] * _Eij[j, k] = 1 iff j == k
std::vector< std::vector< Real > > _Eij
E[i, j] in the system of equations to be solved.
Real _Epp
elasticity tensor in p direction
Real _Eqq
elasticity tensor in q direction

◆ setEppEqq()

void CappedWeakPlaneStressUpdate::setEppEqq ( const RankFourTensor &  Eijkl,
Real &  Epp,
Real &  Eqq 
) const
overrideprotectedvirtualinherited

Set Epp and Eqq based on the elasticity tensor Derived classes must override this.

Parameters
Eijklelasticity tensor
[out]EppEpp value
[out]EqqEqq value

Implements TwoParameterPlasticityStressUpdate.

Reimplemented in CappedWeakInclinedPlaneStressUpdate.

Definition at line 128 of file CappedWeakPlaneStressUpdate.C.

129 {
130  Epp = Eijkl(2, 2, 2, 2);
131  Eqq = Eijkl(0, 2, 0, 2);
132 }

◆ setInelasticStrainIncrementAfterReturn()

void TwoParameterPlasticityStressUpdate::setInelasticStrainIncrementAfterReturn ( const RankTwoTensor &  stress_trial,
Real  gaE,
const yieldAndFlow smoothed_q,
const RankFourTensor &  elasticity_tensor,
const RankTwoTensor &  returned_stress,
RankTwoTensor &  inelastic_strain_increment 
) const
overrideprotectedvirtualinherited

Sets inelastic strain increment from the returned configuration This is called after the return-map process has completed successfully in stress_param space, just after finalizeReturnProcess has been called.

Derived classes may override this function

Parameters
stress_trial[in]The trial value of stress
gaE[in]The value of gaE after the return-map process has completed successfully
smoothed_q[in]Holds the current value of yield function and derivatives evaluated at the returned configuration
elasticity_tensor[in]The elasticity tensor
returned_stress[in]The stress after the return-map process
inelastic_strain_increment[out]The inelastic strain increment resulting from this return-map

Reimplemented from MultiParameterPlasticityStressUpdate.

Definition at line 278 of file TwoParameterPlasticityStressUpdate.C.

285 {
286  inelastic_strain_increment = (gaE / _Epp) * (smoothed_q.dg[0] * dpdstress(returned_stress) +
287  smoothed_q.dg[1] * dqdstress(returned_stress));
288 }
Real _Epp
elasticity tensor in p direction
virtual RankTwoTensor dqdstress(const RankTwoTensor &stress) const =0
d(q)/d(stress) Derived classes must override this
virtual RankTwoTensor dpdstress(const RankTwoTensor &stress) const =0
d(p)/d(stress) Derived classes must override this

◆ setIntnlDerivatives()

void CappedWeakPlaneStressUpdate::setIntnlDerivatives ( Real  p_trial,
Real  q_trial,
Real  p,
Real  q,
const std::vector< Real > &  intnl,
std::vector< std::vector< Real >> &  dintnl 
) const
overrideprotectedvirtualinherited

Sets the derivatives of internal parameters, based on the trial values of p and q, their current values, and the old values of the internal parameters.

Derived classes must override this.

Parameters
p_trialTrial value of p
q_trialTrial value of q
pCurrent value of p
qCurrent value of q
intnlThe current value of the internal parameters
dintnlThe derivatives dintnl[i][j] = d(intnl[i])/d(variable j), where variable0=p and variable1=q

Implements TwoParameterPlasticityStressUpdate.

Definition at line 160 of file CappedWeakPlaneStressUpdate.C.

166 {
167  const Real tanpsi = _tan_psi.value(intnl[0]);
168  dintnl[0][0] = 0.0;
169  dintnl[0][1] = -1.0 / _Eqq;
170  dintnl[1][0] = -1.0 / _Epp;
171  dintnl[1][1] =
172  tanpsi / _Eqq - (q_trial - q) * _tan_psi.derivative(intnl[0]) * dintnl[0][1] / _Eqq;
173 }
const TensorMechanicsHardeningModel & _tan_psi
Hardening model for tan(psi)
Real _Epp
elasticity tensor in p direction
virtual Real derivative(Real intnl) const
virtual Real value(Real intnl) const
Real _Eqq
elasticity tensor in q direction

◆ setIntnlDerivativesV()

void TwoParameterPlasticityStressUpdate::setIntnlDerivativesV ( const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  current_stress_params,
const std::vector< Real > &  intnl,
std::vector< std::vector< Real >> &  dintnl 
) const
overrideprotectedvirtualinherited

Sets the derivatives of internal parameters, based on the trial values of stress_params, their current values, and the current values of the internal parameters.

Derived classes must override this.

Parameters
trial_stress_params[in]The trial stress parameters
current_stress_params[in]The current stress parameters
intnl[in]The current value of the internal parameters
dintnl[out]The derivatives dintnl[i][j] = d(intnl[i])/d(stress_param j)

Implements MultiParameterPlasticityStressUpdate.

Definition at line 141 of file TwoParameterPlasticityStressUpdate.C.

146 {
147  const Real p_trial = trial_stress_params[0];
148  const Real q_trial = trial_stress_params[1];
149  const Real p = current_stress_params[0];
150  const Real q = current_stress_params[1];
151  setIntnlDerivatives(p_trial, q_trial, p, q, intnl_old, dintnl);
152 }
virtual void setIntnlDerivatives(Real p_trial, Real q_trial, Real p, Real q, const std::vector< Real > &intnl, std::vector< std::vector< Real >> &dintnl) const =0
Sets the derivatives of internal parameters, based on the trial values of p and q, their current values, and the old values of the internal parameters.

◆ setIntnlValues()

void CappedWeakPlaneStressUpdate::setIntnlValues ( Real  p_trial,
Real  q_trial,
Real  p,
Real  q,
const std::vector< Real > &  intnl_old,
std::vector< Real > &  intnl 
) const
overrideprotectedvirtualinherited

Sets the internal parameters based on the trial values of p and q, their current values, and the old values of the internal parameters.

Derived classes must override this.

Parameters
p_trialTrial value of p
q_trialTrial value of q
pCurrent value of p
qCurrent value of q
intnl_oldOld value of internal parameters
intnl[out]The value of internal parameters to be set

Implements TwoParameterPlasticityStressUpdate.

Definition at line 472 of file CappedWeakPlaneStressUpdate.C.

Referenced by CappedWeakPlaneStressUpdate::initializeVars().

478 {
479  intnl[0] = intnl_old[0] + (q_trial - q) / _Eqq;
480  const Real tanpsi = _tan_psi.value(intnl[0]);
481  intnl[1] = intnl_old[1] + (p_trial - p) / _Epp - (q_trial - q) * tanpsi / _Eqq;
482 }
const TensorMechanicsHardeningModel & _tan_psi
Hardening model for tan(psi)
Real _Epp
elasticity tensor in p direction
virtual Real value(Real intnl) const
Real _Eqq
elasticity tensor in q direction

◆ setIntnlValuesV()

void TwoParameterPlasticityStressUpdate::setIntnlValuesV ( const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  current_stress_params,
const std::vector< Real > &  intnl_old,
std::vector< Real > &  intnl 
) const
overrideprotectedvirtualinherited

Sets the internal parameters based on the trial values of stress_params, their current values, and the old values of the internal parameters.

Derived classes must override this.

Parameters
trial_stress_params[in]The trial stress parameters (eg trial_p and trial_q)
current_stress_params[in]The current stress parameters (eg p and q)
intnl_old[out]Old value of internal parameters
intnl[out]The value of internal parameters to be set

Implements MultiParameterPlasticityStressUpdate.

Definition at line 128 of file TwoParameterPlasticityStressUpdate.C.

132 {
133  const Real p_trial = trial_stress_params[0];
134  const Real q_trial = trial_stress_params[1];
135  const Real p = current_stress_params[0];
136  const Real q = current_stress_params[1];
137  setIntnlValues(p_trial, q_trial, p, q, intnl_old, intnl);
138 }
virtual void setIntnlValues(Real p_trial, Real q_trial, Real p, Real q, const std::vector< Real > &intnl_old, std::vector< Real > &intnl) const =0
Sets the internal parameters based on the trial values of p and q, their current values, and the old values of the internal parameters.

◆ setQp()

void StressUpdateBase::setQp ( unsigned int  qp)
inherited

Sets the value of the global variable _qp for inheriting classes.

Definition at line 42 of file StressUpdateBase.C.

43 {
44  _qp = qp;
45 }

◆ setStressAfterReturn()

void CappedWeakPlaneCosseratStressUpdate::setStressAfterReturn ( const RankTwoTensor &  stress_trial,
Real  p_ok,
Real  q_ok,
Real  gaE,
const std::vector< Real > &  intnl,
const yieldAndFlow smoothed_q,
const RankFourTensor &  Eijkl,
RankTwoTensor &  stress 
) const
overrideprotectedvirtual

Sets stress from the admissible parameters.

This is called after the return-map process has completed successfully in (p, q) space, just after finalizeReturnProcess has been called. Derived classes may override this function

Parameters
stress_trialThe trial value of stress
p_okReturned value of p
q_okReturned value of q
gaEValue of gaE induced by the return (gaE = gamma * Epp)
smoothed_qHolds the current value of yield function and derivatives evaluated at (p_ok, q_ok, _intnl)
EijklThe elasticity tensor
stress[out]The returned value of the stress tensor

Reimplemented from CappedWeakPlaneStressUpdate.

Definition at line 32 of file CappedWeakPlaneCosseratStressUpdate.C.

40 {
41  stress = stress_trial;
42  stress(2, 2) = p_ok;
43  // stress_xx and stress_yy are sitting at their trial-stress values
44  // so need to bring them back via Poisson's ratio
45  stress(0, 0) -= Eijkl(2, 2, 0, 0) * gaE / _Epp * smoothed_q.dg[0];
46  stress(1, 1) -= Eijkl(2, 2, 1, 1) * gaE / _Epp * smoothed_q.dg[0];
47  if (_in_q_trial == 0.0)
48  stress(0, 2) = stress(1, 2) = 0.0;
49  else
50  {
51  stress(0, 2) = _in_trial02 * q_ok / _in_q_trial;
52  stress(1, 2) = _in_trial12 * q_ok / _in_q_trial;
53  }
54 }
Real _in_trial02
trial value of stress(0, 2)
Real _Epp
elasticity tensor in p direction
Real _in_trial12
trial value of stress(1, 2)

◆ setStressAfterReturnV()

void TwoParameterPlasticityStressUpdate::setStressAfterReturnV ( const RankTwoTensor &  stress_trial,
const std::vector< Real > &  stress_params,
Real  gaE,
const std::vector< Real > &  intnl,
const yieldAndFlow smoothed_q,
const RankFourTensor &  Eijkl,
RankTwoTensor &  stress 
) const
overrideprotectedvirtualinherited

Sets stress from the admissible parameters.

This is called after the return-map process has completed successfully in stress_param space, just after finalizeReturnProcess has been called. Derived classes must override this function

Parameters
stress_trial[in]The trial value of stress
stress_params[in]The value of the stress_params after the return-map process has completed successfully
gaE[in]The value of gaE after the return-map process has completed successfully
intnl[in]The value of the internal parameters after the return-map process has completed successfully
smoothed_q[in]Holds the current value of yield function and derivatives evaluated at the returned state
Eijkl[in]The elasticity tensor
stress[out]The returned value of the stress tensor

Implements MultiParameterPlasticityStressUpdate.

Definition at line 264 of file TwoParameterPlasticityStressUpdate.C.

271 {
272  const Real p_ok = stress_params[0];
273  const Real q_ok = stress_params[1];
274  setStressAfterReturn(stress_trial, p_ok, q_ok, gaE, intnl, smoothed_q, Eijkl, stress);
275 }
virtual void setStressAfterReturn(const RankTwoTensor &stress_trial, Real p_ok, Real q_ok, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, RankTwoTensor &stress) const =0
Sets stress from the admissible parameters.

◆ smoothAllQuantities()

MultiParameterPlasticityStressUpdate::yieldAndFlow MultiParameterPlasticityStressUpdate::smoothAllQuantities ( const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl 
) const
protectedinherited

Calculates all yield functions and derivatives, and then performs the smoothing scheme.

Parameters
stress_params[in]The stress parameters (eg stress_params[0] = stress_zz and stress_params[1] = sqrt(stress_zx^2 + stress_zy^2))
intnl[in]Internal parameters
Returns
The smoothed yield function and derivatives

Definition at line 373 of file MultiParameterPlasticityStressUpdate.C.

Referenced by MultiParameterPlasticityStressUpdate::lineSearch(), and MultiParameterPlasticityStressUpdate::updateState().

375 {
376  std::vector<yieldAndFlow> all_q(_num_yf, yieldAndFlow(_num_sp, _num_intnl));
377  computeAllQV(stress_params, intnl, all_q);
378 
379  /* This routine holds the key to my smoothing strategy. It
380  * may be proved that this smoothing strategy produces a
381  * yield surface that is both C2 differentiable and convex,
382  * assuming the individual yield functions are C2 and
383  * convex too.
384  * Of course all the derivatives must also be smoothed.
385  * Also, I assume that d(flow potential)/dstress gets smoothed
386  * by the Yield Function (which produces a C2 flow potential).
387  * See the line identified in the loop below.
388  * Only time will tell whether this is a good strategy, but it
389  * works well in all tests so far. Convexity is irrelevant
390  * for the non-associated case, but at least the return-map
391  * problem should always have a unique solution.
392  * For two yield functions+flows, labelled 1 and 2, we
393  * should have
394  * d(g1 - g2) . d(f1 - f2) >= 0
395  * If not then the return-map problem for even the
396  * multi-surface plasticity with no smoothing won't have a
397  * unique solution. If the multi-surface plasticity has
398  * a unique solution then the smoothed version defined
399  * below will too.
400  */
401 
402  // res_f is the index that contains the smoothed yieldAndFlow
403  std::size_t res_f = 0;
404 
405  for (std::size_t a = 1; a < all_q.size(); ++a)
406  {
407  if (all_q[res_f].f >= all_q[a].f + _smoothing_tol)
408  // no smoothing is needed: res_f is already indexes the largest yield function
409  continue;
410  else if (all_q[a].f >= all_q[res_f].f + _smoothing_tol)
411  {
412  // no smoothing is needed, and res_f needs to index to all_q[a]
413  res_f = a;
414  continue;
415  }
416  else
417  {
418  // smoothing is required
419  const Real f_diff = all_q[res_f].f - all_q[a].f;
420  const Real ism = ismoother(f_diff);
421  const Real sm = smoother(f_diff);
422  const Real dsm = dsmoother(f_diff);
423  // we want: all_q[res_f].f = 0.5 * all_q[res_f].f + all_q[a].f + _smoothing_tol) + ism,
424  // but we have to do the derivatives first
425  for (unsigned i = 0; i < _num_sp; ++i)
426  {
427  for (unsigned j = 0; j < _num_sp; ++j)
428  all_q[res_f].d2g[i][j] =
429  0.5 * (all_q[res_f].d2g[i][j] + all_q[a].d2g[i][j]) +
430  dsm * (all_q[res_f].df[j] - all_q[a].df[j]) * (all_q[res_f].dg[i] - all_q[a].dg[i]) +
431  sm * (all_q[res_f].d2g[i][j] - all_q[a].d2g[i][j]);
432  for (unsigned j = 0; j < _num_intnl; ++j)
433  all_q[res_f].d2g_di[i][j] = 0.5 * (all_q[res_f].d2g_di[i][j] + all_q[a].d2g_di[i][j]) +
434  dsm * (all_q[res_f].df_di[j] - all_q[a].df_di[j]) *
435  (all_q[res_f].dg[i] - all_q[a].dg[i]) +
436  sm * (all_q[res_f].d2g_di[i][j] - all_q[a].d2g_di[i][j]);
437  }
438  for (unsigned i = 0; i < _num_sp; ++i)
439  {
440  all_q[res_f].df[i] = 0.5 * (all_q[res_f].df[i] + all_q[a].df[i]) +
441  sm * (all_q[res_f].df[i] - all_q[a].df[i]);
442  // whether the following (smoothing g with f's smoother) is a good strategy remains to be
443  // seen...
444  all_q[res_f].dg[i] = 0.5 * (all_q[res_f].dg[i] + all_q[a].dg[i]) +
445  sm * (all_q[res_f].dg[i] - all_q[a].dg[i]);
446  }
447  for (unsigned i = 0; i < _num_intnl; ++i)
448  all_q[res_f].df_di[i] = 0.5 * (all_q[res_f].df_di[i] + all_q[a].df_di[i]) +
449  sm * (all_q[res_f].df_di[i] - all_q[a].df_di[i]);
450  all_q[res_f].f = 0.5 * (all_q[res_f].f + all_q[a].f + _smoothing_tol) + ism;
451  }
452  }
453  return all_q[res_f];
454 }
const unsigned _num_intnl
Number of internal parameters.
Real smoother(Real f_diff) const
Derivative of ismoother.
const unsigned _num_yf
Number of yield functions.
virtual void computeAllQV(const std::vector< Real > &stress_params, const std::vector< Real > &intnl, std::vector< yieldAndFlow > &all_q) const =0
Completely fills all_q with correct values.
Real dsmoother(Real f_diff) const
Derivative of smoother.
const Real _smoothing_tol
Smoothing tolerance: edges of the yield surface get smoothed by this amount.
const unsigned _num_sp
Number of stress parameters.
Real ismoother(Real f_diff) const
Smooths yield functions.

◆ smoother()

Real MultiParameterPlasticityStressUpdate::smoother ( Real  f_diff) const
protectedinherited

Derivative of ismoother.

Definition at line 465 of file MultiParameterPlasticityStressUpdate.C.

Referenced by MultiParameterPlasticityStressUpdate::smoothAllQuantities().

466 {
467  if (std::abs(f_diff) >= _smoothing_tol)
468  return 0.0;
469  return 0.5 * std::sin(f_diff * M_PI * 0.5 / _smoothing_tol);
470 }
const Real _smoothing_tol
Smoothing tolerance: edges of the yield surface get smoothed by this amount.

◆ updateState()

void MultiParameterPlasticityStressUpdate::updateState ( RankTwoTensor &  strain_increment,
RankTwoTensor &  inelastic_strain_increment,
const RankTwoTensor &  rotation_increment,
RankTwoTensor &  stress_new,
const RankTwoTensor &  stress_old,
const RankFourTensor &  elasticity_tensor,
const RankTwoTensor &  elastic_strain_old,
bool  compute_full_tangent_operator,
RankFourTensor &  tangent_operator 
)
overrideprotectedvirtualinherited

Given a strain increment that results in a trial stress, perform some procedure (such as an iterative return-mapping process) to produce an admissible stress, an elastic strain increment and an inelastic strain increment.

If _fe_problem.currentlyComputingJacobian() = true, then updateState also computes d(stress)/d(strain) (or some approximation to it).

This method is called by ComputeMultipleInelasticStress. This method is pure virutal: all inheriting classes must overwrite this method.

Parameters
strain_incrementUpon input: the strain increment. Upon output: the elastic strain increment
inelastic_strain_incrementThe inelastic_strain resulting from the interative procedure
rotation_incrementThe finite-strain rotation increment
stress_newUpon input: the trial stress that results from applying strain_increment as an elastic strain. Upon output: the admissible stress
stress_oldThe old value of stress
elasticity_tensorThe elasticity tensor
compute_full_tangent_operatorThe calling routine would like the full consistent tangent operator to be placed in tangent_operator, if possible. This is irrelevant if _fe_problem.currentlyComputingJacobian() = false
tangent_operatord(stress)/d(strain), or some approximation to it If compute_full_tangent_operator=false, then tangent_operator=elasticity_tensor is an appropriate choice. tangent_operator is only computed if _fe_problem.currentlyComputingJacobian() = true

Implements StressUpdateBase.

Definition at line 144 of file MultiParameterPlasticityStressUpdate.C.

153 {
155 
156  if (_t_step >= 2)
157  _step_one = false;
158 
159  // initially assume an elastic deformation
160  std::copy(_intnl_old[_qp].begin(), _intnl_old[_qp].end(), _intnl[_qp].begin());
161  _iter[_qp] = 0.0;
162  _linesearch_needed[_qp] = 0.0;
163 
164  computeStressParams(stress_new, _trial_sp);
166 
167  if (yieldF(_yf[_qp]) <= _f_tol)
168  {
170  inelastic_strain_increment.zero();
171  if (_fe_problem.currentlyComputingJacobian())
172  tangent_operator = elasticity_tensor;
173  return;
174  }
175 
176  _stress_trial = stress_new;
177  /* The trial stress must be inadmissible
178  * so we need to return to the yield surface. The following
179  * equations must be satisfied.
180  *
181  * 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, i] * dg/dS[i]
182  * 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1, i] * dg/dS[i]
183  * ...
184  * 0 = rhs[N-1] = S[N-1] - S[N-1]^trial + ga * E[N-1, i] * dg/dS[i]
185  * 0 = rhs[N] = f(S, intnl)
186  *
187  * as well as equations defining intnl parameters as functions of
188  * stress_params, trial_stress_params and intnl_old
189  *
190  * The unknowns are S[0], ..., S[N-1], gaE, and the intnl parameters.
191  * Here gaE = ga * _En (the _En serves to make gaE similar magnitude to S)
192  * I find it convenient to solve the first N+1 equations for p, q and gaE,
193  * while substituting the "intnl parameters" equations into these during the solve process
194  */
195 
196  for (auto & deriv : _dvar_dtrial)
197  deriv.assign(_num_sp, 0.0);
198 
199  preReturnMapV(_trial_sp, stress_new, _intnl_old[_qp], _yf[_qp], elasticity_tensor);
200 
201  setEffectiveElasticity(elasticity_tensor);
202 
203  if (_step_one)
204  std::copy(_definitely_ok_sp.begin(), _definitely_ok_sp.end(), _ok_sp.begin());
205  else
206  computeStressParams(stress_old, _ok_sp);
207  std::copy(_intnl_old[_qp].begin(), _intnl_old[_qp].end(), _ok_intnl.begin());
208 
209  // Return-map problem: must apply the following changes in stress_params,
210  // and find the returned stress_params and gaE
211  for (unsigned i = 0; i < _num_sp; ++i)
212  _del_stress_params[i] = _trial_sp[i] - _ok_sp[i];
213 
214  Real step_taken = 0.0; // amount of del_stress_params that we've applied and the return-map
215  // problem has succeeded
216  Real step_size = 1.0; // potentially can apply del_stress_params in substeps
217  Real gaE_total = 0.0;
218 
219  // current values of the yield function, derivatives, etc
220  yieldAndFlow smoothed_q;
221 
222  // In the following sub-stepping procedure it is possible that
223  // the last step is an elastic step, and therefore smoothed_q won't
224  // be computed on the last step, so we have to compute it.
225  bool smoothed_q_calculated = false;
226 
227  while (step_taken < 1.0 && step_size >= _min_step_size)
228  {
229  if (1.0 - step_taken < step_size)
230  // prevent over-shoots of substepping
231  step_size = 1.0 - step_taken;
232 
233  // trial variables in terms of admissible variables
234  for (unsigned i = 0; i < _num_sp; ++i)
235  _trial_sp[i] = _ok_sp[i] + step_size * _del_stress_params[i];
236 
237  // initialize variables that are to be found via Newton-Raphson
239  Real gaE = 0.0;
240 
241  // flags indicating failure of Newton-Raphson and line-search
242  int nr_failure = 0;
243  int ls_failure = 0;
244 
245  // NR iterations taken in this substep
246  unsigned step_iter = 0;
247 
248  // The residual-squared for the line-search
249  Real res2 = 0.0;
250 
251  if (step_size < 1.0 && yieldF(_trial_sp, _ok_intnl) <= _f_tol)
252  // This is an elastic step
253  // The "step_size < 1.0" in above condition is for efficiency: we definitely
254  // know that this is a plastic step if step_size = 1.0
255  smoothed_q_calculated = false;
256  else
257  {
258  // this is a plastic step
259 
260  // initialize current_sp, gaE and current_intnl based on the non-smoothed situation
262  // and find the smoothed yield function, flow potential and derivatives
264  smoothed_q_calculated = true;
265  calculateRHS(_trial_sp, _current_sp, gaE, smoothed_q, _rhs);
266  res2 = calculateRes2(_rhs);
267 
268  // Perform a Newton-Raphson with linesearch to get current_sp, gaE, and also smoothed_q
269  while (res2 > _f_tol2 && step_iter < _max_nr_its && nr_failure == 0 && ls_failure == 0)
270  {
271  // solve the linear system and store the answer (the "updates") in rhs
272  nr_failure = nrStep(smoothed_q, _trial_sp, _current_sp, _current_intnl, gaE, _rhs);
273  if (nr_failure != 0)
274  break;
275 
276  // handle precision loss
277  if (precisionLoss(_rhs, _current_sp, gaE))
278  {
280  {
281  Moose::err << "MultiParameterPlasticityStressUpdate: precision-loss in element "
282  << _current_elem->id() << " quadpoint=" << _qp << ". Stress_params =";
283  for (unsigned i = 0; i < _num_sp; ++i)
284  Moose::err << " " << _current_sp[i];
285  Moose::err << " gaE = " << gaE << "\n";
286  }
287  res2 = 0.0;
288  break;
289  }
290 
291  // apply (parts of) the updates, re-calculate smoothed_q, and res2
292  ls_failure = lineSearch(res2,
293  _current_sp,
294  gaE,
295  _trial_sp,
296  smoothed_q,
297  _ok_intnl,
299  _rhs,
300  _linesearch_needed[_qp]);
301  step_iter++;
302  }
303  }
304 
305  if (res2 <= _f_tol2 && step_iter < _max_nr_its && nr_failure == 0 && ls_failure == 0 &&
306  gaE >= 0.0)
307  {
308  // this Newton-Raphson worked fine, or this was an elastic step
309  std::copy(_current_sp.begin(), _current_sp.end(), _ok_sp.begin());
310  gaE_total += gaE;
311  step_taken += step_size;
313  std::copy(_intnl[_qp].begin(), _intnl[_qp].end(), _ok_intnl.begin());
314  // calculate dp/dp_trial, dp/dq_trial, etc, for Jacobian
315  dVardTrial(!smoothed_q_calculated,
316  _trial_sp,
317  _ok_sp,
318  gaE,
319  _ok_intnl,
320  smoothed_q,
321  step_size,
322  compute_full_tangent_operator,
323  _dvar_dtrial);
324  if (static_cast<Real>(step_iter) > _iter[_qp])
325  _iter[_qp] = static_cast<Real>(step_iter);
326  step_size *= 1.1;
327  }
328  else
329  {
330  // Newton-Raphson + line-search process failed
331  step_size *= 0.5;
332  }
333  }
334 
335  if (step_size < _min_step_size)
336  errorHandler("MultiParameterPlasticityStressUpdate: Minimum step-size violated");
337 
338  // success!
339  finalizeReturnProcess(rotation_increment);
340  yieldFunctionValuesV(_ok_sp, _intnl[_qp], _yf[_qp]);
341 
342  if (!smoothed_q_calculated)
343  smoothed_q = smoothAllQuantities(_ok_sp, _intnl[_qp]);
344 
346  _stress_trial, _ok_sp, gaE_total, _intnl[_qp], smoothed_q, elasticity_tensor, stress_new);
347 
349  gaE_total,
350  smoothed_q,
351  elasticity_tensor,
352  stress_new,
353  inelastic_strain_increment);
354 
355  strain_increment = strain_increment - inelastic_strain_increment;
356  _plastic_strain[_qp] = _plastic_strain_old[_qp] + inelastic_strain_increment;
357 
358  if (_fe_problem.currentlyComputingJacobian())
359  // for efficiency, do not compute the tangent operator if not currently computing Jacobian
361  _trial_sp,
362  stress_new,
363  _ok_sp,
364  gaE_total,
365  smoothed_q,
366  elasticity_tensor,
367  compute_full_tangent_operator,
368  _dvar_dtrial,
369  tangent_operator);
370 }
MaterialProperty< std::vector< Real > > & _yf
yield functions
std::vector< Real > _trial_sp
"Trial" value of stress_params that initializes the return-map process This is derived from stress = ...
virtual void setEffectiveElasticity(const RankFourTensor &Eijkl)=0
Sets _Eij and _En and _Cij.
const bool _warn_about_precision_loss
Output a warning message if precision loss is encountered during the return-map process.
virtual void errorHandler(const std::string &message) const
Performs any necessary cleaning-up, then throw MooseException(message)
virtual void initializeVarsV(const std::vector< Real > &trial_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &stress_params, Real &gaE, std::vector< Real > &intnl) const
Sets (stress_params, intnl) at "good guesses" of the solution to the Return-Map algorithm.
int lineSearch(Real &res2, std::vector< Real > &stress_params, Real &gaE, const std::vector< Real > &trial_stress_params, yieldAndFlow &smoothed_q, const std::vector< Real > &intnl_ok, std::vector< Real > &intnl, std::vector< Real > &rhs, Real &linesearch_needed) const
Performs a line-search to find stress_params and gaE Upon entry:
virtual void consistentTangentOperatorV(const RankTwoTensor &stress_trial, const std::vector< Real > &trial_stress_params, const RankTwoTensor &stress, const std::vector< Real > &stress_params, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, bool compute_full_tangent_operator, const std::vector< std::vector< Real >> &dvar_dtrial, RankFourTensor &cto)
Calculates the consistent tangent operator.
virtual void setIntnlValuesV(const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &intnl) const =0
Sets the internal parameters based on the trial values of stress_params, their current values...
std::vector< Real > _ok_intnl
The state (ok_sp, ok_intnl) is known to be admissible.
const Real _f_tol2
Square of the yield-function tolerance.
const Real _min_step_size
In order to help the Newton-Raphson procedure, the applied strain increment may be applied in sub-inc...
int nrStep(const yieldAndFlow &smoothed_q, const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, const std::vector< Real > &intnl, Real gaE, std::vector< Real > &rhs) const
Performs a Newton-Raphson step to attempt to zero rhs Upon return, rhs will contain the solution...
void calculateRHS(const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, Real gaE, const yieldAndFlow &smoothed_q, std::vector< Real > &rhs) const
Calculates the RHS in the following 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, j] * dg/dS[j] 0 = rhs[...
MaterialProperty< std::vector< Real > > & _intnl
internal parameters
yieldAndFlow smoothAllQuantities(const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
Calculates all yield functions and derivatives, and then performs the smoothing scheme.
const Real _f_tol
The yield-function tolerance.
virtual void setInelasticStrainIncrementAfterReturn(const RankTwoTensor &stress_trial, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &elasticity_tensor, const RankTwoTensor &returned_stress, RankTwoTensor &inelastic_strain_increment) const
Sets inelastic strain increment from the returned configuration This is called after the return-map p...
const std::vector< Real > _definitely_ok_sp
An admissible value of stress_params at the initial time.
const MaterialProperty< std::vector< Real > > & _intnl_old
old values of internal parameters
RankTwoTensor _stress_trial
"Trial" value of stress that is set at the beginning of the return-map process.
virtual void computeStressParams(const RankTwoTensor &stress, std::vector< Real > &stress_params) const =0
Computes stress_params, given stress.
Real calculateRes2(const std::vector< Real > &rhs) const
Calculates the residual-squared for the Newton-Raphson + line-search.
virtual void yieldFunctionValuesV(const std::vector< Real > &stress_params, const std::vector< Real > &intnl, std::vector< Real > &yf) const =0
Computes the values of the yield functions, given stress_params and intnl parameters.
MaterialProperty< Real > & _iter
Number of Newton-Raphson iterations used in the return-map.
MaterialProperty< RankTwoTensor > & _plastic_strain
plastic strain
std::vector< Real > _current_intnl
The current values of the internal params during the Newton-Raphson.
virtual void finalizeReturnProcess(const RankTwoTensor &rotation_increment)
Derived classes may use this to perform calculations after the return-map process has completed succe...
MaterialProperty< Real > & _linesearch_needed
Whether a line-search was needed in the latest Newton-Raphson process (1 if true, 0 otherwise) ...
std::vector< std::vector< Real > > _dvar_dtrial
d({stress_param[i], gaE})/d(trial_stress_param[j])
std::vector< Real > _current_sp
The current values of the stress params during the Newton-Raphson.
bool _step_one
handles case of initial_stress that is inadmissible being supplied
void dVardTrial(bool elastic_only, const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, Real step_size, bool compute_full_tangent_operator, std::vector< std::vector< Real >> &dvar_dtrial) const
Calculates derivatives of the stress_params and gaE with repect to the trial values of the stress_par...
virtual void setStressAfterReturnV(const RankTwoTensor &stress_trial, const std::vector< Real > &stress_params, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, RankTwoTensor &stress) const =0
Sets stress from the admissible parameters.
virtual void preReturnMapV(const std::vector< Real > &trial_stress_params, const RankTwoTensor &stress_trial, const std::vector< Real > &intnl_old, const std::vector< Real > &yf, const RankFourTensor &Eijkl)
Derived classes may employ this function to record stuff or do other computations prior to the return...
bool precisionLoss(const std::vector< Real > &solution, const std::vector< Real > &stress_params, Real gaE) const
Check whether precision loss has occurred.
std::vector< Real > _del_stress_params
_del_stress_params = trial_stress_params - ok_sp This is fixed at the beginning of the return-map pro...
const unsigned _max_nr_its
Maximum number of Newton-Raphson iterations allowed in the return-map process.
virtual void initializeReturnProcess()
Derived classes may use this to perform calculations before any return-map process is performed...
const MaterialProperty< RankTwoTensor > & _plastic_strain_old
Old value of plastic strain.
Real yieldF(const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
Computes the smoothed yield function.
std::vector< Real > _rhs
0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, i] * dg/dS[i] 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1...
std::vector< Real > _ok_sp
The state (ok_sp, ok_intnl) is known to be admissible, so ok_sp are stress_params that are "OK"...
const unsigned _num_sp
Number of stress parameters.

◆ yieldF() [1/2]

Real MultiParameterPlasticityStressUpdate::yieldF ( const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl 
) const
protectedinherited

Computes the smoothed yield function.

Parameters
stress_paramsThe stress parameters (eg stress_params[0] = stress_zz and stress_params[1] = sqrt(stress_zx^2 + stress_zy^2))
intnlThe internal parameters (eg intnl[0] is shear, intnl[1] is tensile)
Returns
The smoothed yield function value

Definition at line 616 of file MultiParameterPlasticityStressUpdate.C.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

618 {
619  std::vector<Real> yfs(_num_yf);
620  yieldFunctionValuesV(stress_params, intnl, yfs);
621  return yieldF(yfs);
622 }
const unsigned _num_yf
Number of yield functions.
virtual void yieldFunctionValuesV(const std::vector< Real > &stress_params, const std::vector< Real > &intnl, std::vector< Real > &yf) const =0
Computes the values of the yield functions, given stress_params and intnl parameters.
Real yieldF(const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
Computes the smoothed yield function.

◆ yieldF() [2/2]

Real MultiParameterPlasticityStressUpdate::yieldF ( const std::vector< Real > &  yfs) const
protectedinherited

Computes the smoothed yield function.

Parameters
yfsThe values of the individual yield functions
Returns
The smoothed yield function value

Definition at line 625 of file MultiParameterPlasticityStressUpdate.C.

626 {
627  Real yf = yfs[0];
628  for (std::size_t i = 1; i < yfs.size(); ++i)
629  if (yf >= yfs[i] + _smoothing_tol)
630  // no smoothing is needed, and yf is the biggest yield function
631  continue;
632  else if (yfs[i] >= yf + _smoothing_tol)
633  // no smoothing is needed, and yfs[i] is the biggest yield function
634  yf = yfs[i];
635  else
636  yf = 0.5 * (yf + yfs[i] + _smoothing_tol) + ismoother(yf - yfs[i]);
637  return yf;
638 }
const Real _smoothing_tol
Smoothing tolerance: edges of the yield surface get smoothed by this amount.
Real ismoother(Real f_diff) const
Smooths yield functions.

◆ yieldFunctionValues()

void CappedWeakPlaneStressUpdate::yieldFunctionValues ( Real  p,
Real  q,
const std::vector< Real > &  intnl,
std::vector< Real > &  yf 
) const
overrideprotectedvirtualinherited

Computes the values of the yield functions, given p, q and intnl parameters.

Derived classes must override this, to provide the values of the yield functions in yf.

Parameters
pp stress
qq stress
intnlThe internal parameters
[out]yfThe yield function values

Implements TwoParameterPlasticityStressUpdate.

Definition at line 262 of file CappedWeakPlaneStressUpdate.C.

266 {
267  yf[0] = std::sqrt(Utility::pow<2>(q) + _small_smoother2) + p * _tan_phi.value(intnl[0]) -
268  _cohesion.value(intnl[0]);
269 
271  yf[1] = std::numeric_limits<Real>::lowest();
272  else
273  yf[1] = p - _tstrength.value(intnl[1]);
274 
276  yf[2] = std::numeric_limits<Real>::lowest();
277  else
278  yf[2] = -p - _cstrength.value(intnl[1]);
279 }
const TensorMechanicsHardeningModel & _cstrength
Hardening model for compressive strength.
const TensorMechanicsHardeningModel & _cohesion
Hardening model for cohesion.
const TensorMechanicsHardeningModel & _tan_phi
Hardening model for tan(phi)
virtual Real value(Real intnl) const
enum CappedWeakPlaneStressUpdate::StressReturnType _stress_return_type
const Real _small_smoother2
The cone vertex is smoothed by this amount.
const TensorMechanicsHardeningModel & _tstrength
Hardening model for tensile strength.

◆ yieldFunctionValuesV()

void TwoParameterPlasticityStressUpdate::yieldFunctionValuesV ( const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl,
std::vector< Real > &  yf 
) const
overrideprotectedvirtualinherited

Computes the values of the yield functions, given stress_params and intnl parameters.

Derived classes must override this, to provide the values of the yield functions in yf.

Parameters
stress_params[in]The stress parameters
intnl[in]The internal parameters
[out]yfThe yield function values

Implements MultiParameterPlasticityStressUpdate.

Definition at line 41 of file TwoParameterPlasticityStressUpdate.C.

44 {
45  const Real p = stress_params[0];
46  const Real q = stress_params[1];
47  yieldFunctionValues(p, q, intnl, yf);
48 }
virtual void yieldFunctionValues(Real p, Real q, const std::vector< Real > &intnl, std::vector< Real > &yf) const =0
Computes the values of the yield functions, given p, q and intnl parameters.

Member Data Documentation

◆ _base_name

const std::string StressUpdateBase::_base_name
protectedinherited

Name used as a prefix for all material properties related to the stress update model.

Definition at line 122 of file StressUpdateBase.h.

◆ _Cij

std::vector<std::vector<Real> > MultiParameterPlasticityStressUpdate::_Cij
protectedinherited

◆ _cohesion

const TensorMechanicsHardeningModel& CappedWeakPlaneStressUpdate::_cohesion
protectedinherited

◆ _cstrength

const TensorMechanicsHardeningModel& CappedWeakPlaneStressUpdate::_cstrength
protectedinherited

◆ _definitely_ok_sp

const std::vector<Real> MultiParameterPlasticityStressUpdate::_definitely_ok_sp
protectedinherited

◆ _dgaE_dpt

Real TwoParameterPlasticityStressUpdate::_dgaE_dpt
protectedinherited

derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculation)

Definition at line 54 of file TwoParameterPlasticityStressUpdate.h.

Referenced by consistentTangentOperator(), CappedWeakPlaneStressUpdate::consistentTangentOperator(), and TwoParameterPlasticityStressUpdate::consistentTangentOperatorV().

◆ _dgaE_dqt

Real TwoParameterPlasticityStressUpdate::_dgaE_dqt
protectedinherited

derivative of Variable with respect to trial variable (used in consistent-tangent-operator calculation)

Definition at line 56 of file TwoParameterPlasticityStressUpdate.h.

Referenced by consistentTangentOperator(), CappedWeakPlaneStressUpdate::consistentTangentOperator(), and TwoParameterPlasticityStressUpdate::consistentTangentOperatorV().

◆ _dp_dpt

Real TwoParameterPlasticityStressUpdate::_dp_dpt
protectedinherited

◆ _dp_dqt

Real TwoParameterPlasticityStressUpdate::_dp_dqt
protectedinherited

◆ _dq_dpt

Real TwoParameterPlasticityStressUpdate::_dq_dpt
protectedinherited

◆ _dq_dqt

Real TwoParameterPlasticityStressUpdate::_dq_dqt
protectedinherited

◆ _Eij

std::vector<std::vector<Real> > MultiParameterPlasticityStressUpdate::_Eij
protectedinherited

◆ _En

Real MultiParameterPlasticityStressUpdate::_En
protectedinherited

◆ _Epp

Real TwoParameterPlasticityStressUpdate::_Epp
protectedinherited

◆ _Eqq

Real TwoParameterPlasticityStressUpdate::_Eqq
protectedinherited

◆ _f_tol

const Real MultiParameterPlasticityStressUpdate::_f_tol
protectedinherited

◆ _f_tol2

const Real MultiParameterPlasticityStressUpdate::_f_tol2
protectedinherited

Square of the yield-function tolerance.

Definition at line 164 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _in_q_trial

Real CappedWeakPlaneStressUpdate::_in_q_trial
protectedinherited

◆ _in_trial02

Real CappedWeakPlaneStressUpdate::_in_trial02
protectedinherited

◆ _in_trial12

Real CappedWeakPlaneStressUpdate::_in_trial12
protectedinherited

◆ _intnl

MaterialProperty<std::vector<Real> >& MultiParameterPlasticityStressUpdate::_intnl
protectedinherited

◆ _intnl_old

const MaterialProperty<std::vector<Real> >& MultiParameterPlasticityStressUpdate::_intnl_old
protectedinherited

◆ _iter

MaterialProperty<Real>& MultiParameterPlasticityStressUpdate::_iter
protectedinherited

Number of Newton-Raphson iterations used in the return-map.

Definition at line 195 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::initQpStatefulProperties(), and MultiParameterPlasticityStressUpdate::updateState().

◆ _linesearch_needed

MaterialProperty<Real>& MultiParameterPlasticityStressUpdate::_linesearch_needed
protectedinherited

Whether a line-search was needed in the latest Newton-Raphson process (1 if true, 0 otherwise)

Definition at line 198 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::initQpStatefulProperties(), and MultiParameterPlasticityStressUpdate::updateState().

◆ _max_nr_its

const unsigned MultiParameterPlasticityStressUpdate::_max_nr_its
protectedinherited

Maximum number of Newton-Raphson iterations allowed in the return-map process.

Definition at line 152 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _min_step_size

const Real MultiParameterPlasticityStressUpdate::_min_step_size
protectedinherited

In order to help the Newton-Raphson procedure, the applied strain increment may be applied in sub-increments of size greater than this value.

Definition at line 171 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _num_intnl

const unsigned MultiParameterPlasticityStressUpdate::_num_intnl
protectedinherited

◆ _num_pq

constexpr int TwoParameterPlasticityStressUpdate::_num_pq = 2
staticprotectedinherited

◆ _num_sp

const unsigned MultiParameterPlasticityStressUpdate::_num_sp
protectedinherited

◆ _num_yf

const unsigned MultiParameterPlasticityStressUpdate::_num_yf
protectedinherited

◆ _p_trial

Real TwoParameterPlasticityStressUpdate::_p_trial
protectedinherited

Trial value of p.

Definition at line 42 of file TwoParameterPlasticityStressUpdate.h.

◆ _perfect_guess

const bool CappedWeakPlaneStressUpdate::_perfect_guess
protectedinherited

Initialize the NR proceedure from a guess coming from perfect plasticity.

Definition at line 62 of file CappedWeakPlaneStressUpdate.h.

Referenced by CappedWeakPlaneStressUpdate::initializeVars().

◆ _perform_finite_strain_rotations

const bool MultiParameterPlasticityStressUpdate::_perform_finite_strain_rotations
protectedinherited

◆ _plastic_strain

MaterialProperty<RankTwoTensor>& MultiParameterPlasticityStressUpdate::_plastic_strain
protectedinherited

◆ _plastic_strain_old

const MaterialProperty<RankTwoTensor>& MultiParameterPlasticityStressUpdate::_plastic_strain_old
protectedinherited

◆ _q_trial

Real TwoParameterPlasticityStressUpdate::_q_trial
protectedinherited

Trial value of q.

Definition at line 45 of file TwoParameterPlasticityStressUpdate.h.

◆ _small_smoother2

const Real CappedWeakPlaneStressUpdate::_small_smoother2
protectedinherited

The cone vertex is smoothed by this amount.

Definition at line 59 of file CappedWeakPlaneStressUpdate.h.

Referenced by CappedWeakPlaneStressUpdate::computeAllQ(), and CappedWeakPlaneStressUpdate::yieldFunctionValues().

◆ _smoothing_tol

const Real MultiParameterPlasticityStressUpdate::_smoothing_tol
protectedinherited

◆ _step_one

bool MultiParameterPlasticityStressUpdate::_step_one
protectedinherited

handles case of initial_stress that is inadmissible being supplied

Definition at line 174 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _stress_return_type

enum CappedWeakPlaneStressUpdate::StressReturnType CappedWeakPlaneStressUpdate::_stress_return_type
protectedinherited

◆ _tan_phi

const TensorMechanicsHardeningModel& CappedWeakPlaneStressUpdate::_tan_phi
protectedinherited

◆ _tan_psi

const TensorMechanicsHardeningModel& CappedWeakPlaneStressUpdate::_tan_psi
protectedinherited

◆ _tensor_dimensionality

constexpr unsigned MultiParameterPlasticityStressUpdate::_tensor_dimensionality = 3
staticprotectedinherited

◆ _tstrength

const TensorMechanicsHardeningModel& CappedWeakPlaneStressUpdate::_tstrength
protectedinherited

◆ _warn_about_precision_loss

const bool MultiParameterPlasticityStressUpdate::_warn_about_precision_loss
protectedinherited

Output a warning message if precision loss is encountered during the return-map process.

Definition at line 177 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _yf

MaterialProperty<std::vector<Real> >& MultiParameterPlasticityStressUpdate::_yf
protectedinherited

The documentation for this class was generated from the following files: