https://mooseframework.inl.gov
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Static Protected Member Functions | Protected Attributes | Private Member Functions | List of all members
WCNSFVFluidHeatTransferPhysics Class Referencefinal

Creates all the objects needed to solve the Navier Stokes energy equation. More...

#include <WCNSFVFluidHeatTransferPhysics.h>

Inheritance diagram for WCNSFVFluidHeatTransferPhysics:
[legend]

Public Types

typedef DataFileName DataFileParameterType
 

Public Member Functions

 WCNSFVFluidHeatTransferPhysics (const InputParameters &parameters)
 
const VariableName & getFluidTemperatureName () const
 Get the name of the fluid temperature variable. More...
 
const MooseFunctorName & getSpecificHeatName () const
 Get the name of the specific heat material property. More...
 
MooseFunctorName getSpecificEnthalpyName () const
 
const std::vector< MooseFunctorName > & getThermalConductivityName () const
 
const std::vector< std::vector< SubdomainName > > & getAmbientConvectionBlocks () const
 Get the ambient convection parameters for parameter checking. More...
 
const std::vector< MooseFunctorName > & getAmbientConvectionHTCs () const
 Name of the ambient convection heat transfer coefficients for each block-group. More...
 
bool hasEnergyEquation () const
 Whether the physics is actually creating the heat equation. More...
 
virtual void act () override final
 
void addBlocks (const std::vector< SubdomainName > &blocks)
 
void addBlocksById (const std::vector< SubdomainID > &block_ids)
 
const std::vector< SubdomainName > & blocks () const
 
bool checkBlockRestrictionIdentical (const std::string &object_name, const std::vector< SubdomainName > &blocks, const bool error_if_not_identical=true) const
 
const T * getCoupledPhysics (const PhysicsName &phys_name, const bool allow_fail=false) const
 
const std::vector< T *> getCoupledPhysics (const bool allow_fail=false) const
 
unsigned int dimension () const
 
const ActionComponentgetActionComponent (const ComponentName &comp_name) const
 
void checkComponentType (const ActionComponent &component) const
 
virtual void addComponent (const ActionComponent &component)
 
const std::vector< VariableName > & solverVariableNames () const
 
const std::vector< VariableName > & auxVariableNames () const
 
void timedAct ()
 
MooseObjectName uniqueActionName () const
 
const std::string & specificTaskName () const
 
const std::set< std::string > & getAllTasks () const
 
void appendTask (const std::string &task)
 
MooseAppgetMooseApp () const
 
const std::string & type () const
 
virtual const std::string & name () const
 
std::string typeAndName () const
 
std::string errorPrefix (const std::string &error_type) const
 
void callMooseError (std::string msg, const bool with_prefix) const
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
const InputParametersparameters () const
 
MooseObjectName uniqueName () const
 
const T & getParam (const std::string &name) const
 
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 
const T * queryParam (const std::string &name) const
 
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 
bool isParamValid (const std::string &name) const
 
bool isParamSetByUser (const std::string &nm) const
 
void paramError (const std::string &param, Args... args) const
 
void paramWarning (const std::string &param, Args... args) const
 
void paramInfo (const std::string &param, Args... args) const
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 
void mooseError (Args &&... args) const
 
void mooseErrorNonPrefixed (Args &&... args) const
 
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
void mooseWarning (Args &&... args) const
 
void mooseWarningNonPrefixed (Args &&... args) const
 
void mooseDeprecated (Args &&... args) const
 
void mooseInfo (Args &&... args) const
 
std::string getDataFileName (const std::string &param) const
 
std::string getDataFileNameByName (const std::string &relative_path) const
 
std::string getDataFilePath (const std::string &relative_path) const
 
PerfGraphperfGraph ()
 
void assertParamDefined (const std::string &libmesh_dbg_var(param)) const
 
const Parallel::Communicator & comm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
const WCNSFVFlowPhysicsBasegetCoupledFlowPhysics () const
 
const WCNSFVTurbulencePhysicsgetCoupledTurbulencePhysics () const
 
MooseFunctorName getPorosityFunctorName (bool smoothed) const
 Return the porosity functor name. More...
 
const MooseFunctorName & densityName () const
 
const MooseFunctorName & dynamicViscosityName () const
 

Static Public Member Functions

static InputParameters validParams ()
 

Public Attributes

const ConsoleStream _console
 

Static Public Attributes

static constexpr auto SYSTEM
 
static constexpr auto NAME
 

Protected Member Functions

void actOnAdditionalTasks () override
 
void addInitialConditions () override
 
void addFVKernels () override
 
void addFVBCs () override
 
void addMaterials () override
 
unsigned short getNumberAlgebraicGhostingLayersNeeded () const override
 Return the number of ghosting layers needed. More...
 
bool processThermalConductivity ()
 Process thermal conductivity (multiple functor input options are available). More...
 
bool usingNavierStokesFVSyntax () const
 Detects if we are using the new Physics syntax or the old NavierStokesFV action. More...
 
InputParameters getAdditionalRMParams () const override
 Parameters to change or add relationship managers. More...
 
void assertParamDefined (const std::string &param) const
 
bool isTransient () const
 
FactorygetFactory ()
 
FactorygetFactory () const
 
virtual FEProblemBasegetProblem ()
 
virtual const FEProblemBasegetProblem () const
 
void prepareCopyVariablesFromMesh () const
 
void copyVariablesFromMesh (const std::vector< VariableName > &variables_to_copy, bool are_nonlinear=true)
 
std::string prefix () const
 
void saveSolverVariableName (const VariableName &var_name)
 
void saveAuxVariableName (const VariableName &var_name)
 
bool variableExists (const VariableName &var_name, bool error_if_aux) const
 
bool solverVariableExists (const VariableName &var_name) const
 
const SolverSystemName & getSolverSystem (unsigned int variable_index) const
 
const SolverSystemName & getSolverSystem (const VariableName &variable_name) const
 
void addRequiredPhysicsTask (const std::string &task)
 
void assignBlocks (InputParameters &params, const std::vector< SubdomainName > &blocks) const
 
bool allMeshBlocks (const std::vector< SubdomainName > &blocks) const
 
bool allMeshBlocks (const std::set< SubdomainName > &blocks) const
 
std::set< SubdomainIDgetSubdomainIDs (const std::set< SubdomainName > &blocks) const
 
std::vector< std::string > getSubdomainNamesAndIDs (const std::set< SubdomainID > &blocks) const
 
void addPetscPairsToPetscOptions (const std::vector< std::pair< MooseEnumItem, std::string >> &petsc_pair_options)
 
bool isVariableFV (const VariableName &var_name) const
 
bool isVariableScalar (const VariableName &var_name) const
 
bool shouldCreateVariable (const VariableName &var_name, const std::vector< SubdomainName > &blocks, const bool error_if_aux)
 
bool shouldCreateIC (const VariableName &var_name, const std::vector< SubdomainName > &blocks, const bool ic_is_default_ic, const bool error_if_already_defined) const
 
bool shouldCreateTimeDerivative (const VariableName &var_name, const std::vector< SubdomainName > &blocks, const bool error_if_already_defined) const
 
void reportPotentiallyMissedParameters (const std::vector< std::string > &param_names, const std::string &object_type) const
 
bool addRelationshipManagers (Moose::RelationshipManagerType when_type, const InputParameters &moose_object_pars)
 
void associateWithParameter (const std::string &param_name, InputParameters &params) const
 
void associateWithParameter (const InputParameters &from_params, const std::string &param_name, InputParameters &params) const
 
const T & getMeshProperty (const std::string &data_name, const std::string &prefix)
 
const T & getMeshProperty (const std::string &data_name)
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name) const
 
bool hasMeshProperty (const std::string &data_name) const
 
std::string meshPropertyName (const std::string &data_name) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 
std::string timedSectionName (const std::string &section_name) const
 
void checkParamsBothSetOrNotSet (const std::string &param1, const std::string &param2) const
 
void checkSecondParamSetOnlyIfFirstOneTrue (const std::string &param1, const std::string &param2) const
 
void checkSecondParamSetOnlyIfFirstOneSet (const std::string &param1, const std::string &param2) const
 
void checkSecondParamNotSetIfFirstOneSet (const std::string &param1, const std::string &param2) const
 
void checkVectorParamsSameLength (const std::string &param1, const std::string &param2) const
 
void checkVectorParamAndMultiMooseEnumLength (const std::string &param1, const std::string &param2) const
 
void checkTwoDVectorParamsSameLength (const std::string &param1, const std::string &param2) const
 
void checkVectorParamsNoOverlap (const std::vector< std::string > &param_vecs) const
 
void checkTwoDVectorParamsNoRespectiveOverlap (const std::vector< std::string > &param_vecs) const
 
void checkTwoDVectorParamInnerSameLengthAsOneDVector (const std::string &param1, const std::string &param2) const
 
void checkTwoDVectorParamMultiMooseEnumSameLength (const std::string &param1, const std::string &param2, const bool error_for_param2) const
 
void checkVectorParamNotEmpty (const std::string &param1) const
 
void checkVectorParamsSameLengthIfSet (const std::string &param1, const std::string &param2, const bool ignore_empty_default_param2=false) const
 
void checkVectorParamLengthSameAsCombinedOthers (const std::string &param1, const std::string &param2, const std::string &param3) const
 
void checkBlockwiseConsistency (const std::string &block_param_name, const std::vector< std::string > &parameter_names) const
 
bool parameterConsistent (const InputParameters &other_param, const std::string &param_name) const
 
void warnInconsistent (const InputParameters &parameters, const std::string &param_name) const
 
void errorDependentParameter (const std::string &param1, const std::string &value_not_set, const std::vector< std::string > &dependent_params) const
 
void errorInconsistentDependentParameter (const std::string &param1, const std::string &value_set, const std::vector< std::string > &dependent_params) const
 

Static Protected Member Functions

static std::string meshPropertyName (const std::string &data_name, const std::string &prefix)
 

Protected Attributes

const bool _has_energy_equation
 A boolean to help compatibility with the old Modules/NavierStokesFV syntax. More...
 
const bool _solve_for_enthalpy
 User-selected option to solve for enthalpy. More...
 
const VariableName _fluid_enthalpy_name
 Name of the fluid specific enthalpy. More...
 
VariableName _fluid_temperature_name
 Fluid temperature name. More...
 
MooseFunctorName _specific_heat_name
 Name of the specific heat material property. More...
 
std::vector< std::vector< SubdomainName > > _thermal_conductivity_blocks
 Vector of subdomain groups where we want to have different thermal conduction. More...
 
std::vector< MooseFunctorName > _thermal_conductivity_name
 Name of the thermal conductivity functor for each block-group. More...
 
std::vector< std::vector< SubdomainName > > _ambient_convection_blocks
 Vector of subdomain groups where we want to have different ambient convection. More...
 
std::vector< MooseFunctorName > _ambient_convection_alpha
 Name of the ambient convection heat transfer coefficients for each block-group. More...
 
std::vector< MooseFunctorName > _ambient_temperature
 Name of the solid domain temperature for each block-group. More...
 
MultiMooseEnum _energy_inlet_types
 Energy inlet boundary types. More...
 
std::vector< MooseFunctorName > _energy_inlet_functors
 Functors describing the inlet boundary values. See energy_inlet_types for what the functors actually represent. More...
 
MultiMooseEnum _energy_wall_types
 Energy wall boundary types. More...
 
std::vector< MooseFunctorName > _energy_wall_functors
 Functors describing the wall boundary values. See energy_wall_types for what the functors actually represent. More...
 
bool _define_variables
 Whether to define variables if they do not exist. More...
 
std::vector< SolverSystemName > _system_names
 
std::vector< unsigned int_system_numbers
 
const bool _verbose
 
const MooseEnum_preconditioning
 
std::vector< SubdomainName > _blocks
 
std::string _registered_identifier
 
std::string _specific_task_name
 
std::set< std::string > _all_tasks
 
ActionWarehouse_awh
 
const std::string & _current_task
 
std::shared_ptr< MooseMesh > & _mesh
 
std::shared_ptr< MooseMesh > & _displaced_mesh
 
std::shared_ptr< FEProblemBase > & _problem
 
PerfID _act_timer
 
MooseApp_app
 
const std::string _type
 
const std::string _name
 
const InputParameters_pars
 
Factory_factory
 
ActionFactory_action_factory
 
MooseApp_pg_moose_app
 
const std::string _prefix
 
const Parallel::Communicator & _communicator
 
const NavierStokesPhysicsBase_advection_physics
 The Physics class using this helper. More...
 
const WCNSFVFlowPhysicsBase_flow_equations_physics
 Flow physics. More...
 
const WCNSFVTurbulencePhysics_turbulence_physics
 Turbulence. More...
 
const MooseEnum _compressibility
 Compressibility type, can be compressible, incompressible or weakly-compressible. More...
 
const bool _porous_medium_treatment
 Switch to show if porous medium treatment is requested or not. More...
 
const std::vector< std::string > _velocity_names
 Velocity names. More...
 
const NonlinearVariableName _pressure_name
 Pressure name. More...
 
const MooseFunctorName _density_name
 Name of the density material property. More...
 
const MooseFunctorName _dynamic_viscosity_name
 Name of the dynamic viscosity material property. More...
 
const MooseEnum _velocity_interpolation
 The velocity / momentum face interpolation method for advecting other quantities. More...
 

Private Member Functions

virtual void addSolverVariables () override
 
void addEnergyTimeKernels () override
 Functions adding kernels for the incompressible / weakly compressible energy equation If the material properties are not constant, some of these can be used for weakly-compressible simulations as well. More...
 
void addEnergyHeatConductionKernels () override
 
void addEnergyAdvectionKernels () override
 
void addEnergyAmbientConvection () override
 
void addEnergyExternalHeatSource () override
 
void addEnergyInletBC () override
 Functions adding boundary conditions for the incompressible simulation. More...
 
void addEnergyWallBC () override
 
void addEnergyOutletBC () override
 
void addEnergySeparatorBC () override
 

Detailed Description

Creates all the objects needed to solve the Navier Stokes energy equation.

Definition at line 18 of file WCNSFVFluidHeatTransferPhysics.h.

Constructor & Destructor Documentation

◆ WCNSFVFluidHeatTransferPhysics()

WCNSFVFluidHeatTransferPhysics::WCNSFVFluidHeatTransferPhysics ( const InputParameters parameters)

Definition at line 28 of file WCNSFVFluidHeatTransferPhysics.C.

30 {
32  paramError("solve_for_enthalpy", "Enthalpy solve not supported at this time with Physics");
33 }
void paramError(const std::string &param, Args... args) const
WCNSFVFluidHeatTransferPhysicsBase(const InputParameters &parameters)
const bool _solve_for_enthalpy
User-selected option to solve for enthalpy.
const InputParameters & parameters() const

Member Function Documentation

◆ actOnAdditionalTasks()

void WCNSFVFluidHeatTransferPhysicsBase::actOnAdditionalTasks ( )
overrideprotectedvirtualinherited

Reimplemented from PhysicsBase.

Definition at line 159 of file WCNSFVFluidHeatTransferPhysicsBase.C.

160 {
161  // Turbulence physics would not be initialized before this task
162  if (_current_task == "get_turbulence_physics")
164 }
const WCNSFVTurbulencePhysics * _turbulence_physics
Turbulence.
const std::string & _current_task
const WCNSFVTurbulencePhysics * getCoupledTurbulencePhysics() const

◆ addEnergyAdvectionKernels()

void WCNSFVFluidHeatTransferPhysics::addEnergyAdvectionKernels ( )
overrideprivatevirtual

Implements WCNSFVFluidHeatTransferPhysicsBase.

Definition at line 110 of file WCNSFVFluidHeatTransferPhysics.C.

111 {
112  std::string kernel_type = "INSFVEnergyAdvection";
113  std::string kernel_name = prefix() + "ins_energy_advection";
115  {
116  kernel_type = "PINSFVEnergyAdvection";
117  kernel_name = prefix() + "pins_energy_advection";
118  }
119 
120  InputParameters params = getFactory().getValidParams(kernel_type);
121  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
122  assignBlocks(params, _blocks);
123  params.set<MooseEnum>("velocity_interp_method") = _velocity_interpolation;
124  params.set<UserObjectName>("rhie_chow_user_object") = _flow_equations_physics->rhieChowUOName();
125  params.set<MooseEnum>("advected_interp_method") =
126  getParam<MooseEnum>("energy_advection_interpolation");
127 
128  getProblem().addFVKernel(kernel_type, kernel_name, params);
129 }
std::string prefix() const
void assignBlocks(InputParameters &params, const std::vector< SubdomainName > &blocks) const
Factory & getFactory()
T & set(const std::string &name, bool quiet_mode=false)
InputParameters getValidParams(const std::string &name) const
VariableName _fluid_temperature_name
Fluid temperature name.
std::vector< SubdomainName > _blocks
virtual FEProblemBase & getProblem()
virtual UserObjectName rhieChowUOName() const =0
Return the name of the Rhie Chow user object.
const bool _porous_medium_treatment
Switch to show if porous medium treatment is requested or not.
virtual void addFVKernel(const std::string &kernel_name, const std::string &name, InputParameters &parameters)
const WCNSFVFlowPhysicsBase * _flow_equations_physics
Flow physics.
const MooseEnum _velocity_interpolation
The velocity / momentum face interpolation method for advecting other quantities. ...

◆ addEnergyAmbientConvection()

void WCNSFVFluidHeatTransferPhysics::addEnergyAmbientConvection ( )
overrideprivatevirtual

Implements WCNSFVFluidHeatTransferPhysicsBase.

Definition at line 181 of file WCNSFVFluidHeatTransferPhysics.C.

182 {
183  unsigned int num_convection_blocks = _ambient_convection_blocks.size();
184  unsigned int num_used_blocks = num_convection_blocks ? num_convection_blocks : 1;
185 
186  const std::string kernel_type = "PINSFVEnergyAmbientConvection";
187  InputParameters params = getFactory().getValidParams(kernel_type);
188  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
189  params.set<MooseFunctorName>(NS::T_fluid) = _fluid_temperature_name;
190  params.set<bool>("is_solid") = false;
191 
192  for (unsigned int block_i = 0; block_i < num_used_blocks; ++block_i)
193  {
194  std::string block_name = "";
195  if (num_convection_blocks)
196  {
197  params.set<std::vector<SubdomainName>>("block") = _ambient_convection_blocks[block_i];
198  block_name = Moose::stringify(_ambient_convection_blocks[block_i]);
199  }
200  else
201  {
202  assignBlocks(params, _blocks);
203  block_name = std::to_string(block_i);
204  }
205 
206  params.set<MooseFunctorName>("h_solid_fluid") = _ambient_convection_alpha[block_i];
207  params.set<MooseFunctorName>(NS::T_solid) = _ambient_temperature[block_i];
208 
209  getProblem().addFVKernel(kernel_type, prefix() + "ambient_convection_" + block_name, params);
210  }
211 }
std::string prefix() const
void assignBlocks(InputParameters &params, const std::vector< SubdomainName > &blocks) const
Factory & getFactory()
std::vector< MooseFunctorName > _ambient_temperature
Name of the solid domain temperature for each block-group.
static const std::string T_solid
Definition: NS.h:107
T & set(const std::string &name, bool quiet_mode=false)
InputParameters getValidParams(const std::string &name) const
VariableName _fluid_temperature_name
Fluid temperature name.
std::vector< std::vector< SubdomainName > > _ambient_convection_blocks
Vector of subdomain groups where we want to have different ambient convection.
std::vector< SubdomainName > _blocks
virtual FEProblemBase & getProblem()
static const std::string T_fluid
Definition: NS.h:106
std::string stringify(const T &t)
std::vector< MooseFunctorName > _ambient_convection_alpha
Name of the ambient convection heat transfer coefficients for each block-group.
virtual void addFVKernel(const std::string &kernel_name, const std::string &name, InputParameters &parameters)

◆ addEnergyExternalHeatSource()

void WCNSFVFluidHeatTransferPhysics::addEnergyExternalHeatSource ( )
overrideprivatevirtual

Implements WCNSFVFluidHeatTransferPhysicsBase.

Definition at line 214 of file WCNSFVFluidHeatTransferPhysics.C.

215 {
216  const std::string kernel_type = "FVCoupledForce";
217  InputParameters params = getFactory().getValidParams(kernel_type);
218  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
219  assignBlocks(params, _blocks);
220  params.set<MooseFunctorName>("v") = getParam<MooseFunctorName>("external_heat_source");
221  params.set<Real>("coef") = getParam<Real>("external_heat_source_coeff");
222 
223  getProblem().addFVKernel(kernel_type, prefix() + "external_heat_source", params);
224 }
std::string prefix() const
void assignBlocks(InputParameters &params, const std::vector< SubdomainName > &blocks) const
Factory & getFactory()
T & set(const std::string &name, bool quiet_mode=false)
InputParameters getValidParams(const std::string &name) const
VariableName _fluid_temperature_name
Fluid temperature name.
std::vector< SubdomainName > _blocks
virtual FEProblemBase & getProblem()
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual void addFVKernel(const std::string &kernel_name, const std::string &name, InputParameters &parameters)

◆ addEnergyHeatConductionKernels()

void WCNSFVFluidHeatTransferPhysics::addEnergyHeatConductionKernels ( )
overrideprivatevirtual

Implements WCNSFVFluidHeatTransferPhysicsBase.

Definition at line 132 of file WCNSFVFluidHeatTransferPhysics.C.

133 {
134  const auto vector_conductivity = processThermalConductivity();
135  const auto num_blocks = _thermal_conductivity_blocks.size();
136  const auto num_used_blocks = num_blocks ? num_blocks : 1;
137 
138  for (const auto block_i : make_range(num_used_blocks))
139  {
140  std::string block_name = "";
141  if (num_blocks)
142  block_name = Moose::stringify(_thermal_conductivity_blocks[block_i]);
143  else
144  block_name = "all";
145 
147  {
148  const auto kernel_type =
149  vector_conductivity ? "PINSFVEnergyAnisotropicDiffusion" : "PINSFVEnergyDiffusion";
150 
151  InputParameters params = getFactory().getValidParams(kernel_type);
152  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
153  const auto block_names = num_blocks ? _thermal_conductivity_blocks[block_i] : _blocks;
154  assignBlocks(params, block_names);
155  const auto conductivity_name = vector_conductivity ? NS::kappa : NS::k;
156  params.set<MooseFunctorName>(conductivity_name) = _thermal_conductivity_name[block_i];
157  params.set<MooseFunctorName>(NS::porosity) =
159  params.set<bool>("effective_conductivity") = getParam<bool>("effective_conductivity");
160 
162  kernel_type, prefix() + "pins_energy_diffusion_" + block_name, params);
163  }
164  else
165  {
166  const std::string kernel_type = "FVDiffusion";
167  InputParameters params = getFactory().getValidParams(kernel_type);
168  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
169  std::vector<SubdomainName> block_names =
170  num_blocks ? _thermal_conductivity_blocks[block_i] : _blocks;
171  assignBlocks(params, block_names);
172  params.set<MooseFunctorName>("coeff") = _thermal_conductivity_name[block_i];
173 
175  kernel_type, prefix() + "ins_energy_diffusion_" + block_name, params);
176  }
177  }
178 }
std::string prefix() const
void assignBlocks(InputParameters &params, const std::vector< SubdomainName > &blocks) const
Factory & getFactory()
T & set(const std::string &name, bool quiet_mode=false)
InputParameters getValidParams(const std::string &name) const
VariableName _fluid_temperature_name
Fluid temperature name.
std::vector< SubdomainName > _blocks
virtual FEProblemBase & getProblem()
static const std::string porosity
Definition: NS.h:104
MooseFunctorName getPorosityFunctorName(const bool smoothed) const
const bool _porous_medium_treatment
Switch to show if porous medium treatment is requested or not.
std::string stringify(const T &t)
std::vector< std::vector< SubdomainName > > _thermal_conductivity_blocks
Vector of subdomain groups where we want to have different thermal conduction.
static const std::string kappa
Definition: NS.h:116
bool processThermalConductivity()
Process thermal conductivity (multiple functor input options are available).
std::vector< MooseFunctorName > _thermal_conductivity_name
Name of the thermal conductivity functor for each block-group.
IntRange< T > make_range(T beg, T end)
virtual void addFVKernel(const std::string &kernel_name, const std::string &name, InputParameters &parameters)
static const std::string k
Definition: NS.h:130
const WCNSFVFlowPhysicsBase * _flow_equations_physics
Flow physics.

◆ addEnergyInletBC()

void WCNSFVFluidHeatTransferPhysics::addEnergyInletBC ( )
overrideprivatevirtual

Functions adding boundary conditions for the incompressible simulation.

These are used for weakly-compressible simulations as well.

Implements WCNSFVFluidHeatTransferPhysicsBase.

Definition at line 227 of file WCNSFVFluidHeatTransferPhysics.C.

228 {
229  const auto & inlet_boundaries = _flow_equations_physics->getInletBoundaries();
230  // These are parameter errors for now. If Components add boundaries to Physics, the error
231  // may not be due to parameters anymore.
232  if (inlet_boundaries.size() != _energy_inlet_types.size())
233  paramError("energy_inlet_types",
234  "Energy inlet types (size " + std::to_string(_energy_inlet_types.size()) +
235  ") should be the same size as inlet_boundaries (size " +
236  std::to_string(inlet_boundaries.size()) + ")");
237  if (inlet_boundaries.size() != _energy_inlet_functors.size())
238  paramError("energy_inlet_functors",
239  "Energy inlet functors (size " + std::to_string(_energy_inlet_functors.size()) +
240  ") should be the same size as inlet_boundaries (size " +
241  std::to_string(inlet_boundaries.size()) + ")");
242 
243  unsigned int flux_bc_counter = 0;
244  for (const auto bc_ind : index_range(_energy_inlet_types))
245  {
246  if (_energy_inlet_types[bc_ind] == "fixed-temperature")
247  {
248  const std::string bc_type = "FVADFunctorDirichletBC";
249  InputParameters params = getFactory().getValidParams(bc_type);
250  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
251  params.set<MooseFunctorName>("functor") = _energy_inlet_functors[bc_ind];
252  params.set<std::vector<BoundaryName>>("boundary") = {inlet_boundaries[bc_ind]};
253 
255  bc_type, _fluid_temperature_name + "_" + inlet_boundaries[bc_ind], params);
256  }
257  else if (_energy_inlet_types[bc_ind] == "heatflux")
258  {
259  const std::string bc_type = "FVFunctionNeumannBC";
260  InputParameters params = getFactory().getValidParams(bc_type);
261  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
262  params.set<FunctionName>("function") = _energy_inlet_functors[bc_ind];
263  params.set<std::vector<BoundaryName>>("boundary") = {inlet_boundaries[bc_ind]};
264 
266  bc_type, _fluid_temperature_name + "_" + inlet_boundaries[bc_ind], params);
267  }
268  else if (_energy_inlet_types[bc_ind] == "flux-mass" ||
269  _energy_inlet_types[bc_ind] == "flux-velocity")
270  {
271  const std::string bc_type = "WCNSFVEnergyFluxBC";
272  InputParameters params = getFactory().getValidParams(bc_type);
273  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
274  const auto flux_inlet_directions = _flow_equations_physics->getFluxInletDirections();
275  const auto flux_inlet_pps = _flow_equations_physics->getFluxInletPPs();
276 
277  if (flux_inlet_directions.size())
278  params.set<Point>("direction") = flux_inlet_directions[flux_bc_counter];
279  if (_energy_inlet_types[bc_ind] == "flux-mass")
280  {
281  params.set<PostprocessorName>("mdot_pp") = flux_inlet_pps[flux_bc_counter];
282  params.set<PostprocessorName>("area_pp") = "area_pp_" + inlet_boundaries[bc_ind];
283  }
284  else
285  params.set<PostprocessorName>("velocity_pp") = flux_inlet_pps[flux_bc_counter];
286 
287  params.set<PostprocessorName>("temperature_pp") = _energy_inlet_functors[bc_ind];
288  params.set<MooseFunctorName>(NS::density) = _density_name;
289  params.set<MooseFunctorName>(NS::cp) = _specific_heat_name;
290  params.set<MooseFunctorName>(NS::T_fluid) = _fluid_temperature_name;
291 
292  for (const auto d : make_range(dimension()))
293  params.set<MooseFunctorName>(NS::velocity_vector[d]) = _velocity_names[d];
294 
295  params.set<std::vector<BoundaryName>>("boundary") = {inlet_boundaries[bc_ind]};
296 
298  bc_type, _fluid_temperature_name + "_" + inlet_boundaries[bc_ind], params);
299  flux_bc_counter += 1;
300  }
301  }
302 }
MooseFunctorName _specific_heat_name
Name of the specific heat material property.
const MooseFunctorName _density_name
Name of the density material property.
Factory & getFactory()
const std::vector< BoundaryName > & getInletBoundaries() const
Get the inlet boundaries.
T & set(const std::string &name, bool quiet_mode=false)
static const std::string density
Definition: NS.h:33
InputParameters getValidParams(const std::string &name) const
unsigned int size() const
VariableName _fluid_temperature_name
Fluid temperature name.
unsigned int dimension() const
MultiMooseEnum _energy_inlet_types
Energy inlet boundary types.
virtual FEProblemBase & getProblem()
static const std::string cp
Definition: NS.h:121
static const std::string T_fluid
Definition: NS.h:106
const std::vector< PostprocessorName > & getFluxInletPPs() const
Get the inlet flux postprocessor if using a flux inlet.
void paramError(const std::string &param, Args... args) const
const std::vector< std::string > _velocity_names
Velocity names.
std::vector< MooseFunctorName > _energy_inlet_functors
Functors describing the inlet boundary values. See energy_inlet_types for what the functors actually ...
IntRange< T > make_range(T beg, T end)
const std::string velocity_vector[3]
Definition: NS.h:49
const std::vector< Point > & getFluxInletDirections() const
Get the inlet direction if using a flux inlet.
virtual void addFVBC(const std::string &fv_bc_name, const std::string &name, InputParameters &parameters)
const WCNSFVFlowPhysicsBase * _flow_equations_physics
Flow physics.
auto index_range(const T &sizable)

◆ addEnergyOutletBC()

void WCNSFVFluidHeatTransferPhysics::addEnergyOutletBC ( )
inlineoverrideprivatevirtual

Implements WCNSFVFluidHeatTransferPhysicsBase.

Definition at line 44 of file WCNSFVFluidHeatTransferPhysics.h.

44 {}

◆ addEnergySeparatorBC()

void WCNSFVFluidHeatTransferPhysics::addEnergySeparatorBC ( )
overrideprivatevirtual

Implements WCNSFVFluidHeatTransferPhysicsBase.

Definition at line 407 of file WCNSFVFluidHeatTransferPhysics.C.

408 {
410  {
411  const std::string bc_type = "INSFVScalarFieldSeparatorBC";
412  InputParameters params = getFactory().getValidParams(bc_type);
413  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
414  params.set<std::vector<BoundaryName>>("boundary") =
416  getProblem().addFVBC(bc_type, prefix() + _fluid_temperature_name + "_separators", params);
417  }
418 }
std::string prefix() const
Factory & getFactory()
T & set(const std::string &name, bool quiet_mode=false)
InputParameters getValidParams(const std::string &name) const
VariableName _fluid_temperature_name
Fluid temperature name.
const std::vector< BoundaryName > & getHydraulicSeparators() const
Get the hydraulic separator boundaries.
virtual FEProblemBase & getProblem()
virtual void addFVBC(const std::string &fv_bc_name, const std::string &name, InputParameters &parameters)
const WCNSFVFlowPhysicsBase * _flow_equations_physics
Flow physics.

◆ addEnergyTimeKernels()

void WCNSFVFluidHeatTransferPhysics::addEnergyTimeKernels ( )
overrideprivatevirtual

Functions adding kernels for the incompressible / weakly compressible energy equation If the material properties are not constant, some of these can be used for weakly-compressible simulations as well.

Implements WCNSFVFluidHeatTransferPhysicsBase.

Definition at line 67 of file WCNSFVFluidHeatTransferPhysics.C.

68 {
69  std::string kernel_type =
70  ((_compressibility == "weakly-compressible") ? "WCNSFVEnergyTimeDerivative"
71  : "INSFVEnergyTimeDerivative");
72  std::string kernel_name =
73  prefix() + ((_compressibility == "weakly-compressible") ? "wcns" : "ins") + "_energy_time";
75  {
76  kernel_type = "PINSFVEnergyTimeDerivative";
77  kernel_name = prefix() + ((_compressibility == "weakly-compressible") ? "pwcns" : "pins") +
78  "_energy_time";
79  }
80 
81  InputParameters params = getFactory().getValidParams(kernel_type);
82  assignBlocks(params, _blocks);
83  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
84  params.set<MooseFunctorName>(NS::density) = _density_name;
85  params.set<MooseFunctorName>(NS::time_deriv(NS::specific_enthalpy)) =
87  if (_compressibility == "weakly-compressible")
88  {
89  params.set<MooseFunctorName>(NS::time_deriv(NS::density)) = NS::time_deriv(_density_name);
90  params.set<MooseFunctorName>(NS::specific_enthalpy) = NS::specific_enthalpy;
91  }
93  {
94  params.set<MooseFunctorName>(NS::porosity) =
96  if (getProblem().hasFunctor(NS::time_deriv(_density_name),
97  /*thread_id=*/0))
98  {
99  params.set<MooseFunctorName>(NS::time_deriv(NS::density)) = NS::time_deriv(_density_name);
100  params.set<MooseFunctorName>(NS::specific_enthalpy) = NS::specific_enthalpy;
101  }
102 
103  params.set<bool>("is_solid") = false;
104  }
105 
106  getProblem().addFVKernel(kernel_type, kernel_name, params);
107 }
std::string prefix() const
void assignBlocks(InputParameters &params, const std::vector< SubdomainName > &blocks) const
const MooseFunctorName _density_name
Name of the density material property.
Factory & getFactory()
T & set(const std::string &name, bool quiet_mode=false)
static const std::string density
Definition: NS.h:33
InputParameters getValidParams(const std::string &name) const
VariableName _fluid_temperature_name
Fluid temperature name.
std::vector< SubdomainName > _blocks
virtual FEProblemBase & getProblem()
static const std::string porosity
Definition: NS.h:104
const MooseEnum _compressibility
Compressibility type, can be compressible, incompressible or weakly-compressible. ...
MooseFunctorName getPorosityFunctorName(const bool smoothed) const
const bool _porous_medium_treatment
Switch to show if porous medium treatment is requested or not.
virtual void addFVKernel(const std::string &kernel_name, const std::string &name, InputParameters &parameters)
const WCNSFVFlowPhysicsBase * _flow_equations_physics
Flow physics.
std::string time_deriv(const std::string &var)
Definition: NS.h:97
static const std::string specific_enthalpy
Definition: NS.h:68

◆ addEnergyWallBC()

void WCNSFVFluidHeatTransferPhysics::addEnergyWallBC ( )
overrideprivatevirtual

Implements WCNSFVFluidHeatTransferPhysicsBase.

Definition at line 305 of file WCNSFVFluidHeatTransferPhysics.C.

306 {
307  const auto & wall_boundaries = isParamSetByUser("energy_wall_boundaries")
308  ? getParam<std::vector<BoundaryName>>("energy_wall_boundaries")
310  if (wall_boundaries.size() != _energy_wall_types.size())
311  paramError("energy_wall_types",
312  "Energy wall types (size " + std::to_string(_energy_wall_types.size()) +
313  ") should be the same size as wall_boundaries (size " +
314  std::to_string(wall_boundaries.size()) + ")");
315  if (wall_boundaries.size() != _energy_wall_functors.size())
316  paramError("energy_wall_functors",
317  "Energy wall functors (size " + std::to_string(_energy_wall_functors.size()) +
318  ") should be the same size as wall_boundaries (size " +
319  std::to_string(wall_boundaries.size()) + ")");
320 
321  for (unsigned int bc_ind = 0; bc_ind < _energy_wall_types.size(); ++bc_ind)
322  {
323  if (_energy_wall_types[bc_ind] == "fixed-temperature")
324  {
325  const std::string bc_type = "FVADFunctorDirichletBC";
326  InputParameters params = getFactory().getValidParams(bc_type);
327  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
328  params.set<MooseFunctorName>("functor") = _energy_wall_functors[bc_ind];
329  params.set<std::vector<BoundaryName>>("boundary") = {wall_boundaries[bc_ind]};
330 
332  bc_type, _fluid_temperature_name + "_" + wall_boundaries[bc_ind], params);
333  }
334  else if (_energy_wall_types[bc_ind] == "heatflux")
335  {
336  const std::string bc_type = "FVFunctorNeumannBC";
337  InputParameters params = getFactory().getValidParams(bc_type);
338  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
339  params.set<MooseFunctorName>("functor") = _energy_wall_functors[bc_ind];
340  params.set<std::vector<BoundaryName>>("boundary") = {wall_boundaries[bc_ind]};
341 
343  bc_type, _fluid_temperature_name + "_" + wall_boundaries[bc_ind], params);
344  }
345  else if (_energy_wall_types[bc_ind] == "convection")
346  {
347  const std::string bc_type = "FVFunctorConvectiveHeatFluxBC";
348  InputParameters params = getFactory().getValidParams(bc_type);
349  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
350  params.set<MooseFunctorName>("T_bulk") = _fluid_temperature_name;
351  params.set<std::vector<BoundaryName>>("boundary") = {wall_boundaries[bc_ind]};
352  params.set<bool>("is_solid") = false;
353  const auto Tinf_htc_functors =
354  MooseUtils::split(_energy_wall_functors[bc_ind], /*delimiter=*/":", /*max_count=*/1);
355  if (Tinf_htc_functors.size() != 2)
356  paramError("energy_wall_functors",
357  "'convective' wall types require two functors specified as "
358  "<Tinf_functor>:<htc_functor>.");
359  params.set<MooseFunctorName>("T_solid") = Tinf_htc_functors[0];
360  params.set<MooseFunctorName>("heat_transfer_coefficient") = Tinf_htc_functors[1];
361 
363  bc_type, _fluid_temperature_name + "_" + wall_boundaries[bc_ind], params);
364  }
365  // We add this boundary condition here to facilitate the input of wall boundaries / functors for
366  // energy. If there are too many turbulence options and this gets out of hand we will have to
367  // move this to the turbulence Physics
368  else if (_energy_wall_types[bc_ind] == "wallfunction")
369  {
370  if (!_turbulence_physics)
371  paramError("coupled_turbulence_physics",
372  "A coupled turbulence Physics was not found for defining the wall function "
373  "boundary condition on boundary: " +
374  wall_boundaries[bc_ind]);
375  const std::string bc_type = "INSFVTurbulentTemperatureWallFunction";
376  InputParameters params = getFactory().getValidParams(bc_type);
377  params.set<NonlinearVariableName>("variable") = _fluid_temperature_name;
378  params.set<std::vector<BoundaryName>>("boundary") = {wall_boundaries[bc_ind]};
379  params.set<MooseEnum>("wall_treatment") =
381  params.set<MooseFunctorName>("T_w") = _energy_wall_functors[bc_ind];
382  params.set<MooseFunctorName>(NS::density) = _density_name;
383  params.set<MooseFunctorName>(NS::mu) = _dynamic_viscosity_name;
384  params.set<MooseFunctorName>(NS::TKE) = _turbulence_physics->tkeName();
385  if (_thermal_conductivity_name.size() != 1)
386  mooseError("Several anisotropic thermal conductivity (kappa) regions have been specified. "
387  "Selecting the right kappa coefficient for the turbulence boundaries is not "
388  "currently implemented.\nBoundaries:\n" +
390  "\nKappa(s) specified:\n" + Moose::stringify(_thermal_conductivity_name));
391  params.set<MooseFunctorName>(NS::kappa) = _thermal_conductivity_name[0];
392  params.set<MooseFunctorName>(NS::cp) = _specific_heat_name;
393  const std::string u_names[3] = {"u", "v", "w"};
394  for (const auto d : make_range(dimension()))
395  params.set<MooseFunctorName>(u_names[d]) = _velocity_names[d];
396  // Currently only Newton method for WCNSFVFluidHeatTransferPhysics
397  params.set<bool>("newton_solve") = true;
398  getProblem().addFVBC(bc_type, prefix() + "wallfunction_" + wall_boundaries[bc_ind], params);
399  }
400  else
401  paramError(
402  "energy_wall_types", _energy_wall_types[bc_ind], " wall type is currently unsupported.");
403  }
404 }
std::string prefix() const
MooseFunctorName _specific_heat_name
Name of the specific heat material property.
const MooseFunctorName _density_name
Name of the density material property.
Factory & getFactory()
T & set(const std::string &name, bool quiet_mode=false)
MooseEnum turbulenceTemperatureWallTreatment() const
The turbulence temperature wall treatment (same for all turbulence walls currently) ...
static const std::string density
Definition: NS.h:33
InputParameters getValidParams(const std::string &name) const
static const std::string TKE
Definition: NS.h:176
unsigned int size() const
VariableName _fluid_temperature_name
Fluid temperature name.
const MooseFunctorName _dynamic_viscosity_name
Name of the dynamic viscosity material property.
MultiMooseEnum _energy_wall_types
Energy wall boundary types.
unsigned int dimension() const
std::vector< MooseFunctorName > _energy_wall_functors
Functors describing the wall boundary values. See energy_wall_types for what the functors actually re...
const WCNSFVTurbulencePhysics * _turbulence_physics
Turbulence.
std::vector< std::string > split(const std::string &str, const std::string &delimiter, std::size_t max_count=std::numeric_limits< std::size_t >::max())
virtual FEProblemBase & getProblem()
static const std::string cp
Definition: NS.h:121
static const std::string mu
Definition: NS.h:123
void paramError(const std::string &param, Args... args) const
std::string stringify(const T &t)
const std::vector< std::string > _velocity_names
Velocity names.
bool isParamSetByUser(const std::string &nm) const
static const std::string kappa
Definition: NS.h:116
std::vector< MooseFunctorName > _thermal_conductivity_name
Name of the thermal conductivity functor for each block-group.
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
MooseFunctorName tkeName() const
The name of the turbulent kinetic energy variable.
virtual void addFVBC(const std::string &fv_bc_name, const std::string &name, InputParameters &parameters)
std::vector< BoundaryName > turbulenceWalls() const
The names of the boundaries with turbulence wall functions.
const WCNSFVFlowPhysicsBase * _flow_equations_physics
Flow physics.
const std::vector< BoundaryName > & getWallBoundaries() const
Get the wall boundaries.

◆ addFVBCs()

void WCNSFVFluidHeatTransferPhysicsBase::addFVBCs ( )
overrideprotectedvirtualinherited

Reimplemented from PhysicsBase.

Definition at line 146 of file WCNSFVFluidHeatTransferPhysicsBase.C.

147 {
148  // For compatibility with Modules/NavierStokesFV syntax
150  return;
151 
153  addEnergyWallBC();
156 }
const bool _has_energy_equation
A boolean to help compatibility with the old Modules/NavierStokesFV syntax.
virtual void addEnergyInletBC()=0
Functions adding boundary conditions for the fluid heat transfer equation.

◆ addFVKernels()

void WCNSFVFluidHeatTransferPhysicsBase::addFVKernels ( )
overrideprotectedvirtualinherited

Reimplemented from PhysicsBase.

Definition at line 125 of file WCNSFVFluidHeatTransferPhysicsBase.C.

126 {
127  // For compatibility with Modules/NavierStokesFV syntax
129  return;
130 
133  _blocks,
134  /*error if already defined*/ false))
136 
139  if (getParam<std::vector<MooseFunctorName>>("ambient_temperature").size())
141  if (isParamValid("external_heat_source"))
143 }
virtual void addEnergyExternalHeatSource()=0
virtual void addEnergyTimeKernels()=0
Functions adding kernels for the incompressible / weakly compressible energy equation.
bool shouldCreateTimeDerivative(const VariableName &var_name, const std::vector< SubdomainName > &blocks, const bool error_if_already_defined) const
VariableName _fluid_temperature_name
Fluid temperature name.
std::vector< SubdomainName > _blocks
virtual void addEnergyAmbientConvection()=0
bool isParamValid(const std::string &name) const
virtual void addEnergyAdvectionKernels()=0
const T & getParam(const std::string &name) const
const VariableName _fluid_enthalpy_name
Name of the fluid specific enthalpy.
const bool _has_energy_equation
A boolean to help compatibility with the old Modules/NavierStokesFV syntax.
const bool _solve_for_enthalpy
User-selected option to solve for enthalpy.
virtual void addEnergyHeatConductionKernels()=0

◆ addInitialConditions()

void WCNSFVFluidHeatTransferPhysicsBase::addInitialConditions ( )
overrideprotectedvirtualinherited

Reimplemented from PhysicsBase.

Definition at line 212 of file WCNSFVFluidHeatTransferPhysicsBase.C.

213 {
214  // For compatibility with Modules/NavierStokesFV syntax
216  return;
217  if (!_define_variables && parameters().isParamSetByUser("initial_temperature"))
218  paramError(
219  "initial_temperature",
220  "T_fluid is defined externally of WCNSFVFluidHeatTransferPhysicsBase, so should the inital "
221  "condition");
222  // do not set initial conditions if we are not defining variables
223  if (!_define_variables)
224  return;
225 
226  InputParameters params = getFactory().getValidParams("FunctionIC");
227  assignBlocks(params, _blocks);
228 
230  _blocks,
231  /*whether IC is a default*/ !isParamSetByUser("initial_temperature"),
232  /*error if already an IC*/ isParamSetByUser("initial_temperature")))
233  {
234  params.set<VariableName>("variable") = _fluid_temperature_name;
235  params.set<FunctionName>("function") = getParam<FunctionName>("initial_temperature");
236 
237  getProblem().addInitialCondition("FunctionIC", _fluid_temperature_name + "_ic", params);
238  }
239  if (parameters().isParamValid("initial_enthalpy") &&
241  _blocks,
242  /*whether IC is a default*/ false,
243  /*error if already an IC*/ true))
244  {
245  params.set<VariableName>("variable") = _fluid_enthalpy_name;
246  params.set<FunctionName>("function") = getParam<FunctionName>("initial_enthalpy");
247 
248  getProblem().addInitialCondition("FunctionIC", _fluid_enthalpy_name + "_ic", params);
249  }
250 }
void assignBlocks(InputParameters &params, const std::vector< SubdomainName > &blocks) const
Factory & getFactory()
T & set(const std::string &name, bool quiet_mode=false)
InputParameters getValidParams(const std::string &name) const
bool shouldCreateIC(const VariableName &var_name, const std::vector< SubdomainName > &blocks, const bool ic_is_default_ic, const bool error_if_already_defined) const
VariableName _fluid_temperature_name
Fluid temperature name.
std::vector< SubdomainName > _blocks
bool isParamValid(const std::string &name) const
virtual void addInitialCondition(const std::string &ic_name, const std::string &name, InputParameters &parameters)
virtual FEProblemBase & getProblem()
void paramError(const std::string &param, Args... args) const
const VariableName _fluid_enthalpy_name
Name of the fluid specific enthalpy.
const bool _has_energy_equation
A boolean to help compatibility with the old Modules/NavierStokesFV syntax.
bool _define_variables
Whether to define variables if they do not exist.
bool isParamSetByUser(const std::string &nm) const
const InputParameters & parameters() const

◆ addMaterials()

void WCNSFVFluidHeatTransferPhysicsBase::addMaterials ( )
overrideprotectedvirtualinherited

Reimplemented from PhysicsBase.

Reimplemented in WCNSLinearFVFluidHeatTransferPhysics.

Definition at line 253 of file WCNSFVFluidHeatTransferPhysicsBase.C.

Referenced by WCNSLinearFVFluidHeatTransferPhysics::addMaterials().

254 {
255  // For compatibility with Modules/NavierStokesFV syntax
257  return;
258 
259  // Note that this material choice would not work for Newton-INSFV + solve_for_enthalpy
260  const auto object_type =
261  _solve_for_enthalpy ? "LinearFVEnthalpyFunctorMaterial" : "INSFVEnthalpyFunctorMaterial";
262 
263  InputParameters params = getFactory().getValidParams(object_type);
264  assignBlocks(params, _blocks);
265 
267  {
268  params.set<MooseFunctorName>(NS::pressure) = _flow_equations_physics->getPressureName();
269  params.set<MooseFunctorName>(NS::T_fluid) = _fluid_temperature_name;
270  params.set<MooseFunctorName>(NS::specific_enthalpy) = _fluid_enthalpy_name;
271  if (isParamValid(NS::fluid))
272  params.set<UserObjectName>(NS::fluid) = getParam<UserObjectName>(NS::fluid);
273  else
274  {
275  if (!getProblem().hasFunctor("h_from_p_T_functor", 0) ||
276  !getProblem().hasFunctor("T_from_p_h_functor", 0))
278  "Either 'fp' must be specified or the 'h_from_p_T_functor' and "
279  "'T_from_p_h_functor' must be defined outside the Physics");
280  // Note: we could define those in the Physics if cp is constant
281  params.set<MooseFunctorName>("h_from_p_T_functor") = "h_from_p_T_functor";
282  params.set<MooseFunctorName>("T_from_p_h_functor") = "T_from_p_h_functor";
283  }
284  }
285  else
286  {
287  params.set<MooseFunctorName>(NS::density) = _density_name;
288  params.set<MooseFunctorName>(NS::cp) = _specific_heat_name;
289  params.set<MooseFunctorName>("temperature") = _fluid_temperature_name;
290  }
291 
292  getProblem().addMaterial(object_type, prefix() + "enthalpy_material", params);
293 }
std::string prefix() const
MooseFunctorName _specific_heat_name
Name of the specific heat material property.
void assignBlocks(InputParameters &params, const std::vector< SubdomainName > &blocks) const
const MooseFunctorName _density_name
Name of the density material property.
Factory & getFactory()
virtual void addMaterial(const std::string &material_name, const std::string &name, InputParameters &parameters)
T & set(const std::string &name, bool quiet_mode=false)
static const std::string density
Definition: NS.h:33
InputParameters getValidParams(const std::string &name) const
static const std::string fluid
Definition: NS.h:87
VariableName _fluid_temperature_name
Fluid temperature name.
std::vector< SubdomainName > _blocks
bool isParamValid(const std::string &name) const
virtual FEProblemBase & getProblem()
static const std::string cp
Definition: NS.h:121
static const std::string T_fluid
Definition: NS.h:106
void paramError(const std::string &param, Args... args) const
const VariableName _fluid_enthalpy_name
Name of the fluid specific enthalpy.
const bool _has_energy_equation
A boolean to help compatibility with the old Modules/NavierStokesFV syntax.
static const std::string pressure
Definition: NS.h:56
const bool _solve_for_enthalpy
User-selected option to solve for enthalpy.
bool hasFunctor(const std::string &name, const THREAD_ID tid) const
const WCNSFVFlowPhysicsBase * _flow_equations_physics
Flow physics.
static const std::string specific_enthalpy
Definition: NS.h:68
const NonlinearVariableName & getPressureName() const

◆ addSolverVariables()

void WCNSFVFluidHeatTransferPhysics::addSolverVariables ( )
overrideprivatevirtual

Reimplemented from PhysicsBase.

Definition at line 36 of file WCNSFVFluidHeatTransferPhysics.C.

37 {
38  // For compatibility with Modules/NavierStokesFV syntax
40  return;
41 
42  // Dont add if the user already defined the variable
43  if (!shouldCreateVariable(_fluid_temperature_name, _blocks, /*error if aux*/ true))
44  reportPotentiallyMissedParameters({"system_names",
45  "energy_scaling",
46  "energy_face_interpolation",
47  "energy_two_term_bc_expansion"},
48  "INSFVEnergyVariable");
49  else if (_define_variables)
50  {
51  auto params = getFactory().getValidParams("INSFVEnergyVariable");
52  assignBlocks(params, _blocks);
53  params.set<std::vector<Real>>("scaling") = {getParam<Real>("energy_scaling")};
54  params.set<MooseEnum>("face_interp_method") = getParam<MooseEnum>("energy_face_interpolation");
55  params.set<bool>("two_term_boundary_expansion") =
56  getParam<bool>("energy_two_term_bc_expansion");
57  params.set<SolverSystemName>("solver_sys") = getSolverSystem(_fluid_temperature_name);
58  getProblem().addVariable("INSFVEnergyVariable", _fluid_temperature_name, params);
59  }
60  else
61  paramError("fluid_temperature_variable",
62  "Variable (" + _fluid_temperature_name +
63  ") supplied to the WCNSFVFluidHeatTransferPhysics does not exist!");
64 }
void assignBlocks(InputParameters &params, const std::vector< SubdomainName > &blocks) const
bool shouldCreateVariable(const VariableName &var_name, const std::vector< SubdomainName > &blocks, const bool error_if_aux)
Factory & getFactory()
InputParameters getValidParams(const std::string &name) const
VariableName _fluid_temperature_name
Fluid temperature name.
std::vector< SubdomainName > _blocks
virtual FEProblemBase & getProblem()
const SolverSystemName & getSolverSystem(unsigned int variable_index) const
void paramError(const std::string &param, Args... args) const
virtual void addVariable(const std::string &var_type, const std::string &var_name, InputParameters &params)
const bool _has_energy_equation
A boolean to help compatibility with the old Modules/NavierStokesFV syntax.
bool _define_variables
Whether to define variables if they do not exist.
void reportPotentiallyMissedParameters(const std::vector< std::string > &param_names, const std::string &object_type) const

◆ densityName()

const MooseFunctorName& WCNSFVCoupledAdvectionPhysicsHelper::densityName ( ) const
inlineinherited

◆ dynamicViscosityName()

const MooseFunctorName& WCNSFVCoupledAdvectionPhysicsHelper::dynamicViscosityName ( ) const
inlineinherited

Definition at line 37 of file WCNSFVCoupledAdvectionPhysicsHelper.h.

37 { return _dynamic_viscosity_name; }
const MooseFunctorName _dynamic_viscosity_name
Name of the dynamic viscosity material property.

◆ getAdditionalRMParams()

InputParameters NavierStokesPhysicsBase::getAdditionalRMParams ( ) const
overrideprotectedvirtualinherited

Parameters to change or add relationship managers.

Reimplemented from PhysicsBase.

Definition at line 42 of file NavierStokesPhysicsBase.C.

43 {
44  unsigned short necessary_layers = getParam<unsigned short>("ghost_layers");
45  necessary_layers = std::max(necessary_layers, getNumberAlgebraicGhostingLayersNeeded());
46 
47  // Just an object that has a ghost_layers parameter
48  const std::string kernel_type = "INSFVMixingLengthReynoldsStress";
49  InputParameters params = getFactory().getValidParams(kernel_type);
50  params.template set<unsigned short>("ghost_layers") = necessary_layers;
51 
52  return params;
53 }
Factory & getFactory()
InputParameters getValidParams(const std::string &name) const
virtual unsigned short getNumberAlgebraicGhostingLayersNeeded() const =0
Return the number of ghosting layers needed.

◆ getAmbientConvectionBlocks()

const std::vector<std::vector<SubdomainName> >& WCNSFVFluidHeatTransferPhysicsBase::getAmbientConvectionBlocks ( ) const
inlineinherited

Get the ambient convection parameters for parameter checking.

Definition at line 47 of file WCNSFVFluidHeatTransferPhysicsBase.h.

Referenced by PNSFVSolidHeatTransferPhysics::checkFluidAndSolidHeatTransferPhysicsParameters().

48  {
50  }
std::vector< std::vector< SubdomainName > > _ambient_convection_blocks
Vector of subdomain groups where we want to have different ambient convection.

◆ getAmbientConvectionHTCs()

const std::vector<MooseFunctorName>& WCNSFVFluidHeatTransferPhysicsBase::getAmbientConvectionHTCs ( ) const
inlineinherited

Name of the ambient convection heat transfer coefficients for each block-group.

Definition at line 52 of file WCNSFVFluidHeatTransferPhysicsBase.h.

Referenced by PNSFVSolidHeatTransferPhysics::checkFluidAndSolidHeatTransferPhysicsParameters().

53  {
55  }
std::vector< MooseFunctorName > _ambient_convection_alpha
Name of the ambient convection heat transfer coefficients for each block-group.

◆ getCoupledFlowPhysics()

const WCNSFVFlowPhysicsBase * WCNSFVCoupledAdvectionPhysicsHelper::getCoupledFlowPhysics ( ) const
inherited

Definition at line 53 of file WCNSFVCoupledAdvectionPhysicsHelper.C.

54 {
55  // User passed it, just use that
56  if (_advection_physics->isParamValid("coupled_flow_physics"))
58  _advection_physics->getParam<PhysicsName>("coupled_flow_physics"));
59  // Look for any physics of the right type, and check the block restriction
60  else
61  {
62  const auto all_flow_physics =
64  for (const auto physics : all_flow_physics)
66  physics->name(), physics->blocks(), /*error_if_not_identical=*/false))
67  {
68  return physics;
69  }
70  }
71  mooseError("No coupled flow Physics found of type derived from 'WCNSFVFlowPhysicsBase'. Use the "
72  "'coupled_flow_physics' parameter to give the name of the desired "
73  "WCNSFVFlowPhysicsBase-derived Physics to couple with");
74 }
void mooseError(Args &&... args)
const T * getCoupledPhysics(const PhysicsName &phys_name, const bool allow_fail=false) const
bool isParamValid(const std::string &name) const
Base class for Physics which create the Navier Stokes flow equations.
const T & getParam(const std::string &name) const
bool checkBlockRestrictionIdentical(const std::string &object_name, const std::vector< SubdomainName > &blocks, const bool error_if_not_identical=true) const
const NavierStokesPhysicsBase * _advection_physics
The Physics class using this helper.

◆ getCoupledTurbulencePhysics()

const WCNSFVTurbulencePhysics * WCNSFVCoupledAdvectionPhysicsHelper::getCoupledTurbulencePhysics ( ) const
inherited

Definition at line 77 of file WCNSFVCoupledAdvectionPhysicsHelper.C.

Referenced by WCNSFVFluidHeatTransferPhysicsBase::actOnAdditionalTasks().

78 {
79  // User passed it, just use that
80  if (_advection_physics->isParamValid("coupled_turbulence_physics"))
82  _advection_physics->getParam<PhysicsName>("coupled_turbulence_physics"));
83  // Look for any physics of the right type, and check the block restriction
84  else
85  {
86  const auto all_turbulence_physics =
88  for (const auto physics : all_turbulence_physics)
90  physics->name(), physics->blocks(), /*error_if_not_identical=*/false))
91  return physics;
92  }
93  // Did not find one
94  return nullptr;
95 }
Creates all the objects needed to add a turbulence model to an incompressible / weakly-compressible N...
const T * getCoupledPhysics(const PhysicsName &phys_name, const bool allow_fail=false) const
bool isParamValid(const std::string &name) const
const T & getParam(const std::string &name) const
bool checkBlockRestrictionIdentical(const std::string &object_name, const std::vector< SubdomainName > &blocks, const bool error_if_not_identical=true) const
const NavierStokesPhysicsBase * _advection_physics
The Physics class using this helper.

◆ getFluidTemperatureName()

const VariableName& WCNSFVFluidHeatTransferPhysicsBase::getFluidTemperatureName ( ) const
inlineinherited

Get the name of the fluid temperature variable.

Definition at line 36 of file WCNSFVFluidHeatTransferPhysicsBase.h.

Referenced by WCNSFVTwoPhaseMixturePhysics::addPhaseChangeEnergySource().

36 { return _fluid_temperature_name; }
VariableName _fluid_temperature_name
Fluid temperature name.

◆ getNumberAlgebraicGhostingLayersNeeded()

unsigned short WCNSFVFluidHeatTransferPhysicsBase::getNumberAlgebraicGhostingLayersNeeded ( ) const
overrideprotectedvirtualinherited

Return the number of ghosting layers needed.

Implements NavierStokesPhysicsBase.

Definition at line 296 of file WCNSFVFluidHeatTransferPhysicsBase.C.

297 {
298  unsigned short necessary_layers = getParam<unsigned short>("ghost_layers");
299  necessary_layers =
301  if (getParam<MooseEnum>("energy_face_interpolation") == "skewness-corrected")
302  necessary_layers = std::max(necessary_layers, (unsigned short)3);
303 
304  return necessary_layers;
305 }
unsigned short getNumberAlgebraicGhostingLayersNeeded() const override
Return the number of algebraic ghosting layers needed.
const WCNSFVFlowPhysicsBase * _flow_equations_physics
Flow physics.

◆ getPorosityFunctorName()

MooseFunctorName WCNSFVCoupledAdvectionPhysicsHelper::getPorosityFunctorName ( bool  smoothed) const
inherited

Return the porosity functor name.

It is important to forward to the Physics so we do not get the smoothing status wrong

Definition at line 47 of file WCNSFVCoupledAdvectionPhysicsHelper.C.

48 {
50 }
MooseFunctorName getPorosityFunctorName(const bool smoothed) const
const WCNSFVFlowPhysicsBase * _flow_equations_physics
Flow physics.

◆ getSpecificEnthalpyName()

MooseFunctorName WCNSFVFluidHeatTransferPhysicsBase::getSpecificEnthalpyName ( ) const
inlineinherited

Definition at line 40 of file WCNSFVFluidHeatTransferPhysicsBase.h.

40 { return NS::specific_enthalpy; }
static const std::string specific_enthalpy
Definition: NS.h:68

◆ getSpecificHeatName()

const MooseFunctorName& WCNSFVFluidHeatTransferPhysicsBase::getSpecificHeatName ( ) const
inlineinherited

◆ getThermalConductivityName()

const std::vector<MooseFunctorName>& WCNSFVFluidHeatTransferPhysicsBase::getThermalConductivityName ( ) const
inlineinherited

Definition at line 41 of file WCNSFVFluidHeatTransferPhysicsBase.h.

42  {
44  }
std::vector< MooseFunctorName > _thermal_conductivity_name
Name of the thermal conductivity functor for each block-group.

◆ hasEnergyEquation()

bool WCNSFVFluidHeatTransferPhysicsBase::hasEnergyEquation ( ) const
inlineinherited

◆ processThermalConductivity()

bool WCNSFVFluidHeatTransferPhysicsBase::processThermalConductivity ( )
protectedinherited

Process thermal conductivity (multiple functor input options are available).

Return true if we have vector thermal conductivity and false if scalar

Definition at line 167 of file WCNSFVFluidHeatTransferPhysicsBase.C.

Referenced by addEnergyHeatConductionKernels(), and WCNSLinearFVFluidHeatTransferPhysics::addEnergyHeatConductionKernels().

168 {
169  checkBlockwiseConsistency<MooseFunctorName>("thermal_conductivity_blocks",
170  {"thermal_conductivity"});
171  bool have_scalar = false;
172  bool have_vector = false;
173 
174  for (unsigned int i = 0; i < _thermal_conductivity_name.size(); ++i)
175  {
176  // First, check if the name is just a number (only in case of isotropic conduction)
178  have_scalar = true;
179  // Now we determine what kind of functor we are dealing with
180  else
181  {
183  /*thread_id=*/0) ||
185  /*thread_id=*/0))
186  have_scalar = true;
187  else
188  {
190  /*thread_id=*/0))
191  have_vector = true;
192  else
193  paramError("thermal_conductivity",
194  "We only allow functor of type Real/ADReal or ADRealVectorValue for thermal "
195  "conductivity! Functor '" +
196  _thermal_conductivity_name[i] + "' is not of the requested type.");
197  }
198  }
199  }
200 
201  if (have_vector && !_porous_medium_treatment)
202  paramError("thermal_conductivity", "Cannot use anisotropic diffusion with non-porous flows!");
203 
204  if (have_vector == have_scalar)
205  paramError("thermal_conductivity",
206  "The entries on thermal conductivity shall either be scalars of vectors, mixing "
207  "them is not supported!");
208  return have_vector;
209 }
bool parsesToReal(const std::string &input)
DualNumber< Real, DNDerivativeType, true > ADReal
virtual FEProblemBase & getProblem()
bool hasFunctorWithType(const std::string &name, const THREAD_ID tid) const
const bool _porous_medium_treatment
Switch to show if porous medium treatment is requested or not.
void paramError(const std::string &param, Args... args) const
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
std::vector< MooseFunctorName > _thermal_conductivity_name
Name of the thermal conductivity functor for each block-group.

◆ usingNavierStokesFVSyntax()

bool NavierStokesPhysicsBase::usingNavierStokesFVSyntax ( ) const
inlineprotectedinherited

Detects if we are using the new Physics syntax or the old NavierStokesFV action.

Definition at line 32 of file NavierStokesPhysicsBase.h.

33  {
34  return (parameters().get<std::string>("registered_identifier") == "Modules/NavierStokesFV");
35  }
const InputParameters & parameters() const

◆ validParams()

InputParameters WCNSFVFluidHeatTransferPhysics::validParams ( )
static

Definition at line 18 of file WCNSFVFluidHeatTransferPhysics.C.

19 {
21  params.transferParam<MooseEnum>(NSFVBase::validParams(), "energy_face_interpolation");
22  params.transferParam<Real>(NSFVBase::validParams(), "energy_scaling");
23 
24  params.addParamNamesToGroup("energy_face_interpolation energy_scaling", "Numerical scheme");
25  return params;
26 }
static InputParameters validParams()
Definition: NSFVBase.C:368
void transferParam(const InputParameters &source_param, const std::string &name, const std::string &new_name="", const std::string &new_description="")
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void addParamNamesToGroup(const std::string &space_delim_names, const std::string group_name)

Member Data Documentation

◆ _advection_physics

const NavierStokesPhysicsBase* WCNSFVCoupledAdvectionPhysicsHelper::_advection_physics
protectedinherited

◆ _ambient_convection_alpha

std::vector<MooseFunctorName> WCNSFVFluidHeatTransferPhysicsBase::_ambient_convection_alpha
protectedinherited

Name of the ambient convection heat transfer coefficients for each block-group.

Definition at line 106 of file WCNSFVFluidHeatTransferPhysicsBase.h.

Referenced by addEnergyAmbientConvection(), WCNSLinearFVFluidHeatTransferPhysics::addEnergyAmbientConvection(), and WCNSFVFluidHeatTransferPhysicsBase::getAmbientConvectionHTCs().

◆ _ambient_convection_blocks

std::vector<std::vector<SubdomainName> > WCNSFVFluidHeatTransferPhysicsBase::_ambient_convection_blocks
protectedinherited

Vector of subdomain groups where we want to have different ambient convection.

Definition at line 104 of file WCNSFVFluidHeatTransferPhysicsBase.h.

Referenced by addEnergyAmbientConvection(), WCNSLinearFVFluidHeatTransferPhysics::addEnergyAmbientConvection(), and WCNSFVFluidHeatTransferPhysicsBase::getAmbientConvectionBlocks().

◆ _ambient_temperature

std::vector<MooseFunctorName> WCNSFVFluidHeatTransferPhysicsBase::_ambient_temperature
protectedinherited

Name of the solid domain temperature for each block-group.

Definition at line 108 of file WCNSFVFluidHeatTransferPhysicsBase.h.

Referenced by addEnergyAmbientConvection(), and WCNSLinearFVFluidHeatTransferPhysics::addEnergyAmbientConvection().

◆ _compressibility

const MooseEnum WCNSFVCoupledAdvectionPhysicsHelper::_compressibility
protectedinherited

Compressibility type, can be compressible, incompressible or weakly-compressible.

Definition at line 48 of file WCNSFVCoupledAdvectionPhysicsHelper.h.

Referenced by addEnergyTimeKernels().

◆ _define_variables

bool NavierStokesPhysicsBase::_define_variables
protectedinherited

◆ _density_name

const MooseFunctorName WCNSFVCoupledAdvectionPhysicsHelper::_density_name
protectedinherited

◆ _dynamic_viscosity_name

const MooseFunctorName WCNSFVCoupledAdvectionPhysicsHelper::_dynamic_viscosity_name
protectedinherited

Name of the dynamic viscosity material property.

Definition at line 61 of file WCNSFVCoupledAdvectionPhysicsHelper.h.

Referenced by addEnergyWallBC(), WCNSFVTurbulencePhysics::addMaterials(), and WCNSFVCoupledAdvectionPhysicsHelper::dynamicViscosityName().

◆ _energy_inlet_functors

std::vector<MooseFunctorName> WCNSFVFluidHeatTransferPhysicsBase::_energy_inlet_functors
protectedinherited

Functors describing the inlet boundary values. See energy_inlet_types for what the functors actually represent.

Definition at line 113 of file WCNSFVFluidHeatTransferPhysicsBase.h.

Referenced by addEnergyInletBC(), and WCNSLinearFVFluidHeatTransferPhysics::addEnergyInletBC().

◆ _energy_inlet_types

MultiMooseEnum WCNSFVFluidHeatTransferPhysicsBase::_energy_inlet_types
protectedinherited

Energy inlet boundary types.

Definition at line 111 of file WCNSFVFluidHeatTransferPhysicsBase.h.

Referenced by addEnergyInletBC(), and WCNSLinearFVFluidHeatTransferPhysics::addEnergyInletBC().

◆ _energy_wall_functors

std::vector<MooseFunctorName> WCNSFVFluidHeatTransferPhysicsBase::_energy_wall_functors
protectedinherited

Functors describing the wall boundary values. See energy_wall_types for what the functors actually represent.

Definition at line 117 of file WCNSFVFluidHeatTransferPhysicsBase.h.

Referenced by addEnergyWallBC(), and WCNSLinearFVFluidHeatTransferPhysics::addEnergyWallBC().

◆ _energy_wall_types

MultiMooseEnum WCNSFVFluidHeatTransferPhysicsBase::_energy_wall_types
protectedinherited

Energy wall boundary types.

Definition at line 115 of file WCNSFVFluidHeatTransferPhysicsBase.h.

Referenced by addEnergyWallBC(), and WCNSLinearFVFluidHeatTransferPhysics::addEnergyWallBC().

◆ _flow_equations_physics

const WCNSFVFlowPhysicsBase* WCNSFVCoupledAdvectionPhysicsHelper::_flow_equations_physics
protectedinherited

Flow physics.

Definition at line 43 of file WCNSFVCoupledAdvectionPhysicsHelper.h.

Referenced by WCNSFVTwoPhaseMixturePhysics::addAdvectionSlipTerm(), WCNSFVTurbulencePhysics::addAuxiliaryKernels(), addEnergyAdvectionKernels(), WCNSLinearFVFluidHeatTransferPhysics::addEnergyAdvectionKernels(), addEnergyHeatConductionKernels(), addEnergyInletBC(), WCNSLinearFVFluidHeatTransferPhysics::addEnergyInletBC(), WCNSLinearFVFluidHeatTransferPhysics::addEnergyOutletBC(), addEnergySeparatorBC(), addEnergyTimeKernels(), WCNSLinearFVFluidHeatTransferPhysics::addEnergyWallBC(), addEnergyWallBC(), WCNSFVTurbulencePhysics::addFlowTurbulenceKernels(), WCNSFVTurbulencePhysics::addFluidEnergyTurbulenceKernels(), WCNSFVTurbulencePhysics::addFVBCs(), WCNSLinearFVTwoPhaseMixturePhysics::addFVKernels(), WCNSFVTwoPhaseMixturePhysics::addFVKernels(), WCNSFVTurbulencePhysics::addInitialConditions(), WCNSFVTurbulencePhysics::addKEpsilonAdvection(), WCNSFVTurbulencePhysics::addKEpsilonDiffusion(), WCNSFVTurbulencePhysics::addKEpsilonSink(), WCNSLinearFVTwoPhaseMixturePhysics::addMaterials(), WCNSFVTwoPhaseMixturePhysics::addMaterials(), WCNSFVTurbulencePhysics::addMaterials(), WCNSFVFluidHeatTransferPhysicsBase::addMaterials(), WCNSLinearFVTwoPhaseMixturePhysics::addPhaseDriftFluxTerm(), WCNSFVTwoPhaseMixturePhysics::addPhaseDriftFluxTerm(), WCNSLinearFVScalarTransportPhysics::addScalarAdvectionKernels(), WCNSFVScalarTransportPhysics::addScalarAdvectionKernels(), WCNSLinearFVScalarTransportPhysics::addScalarInletBC(), WCNSFVScalarTransportPhysics::addScalarInletBC(), WCNSLinearFVScalarTransportPhysics::addScalarOutletBC(), WCNSLinearFVTwoPhaseMixturePhysics::checkIntegrity(), WCNSFVTurbulencePhysics::getNumberAlgebraicGhostingLayersNeeded(), WCNSFVFluidHeatTransferPhysicsBase::getNumberAlgebraicGhostingLayersNeeded(), WCNSFVScalarTransportPhysicsBase::getNumberAlgebraicGhostingLayersNeeded(), WCNSFVCoupledAdvectionPhysicsHelper::getPorosityFunctorName(), WCNSFVTurbulencePhysics::retrieveCoupledPhysics(), WCNSFVFluidHeatTransferPhysicsBase::WCNSFVFluidHeatTransferPhysicsBase(), WCNSFVTwoPhaseMixturePhysics::WCNSFVTwoPhaseMixturePhysics(), WCNSLinearFVScalarTransportPhysics::WCNSLinearFVScalarTransportPhysics(), and WCNSLinearFVTwoPhaseMixturePhysics::WCNSLinearFVTwoPhaseMixturePhysics().

◆ _fluid_enthalpy_name

const VariableName WCNSFVFluidHeatTransferPhysicsBase::_fluid_enthalpy_name
protectedinherited

◆ _fluid_temperature_name

VariableName WCNSFVFluidHeatTransferPhysicsBase::_fluid_temperature_name
protectedinherited

◆ _has_energy_equation

const bool WCNSFVFluidHeatTransferPhysicsBase::_has_energy_equation
protectedinherited

◆ _porous_medium_treatment

const bool WCNSFVCoupledAdvectionPhysicsHelper::_porous_medium_treatment
protectedinherited

◆ _pressure_name

const NonlinearVariableName WCNSFVCoupledAdvectionPhysicsHelper::_pressure_name
protectedinherited

Pressure name.

Definition at line 56 of file WCNSFVCoupledAdvectionPhysicsHelper.h.

◆ _solve_for_enthalpy

const bool WCNSFVFluidHeatTransferPhysicsBase::_solve_for_enthalpy
protectedinherited

◆ _specific_heat_name

MooseFunctorName WCNSFVFluidHeatTransferPhysicsBase::_specific_heat_name
protectedinherited

◆ _thermal_conductivity_blocks

std::vector<std::vector<SubdomainName> > WCNSFVFluidHeatTransferPhysicsBase::_thermal_conductivity_blocks
protectedinherited

Vector of subdomain groups where we want to have different thermal conduction.

Definition at line 99 of file WCNSFVFluidHeatTransferPhysicsBase.h.

Referenced by addEnergyHeatConductionKernels(), and WCNSLinearFVFluidHeatTransferPhysics::addEnergyHeatConductionKernels().

◆ _thermal_conductivity_name

std::vector<MooseFunctorName> WCNSFVFluidHeatTransferPhysicsBase::_thermal_conductivity_name
protectedinherited

◆ _turbulence_physics

const WCNSFVTurbulencePhysics* WCNSFVCoupledAdvectionPhysicsHelper::_turbulence_physics
protectedinherited

◆ _velocity_interpolation

const MooseEnum WCNSFVCoupledAdvectionPhysicsHelper::_velocity_interpolation
protectedinherited

The velocity / momentum face interpolation method for advecting other quantities.

Definition at line 64 of file WCNSFVCoupledAdvectionPhysicsHelper.h.

Referenced by addEnergyAdvectionKernels(), WCNSFVTurbulencePhysics::addKEpsilonAdvection(), and WCNSFVScalarTransportPhysics::addScalarAdvectionKernels().

◆ _velocity_names

const std::vector<std::string> WCNSFVCoupledAdvectionPhysicsHelper::_velocity_names
protectedinherited

The documentation for this class was generated from the following files: