https://mooseframework.inl.gov
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Static Protected Member Functions | Protected Attributes | Static Protected Attributes | List of all members
PorousFlowBrineCO2 Class Reference

Specialized class for brine and CO2 including calculation of mutual solubility of the two fluids using a high-accuracy fugacity-based formulation. More...

#include <PorousFlowBrineCO2.h>

Inheritance diagram for PorousFlowBrineCO2:
[legend]

Public Types

typedef DataFileName DataFileParameterType
 

Public Member Functions

 PorousFlowBrineCO2 (const InputParameters &parameters)
 
virtual std::string fluidStateName () const override
 Name of FluidState. More...
 
void thermophysicalProperties (Real pressure, Real temperature, Real Xnacl, Real Z, unsigned int qp, std::vector< FluidStateProperties > &fsp) const override
 Determines the complete thermophysical state of the system for a given set of primary variables. More...
 
void thermophysicalProperties (const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, const ADReal &Z, unsigned int qp, std::vector< FluidStateProperties > &fsp) const override
 
void equilibriumMoleFractions (const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, ADReal &xco2, ADReal &yh2o) const
 Mole fractions of CO2 in brine and water vapor in CO2 at equilibrium. More...
 
void equilibriumMassFractions (const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, ADReal &Xco2, ADReal &Yh2o) const
 Mass fractions of CO2 in brine and water vapor in CO2 at equilibrium. More...
 
void massFractions (const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, const ADReal &Z, FluidStatePhaseEnum &phase_state, std::vector< FluidStateProperties > &fsp) const
 Mass fractions of CO2 and H2O in both phases, as well as derivatives wrt PorousFlow variables. More...
 
void gasProperties (const ADReal &pressure, const ADReal &temperature, std::vector< FluidStateProperties > &fsp) const
 Thermophysical properties of the gaseous state. More...
 
void liquidProperties (const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, std::vector< FluidStateProperties > &fsp) const
 Thermophysical properties of the liquid state. More...
 
ADReal saturation (const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, const ADReal &Z, std::vector< FluidStateProperties > &fsp) const
 Gas saturation in the two-phase region. More...
 
void twoPhaseProperties (const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, const ADReal &Z, unsigned int qp, std::vector< FluidStateProperties > &fsp) const
 Gas and liquid properties in the two-phase region. More...
 
void fugacityCoefficientsLowTemp (const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, ADReal &fco2, ADReal &fh2o) const
 Fugacity coefficients for H2O and CO2 for T <= 100C Eq. More...
 
ADReal activityCoefficientH2O (const ADReal &temperature, const ADReal &xco2) const
 Activity coefficient of H2O Eq. More...
 
ADReal activityCoefficientCO2 (const ADReal &temperature, const ADReal &xco2) const
 Activity coefficient of CO2 Eq. More...
 
ADReal activityCoefficient (const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl) const
 Activity coefficient for CO2 in brine. More...
 
ADReal activityCoefficientHighTemp (const ADReal &temperature, const ADReal &Xnacl) const
 Activity coefficient for CO2 in brine used in the elevated temperature formulation. More...
 
ADReal equilibriumConstantH2O (const ADReal &temperature) const
 Equilibrium constant for H2O For temperatures 12C <= T <= 99C, uses Spycher, Pruess and Ennis-King (2003) For temperatures 109C <= T <= 300C, uses Spycher and Pruess (2010) For temperatures 99C < T < 109C, the value is calculated by smoothly interpolating the two formulations. More...
 
ADReal equilibriumConstantCO2 (const ADReal &temperature) const
 Equilibrium constant for CO2 For temperatures 12C <= T <= 99C, uses Spycher, Pruess and Ennis-King (2003) For temperatures 109C <= T <= 300C, uses Spycher and Pruess (2010) For temperatures 99C < T < 109C, the value is calculated by smoothly interpolating the two formulations. More...
 
ADReal partialDensityCO2 (const ADReal &temperature) const
 Partial density of dissolved CO2 From Garcia, Density of aqueous solutions of CO2, LBNL-49023 (2001) More...
 
virtual Real totalMassFraction (Real pressure, Real temperature, Real Xnacl, Real saturation, unsigned int qp) const override
 Total mass fraction of fluid component summed over all phases in the two-phase state for a specified gas saturation. More...
 
unsigned int saltComponentIndex () const
 The index of the salt component. More...
 
ADReal henryConstant (const ADReal &temperature, const ADReal &Xnacl) const
 Henry's constant of dissolution of gas phase CO2 in brine. More...
 
ADReal enthalpyOfDissolutionGas (const ADReal &temperature, const ADReal &Xnacl) const
 Enthalpy of dissolution of gas phase CO2 in brine calculated using Henry's constant From Himmelblau, Partial molal heats and entropies of solution for gases dissolved in water from the freezing to the near critical point, J. More...
 
ADReal enthalpyOfDissolution (const ADReal &temperature) const
 Enthalpy of dissolution of CO2 in brine calculated using linear fit to model of Duan and Sun, An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chemical geology, 193, 257–271 (2003). More...
 
void equilibriumMoleFractionsLowTemp (const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, ADReal &xco2, ADReal &yh2o) const
 Mole fractions of CO2 in brine and water vapor in CO2 at equilibrium in the low temperature regime (T <= 99C). More...
 
void solveEquilibriumMoleFractionHighTemp (Real pressure, Real temperature, Real Xnacl, Real co2_density, Real &xco2, Real &yh2o) const
 Function to solve for yh2o and xco2 iteratively in the elevated temperature regime (T > 100C) More...
 
unsigned int aqueousComponentIndex () const
 The index of the aqueous fluid component. More...
 
unsigned int gasComponentIndex () const
 The index of the gas fluid component. More...
 
void phaseState (Real Zi, Real Xi, Real Yi, FluidStatePhaseEnum &phase_state) const
 Determines the phase state gven the total mass fraction and equilibrium mass fractions. More...
 
unsigned int getPressureIndex () const
 
unsigned int getTemperatureIndex () const
 
unsigned int getZIndex () const
 
unsigned int getXIndex () const
 
Real rachfordRice (Real vf, std::vector< Real > &Zi, std::vector< Real > &Ki) const
 Rachford-Rice equation for vapor fraction. More...
 
Real rachfordRiceDeriv (Real vf, std::vector< Real > &Zi, std::vector< Real > &Ki) const
 Derivative of Rachford-Rice equation wrt vapor fraction. More...
 
Real vaporMassFraction (Real Z0, Real K0, Real K1) const
 Solves Rachford-Rice equation to provide vapor mass fraction. More...
 
ADReal vaporMassFraction (const ADReal &Z0, const ADReal &K0, const ADReal &K1) const
 
Real vaporMassFraction (std::vector< Real > &Zi, std::vector< Real > &Ki) const
 
void initialize () final
 
void execute () final
 
void finalize () final
 
unsigned int numPhases () const
 The maximum number of phases in this model. More...
 
unsigned int numComponents () const
 The maximum number of components in this model. More...
 
unsigned int aqueousPhaseIndex () const
 The index of the aqueous phase. More...
 
unsigned int gasPhaseIndex () const
 The index of the gas phase. More...
 
void clearFluidStateProperties (std::vector< FluidStateProperties > &fsp) const
 Clears the contents of the FluidStateProperties data structure. More...
 
SubProblemgetSubProblem () const
 
bool shouldDuplicateInitialExecution () const
 
virtual Real spatialValue (const Point &) const
 
virtual const std::vector< Point > spatialPoints () const
 
void gatherSum (T &value)
 
void gatherMax (T &value)
 
void gatherMin (T &value)
 
void gatherProxyValueMax (T1 &proxy, T2 &value)
 
void gatherProxyValueMin (T1 &proxy, T2 &value)
 
void setPrimaryThreadCopy (UserObject *primary)
 
UserObjectprimaryThreadCopy ()
 
std::set< UserObjectName > getDependObjects () const
 
virtual bool needThreadedCopy () const
 
const std::set< std::string > & getRequestedItems () override
 
const std::set< std::string > & getSuppliedItems () override
 
unsigned int systemNumber () const
 
virtual bool enabled () const
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
MooseAppgetMooseApp () const
 
const std::string & type () const
 
virtual const std::string & name () const
 
std::string typeAndName () const
 
std::string errorPrefix (const std::string &error_type) const
 
void callMooseError (std::string msg, const bool with_prefix) const
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
const InputParametersparameters () const
 
MooseObjectName uniqueName () const
 
const T & getParam (const std::string &name) const
 
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 
const T * queryParam (const std::string &name) const
 
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 
bool isParamValid (const std::string &name) const
 
bool isParamSetByUser (const std::string &nm) const
 
void paramError (const std::string &param, Args... args) const
 
void paramWarning (const std::string &param, Args... args) const
 
void paramInfo (const std::string &param, Args... args) const
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 
void mooseError (Args &&... args) const
 
void mooseErrorNonPrefixed (Args &&... args) const
 
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
void mooseWarning (Args &&... args) const
 
void mooseWarningNonPrefixed (Args &&... args) const
 
void mooseDeprecated (Args &&... args) const
 
void mooseInfo (Args &&... args) const
 
std::string getDataFileName (const std::string &param) const
 
std::string getDataFileNameByName (const std::string &relative_path) const
 
std::string getDataFilePath (const std::string &relative_path) const
 
virtual void initialSetup ()
 
virtual void timestepSetup ()
 
virtual void jacobianSetup ()
 
virtual void residualSetup ()
 
virtual void customSetup (const ExecFlagType &)
 
const ExecFlagEnumgetExecuteOnEnum () const
 
UserObjectName getUserObjectName (const std::string &param_name) const
 
const T & getUserObject (const std::string &param_name, bool is_dependency=true) const
 
const T & getUserObjectByName (const UserObjectName &object_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBase (const std::string &param_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBaseByName (const UserObjectName &object_name, bool is_dependency=true) const
 
const std::vector< MooseVariableScalar *> & getCoupledMooseScalarVars ()
 
const std::set< TagID > & getScalarVariableCoupleableVectorTags () const
 
const std::set< TagID > & getScalarVariableCoupleableMatrixTags () const
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, MaterialData &material_data, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, MaterialData &material_data, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, const unsigned int state=0)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name, MaterialData &material_data)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data, const unsigned int state)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name)
 
std::pair< const MaterialProperty< T > *, std::set< SubdomainID > > getBlockMaterialProperty (const MaterialPropertyName &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialProperty (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialProperty ()
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialPropertyByName (const std::string &prop_name)
 
const MaterialProperty< T > & getZeroMaterialProperty (Ts... args)
 
std::set< SubdomainIDgetMaterialPropertyBlocks (const std::string &name)
 
std::vector< SubdomainName > getMaterialPropertyBlockNames (const std::string &name)
 
std::set< BoundaryIDgetMaterialPropertyBoundaryIDs (const std::string &name)
 
std::vector< BoundaryName > getMaterialPropertyBoundaryNames (const std::string &name)
 
void checkBlockAndBoundaryCompatibility (std::shared_ptr< MaterialBase > discrete)
 
std::unordered_map< SubdomainID, std::vector< MaterialBase *> > buildRequiredMaterials (bool allow_stateful=true)
 
void statefulPropertiesAllowed (bool)
 
bool getMaterialPropertyCalled () const
 
virtual const std::unordered_set< unsigned int > & getMatPropDependencies () const
 
virtual void resolveOptionalProperties ()
 
const GenericMaterialProperty< T, is_ad > & getPossiblyConstantGenericMaterialPropertyByName (const MaterialPropertyName &prop_name, MaterialData &material_data, const unsigned int state)
 
bool isImplicit ()
 
Moose::StateArg determineState () const
 
virtual void threadJoin (const UserObject &) override
 
virtual void threadJoin (const UserObject &) override
 
virtual void subdomainSetup () override
 
virtual void subdomainSetup () override
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
const GenericOptionalMaterialProperty< T, is_ad > & getGenericOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const GenericOptionalMaterialProperty< T, is_ad > & getGenericOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalMaterialProperty< T > & getOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalMaterialProperty< T > & getOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalADMaterialProperty< T > & getOptionalADMaterialProperty (const std::string &name)
 
const OptionalADMaterialProperty< T > & getOptionalADMaterialProperty (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOld (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOld (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOlder (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOlder (const std::string &name)
 
MaterialBasegetMaterial (const std::string &name)
 
MaterialBasegetMaterial (const std::string &name)
 
MaterialBasegetMaterialByName (const std::string &name, bool no_warn=false)
 
MaterialBasegetMaterialByName (const std::string &name, bool no_warn=false)
 
bool hasMaterialProperty (const std::string &name)
 
bool hasMaterialProperty (const std::string &name)
 
bool hasMaterialPropertyByName (const std::string &name)
 
bool hasMaterialPropertyByName (const std::string &name)
 
bool hasADMaterialProperty (const std::string &name)
 
bool hasADMaterialProperty (const std::string &name)
 
bool hasADMaterialPropertyByName (const std::string &name)
 
bool hasADMaterialPropertyByName (const std::string &name)
 
bool hasGenericMaterialProperty (const std::string &name)
 
bool hasGenericMaterialProperty (const std::string &name)
 
bool hasGenericMaterialPropertyByName (const std::string &name)
 
bool hasGenericMaterialPropertyByName (const std::string &name)
 
const FunctiongetFunction (const std::string &name) const
 
const FunctiongetFunctionByName (const FunctionName &name) const
 
bool hasFunction (const std::string &param_name) const
 
bool hasFunctionByName (const FunctionName &name) const
 
bool isDefaultPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessor (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessorByName (const PostprocessorName &name) const
 
std::size_t coupledPostprocessors (const std::string &param_name) const
 
const PostprocessorName & getPostprocessorName (const std::string &param_name, const unsigned int index=0) const
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name) const
 
const VectorPostprocessorName & getVectorPostprocessorName (const std::string &param_name) const
 
T & getSampler (const std::string &name)
 
SamplergetSampler (const std::string &name)
 
T & getSamplerByName (const SamplerName &name)
 
SamplergetSamplerByName (const SamplerName &name)
 
virtual void meshChanged ()
 
virtual void meshDisplaced ()
 
PerfGraphperfGraph ()
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
const Parallel::Communicator & comm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
void fugacityCoefficientsHighTemp (const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, const ADReal &xco2, const ADReal &yh2o, ADReal &fco2, ADReal &fh2o) const
 Fugacity coefficients for H2O and CO2 at elevated temperatures (100C < T <= 300C). More...
 
ADReal fugacityCoefficientH2OHighTemp (const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, const ADReal &xco2, const ADReal &yh2o) const
 
ADReal fugacityCoefficientCO2HighTemp (const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, const ADReal &xco2, const ADReal &yh2o) const
 

Static Public Member Functions

static InputParameters validParams ()
 
static void sort (typename std::vector< T > &vector)
 
static void sortDFS (typename std::vector< T > &vector)
 
static void cyclicDependencyError (CyclicDependencyException< T2 > &e, const std::string &header)
 

Public Attributes

const ConsoleStream _console
 

Static Public Attributes

static constexpr PropertyValue::id_type default_property_id
 
static constexpr PropertyValue::id_type zero_property_id
 
static constexpr auto SYSTEM
 
static constexpr auto NAME
 

Protected Member Functions

virtual void checkVariables (Real pressure, Real temperature) const
 Check the input variables. More...
 
void smoothCubicInterpolation (Real temperature, Real f0, Real df0, Real f1, Real df1, Real &value, Real &deriv) const
 Cubic function to smoothly interpolate between the low temperature and elevated temperature models for 99C < T < 109C. More...
 
virtual void addPostprocessorDependencyHelper (const PostprocessorName &name) const override
 
virtual void addVectorPostprocessorDependencyHelper (const VectorPostprocessorName &name) const override
 
virtual void addUserObjectDependencyHelper (const UserObject &uo) const override
 
void addReporterDependencyHelper (const ReporterName &reporter_name) override
 
const ReporterNamegetReporterName (const std::string &param_name) const
 
T & declareRestartableData (const std::string &data_name, Args &&... args)
 
ManagedValue< T > declareManagedRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 
const T & getRestartableData (const std::string &data_name) const
 
T & declareRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 
T & declareRecoverableData (const std::string &data_name, Args &&... args)
 
T & declareRestartableDataWithObjectName (const std::string &data_name, const std::string &object_name, Args &&... args)
 
T & declareRestartableDataWithObjectNameWithContext (const std::string &data_name, const std::string &object_name, void *context, Args &&... args)
 
std::string restartableName (const std::string &data_name) const
 
const T & getMeshProperty (const std::string &data_name, const std::string &prefix)
 
const T & getMeshProperty (const std::string &data_name)
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name) const
 
bool hasMeshProperty (const std::string &data_name) const
 
std::string meshPropertyName (const std::string &data_name) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 
std::string timedSectionName (const std::string &section_name) const
 
bool isCoupledScalar (const std::string &var_name, unsigned int i=0) const
 
unsigned int coupledScalarComponents (const std::string &var_name) const
 
unsigned int coupledScalar (const std::string &var_name, unsigned int comp=0) const
 
libMesh::Order coupledScalarOrder (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const ADVariableValueadCoupledScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const GenericVariableValue< is_ad > & coupledGenericScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const GenericVariableValue< false > & coupledGenericScalarValue (const std::string &var_name, const unsigned int comp) const
 
const GenericVariableValue< true > & coupledGenericScalarValue (const std::string &var_name, const unsigned int comp) const
 
const VariableValuecoupledVectorTagScalarValue (const std::string &var_name, TagID tag, unsigned int comp=0) const
 
const VariableValuecoupledMatrixTagScalarValue (const std::string &var_name, TagID tag, unsigned int comp=0) const
 
const VariableValuecoupledScalarValueOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarValueOlder (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDot (const std::string &var_name, unsigned int comp=0) const
 
const ADVariableValueadCoupledScalarDot (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDot (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDotOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDu (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDotDu (const std::string &var_name, unsigned int comp=0) const
 
const MooseVariableScalargetScalarVar (const std::string &var_name, unsigned int comp) const
 
virtual void checkMaterialProperty (const std::string &name, const unsigned int state)
 
void markMatPropRequested (const std::string &)
 
MaterialPropertyName getMaterialPropertyName (const std::string &name) const
 
void checkExecutionStage ()
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
const GenericMaterialProperty< T, is_ad > * defaultGenericMaterialProperty (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > * defaultGenericMaterialProperty (const std::string &name)
 
const MaterialProperty< T > * defaultMaterialProperty (const std::string &name)
 
const MaterialProperty< T > * defaultMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > * defaultADMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > * defaultADMaterialProperty (const std::string &name)
 
void funcABHighTemp (Real pressure, Real temperature, Real Xnacl, Real co2_density, Real xco2, Real yh2o, Real &A, Real &B) const
 The function A (Eq. More...
 
void funcABHighTemp (Real pressure, Real temperature, Real Xnacl, Real co2_density, Real xco2, Real yh2o, Real &A, Real &dA_dp, Real &dA_dT, Real &B, Real &dB_dp, Real &dB_dT, Real &dB_dX) const
 
void funcABLowTemp (const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, ADReal &A, ADReal &B) const
 

Static Protected Member Functions

static std::string meshPropertyName (const std::string &data_name, const std::string &prefix)
 

Protected Attributes

const unsigned int _salt_component
 Salt component index. More...
 
const BrineFluidProperties_brine_fp
 Fluid properties UserObject for water. More...
 
const SinglePhaseFluidProperties_co2_fp
 Fluid properties UserObject for the CO2. More...
 
const Real _Mh2o
 Molar mass of water (kg/mol) More...
 
const Real _invMh2o
 Inverse of molar mass of H2O (mol/kg) More...
 
const Real _Mco2
 Molar mass of CO2 (kg/mol) More...
 
const Real _Mnacl
 Molar mass of NaCL. More...
 
const Real _Rbar
 Molar gas constant in bar cm^3 /(K mol) More...
 
const Real _Tlower
 Temperature below which the Spycher, Pruess & Ennis-King (2003) model is used (K) More...
 
const Real _Tupper
 Temperature above which the Spycher & Pruess (2010) model is used (K) More...
 
const Real _Zmin
 Minimum Z - below this value all CO2 will be dissolved. More...
 
const std::vector< Real_co2_henry
 Henry's coefficeients for CO2. More...
 
const unsigned int _aqueous_fluid_component
 Fluid component number of the aqueous component. More...
 
unsigned int _gas_fluid_component
 Fluid component number of the gas phase. More...
 
const unsigned int _pidx
 Index of derivative wrt pressure. More...
 
const unsigned int _Zidx
 Index of derivative wrt total mass fraction Z. More...
 
const unsigned int _Tidx
 Index of derivative wrt temperature. More...
 
const unsigned int _Xidx
 Index of derivative wrt salt mass fraction X. More...
 
const Real _nr_max_its
 Maximum number of iterations for the Newton-Raphson routine. More...
 
const Real _nr_tol
 Tolerance for Newton-Raphson iterations. More...
 
unsigned int _num_phases
 Number of phases. More...
 
unsigned int _num_components
 Number of components. More...
 
const unsigned int _aqueous_phase_number
 Phase number of the aqueous phase. More...
 
unsigned int _gas_phase_number
 Phase number of the gas phase. More...
 
const Real _R
 Universal gas constant (J/mol/K) More...
 
const Real _T_c2k
 Conversion from C to K. More...
 
const PorousFlowCapillaryPressure_pc
 Capillary pressure UserObject. More...
 
FluidStateProperties _empty_fsp
 Empty FluidStateProperties object. More...
 
SubProblem_subproblem
 
FEProblemBase_fe_problem
 
SystemBase_sys
 
const THREAD_ID _tid
 
Assembly_assembly
 
const Moose::CoordinateSystemType_coord_sys
 
const bool _duplicate_initial_execution
 
std::set< std::string > _depend_uo
 
const bool & _enabled
 
MooseApp_app
 
const std::string _type
 
const std::string _name
 
const InputParameters_pars
 
Factory_factory
 
ActionFactory_action_factory
 
const ExecFlagEnum_execute_enum
 
const ExecFlagType_current_execute_flag
 
MooseApp_restartable_app
 
const std::string _restartable_system_name
 
const THREAD_ID _restartable_tid
 
const bool _restartable_read_only
 
FEProblemBase_mci_feproblem
 
FEProblemBase_mdi_feproblem
 
MooseApp_pg_moose_app
 
const std::string _prefix
 
FEProblemBase_sc_fe_problem
 
const THREAD_ID _sc_tid
 
const Real_real_zero
 
const VariableValue_scalar_zero
 
const Point & _point_zero
 
const InputParameters_mi_params
 
const std::string _mi_name
 
const MooseObjectName _mi_moose_object_name
 
FEProblemBase_mi_feproblem
 
SubProblem_mi_subproblem
 
const THREAD_ID _mi_tid
 
const Moose::MaterialDataType _material_data_type
 
MaterialData_material_data
 
bool _stateful_allowed
 
bool _get_material_property_called
 
std::vector< std::unique_ptr< PropertyValue > > _default_properties
 
std::unordered_set< unsigned int_material_property_dependencies
 
const MaterialPropertyName _get_suffix
 
const bool _use_interpolated_state
 
const InputParameters_ti_params
 
FEProblemBase_ti_feproblem
 
bool _is_implicit
 
Real_t
 
const Real_t_old
 
int_t_step
 
Real_dt
 
Real_dt_old
 
bool _is_transient
 
const Parallel::Communicator & _communicator
 

Static Protected Attributes

static const std::string _interpolated_old
 
static const std::string _interpolated_older
 

Detailed Description

Specialized class for brine and CO2 including calculation of mutual solubility of the two fluids using a high-accuracy fugacity-based formulation.

For temperatures 12C <= T <= 99C, the formulation is based on Spycher, Pruess and Ennis-King, CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100C and up to 600 bar, Geochimica et Cosmochimica Acta, 67, 3015-3031 (2003), and Spycher and Pruess, CO2-H2O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brine at 12-100C and up to 600 bar, Geochimica et Cosmochimica Acta, 69, 3309-3320 (2005).

For temperatures 109C <= T <= 300C, the formulation is based on Spycher and Pruess, A Phase-Partitioning Model for CO2-Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems, Transport in Porous Media, 82, 173-196 (2010)

As the two formulations do not coincide at temperatures near 100C, a cubic polynomial is used in the intermediate temperature range 99C < T < 109C to provide a smooth transition from the two formulations in this region.

Notation convention Throughout this class, both mole fractions and mass fractions will be used. The following notation will be used: yk: mole fraction of component k in the gas phase xk: mole fraction of component k in the liquid phase Yk: mass fraction of component k in the gas phase Xk: mass fraction of component k in the liquid phase

Definition at line 47 of file PorousFlowBrineCO2.h.

Constructor & Destructor Documentation

◆ PorousFlowBrineCO2()

PorousFlowBrineCO2::PorousFlowBrineCO2 ( const InputParameters parameters)

Definition at line 29 of file PorousFlowBrineCO2.C.

31  _salt_component(getParam<unsigned int>("salt_component")),
32  _brine_fp(getUserObject<BrineFluidProperties>("brine_fp")),
33  _co2_fp(getUserObject<SinglePhaseFluidProperties>("co2_fp")),
35  _invMh2o(1.0 / _Mh2o),
38  _Rbar(_R * 10.0),
39  _Tlower(372.15),
40  _Tupper(382.15),
41  _Zmin(1.0e-4),
43 {
44  // Check that the correct FluidProperties UserObjects have been provided
45  if (_co2_fp.fluidName() != "co2")
46  paramError("co2_fp", "A valid CO2 FluidProperties UserObject must be provided");
47 
48  if (_brine_fp.fluidName() != "brine")
49  paramError("brine_fp", "A valid Brine FluidProperties UserObject must be provided");
50 
51  // Set the number of phases and components, and their indexes
52  _num_phases = 2;
53  _num_components = 3;
56 
57  // Check that _aqueous_phase_number is <= total number of phases
59  paramError("liquid_phase_number",
60  "This value is larger than the possible number of phases ",
61  _num_phases);
62 
63  // Check that _aqueous_fluid_component is <= total number of fluid components
65  paramError("liquid_fluid_component",
66  "This value is larger than the possible number of fluid components",
68 
69  // Check that the salt component index is not identical to the liquid fluid component
71  paramError(
72  "salt_component",
73  "The value provided must be different from the value entered in liquid_fluid_component");
74 
75  // Check that _salt_component is <= total number of fluid components
77  paramError("salt_component",
78  "The value provided is larger than the possible number of fluid components",
80 
82 }
const unsigned int _aqueous_fluid_component
Fluid component number of the aqueous component.
const Real _Tlower
Temperature below which the Spycher, Pruess & Ennis-King (2003) model is used (K) ...
const unsigned int _aqueous_phase_number
Phase number of the aqueous phase.
unsigned int _num_phases
Number of phases.
const unsigned int _salt_component
Salt component index.
const Real _Mh2o
Molar mass of water (kg/mol)
const Real _Mnacl
Molar mass of NaCL.
const Real _invMh2o
Inverse of molar mass of H2O (mol/kg)
unsigned int _gas_fluid_component
Fluid component number of the gas phase.
virtual std::string fluidName() const override
Fluid name.
const std::vector< Real > _co2_henry
Henry&#39;s coefficeients for CO2.
virtual Real molarMass() const
Molar mass [kg/mol].
unsigned int _gas_phase_number
Phase number of the gas phase.
unsigned int _num_components
Number of components.
const Real _Mco2
Molar mass of CO2 (kg/mol)
virtual std::vector< Real > henryCoefficients() const
Henry&#39;s law coefficients for dissolution in water.
Real molarMassH2O() const
H2O molar mass.
const BrineFluidProperties & _brine_fp
Fluid properties UserObject for water.
PorousFlowFluidStateMultiComponentBase(const InputParameters &parameters)
const SinglePhaseFluidProperties & _co2_fp
Fluid properties UserObject for the CO2.
Real molarMassNaCl() const
NaCl molar mass.
const Real _R
Universal gas constant (J/mol/K)
AD data structure to pass calculated thermophysical properties.
void paramError(const std::string &param, Args... args) const
const Real _Rbar
Molar gas constant in bar cm^3 /(K mol)
e e e e s T T T T T rho v v T e p T T virtual T std::string fluidName() const
Fluid name.
const InputParameters & parameters() const
FluidStateProperties _empty_fsp
Empty FluidStateProperties object.
const Real _Zmin
Minimum Z - below this value all CO2 will be dissolved.
const Real _Tupper
Temperature above which the Spycher & Pruess (2010) model is used (K)

Member Function Documentation

◆ activityCoefficient()

ADReal PorousFlowBrineCO2::activityCoefficient ( const ADReal pressure,
const ADReal temperature,
const ADReal Xnacl 
) const

Activity coefficient for CO2 in brine.

From Duan and Sun, An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 257 to 533 K and from 0 to 2000 bar, Chem. Geol., 193, 257-271 (2003)

Note: this is not a 'true' activity coefficient, and is instead related to the molality of CO2 in water and brine. Nevertheless, Spycher and Pruess (2005) refer to it as an activity coefficient, so this notation is followed here.

Parameters
pressurephase pressure (Pa)
temperaturephase temperature (K)
Xnaclsalt mass fraction (kg/kg)
Returns
activity coefficient for CO2 in brine

Definition at line 578 of file PorousFlowBrineCO2.C.

Referenced by equilibriumMoleFractionsLowTemp().

581 {
582  // Need pressure in bar
583  const ADReal pbar = pressure * 1.0e-5;
584  // Need NaCl molality (mol/kg)
585  const ADReal mnacl = Xnacl / (1.0 - Xnacl) / _Mnacl;
586 
587  const ADReal lambda = -0.411370585 + 6.07632013e-4 * temperature + 97.5347708 / temperature -
588  0.0237622469 * pbar / temperature +
589  0.0170656236 * pbar / (630.0 - temperature) +
590  1.41335834e-5 * temperature * std::log(pbar);
591 
592  const ADReal xi = 3.36389723e-4 - 1.9829898e-5 * temperature +
593  2.12220830e-3 * pbar / temperature -
594  5.24873303e-3 * pbar / (630.0 - temperature);
595 
596  return std::exp(2.0 * lambda * mnacl + xi * mnacl * mnacl);
597 }
const Real _Mnacl
Molar mass of NaCL.
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
static const std::string pressure
Definition: NS.h:56

◆ activityCoefficientCO2()

ADReal PorousFlowBrineCO2::activityCoefficientCO2 ( const ADReal temperature,
const ADReal xco2 
) const

Activity coefficient of CO2 Eq.

(13) from Spycher & Pruess (2010)

Parameters
temperaturetemperature (K)
xco2mole fraction of CO2 in liquid phase (-)
Returns
activity coefficient

Definition at line 563 of file PorousFlowBrineCO2.C.

Referenced by funcABHighTemp().

564 {
565  if (temperature.value() <= 373.15)
566  return 1.0;
567  else
568  {
569  const ADReal Tref = temperature - 373.15;
570  const ADReal xh2o = 1.0 - xco2;
571  const ADReal Am = -3.084e-2 * Tref + 1.927e-5 * Tref * Tref;
572 
573  return std::exp(2.0 * Am * xco2 * xh2o * xh2o);
574  }
575 }
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal

◆ activityCoefficientH2O()

ADReal PorousFlowBrineCO2::activityCoefficientH2O ( const ADReal temperature,
const ADReal xco2 
) const

Activity coefficient of H2O Eq.

(12) from Spycher & Pruess (2010)

Parameters
temperaturetemperature (K)
xco2mole fraction of CO2 in liquid phase (-)
Returns
activity coefficient

Definition at line 548 of file PorousFlowBrineCO2.C.

Referenced by funcABHighTemp().

549 {
550  if (temperature.value() <= 373.15)
551  return 1.0;
552  else
553  {
554  const ADReal Tref = temperature - 373.15;
555  const ADReal xh2o = 1.0 - xco2;
556  const ADReal Am = -3.084e-2 * Tref + 1.927e-5 * Tref * Tref;
557 
558  return std::exp((Am - 2.0 * Am * xh2o) * xco2 * xco2);
559  }
560 }
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal

◆ activityCoefficientHighTemp()

ADReal PorousFlowBrineCO2::activityCoefficientHighTemp ( const ADReal temperature,
const ADReal Xnacl 
) const

Activity coefficient for CO2 in brine used in the elevated temperature formulation.

Eq. (18) from Spycher and Pruess (2010).

Note: unlike activityCoefficient(), no pressure dependence is included in this formulation

Parameters
temperaturephase temperature (K)
Xnaclsalt mass fraction (kg/kg)
Returns
activity coefficient for CO2 in brine

Definition at line 600 of file PorousFlowBrineCO2.C.

Referenced by funcABHighTemp().

602 {
603  // Need NaCl molality (mol/kg)
604  const ADReal mnacl = Xnacl / (1.0 - Xnacl) / _Mnacl;
605 
606  const ADReal T2 = temperature * temperature;
607  const ADReal T3 = temperature * T2;
608 
609  const ADReal lambda = 2.217e-4 * temperature + 1.074 / temperature + 2648.0 / T2;
610  const ADReal xi = 1.3e-5 * temperature - 20.12 / temperature + 5259.0 / T2;
611 
612  return (1.0 - mnacl / _invMh2o) * std::exp(2.0 * lambda * mnacl + xi * mnacl * mnacl);
613 }
const Real _Mnacl
Molar mass of NaCL.
const Real _invMh2o
Inverse of molar mass of H2O (mol/kg)
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal

◆ aqueousComponentIndex()

unsigned int PorousFlowFluidStateMultiComponentBase::aqueousComponentIndex ( ) const
inlineinherited

The index of the aqueous fluid component.

Returns
aqueous fluid component number

Definition at line 29 of file PorousFlowFluidStateMultiComponentBase.h.

29 { return _aqueous_fluid_component; };
const unsigned int _aqueous_fluid_component
Fluid component number of the aqueous component.

◆ aqueousPhaseIndex()

unsigned int PorousFlowFluidStateBase::aqueousPhaseIndex ( ) const
inlineinherited

The index of the aqueous phase.

Returns
aqueous phase number

Definition at line 77 of file PorousFlowFluidStateBase.h.

77 { return _aqueous_phase_number; };
const unsigned int _aqueous_phase_number
Phase number of the aqueous phase.

◆ checkVariables()

void PorousFlowBrineCO2::checkVariables ( Real  pressure,
Real  temperature 
) const
protectedvirtual

Check the input variables.

Definition at line 1158 of file PorousFlowBrineCO2.C.

Referenced by thermophysicalProperties(), and totalMassFraction().

1159 {
1160  // The calculation of mass fractions is valid from 12C <= T <= 300C, and
1161  // pressure less than 60 MPa
1162  if (temperature < 285.15 || temperature > 573.15)
1163  mooseException(name() + ": temperature " + Moose::stringify(temperature) +
1164  " is outside range 285.15 K <= T <= 573.15 K");
1165 
1166  if (pressure > 6.0e7)
1167  mooseException(name() + ": pressure " + Moose::stringify(pressure) +
1168  " must be less than 60 MPa");
1169 }
static const std::string temperature
Definition: NS.h:59
virtual const std::string & name() const
std::string stringify(const T &t)
static const std::string pressure
Definition: NS.h:56

◆ clearFluidStateProperties()

void PorousFlowFluidStateBase::clearFluidStateProperties ( std::vector< FluidStateProperties > &  fsp) const
inherited

Clears the contents of the FluidStateProperties data structure.

Parameters
[out]fspFluidStateProperties data structure with all data initialized to 0

Definition at line 33 of file PorousFlowFluidStateBase.C.

Referenced by PorousFlowWaterNCG::thermophysicalProperties(), and thermophysicalProperties().

34 {
35  std::fill(fsp.begin(), fsp.end(), _empty_fsp);
36 }
FluidStateProperties _empty_fsp
Empty FluidStateProperties object.

◆ enthalpyOfDissolution()

ADReal PorousFlowBrineCO2::enthalpyOfDissolution ( const ADReal temperature) const

Enthalpy of dissolution of CO2 in brine calculated using linear fit to model of Duan and Sun, An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chemical geology, 193, 257–271 (2003).

In the region of interest, the more complicated model given in Eq. (8) of Duan and Sun is well approximated by a simple linear fit (R^2 = 0.9997).

Note: as the effect of salt mass fraction is small, it is not included in this function.

Parameters
temperaturefluid temperature (K)
Returns
enthalpy of dissolution (J/kg)

Definition at line 1129 of file PorousFlowBrineCO2.C.

Referenced by liquidProperties().

1130 {
1131  // Linear fit to model of Duan and Sun (2003) (in kJ/mol)
1132  const ADReal delta_h = -58.3533 + 0.134519 * temperature;
1133 
1134  // Convert to J/kg
1135  return delta_h * 1000.0 / _Mco2;
1136 }
const Real _Mco2
Molar mass of CO2 (kg/mol)
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal

◆ enthalpyOfDissolutionGas()

ADReal PorousFlowBrineCO2::enthalpyOfDissolutionGas ( const ADReal temperature,
const ADReal Xnacl 
) const

Enthalpy of dissolution of gas phase CO2 in brine calculated using Henry's constant From Himmelblau, Partial molal heats and entropies of solution for gases dissolved in water from the freezing to the near critical point, J.

Phys. Chem. 63 (1959). Correction due to salinity from Battistelli et al, A fluid property module for the TOUGH2 simulator for saline brines with non-condensible gas, Proc. Eighteenth Workshop on Geothermal Reservoir Engineering (1993).

Parameters
temperaturefluid temperature (K)
XnaclNaCl mass fraction (kg/kg)
Returns
enthalpy of dissolution (J/kg)

Definition at line 1099 of file PorousFlowBrineCO2.C.

1100 {
1101  // Henry's constant
1102  const ADReal Kh = henryConstant(temperature, Xnacl);
1103 
1104  ADReal hdis = -_R * temperature * temperature * Kh.derivatives()[_Tidx] / Kh / _Mco2;
1105 
1106  // Derivative of enthalpy of dissolution wrt temperature and xnacl requires the second
1107  // derivatives of Henry's constant. For simplicity, approximate these numerically
1108  const Real dT = temperature.value() * 1.0e-8;
1109  const ADReal T2 = temperature + dT;
1110  const ADReal Kh2 = henryConstant(T2, Xnacl);
1111 
1112  const Real dhdis_dT =
1113  (-_R * T2 * T2 * Kh2.derivatives()[_Tidx] / Kh2 / _Mco2 - hdis).value() / dT;
1114 
1115  const Real dX = Xnacl.value() * 1.0e-8;
1116  const ADReal X2 = Xnacl + dX;
1117  const ADReal Kh3 = henryConstant(temperature, X2);
1118 
1119  const Real dhdis_dX =
1120  (-_R * temperature * temperature * Kh3.derivatives()[_Tidx] / Kh3 / _Mco2 - hdis).value() /
1121  dX;
1122 
1123  hdis.derivatives() = temperature.derivatives() * dhdis_dT + Xnacl.derivatives() * dhdis_dX;
1124 
1125  return hdis;
1126 }
const unsigned int _Tidx
Index of derivative wrt temperature.
const Real _Mco2
Molar mass of CO2 (kg/mol)
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)
const Real _R
Universal gas constant (J/mol/K)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
ADReal henryConstant(const ADReal &temperature, const ADReal &Xnacl) const
Henry&#39;s constant of dissolution of gas phase CO2 in brine.

◆ equilibriumConstantCO2()

ADReal PorousFlowBrineCO2::equilibriumConstantCO2 ( const ADReal temperature) const

Equilibrium constant for CO2 For temperatures 12C <= T <= 99C, uses Spycher, Pruess and Ennis-King (2003) For temperatures 109C <= T <= 300C, uses Spycher and Pruess (2010) For temperatures 99C < T < 109C, the value is calculated by smoothly interpolating the two formulations.

Parameters
temperaturetemperature (K)
Returns
equilibrium constant for CO2

Definition at line 643 of file PorousFlowBrineCO2.C.

Referenced by funcABHighTemp(), and funcABLowTemp().

644 {
645  // Uses temperature in Celsius
646  const ADReal Tc = temperature - _T_c2k;
647  const ADReal Tc2 = Tc * Tc;
648  const ADReal Tc3 = Tc2 * Tc;
649 
650  ADReal logK0CO2;
651 
652  if (Tc <= 99.0)
653  logK0CO2 = 1.189 + 1.304e-2 * Tc - 5.446e-5 * Tc2;
654 
655  else if (Tc > 99.0 && Tc < 109.0)
656  {
657  const ADReal Tint = (Tc - 99.0) / 10.0;
658  const ADReal Tint2 = Tint * Tint;
659  logK0CO2 = 1.9462 + 2.25692e-2 * Tint - 9.49577e-3 * Tint2 - 6.77721e-3 * Tint * Tint2;
660  }
661 
662  else // 109 <= Tc <= 300
663  logK0CO2 = 1.668 + 3.992e-3 * Tc - 1.156e-5 * Tc2 + 1.593e-9 * Tc3;
664 
665  return std::pow(10.0, logK0CO2);
666 }
const Real _T_c2k
Conversion from C to K.
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
MooseUnits pow(const MooseUnits &, int)

◆ equilibriumConstantH2O()

ADReal PorousFlowBrineCO2::equilibriumConstantH2O ( const ADReal temperature) const

Equilibrium constant for H2O For temperatures 12C <= T <= 99C, uses Spycher, Pruess and Ennis-King (2003) For temperatures 109C <= T <= 300C, uses Spycher and Pruess (2010) For temperatures 99C < T < 109C, the value is calculated by smoothly interpolating the two formulations.

Parameters
temperaturetemperature (K)
Returns
equilibrium constant for H2O

Definition at line 616 of file PorousFlowBrineCO2.C.

Referenced by funcABHighTemp(), and funcABLowTemp().

617 {
618  // Uses temperature in Celsius
619  const ADReal Tc = temperature - _T_c2k;
620  const ADReal Tc2 = Tc * Tc;
621  const ADReal Tc3 = Tc2 * Tc;
622  const ADReal Tc4 = Tc3 * Tc;
623 
624  ADReal logK0H2O;
625 
626  if (Tc <= 99.0)
627  logK0H2O = -2.209 + 3.097e-2 * Tc - 1.098e-4 * Tc2 + 2.048e-7 * Tc3;
628 
629  else if (Tc > 99.0 && Tc < 109.0)
630  {
631  const ADReal Tint = (Tc - 99.0) / 10.0;
632  const ADReal Tint2 = Tint * Tint;
633  logK0H2O = -0.0204026 + 0.0152513 * Tint + 0.417565 * Tint2 - 0.278636 * Tint * Tint2;
634  }
635 
636  else // 109 <= Tc <= 300
637  logK0H2O = -2.1077 + 2.8127e-2 * Tc - 8.4298e-5 * Tc2 + 1.4969e-7 * Tc3 - 1.1812e-10 * Tc4;
638 
639  return std::pow(10.0, logK0H2O);
640 }
const Real _T_c2k
Conversion from C to K.
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
MooseUnits pow(const MooseUnits &, int)

◆ equilibriumMassFractions()

void PorousFlowBrineCO2::equilibriumMassFractions ( const ADReal pressure,
const ADReal temperature,
const ADReal Xnacl,
ADReal Xco2,
ADReal Yh2o 
) const

Mass fractions of CO2 in brine and water vapor in CO2 at equilibrium.

Parameters
pressurephase pressure (Pa)
temperaturephase temperature (K)
XnaclNaCl mass fraction (kg/kg)
[out]Xco2mass fraction of CO2 in liquid (kg/kg)
[out]Yh2omass fraction of H2O in gas (kg/kg)

Definition at line 372 of file PorousFlowBrineCO2.C.

Referenced by massFractions(), and totalMassFraction().

377 {
378  // Mole fractions at equilibrium
379  ADReal xco2, yh2o;
380  equilibriumMoleFractions(pressure, temperature, Xnacl, xco2, yh2o);
381 
382  // The mass fraction of H2O in gas (assume no salt in gas phase) and derivatives
383  // wrt p, T, and X
384  Yh2o = yh2o * _Mh2o / (yh2o * _Mh2o + (1.0 - yh2o) * _Mco2);
385 
386  // NaCl molality (mol/kg)
387  const ADReal mnacl = Xnacl / (1.0 - Xnacl) / _Mnacl;
388 
389  // The molality of CO2 in 1kg of H2O
390  const ADReal mco2 = xco2 * (2.0 * mnacl + _invMh2o) / (1.0 - xco2);
391  // The mass fraction of CO2 in brine is then
392  const ADReal denominator = (1.0 + mnacl * _Mnacl + mco2 * _Mco2);
393  Xco2 = mco2 * _Mco2 / denominator;
394 }
const Real _Mh2o
Molar mass of water (kg/mol)
const Real _Mnacl
Molar mass of NaCL.
const Real _invMh2o
Inverse of molar mass of H2O (mol/kg)
const Real _Mco2
Molar mass of CO2 (kg/mol)
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
void equilibriumMoleFractions(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, ADReal &xco2, ADReal &yh2o) const
Mole fractions of CO2 in brine and water vapor in CO2 at equilibrium.
static const std::string pressure
Definition: NS.h:56

◆ equilibriumMoleFractions()

void PorousFlowBrineCO2::equilibriumMoleFractions ( const ADReal pressure,
const ADReal temperature,
const ADReal Xnacl,
ADReal xco2,
ADReal yh2o 
) const

Mole fractions of CO2 in brine and water vapor in CO2 at equilibrium.

In the low temperature regime (T <= 99C), the mole fractions are calculated directly, while in the elevated temperature regime (T >= 109C), they are calculated iteratively. In the intermediate regime (99C < T < 109C), a cubic polynomial is used to smoothly connect the low and elevated temperature regimes.

Parameters
pressurephase pressure (Pa)
temperaturephase temperature (K)
XnaclNaCl mass fraction (kg/kg)
[out]xco2mole fraction of CO2 in liquid
[out]yh2omole fraction of H2O in gas

Definition at line 669 of file PorousFlowBrineCO2.C.

Referenced by equilibriumMassFractions().

674 {
675  if (temperature.value() <= _Tlower)
676  {
678  }
679  else if (temperature.value() > _Tlower && temperature.value() < _Tupper)
680  {
681  // Cubic polynomial in this regime
682  const Real Tint = (temperature.value() - _Tlower) / 10.0;
683 
684  // Equilibrium mole fractions and derivatives at the lower temperature
685  ADReal Tlower = _Tlower;
686  Moose::derivInsert(Tlower.derivatives(), _Tidx, 1.0);
687 
688  ADReal xco2_lower, yh2o_lower;
689  equilibriumMoleFractionsLowTemp(pressure, Tlower, Xnacl, xco2_lower, yh2o_lower);
690 
691  const Real dxco2_dT_lower = xco2_lower.derivatives()[_Tidx];
692  const Real dyh2o_dT_lower = yh2o_lower.derivatives()[_Tidx];
693 
694  // Equilibrium mole fractions and derivatives at the upper temperature
695  Real xco2_upper, yh2o_upper;
696  Real co2_density_upper = _co2_fp.rho_from_p_T(pressure.value(), _Tupper);
697 
699  pressure.value(), _Tupper, Xnacl.value(), co2_density_upper, xco2_upper, yh2o_upper);
700 
701  Real A, dA_dp, dA_dT, B, dB_dp, dB_dT, dB_dX;
702  funcABHighTemp(pressure.value(),
703  _Tupper,
704  Xnacl.value(),
705  co2_density_upper,
706  xco2_upper,
707  yh2o_upper,
708  A,
709  dA_dp,
710  dA_dT,
711  B,
712  dB_dp,
713  dB_dT,
714  dB_dX);
715 
716  const Real dyh2o_dT_upper =
717  ((1.0 - B) * dA_dT + (A - 1.0) * A * dB_dT) / (1.0 - A * B) / (1.0 - A * B);
718  const Real dxco2_dT_upper = dB_dT * (1.0 - yh2o_upper) - B * dyh2o_dT_upper;
719 
720  // The mole fractions in this regime are then found by interpolation
721  Real xco2r, yh2or, dxco2_dT, dyh2o_dT;
723  Tint, xco2_lower.value(), dxco2_dT_lower, xco2_upper, dxco2_dT_upper, xco2r, dxco2_dT);
725  Tint, yh2o_lower.value(), dyh2o_dT_lower, yh2o_upper, dyh2o_dT_upper, yh2or, dyh2o_dT);
726 
727  xco2 = xco2r;
728  Moose::derivInsert(xco2.derivatives(), _pidx, xco2_lower.derivatives()[_pidx]);
729  Moose::derivInsert(xco2.derivatives(), _Tidx, dxco2_dT);
730  Moose::derivInsert(xco2.derivatives(), _Xidx, xco2_lower.derivatives()[_Xidx]);
731 
732  yh2o = yh2or;
733  Moose::derivInsert(yh2o.derivatives(), _pidx, yh2o_lower.derivatives()[_pidx]);
734  Moose::derivInsert(yh2o.derivatives(), _Tidx, dyh2o_dT);
735  Moose::derivInsert(yh2o.derivatives(), _Xidx, yh2o_lower.derivatives()[_Xidx]);
736  }
737  else
738  {
739  // CO2 density and derivatives wrt pressure and temperature
740  const Real co2_density = _co2_fp.rho_from_p_T(pressure.value(), temperature.value());
741 
742  // Equilibrium mole fractions solved using iteration in this regime
743  Real xco2r, yh2or;
745  pressure.value(), temperature.value(), Xnacl.value(), co2_density, xco2r, yh2or);
746 
747  // Can use these in funcABHighTemp() to get derivatives analytically rather than by iteration
748  Real A, dA_dp, dA_dT, B, dB_dp, dB_dT, dB_dX;
749  funcABHighTemp(pressure.value(),
750  temperature.value(),
751  Xnacl.value(),
752  co2_density,
753  xco2r,
754  yh2or,
755  A,
756  dA_dp,
757  dA_dT,
758  B,
759  dB_dp,
760  dB_dT,
761  dB_dX);
762 
763  const Real dyh2o_dp =
764  ((1.0 - B) * dA_dp + (A - 1.0) * A * dB_dp) / (1.0 - A * B) / (1.0 - A * B);
765  const Real dxco2_dp = dB_dp * (1.0 - yh2or) - B * dyh2o_dp;
766 
767  const Real dyh2o_dT =
768  ((1.0 - B) * dA_dT + (A - 1.0) * A * dB_dT) / (1.0 - A * B) / (1.0 - A * B);
769  const Real dxco2_dT = dB_dT * (1.0 - yh2or) - B * dyh2o_dT;
770 
771  const Real dyh2o_dX = ((A - 1.0) * A * dB_dX) / (1.0 - A * B) / (1.0 - A * B);
772  const Real dxco2_dX = dB_dX * (1.0 - yh2or) - B * dyh2o_dX;
773 
774  xco2 = xco2r;
775  Moose::derivInsert(xco2.derivatives(), _pidx, dxco2_dp);
776  Moose::derivInsert(xco2.derivatives(), _Tidx, dxco2_dT);
777  Moose::derivInsert(xco2.derivatives(), _Xidx, dxco2_dX);
778 
779  yh2o = yh2or;
780  Moose::derivInsert(yh2o.derivatives(), _pidx, dyh2o_dp);
781  Moose::derivInsert(yh2o.derivatives(), _Tidx, dyh2o_dT);
782  Moose::derivInsert(yh2o.derivatives(), _Xidx, dyh2o_dX);
783  }
784 }
const Real _Tlower
Temperature below which the Spycher, Pruess & Ennis-King (2003) model is used (K) ...
const unsigned int _Tidx
Index of derivative wrt temperature.
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
void solveEquilibriumMoleFractionHighTemp(Real pressure, Real temperature, Real Xnacl, Real co2_density, Real &xco2, Real &yh2o) const
Function to solve for yh2o and xco2 iteratively in the elevated temperature regime (T > 100C) ...
const SinglePhaseFluidProperties & _co2_fp
Fluid properties UserObject for the CO2.
const unsigned int _pidx
Index of derivative wrt pressure.
void funcABHighTemp(Real pressure, Real temperature, Real Xnacl, Real co2_density, Real xco2, Real yh2o, Real &A, Real &B) const
The function A (Eq.
void equilibriumMoleFractionsLowTemp(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, ADReal &xco2, ADReal &yh2o) const
Mole fractions of CO2 in brine and water vapor in CO2 at equilibrium in the low temperature regime (T...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const std::string pressure
Definition: NS.h:56
void derivInsert(SemiDynamicSparseNumberArray< Real, libMesh::dof_id_type, NWrapper< N >> &derivs, libMesh::dof_id_type index, Real value)
const unsigned int _Xidx
Index of derivative wrt salt mass fraction X.
void smoothCubicInterpolation(Real temperature, Real f0, Real df0, Real f1, Real df1, Real &value, Real &deriv) const
Cubic function to smoothly interpolate between the low temperature and elevated temperature models fo...
const Real _Tupper
Temperature above which the Spycher & Pruess (2010) model is used (K)

◆ equilibriumMoleFractionsLowTemp()

void PorousFlowBrineCO2::equilibriumMoleFractionsLowTemp ( const ADReal pressure,
const ADReal temperature,
const ADReal Xnacl,
ADReal xco2,
ADReal yh2o 
) const

Mole fractions of CO2 in brine and water vapor in CO2 at equilibrium in the low temperature regime (T <= 99C).

Parameters
pressurephase pressure (Pa)
temperaturephase temperature (K)
XnaclNaCl mass fraction (kg/kg)
[out]xco2mole fraction of CO2 in liquid
[out]yh2omass fraction of mole in gas

Definition at line 787 of file PorousFlowBrineCO2.C.

Referenced by equilibriumMoleFractions().

792 {
793  if (temperature.value() > 373.15)
794  mooseError(name(),
795  ": equilibriumMoleFractionsLowTemp() is not valid for T > 373.15K. Use "
796  "equilibriumMoleFractions() instead");
797 
798  // CO2 density and derivatives wrt pressure and temperature
799  const ADReal co2_density = _co2_fp.rho_from_p_T(pressure, temperature);
800 
801  // Assume infinite dilution (yh20 = 0 and xco2 = 0) in low temperature regime
802  ADReal A, B;
803  funcABLowTemp(pressure, temperature, co2_density, A, B);
804 
805  // As the activity coefficient for CO2 in brine used in this regime isn't a 'true'
806  // activity coefficient, we instead calculate the molality of CO2 in water, then
807  // correct it for brine, and then calculate the mole fractions.
808  // The mole fraction in pure water is
809  const ADReal yh2ow = (1.0 - B) / (1.0 / A - B);
810  const ADReal xco2w = B * (1.0 - yh2ow);
811 
812  // Molality of CO2 in pure water
813  const ADReal mco2w = xco2w * _invMh2o / (1.0 - xco2w);
814  // Molality of CO2 in brine is then calculated using gamma
815  const ADReal gamma = activityCoefficient(pressure, temperature, Xnacl);
816  const ADReal mco2 = mco2w / gamma;
817 
818  // Need NaCl molality (mol/kg)
819  const ADReal mnacl = Xnacl / (1.0 - Xnacl) / _Mnacl;
820 
821  // Mole fractions of CO2 and H2O in liquid and gas phases
822  const ADReal total_moles = 2.0 * mnacl + _invMh2o + mco2;
823  xco2 = mco2 / total_moles;
824  yh2o = A * (1.0 - xco2 - 2.0 * mnacl / total_moles);
825 }
ADReal activityCoefficient(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl) const
Activity coefficient for CO2 in brine.
const Real _Mnacl
Molar mass of NaCL.
const Real _invMh2o
Inverse of molar mass of H2O (mol/kg)
void funcABLowTemp(const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, ADReal &A, ADReal &B) const
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
virtual const std::string & name() const
const SinglePhaseFluidProperties & _co2_fp
Fluid properties UserObject for the CO2.
static const std::string pressure
Definition: NS.h:56
void mooseError(Args &&... args) const

◆ execute()

void PorousFlowFluidStateBase::execute ( )
inlinefinalvirtualinherited

Implements GeneralUserObject.

Definition at line 58 of file PorousFlowFluidStateBase.h.

58 {};

◆ finalize()

void PorousFlowFluidStateBase::finalize ( )
inlinefinalvirtualinherited

Implements GeneralUserObject.

Definition at line 59 of file PorousFlowFluidStateBase.h.

59 {};

◆ fluidStateName()

std::string PorousFlowBrineCO2::fluidStateName ( ) const
overridevirtual

Name of FluidState.

Implements PorousFlowFluidStateBase.

Definition at line 85 of file PorousFlowBrineCO2.C.

86 {
87  return "brine-co2";
88 }

◆ fugacityCoefficientCO2HighTemp()

ADReal PorousFlowBrineCO2::fugacityCoefficientCO2HighTemp ( const ADReal pressure,
const ADReal temperature,
const ADReal co2_density,
const ADReal xco2,
const ADReal yh2o 
) const

Definition at line 502 of file PorousFlowBrineCO2.C.

Referenced by fugacityCoefficientsHighTemp().

507 {
508  // Need pressure in bar
509  const ADReal pbar = pressure * 1.0e-5;
510  // Molar volume in cm^3/mol
511  const ADReal V = _Mco2 / co2_density * 1.0e6;
512 
513  // Redlich-Kwong parameters
514  const ADReal yco2 = 1.0 - yh2o;
515  const ADReal xh2o = 1.0 - xco2;
516 
517  const ADReal aCO2 = 8.008e7 - 4.984e4 * temperature;
518  const ADReal aH2O = 1.337e8 - 1.4e4 * temperature;
519  const Real bCO2 = 28.25;
520  const Real bH2O = 15.7;
521  const ADReal KH2OCO2 = 1.427e-2 - 4.037e-4 * temperature;
522  const ADReal KCO2H2O = 0.4228 - 7.422e-4 * temperature;
523  const ADReal kH2OCO2 = KH2OCO2 * yh2o + KCO2H2O * yco2;
524  const ADReal kCO2H2O = KCO2H2O * yh2o + KH2OCO2 * yco2;
525 
526  const ADReal aH2OCO2 = std::sqrt(aCO2 * aH2O) * (1.0 - kH2OCO2);
527  const ADReal aCO2H2O = std::sqrt(aCO2 * aH2O) * (1.0 - kCO2H2O);
528 
529  const ADReal amix = yh2o * yh2o * aH2O + yh2o * yco2 * (aH2OCO2 + aCO2H2O) + yco2 * yco2 * aCO2;
530  const ADReal bmix = yh2o * bH2O + yco2 * bCO2;
531 
532  const ADReal t15 = std::pow(temperature, 1.5);
533 
534  ADReal lnPhiCO2 = bCO2 / bmix * (pbar * V / (_Rbar * temperature) - 1.0) -
535  std::log(pbar * (V - bmix) / (_Rbar * temperature));
536 
537  ADReal term3 = (2.0 * yco2 * aCO2 + yh2o * (aH2OCO2 + aCO2H2O) -
538  yh2o * yco2 * std::sqrt(aH2O * aCO2) * (kH2OCO2 - kCO2H2O) * (yh2o - yco2) +
539  xh2o * xco2 * std::sqrt(aH2O * aCO2) * (kCO2H2O - kH2OCO2)) /
540  amix;
541 
542  lnPhiCO2 += (term3 - bCO2 / bmix) * amix / (bmix * _Rbar * t15) * std::log(V / (V + bmix));
543 
544  return std::exp(lnPhiCO2);
545 }
const Real _Mco2
Molar mass of CO2 (kg/mol)
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
const Real _Rbar
Molar gas constant in bar cm^3 /(K mol)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const std::string pressure
Definition: NS.h:56
MooseUnits pow(const MooseUnits &, int)

◆ fugacityCoefficientH2OHighTemp()

ADReal PorousFlowBrineCO2::fugacityCoefficientH2OHighTemp ( const ADReal pressure,
const ADReal temperature,
const ADReal co2_density,
const ADReal xco2,
const ADReal yh2o 
) const

Definition at line 456 of file PorousFlowBrineCO2.C.

Referenced by fugacityCoefficientsHighTemp().

461 {
462  // Need pressure in bar
463  const ADReal pbar = pressure * 1.0e-5;
464  // Molar volume in cm^3/mol
465  const ADReal V = _Mco2 / co2_density * 1.0e6;
466 
467  // Redlich-Kwong parameters
468  const ADReal yco2 = 1.0 - yh2o;
469  const ADReal xh2o = 1.0 - xco2;
470 
471  const ADReal aCO2 = 8.008e7 - 4.984e4 * temperature;
472  const ADReal aH2O = 1.337e8 - 1.4e4 * temperature;
473  const Real bCO2 = 28.25;
474  const Real bH2O = 15.7;
475  const ADReal KH2OCO2 = 1.427e-2 - 4.037e-4 * temperature;
476  const ADReal KCO2H2O = 0.4228 - 7.422e-4 * temperature;
477  const ADReal kH2OCO2 = KH2OCO2 * yh2o + KCO2H2O * yco2;
478  const ADReal kCO2H2O = KCO2H2O * yh2o + KH2OCO2 * yco2;
479 
480  const ADReal aH2OCO2 = std::sqrt(aCO2 * aH2O) * (1.0 - kH2OCO2);
481  const ADReal aCO2H2O = std::sqrt(aCO2 * aH2O) * (1.0 - kCO2H2O);
482 
483  const ADReal amix = yh2o * yh2o * aH2O + yh2o * yco2 * (aH2OCO2 + aCO2H2O) + yco2 * yco2 * aCO2;
484  const ADReal bmix = yh2o * bH2O + yco2 * bCO2;
485 
486  const ADReal t15 = std::pow(temperature, 1.5);
487 
488  ADReal lnPhiH2O = bH2O / bmix * (pbar * V / (_Rbar * temperature) - 1.0) -
489  std::log(pbar * (V - bmix) / (_Rbar * temperature));
490  ADReal term3 = (2.0 * yh2o * aH2O + yco2 * (aH2OCO2 + aCO2H2O) -
491  yh2o * yco2 * std::sqrt(aH2O * aCO2) * (kH2OCO2 - kCO2H2O) * (yh2o - yco2) +
492  xh2o * xco2 * std::sqrt(aH2O * aCO2) * (kH2OCO2 - kCO2H2O)) /
493  amix;
494  term3 -= bH2O / bmix;
495  term3 *= amix / (bmix * _Rbar * t15) * std::log(V / (V + bmix));
496  lnPhiH2O += term3;
497 
498  return std::exp(lnPhiH2O);
499 }
const Real _Mco2
Molar mass of CO2 (kg/mol)
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
const Real _Rbar
Molar gas constant in bar cm^3 /(K mol)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const std::string pressure
Definition: NS.h:56
MooseUnits pow(const MooseUnits &, int)

◆ fugacityCoefficientsHighTemp()

void PorousFlowBrineCO2::fugacityCoefficientsHighTemp ( const ADReal pressure,
const ADReal temperature,
const ADReal co2_density,
const ADReal xco2,
const ADReal yh2o,
ADReal fco2,
ADReal fh2o 
) const

Fugacity coefficients for H2O and CO2 at elevated temperatures (100C < T <= 300C).

Eq. (A8) from Spycher & Pruess (2010)

Parameters
pressuregas pressure (Pa)
temperaturetemperature (K)
co2_densityCO2 density (kg/m^3)
xco2mole fraction of CO2 in liquid phase (-)
yh2omole fraction of H2O in gas phase (-)
[out]fco2fugacity coefficient for CO2
[out]fh2ofugacity coefficient for H2O

Definition at line 438 of file PorousFlowBrineCO2.C.

Referenced by funcABHighTemp().

445 {
446  if (temperature.value() <= 373.15)
447  mooseError(name(),
448  ": fugacityCoefficientsHighTemp() is not valid for T <= 373.15K. Use "
449  "fugacityCoefficientsLowTemp() instead");
450 
451  fh2o = fugacityCoefficientH2OHighTemp(pressure, temperature, co2_density, xco2, yh2o);
452  fco2 = fugacityCoefficientCO2HighTemp(pressure, temperature, co2_density, xco2, yh2o);
453 }
ADReal fugacityCoefficientH2OHighTemp(const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, const ADReal &xco2, const ADReal &yh2o) const
static const std::string temperature
Definition: NS.h:59
virtual const std::string & name() const
ADReal fugacityCoefficientCO2HighTemp(const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, const ADReal &xco2, const ADReal &yh2o) const
static const std::string pressure
Definition: NS.h:56
void mooseError(Args &&... args) const

◆ fugacityCoefficientsLowTemp()

void PorousFlowBrineCO2::fugacityCoefficientsLowTemp ( const ADReal pressure,
const ADReal temperature,
const ADReal co2_density,
ADReal fco2,
ADReal fh2o 
) const

Fugacity coefficients for H2O and CO2 for T <= 100C Eq.

(B7) from Spycher, Pruess and Ennis-King (2003)

Parameters
pressuregas pressure (Pa)
temperaturetemperature (K)
co2_densityCO2 density (kg/m^3)
[out]fco2fugacity coefficient for CO2
[out]fh2ofugacity coefficient for H2O

Definition at line 397 of file PorousFlowBrineCO2.C.

Referenced by funcABLowTemp().

402 {
403  if (temperature.value() > 373.15)
404  mooseError(name(),
405  ": fugacityCoefficientsLowTemp() is not valid for T > 373.15K. Use "
406  "fugacityCoefficientsHighTemp() instead");
407 
408  // Need pressure in bar
409  const ADReal pbar = pressure * 1.0e-5;
410 
411  // Molar volume in cm^3/mol
412  const ADReal V = _Mco2 / co2_density * 1.0e6;
413 
414  // Redlich-Kwong parameters
415  const ADReal aCO2 = 7.54e7 - 4.13e4 * temperature;
416  const Real bCO2 = 27.8;
417  const Real aCO2H2O = 7.89e7;
418  const Real bH2O = 18.18;
419 
420  const ADReal t15 = std::pow(temperature, 1.5);
421 
422  // The fugacity coefficients for H2O and CO2
423  auto lnPhi = [V, aCO2, bCO2, t15, this](ADReal a, ADReal b)
424  {
425  return std::log(V / (V - bCO2)) + b / (V - bCO2) -
426  2.0 * a / (_Rbar * t15 * bCO2) * std::log((V + bCO2) / V) +
427  aCO2 * b / (_Rbar * t15 * bCO2 * bCO2) * (std::log((V + bCO2) / V) - bCO2 / (V + bCO2));
428  };
429 
430  const ADReal lnPhiH2O = lnPhi(aCO2H2O, bH2O) - std::log(pbar * V / (_Rbar * temperature));
431  const ADReal lnPhiCO2 = lnPhi(aCO2, bCO2) - std::log(pbar * V / (_Rbar * temperature));
432 
433  fh2o = std::exp(lnPhiH2O);
434  fco2 = std::exp(lnPhiCO2);
435 }
const Real _Mco2
Molar mass of CO2 (kg/mol)
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
virtual const std::string & name() const
const Real _Rbar
Molar gas constant in bar cm^3 /(K mol)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const std::string pressure
Definition: NS.h:56
void mooseError(Args &&... args) const
MooseUnits pow(const MooseUnits &, int)

◆ funcABHighTemp() [1/2]

void PorousFlowBrineCO2::funcABHighTemp ( Real  pressure,
Real  temperature,
Real  Xnacl,
Real  co2_density,
Real  xco2,
Real  yh2o,
Real A,
Real B 
) const
protected

The function A (Eq.

(11) of Spycher, Pruess and Ennis-King (2003) for T <= 100C, and Eqs. (10) and (17) of Spycher and Pruess (2010) for T > 100C)

Parameters
pressuregas pressure (Pa)
temperaturefluid temperature (K)
XnaclNaCl mass fraction (kg/kg)
co2_densityCO2 density (kg/m^3)
xco2mole fraction of CO2 in liquid phase (-)
yh2omole fraction of H2O in gas phase (-)
[out]Athe function A
[out]Bthe function B

Definition at line 862 of file PorousFlowBrineCO2.C.

Referenced by equilibriumMoleFractions(), funcABHighTemp(), and solveEquilibriumMoleFractionHighTemp().

870 {
871  if (temperature <= 373.15)
872  mooseError(name(),
873  ": funcABHighTemp() is not valid for T <= 373.15K. Use funcABLowTemp() instead");
874 
875  // Pressure in bar
876  const Real pbar = pressure * 1.0e-5;
877  // Temperature in C
878  const Real Tc = temperature - _T_c2k;
879 
880  // Reference pressure and partial molar volumes
881  const Real pref = -1.9906e-1 + 2.0471e-3 * Tc + 1.0152e-4 * Tc * Tc - 1.4234e-6 * Tc * Tc * Tc +
882  1.4168e-8 * Tc * Tc * Tc * Tc;
883  const Real vCO2 = 32.6 + 3.413e-2 * (Tc - 100.0);
884  const Real vH2O = 18.1 + 3.137e-2 * (Tc - 100.0);
885 
886  const Real delta_pbar = pbar - pref;
887  const Real Rt = _Rbar * temperature;
888 
889  // Equilibrium constants
890  // Use dummy ADReal temperature as derivatives aren't required
891  const ADReal T = temperature;
892  Real K0H2O = equilibriumConstantH2O(T).value();
893  Real K0CO2 = equilibriumConstantCO2(T).value();
894 
895  // Fugacity coefficients
896  // Use dummy ADReal variables as derivatives aren't required
897  const ADReal p = pressure;
898  const ADReal rhoco2 = co2_density;
899  const ADReal x = xco2;
900  const ADReal y = yh2o;
901 
902  ADReal phiH2O, phiCO2;
903  fugacityCoefficientsHighTemp(p, T, rhoco2, x, y, phiCO2, phiH2O);
904 
905  // Activity coefficients
906  const Real gammaH2O = activityCoefficientH2O(T, x).value();
907  const Real gammaCO2 = activityCoefficientCO2(T, x).value();
908 
909  // Activity coefficient for CO2 in brine
910  // Use dummy ADReal Xnacl as derivatives aren't required
911  const ADReal X = Xnacl;
912  const Real gamma = activityCoefficientHighTemp(T, X).value();
913 
914  A = K0H2O * gammaH2O / (phiH2O.value() * pbar) * std::exp(delta_pbar * vH2O / Rt);
915  B = phiCO2.value() * pbar / (_invMh2o * K0CO2 * gamma * gammaCO2) *
916  std::exp(-delta_pbar * vCO2 / Rt);
917 }
const Real _T_c2k
Conversion from C to K.
ADReal activityCoefficientHighTemp(const ADReal &temperature, const ADReal &Xnacl) const
Activity coefficient for CO2 in brine used in the elevated temperature formulation.
ADReal equilibriumConstantH2O(const ADReal &temperature) const
Equilibrium constant for H2O For temperatures 12C <= T <= 99C, uses Spycher, Pruess and Ennis-King (2...
const Real _invMh2o
Inverse of molar mass of H2O (mol/kg)
void fugacityCoefficientsHighTemp(const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, const ADReal &xco2, const ADReal &yh2o, ADReal &fco2, ADReal &fh2o) const
Fugacity coefficients for H2O and CO2 at elevated temperatures (100C < T <= 300C).
const std::vector< double > y
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
virtual const std::string & name() const
const std::vector< double > x
ADReal activityCoefficientH2O(const ADReal &temperature, const ADReal &xco2) const
Activity coefficient of H2O Eq.
ADReal activityCoefficientCO2(const ADReal &temperature, const ADReal &xco2) const
Activity coefficient of CO2 Eq.
const Real _Rbar
Molar gas constant in bar cm^3 /(K mol)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const std::string pressure
Definition: NS.h:56
void mooseError(Args &&... args) const
ADReal equilibriumConstantCO2(const ADReal &temperature) const
Equilibrium constant for CO2 For temperatures 12C <= T <= 99C, uses Spycher, Pruess and Ennis-King (2...

◆ funcABHighTemp() [2/2]

void PorousFlowBrineCO2::funcABHighTemp ( Real  pressure,
Real  temperature,
Real  Xnacl,
Real  co2_density,
Real  xco2,
Real  yh2o,
Real A,
Real dA_dp,
Real dA_dT,
Real B,
Real dB_dp,
Real dB_dT,
Real dB_dX 
) const
protected

Definition at line 920 of file PorousFlowBrineCO2.C.

933 {
934  funcABHighTemp(pressure, temperature, Xnacl, co2_density, xco2, yh2o, A, B);
935 
936  // Use finite differences for derivatives in the high temperature regime
937  const Real dp = 1.0e-2;
938  const Real dT = 1.0e-6;
939  const Real dX = 1.0e-8;
940 
941  Real A2, B2;
942  funcABHighTemp(pressure + dp, temperature, Xnacl, co2_density, xco2, yh2o, A2, B2);
943  dA_dp = (A2 - A) / dp;
944  dB_dp = (B2 - B) / dp;
945 
946  funcABHighTemp(pressure, temperature + dT, Xnacl, co2_density, xco2, yh2o, A2, B2);
947  dA_dT = (A2 - A) / dT;
948  dB_dT = (B2 - B) / dT;
949 
950  funcABHighTemp(pressure, temperature, Xnacl + dX, co2_density, xco2, yh2o, A2, B2);
951  dB_dX = (B2 - B) / dX;
952 }
static const std::string temperature
Definition: NS.h:59
void funcABHighTemp(Real pressure, Real temperature, Real Xnacl, Real co2_density, Real xco2, Real yh2o, Real &A, Real &B) const
The function A (Eq.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const std::string pressure
Definition: NS.h:56

◆ funcABLowTemp()

void PorousFlowBrineCO2::funcABLowTemp ( const ADReal pressure,
const ADReal temperature,
const ADReal co2_density,
ADReal A,
ADReal B 
) const
protected

Definition at line 828 of file PorousFlowBrineCO2.C.

Referenced by equilibriumMoleFractionsLowTemp().

833 {
834  if (temperature.value() > 373.15)
835  mooseError(name(),
836  ": funcABLowTemp() is not valid for T > 373.15K. Use funcABHighTemp() instead");
837 
838  // Pressure in bar
839  const ADReal pbar = pressure * 1.0e-5;
840 
841  // Reference pressure and partial molar volumes
842  const Real pref = 1.0;
843  const Real vCO2 = 32.6;
844  const Real vH2O = 18.1;
845 
846  const ADReal delta_pbar = pbar - pref;
847  const ADReal Rt = _Rbar * temperature;
848 
849  // Equilibrium constants
852 
853  // Fugacity coefficients
854  ADReal phiH2O, phiCO2;
855  fugacityCoefficientsLowTemp(pressure, temperature, co2_density, phiCO2, phiH2O);
856 
857  A = K0H2O / (phiH2O * pbar) * std::exp(delta_pbar * vH2O / Rt);
858  B = phiCO2 * pbar / (_invMh2o * K0CO2) * std::exp(-delta_pbar * vCO2 / Rt);
859 }
ADReal equilibriumConstantH2O(const ADReal &temperature) const
Equilibrium constant for H2O For temperatures 12C <= T <= 99C, uses Spycher, Pruess and Ennis-King (2...
const Real _invMh2o
Inverse of molar mass of H2O (mol/kg)
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
virtual const std::string & name() const
void fugacityCoefficientsLowTemp(const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, ADReal &fco2, ADReal &fh2o) const
Fugacity coefficients for H2O and CO2 for T <= 100C Eq.
const Real _Rbar
Molar gas constant in bar cm^3 /(K mol)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const std::string pressure
Definition: NS.h:56
void mooseError(Args &&... args) const
ADReal equilibriumConstantCO2(const ADReal &temperature) const
Equilibrium constant for CO2 For temperatures 12C <= T <= 99C, uses Spycher, Pruess and Ennis-King (2...

◆ gasComponentIndex()

unsigned int PorousFlowFluidStateMultiComponentBase::gasComponentIndex ( ) const
inlineinherited

The index of the gas fluid component.

Returns
gas fluid component number

Definition at line 35 of file PorousFlowFluidStateMultiComponentBase.h.

35 { return _gas_fluid_component; };
unsigned int _gas_fluid_component
Fluid component number of the gas phase.

◆ gasPhaseIndex()

unsigned int PorousFlowFluidStateBase::gasPhaseIndex ( ) const
inlineinherited

The index of the gas phase.

Returns
gas phase number

Definition at line 83 of file PorousFlowFluidStateBase.h.

83 { return _gas_phase_number; };
unsigned int _gas_phase_number
Phase number of the gas phase.

◆ gasProperties()

void PorousFlowBrineCO2::gasProperties ( const ADReal pressure,
const ADReal temperature,
std::vector< FluidStateProperties > &  fsp 
) const

Thermophysical properties of the gaseous state.

Parameters
pressuregas pressure (Pa)
temperaturetemperature (K)
[out]FluidStatePropertiesdata structure

Definition at line 242 of file PorousFlowBrineCO2.C.

Referenced by thermophysicalProperties(), totalMassFraction(), and twoPhaseProperties().

245 {
247 
248  // Gas density, viscosity and enthalpy are approximated with pure CO2 - no correction due
249  // to the small amount of water vapor is made
250  ADReal co2_density, co2_viscosity;
251  _co2_fp.rho_mu_from_p_T(pressure, temperature, co2_density, co2_viscosity);
252 
253  ADReal co2_enthalpy = _co2_fp.h_from_p_T(pressure, temperature);
254 
255  // Save the values to the FluidStateProperties object. Note that derivatives wrt z are 0
256  gas.density = co2_density;
257  gas.viscosity = co2_viscosity;
258  gas.enthalpy = co2_enthalpy;
259 
260  mooseAssert(gas.density.value() > 0.0, "Gas density must be greater than zero");
261  gas.internal_energy = gas.enthalpy - pressure / gas.density;
262 }
unsigned int _gas_phase_number
Phase number of the gas phase.
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
const SinglePhaseFluidProperties & _co2_fp
Fluid properties UserObject for the CO2.
AD data structure to pass calculated thermophysical properties.
virtual void rho_mu_from_p_T(Real p, Real T, Real &rho, Real &mu) const
Combined methods.
static const std::string pressure
Definition: NS.h:56

◆ getPressureIndex()

unsigned int PorousFlowFluidStateMultiComponentBase::getPressureIndex ( ) const
inlineinherited

◆ getTemperatureIndex()

unsigned int PorousFlowFluidStateMultiComponentBase::getTemperatureIndex ( ) const
inlineinherited

Definition at line 93 of file PorousFlowFluidStateMultiComponentBase.h.

Referenced by PorousFlowWaterNCGTest::buildObjects(), and PorousFlowBrineCO2Test::buildObjects().

93 { return _Tidx; };
const unsigned int _Tidx
Index of derivative wrt temperature.

◆ getXIndex()

unsigned int PorousFlowFluidStateMultiComponentBase::getXIndex ( ) const
inlineinherited

Definition at line 95 of file PorousFlowFluidStateMultiComponentBase.h.

Referenced by PorousFlowBrineCO2Test::buildObjects().

95 { return _Xidx; };
const unsigned int _Xidx
Index of derivative wrt salt mass fraction X.

◆ getZIndex()

unsigned int PorousFlowFluidStateMultiComponentBase::getZIndex ( ) const
inlineinherited

Definition at line 94 of file PorousFlowFluidStateMultiComponentBase.h.

Referenced by PorousFlowWaterNCGTest::buildObjects(), and PorousFlowBrineCO2Test::buildObjects().

94 { return _Zidx; };
const unsigned int _Zidx
Index of derivative wrt total mass fraction Z.

◆ henryConstant()

ADReal PorousFlowBrineCO2::henryConstant ( const ADReal temperature,
const ADReal Xnacl 
) const

Henry's constant of dissolution of gas phase CO2 in brine.

From Battistelli et al, A fluid property module for the TOUGH2 simulator for saline brines with non-condensible gas, Proc. Eighteenth Workshop on Geothermal Reservoir Engineering (1993)

Parameters
temperaturefluid temperature (K)
XnaclNaCl mass fraction (kg/kg)
Returns
Henry's constant (Pa)

Definition at line 1076 of file PorousFlowBrineCO2.C.

Referenced by enthalpyOfDissolutionGas().

1077 {
1078  // Henry's constant for dissolution in water
1080 
1081  // The correction to salt is obtained through the salting out coefficient
1082  const std::vector<Real> b{1.19784e-1, -7.17823e-4, 4.93854e-6, -1.03826e-8, 1.08233e-11};
1083 
1084  // Need temperature in Celsius
1085  const ADReal Tc = temperature - _T_c2k;
1086 
1087  ADReal kb = 0.0;
1088  for (unsigned int i = 0; i < b.size(); ++i)
1089  kb += b[i] * std::pow(Tc, i);
1090 
1091  // Need salt mass fraction in molality
1092  const ADReal xmol = Xnacl / (1.0 - Xnacl) / _Mnacl;
1093 
1094  // Henry's constant and its derivative wrt temperature and salt mass fraction
1095  return Kh_h2o * std::pow(10.0, xmol * kb);
1096 }
const Real _T_c2k
Conversion from C to K.
const Real _Mnacl
Molar mass of NaCL.
const std::vector< Real > _co2_henry
Henry&#39;s coefficeients for CO2.
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
const BrineFluidProperties & _brine_fp
Fluid properties UserObject for water.
Real henryConstant(Real temperature, const std::vector< Real > &coeffs) const
IAPWS formulation of Henry&#39;s law constant for dissolution in water (implemented in water FluidPropert...
MooseUnits pow(const MooseUnits &, int)

◆ initialize()

void PorousFlowFluidStateBase::initialize ( )
inlinefinalvirtualinherited

Implements GeneralUserObject.

Definition at line 57 of file PorousFlowFluidStateBase.h.

57 {};

◆ liquidProperties()

void PorousFlowBrineCO2::liquidProperties ( const ADReal pressure,
const ADReal temperature,
const ADReal Xnacl,
std::vector< FluidStateProperties > &  fsp 
) const

Thermophysical properties of the liquid state.

Parameters
pressureliquid pressure (Pa)
temperaturetemperature (K)
XnaclNaCl mass fraction (kg/kg)
[out]FluidStatePropertiesdata structure

Definition at line 265 of file PorousFlowBrineCO2.C.

Referenced by thermophysicalProperties(), totalMassFraction(), and twoPhaseProperties().

269 {
271 
272  // The liquid density includes the density increase due to dissolved CO2
273  const ADReal brine_density = _brine_fp.rho_from_p_T_X(pressure, temperature, Xnacl);
274 
275  // Mass fraction of CO2 in liquid phase
276  const ADReal Xco2 = liquid.mass_fraction[_gas_fluid_component];
277 
278  // The liquid density
279  const ADReal co2_partial_density = partialDensityCO2(temperature);
280 
281  const ADReal liquid_density = 1.0 / (Xco2 / co2_partial_density + (1.0 - Xco2) / brine_density);
282 
283  // Assume that liquid viscosity is just the brine viscosity
284  const ADReal liquid_viscosity = _brine_fp.mu_from_p_T_X(pressure, temperature, Xnacl);
285 
286  // Liquid enthalpy (including contribution due to the enthalpy of dissolution)
287  const ADReal brine_enthalpy = _brine_fp.h_from_p_T_X(pressure, temperature, Xnacl);
288 
289  // Enthalpy of CO2
290  const ADReal co2_enthalpy = _co2_fp.h_from_p_T(pressure, temperature);
291 
292  // Enthalpy of dissolution
294 
295  const ADReal liquid_enthalpy = (1.0 - Xco2) * brine_enthalpy + Xco2 * (co2_enthalpy + hdis);
296 
297  // Save the values to the FluidStateProperties object
298  liquid.density = liquid_density;
299  liquid.viscosity = liquid_viscosity;
300  liquid.enthalpy = liquid_enthalpy;
301 
302  mooseAssert(liquid.density.value() > 0.0, "Liquid density must be greater than zero");
303  liquid.internal_energy = liquid.enthalpy - pressure / liquid.density;
304 }
const unsigned int _aqueous_phase_number
Phase number of the aqueous phase.
FPADReal h_from_p_T_X(const FPADReal &pressure, const FPADReal &temperature, const FPADReal &xnacl) const
virtual Real rho_from_p_T_X(Real pressure, Real temperature, Real xnacl) const override
unsigned int _gas_fluid_component
Fluid component number of the gas phase.
static const std::string temperature
Definition: NS.h:59
virtual Real mu_from_p_T_X(Real pressure, Real temperature, Real xnacl) const override
DualNumber< Real, DNDerivativeType, true > ADReal
const BrineFluidProperties & _brine_fp
Fluid properties UserObject for water.
const SinglePhaseFluidProperties & _co2_fp
Fluid properties UserObject for the CO2.
ADReal partialDensityCO2(const ADReal &temperature) const
Partial density of dissolved CO2 From Garcia, Density of aqueous solutions of CO2, LBNL-49023 (2001)
ADReal enthalpyOfDissolution(const ADReal &temperature) const
Enthalpy of dissolution of CO2 in brine calculated using linear fit to model of Duan and Sun...
AD data structure to pass calculated thermophysical properties.
static const std::string pressure
Definition: NS.h:56
std::vector< ADReal > mass_fraction

◆ massFractions()

void PorousFlowBrineCO2::massFractions ( const ADReal pressure,
const ADReal temperature,
const ADReal Xnacl,
const ADReal Z,
FluidStatePhaseEnum phase_state,
std::vector< FluidStateProperties > &  fsp 
) const

Mass fractions of CO2 and H2O in both phases, as well as derivatives wrt PorousFlow variables.

Values depend on the phase state (liquid, gas or two phase)

Parameters
pressurephase pressure (Pa)
temperaturephase temperature (K)
XnaclNaCl mass fraction (kg/kg)
Ztotal mass fraction of CO2 component
[out]PhaseStateEnumcurrent phase state
[out]FluidStatePropertiesdata structure

Definition at line 171 of file PorousFlowBrineCO2.C.

Referenced by thermophysicalProperties().

177 {
180 
181  ADReal Xco2 = 0.0;
182  ADReal Yh2o = 0.0;
183  ADReal Yco2 = 0.0;
184 
185  // If the amount of CO2 is less than the smallest solubility, then all CO2 will
186  // be dissolved, and the equilibrium mass fractions do not need to be computed
187  if (Z.value() < _Zmin)
188  phase_state = FluidStatePhaseEnum::LIQUID;
189 
190  else
191  {
192  // Equilibrium mass fraction of CO2 in liquid and H2O in gas phases
193  equilibriumMassFractions(pressure, temperature, Xnacl, Xco2, Yh2o);
194 
195  Yco2 = 1.0 - Yh2o;
196 
197  // Determine which phases are present based on the value of z
198  phaseState(Z.value(), Xco2.value(), Yco2.value(), phase_state);
199  }
200 
201  // The equilibrium mass fractions calculated above are only correct in the two phase
202  // state. If only liquid or gas phases are present, the mass fractions are given by
203  // the total mass fraction z
204  ADReal Xh2o = 0.0;
205 
206  switch (phase_state)
207  {
209  {
210  Xco2 = Z;
211  Yco2 = 0.0;
212  Xh2o = 1.0 - Z;
213  Yh2o = 0.0;
214  break;
215  }
216 
218  {
219  Xco2 = 0.0;
220  Yco2 = Z;
221  Yh2o = 1.0 - Z;
222  break;
223  }
224 
226  {
227  // Keep equilibrium mass fractions
228  Xh2o = 1.0 - Xco2;
229  break;
230  }
231  }
232 
233  // Save the mass fractions in the FluidStateProperties object
235  liquid.mass_fraction[_gas_fluid_component] = Xco2;
236  liquid.mass_fraction[_salt_component] = Xnacl;
239 }
const unsigned int _aqueous_fluid_component
Fluid component number of the aqueous component.
const unsigned int _aqueous_phase_number
Phase number of the aqueous phase.
const unsigned int _salt_component
Salt component index.
unsigned int _gas_fluid_component
Fluid component number of the gas phase.
unsigned int _gas_phase_number
Phase number of the gas phase.
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
void equilibriumMassFractions(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, ADReal &Xco2, ADReal &Yh2o) const
Mass fractions of CO2 in brine and water vapor in CO2 at equilibrium.
AD data structure to pass calculated thermophysical properties.
static const std::string Z
Definition: NS.h:169
void phaseState(Real Zi, Real Xi, Real Yi, FluidStatePhaseEnum &phase_state) const
Determines the phase state gven the total mass fraction and equilibrium mass fractions.
static const std::string pressure
Definition: NS.h:56
const Real _Zmin
Minimum Z - below this value all CO2 will be dissolved.
std::vector< ADReal > mass_fraction

◆ numComponents()

unsigned int PorousFlowFluidStateBase::numComponents ( ) const
inlineinherited

The maximum number of components in this model.

Returns
number of components

Definition at line 71 of file PorousFlowFluidStateBase.h.

71 { return _num_components; };
unsigned int _num_components
Number of components.

◆ numPhases()

unsigned int PorousFlowFluidStateBase::numPhases ( ) const
inlineinherited

The maximum number of phases in this model.

Returns
number of phases

Definition at line 65 of file PorousFlowFluidStateBase.h.

Referenced by PorousFlowFluidStateSingleComponentTempl< is_ad >::PorousFlowFluidStateSingleComponentTempl(), and PorousFlowFluidStateTempl< is_ad >::PorousFlowFluidStateTempl().

65 { return _num_phases; };
unsigned int _num_phases
Number of phases.

◆ partialDensityCO2()

ADReal PorousFlowBrineCO2::partialDensityCO2 ( const ADReal temperature) const

Partial density of dissolved CO2 From Garcia, Density of aqueous solutions of CO2, LBNL-49023 (2001)

Parameters
temperaturefluid temperature (K)
Returns
partial molar density (kg/m^3)

Definition at line 1022 of file PorousFlowBrineCO2.C.

Referenced by liquidProperties(), and saturation().

1023 {
1024  // This correlation uses temperature in C
1025  const ADReal Tc = temperature - _T_c2k;
1026  // The parial molar volume
1027  const ADReal V = 37.51 - 9.585e-2 * Tc + 8.74e-4 * Tc * Tc - 5.044e-7 * Tc * Tc * Tc;
1028 
1029  return 1.0e6 * _Mco2 / V;
1030 }
const Real _T_c2k
Conversion from C to K.
const Real _Mco2
Molar mass of CO2 (kg/mol)
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal

◆ phaseState()

void PorousFlowFluidStateMultiComponentBase::phaseState ( Real  Zi,
Real  Xi,
Real  Yi,
FluidStatePhaseEnum phase_state 
) const
inherited

Determines the phase state gven the total mass fraction and equilibrium mass fractions.

Parameters
Zitotal mass fraction
Xiequilibrium mass fraction in liquid
Yiequilibrium mass fraction in gas
[out]phase_statethe phase state (gas, liquid, two phase)

Definition at line 36 of file PorousFlowFluidStateMultiComponentBase.C.

Referenced by PorousFlowWaterNCG::massFractions(), and massFractions().

40 {
41  if (Zi <= Xi)
42  {
43  // In this case, there is not enough component i to form a gas phase,
44  // so only a liquid phase is present
45  phase_state = FluidStatePhaseEnum::LIQUID;
46  }
47  else if (Zi > Xi && Zi < Yi)
48  {
49  // Two phases are present
50  phase_state = FluidStatePhaseEnum::TWOPHASE;
51  }
52  else // (Zi >= Yi)
53  {
54  // In this case, there is not enough water to form a liquid
55  // phase, so only a gas phase is present
56  phase_state = FluidStatePhaseEnum::GAS;
57  }
58 }

◆ rachfordRice()

Real PorousFlowFluidStateFlash::rachfordRice ( Real  vf,
std::vector< Real > &  Zi,
std::vector< Real > &  Ki 
) const
inherited

Rachford-Rice equation for vapor fraction.

Can be solved analytically for two components in two phases, but must be solved iteratively using a root finding algorithm for more components. This equation has the nice property that it is monotonic in the interval [0,1], so that only a small number of iterations are typically required to find the root.

The Rachford-Rice equation can also be used to check whether the phase state is two phase, single phase gas, or single phase liquid. Evaluate f(v), the Rachford-Rice equation evaluated at the vapor mass fraction.

If f(0) < 0, then the mixture is below the bubble point, and only a single phase liquid can exist

If f(1) > 0, then the mixture is above the dew point, and only a single phase gas exists.

If f(0) >= 0 and f(1) <= 0, the mixture is between the bubble and dew points, and both gas and liquid phases exist.

Parameters
vfvapor fraction
Zimass fractions
Kiequilibrium constants
Returns
f(x)

Definition at line 26 of file PorousFlowFluidStateFlash.C.

Referenced by PorousFlowFluidStateFlash::vaporMassFraction().

29 {
30  const std::size_t num_z = Zi.size();
31  // Check that the sizes of the mass fractions and equilibrium constant vectors are correct
32  if (Ki.size() != num_z + 1)
33  mooseError("The number of mass fractions or equilibrium components passed to rachfordRice is "
34  "not correct");
35 
36  Real f = 0.0;
37  Real Z_total = 0.0;
38 
39  for (std::size_t i = 0; i < num_z; ++i)
40  {
41  f += Zi[i] * (Ki[i] - 1.0) / (1.0 + x * (Ki[i] - 1.0));
42  Z_total += Zi[i];
43  }
44 
45  // Add the last component (with total mass fraction = 1 - z_total)
46  f += (1.0 - Z_total) * (Ki[num_z] - 1.0) / (1.0 + x * (Ki[num_z] - 1.0));
47 
48  return f;
49 }
const std::vector< double > x
Real f(Real x)
Test function for Brents method.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void mooseError(Args &&... args) const

◆ rachfordRiceDeriv()

Real PorousFlowFluidStateFlash::rachfordRiceDeriv ( Real  vf,
std::vector< Real > &  Zi,
std::vector< Real > &  Ki 
) const
inherited

Derivative of Rachford-Rice equation wrt vapor fraction.

Has the nice property that it is strictly negative in the interval [0,1]

Parameters
vfvapor fraction
Zimass fractions
Kiequilibrium constants
Returns
f'(x)

Definition at line 52 of file PorousFlowFluidStateFlash.C.

Referenced by PorousFlowFluidStateFlash::vaporMassFraction().

55 {
56  const std::size_t num_Z = Zi.size();
57  // Check that the sizes of the mass fractions and equilibrium constant vectors are correct
58  if (Ki.size() != num_Z + 1)
59  mooseError("The number of mass fractions or equilibrium components passed to rachfordRice is "
60  "not correct");
61 
62  Real df = 0.0;
63  Real Z_total = 0.0;
64 
65  for (std::size_t i = 0; i < num_Z; ++i)
66  {
67  df -= Zi[i] * (Ki[i] - 1.0) * (Ki[i] - 1.0) / (1.0 + x * (Ki[i] - 1.0)) /
68  (1.0 + x * (Ki[i] - 1.0));
69  Z_total += Zi[i];
70  }
71 
72  // Add the last component (with total mass fraction = 1 - z_total)
73  df -= (1.0 - Z_total) * (Ki[num_Z] - 1.0) * (Ki[num_Z] - 1.0) / (1.0 + x * (Ki[num_Z] - 1.0)) /
74  (1.0 + x * (Ki[num_Z] - 1.0));
75 
76  return df;
77 }
const std::vector< double > x
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void mooseError(Args &&... args) const

◆ saltComponentIndex()

unsigned int PorousFlowBrineCO2::saltComponentIndex ( ) const
inline

The index of the salt component.

Returns
salt component number

Definition at line 321 of file PorousFlowBrineCO2.h.

321 { return _salt_component; };
const unsigned int _salt_component
Salt component index.

◆ saturation()

ADReal PorousFlowBrineCO2::saturation ( const ADReal pressure,
const ADReal temperature,
const ADReal Xnacl,
const ADReal Z,
std::vector< FluidStateProperties > &  fsp 
) const

Gas saturation in the two-phase region.

Parameters
pressuregas pressure (Pa)
temperaturephase temperature (K)
XnaclNaCl mass fraction (kg/kg)
Ztotal mass fraction of CO2 component
FluidStatePropertiesdata structure
Returns
gas saturation (-)

Definition at line 307 of file PorousFlowBrineCO2.C.

Referenced by totalMassFraction(), and twoPhaseProperties().

312 {
313  auto & gas = fsp[_gas_phase_number];
314  auto & liquid = fsp[_aqueous_fluid_component];
315 
316  // Approximate liquid density as saturation isn't known yet, by using the gas
317  // pressure rather than the liquid pressure. This does result in a small error
318  // in the calculated saturation, but this is below the error associated with
319  // the correlations. A more accurate saturation could be found iteraviely,
320  // at the cost of increased computational expense
321 
322  // Gas density
323  const ADReal gas_density = _co2_fp.rho_from_p_T(pressure, temperature);
324 
325  // Approximate liquid density as saturation isn't known yet
326  const ADReal brine_density = _brine_fp.rho_from_p_T_X(pressure, temperature, Xnacl);
327 
328  // Mass fraction of CO2 in liquid phase
329  const ADReal Xco2 = liquid.mass_fraction[_gas_fluid_component];
330 
331  // The liquid density
332  const ADReal co2_partial_density = partialDensityCO2(temperature);
333 
334  const ADReal liquid_density = 1.0 / (Xco2 / co2_partial_density + (1.0 - Xco2) / brine_density);
335 
336  const ADReal Yco2 = gas.mass_fraction[_gas_fluid_component];
337 
338  // Set mass equilibrium constants used in the calculation of vapor mass fraction
339  const ADReal K0 = Yco2 / Xco2;
340  const ADReal K1 = (1.0 - Yco2) / (1.0 - Xco2);
341  const ADReal vapor_mass_fraction = vaporMassFraction(Z, K0, K1);
342 
343  // The gas saturation in the two phase case
344  const ADReal saturation = vapor_mass_fraction * liquid_density /
345  (gas_density + vapor_mass_fraction * (liquid_density - gas_density));
346 
347  return saturation;
348 }
const unsigned int _aqueous_fluid_component
Fluid component number of the aqueous component.
virtual Real rho_from_p_T_X(Real pressure, Real temperature, Real xnacl) const override
unsigned int _gas_fluid_component
Fluid component number of the gas phase.
unsigned int _gas_phase_number
Phase number of the gas phase.
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
const BrineFluidProperties & _brine_fp
Fluid properties UserObject for water.
const SinglePhaseFluidProperties & _co2_fp
Fluid properties UserObject for the CO2.
ADReal partialDensityCO2(const ADReal &temperature) const
Partial density of dissolved CO2 From Garcia, Density of aqueous solutions of CO2, LBNL-49023 (2001)
static const std::string Z
Definition: NS.h:169
Real vaporMassFraction(Real Z0, Real K0, Real K1) const
Solves Rachford-Rice equation to provide vapor mass fraction.
static const std::string pressure
Definition: NS.h:56
ADReal saturation(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, const ADReal &Z, std::vector< FluidStateProperties > &fsp) const
Gas saturation in the two-phase region.

◆ smoothCubicInterpolation()

void PorousFlowBrineCO2::smoothCubicInterpolation ( Real  temperature,
Real  f0,
Real  df0,
Real  f1,
Real  df1,
Real value,
Real deriv 
) const
protected

Cubic function to smoothly interpolate between the low temperature and elevated temperature models for 99C < T < 109C.

Parameters
temperaturetemperature (K)
f0function value at T = 372K (99C)
df0derivative of function at T = 372K (99C)
f1function value at T = 382K (109C)
df1derivative of function at T = 382K (109C)
[out]valuevalue at the given temperature
[out]derivderivative at the given temperature

Definition at line 1139 of file PorousFlowBrineCO2.C.

Referenced by equilibriumMoleFractions().

1141 {
1142  // Coefficients of cubic polynomial
1143  const Real dT = _Tupper - _Tlower;
1144 
1145  const Real a = f0;
1146  const Real b = df0 * dT;
1147  const Real c = 3.0 * (f1 - f0) - (2.0 * df0 + df1) * dT;
1148  const Real d = 2.0 * (f0 - f1) + (df0 + df1) * dT;
1149 
1150  const Real t2 = temperature * temperature;
1151  const Real t3 = temperature * t2;
1152 
1153  value = a + b * temperature + c * t2 + d * t3;
1154  deriv = b + 2.0 * c * temperature + 3.0 * d * t2;
1155 }
const Real _Tlower
Temperature below which the Spycher, Pruess & Ennis-King (2003) model is used (K) ...
static const std::string temperature
Definition: NS.h:59
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)
Real deriv(unsigned n, unsigned alpha, unsigned beta, Real x)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const Real _Tupper
Temperature above which the Spycher & Pruess (2010) model is used (K)

◆ solveEquilibriumMoleFractionHighTemp()

void PorousFlowBrineCO2::solveEquilibriumMoleFractionHighTemp ( Real  pressure,
Real  temperature,
Real  Xnacl,
Real  co2_density,
Real xco2,
Real yh2o 
) const

Function to solve for yh2o and xco2 iteratively in the elevated temperature regime (T > 100C)

Parameters
pressuregas pressure (Pa)
temperaturefluid temperature (K)
XnaclNaCl mass fraction (kg/kg)
co2_densityCO2 density (kg/m^3)
[out]xco2mole fraction of CO2 in liquid phase (-)
[out]yh2omole fraction of H2O in gas phase (-)

Definition at line 955 of file PorousFlowBrineCO2.C.

Referenced by equilibriumMoleFractions().

957 {
958  // Initial guess for yh2o and xco2 (from Spycher and Pruess (2010))
960  Real x = 0.009;
961 
962  // Need salt mass fraction in molality
963  const Real mnacl = Xnacl / (1.0 - Xnacl) / _Mnacl;
964 
965  // If y > 1, then just use y = 1, x = 0 (only a gas phase)
966  if (y >= 1.0)
967  {
968  y = 1.0;
969  x = 0.0;
970  }
971  else
972  {
973  // Residual function for Newton-Raphson
974  auto fy = [mnacl, this](Real y, Real A, Real B) {
975  return y -
976  (1.0 - B) * _invMh2o / ((1.0 / A - B) * (2.0 * mnacl + _invMh2o) + 2.0 * mnacl * B);
977  };
978 
979  // Derivative of fy wrt y
980  auto dfy = [mnacl, this](Real A, Real B, Real dA, Real dB)
981  {
982  const Real denominator = (1.0 / A - B) * (2.0 * mnacl + _invMh2o) + 2.0 * mnacl * B;
983  return 1.0 + _invMh2o * dB / denominator +
984  (1.0 - B) * _invMh2o *
985  (2.0 * mnacl * dB - (2.0 * mnacl + _invMh2o) * (dB + dA / A / A)) / denominator /
986  denominator;
987  };
988 
989  Real A, B;
990  Real dA, dB;
991  const Real dy = 1.0e-8;
992 
993  // Solve for yh2o using Newton-Raphson method
994  unsigned int iter = 0;
995  const Real tol = 1.0e-12;
996  const unsigned int max_its = 10;
997  funcABHighTemp(pressure, temperature, Xnacl, co2_density, x, y, A, B);
998 
999  while (std::abs(fy(y, A, B)) > tol)
1000  {
1001  funcABHighTemp(pressure, temperature, Xnacl, co2_density, x, y, A, B);
1002  // Finite difference derivatives of A and B wrt y
1003  funcABHighTemp(pressure, temperature, Xnacl, co2_density, x, y + dy, dA, dB);
1004  dA = (dA - A) / dy;
1005  dB = (dB - B) / dy;
1006 
1007  y = y - fy(y, A, B) / dfy(A, B, dA, dB);
1008 
1009  x = B * (1.0 - y);
1010 
1011  // Break if not converged and just use the value
1012  if (iter > max_its)
1013  break;
1014  }
1015  }
1016 
1017  yh2o = y;
1018  xco2 = x;
1019 }
const Real _Mnacl
Molar mass of NaCL.
const Real _invMh2o
Inverse of molar mass of H2O (mol/kg)
const double tol
const std::vector< double > y
static const std::string temperature
Definition: NS.h:59
const BrineFluidProperties & _brine_fp
Fluid properties UserObject for water.
Real vaporPressure(Real temperature, Real xnacl) const
Brine vapour pressure From Haas, Physical properties of the coexisting phases and thermochemical prop...
void funcABHighTemp(Real pressure, Real temperature, Real Xnacl, Real co2_density, Real xco2, Real yh2o, Real &A, Real &B) const
The function A (Eq.
const std::vector< double > x
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const std::string pressure
Definition: NS.h:56

◆ thermophysicalProperties() [1/2]

void PorousFlowBrineCO2::thermophysicalProperties ( Real  pressure,
Real  temperature,
Real  Xnacl,
Real  Z,
unsigned int  qp,
std::vector< FluidStateProperties > &  fsp 
) const
overridevirtual

Determines the complete thermophysical state of the system for a given set of primary variables.

Parameters
pressuregas phase pressure (Pa)
temperaturefluid temperature (K)
Xnaclmass fraction of NaCl
Ztotal mass fraction of fluid component
qpquadpoint index
[out]fspthe FluidStateProperties struct containing all properties

Implements PorousFlowFluidStateMultiComponentBase.

Definition at line 91 of file PorousFlowBrineCO2.C.

97 {
98  // Make AD versions of primary variables then call AD thermophysicalProperties()
99  ADReal p = pressure;
100  Moose::derivInsert(p.derivatives(), _pidx, 1.0);
101  ADReal T = temperature;
102  Moose::derivInsert(T.derivatives(), _Tidx, 1.0);
103  ADReal Zco2 = Z;
104  Moose::derivInsert(Zco2.derivatives(), _Zidx, 1.0);
105  ADReal X = Xnacl;
106  Moose::derivInsert(X.derivatives(), _Xidx, 1.0);
107 
108  thermophysicalProperties(p, T, X, Zco2, qp, fsp);
109 }
const unsigned int _Tidx
Index of derivative wrt temperature.
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
const unsigned int _pidx
Index of derivative wrt pressure.
void thermophysicalProperties(Real pressure, Real temperature, Real Xnacl, Real Z, unsigned int qp, std::vector< FluidStateProperties > &fsp) const override
Determines the complete thermophysical state of the system for a given set of primary variables...
static const std::string Z
Definition: NS.h:169
static const std::string pressure
Definition: NS.h:56
const unsigned int _Zidx
Index of derivative wrt total mass fraction Z.
void derivInsert(SemiDynamicSparseNumberArray< Real, libMesh::dof_id_type, NWrapper< N >> &derivs, libMesh::dof_id_type index, Real value)
const unsigned int _Xidx
Index of derivative wrt salt mass fraction X.

◆ thermophysicalProperties() [2/2]

void PorousFlowBrineCO2::thermophysicalProperties ( const ADReal pressure,
const ADReal temperature,
const ADReal Xnacl,
const ADReal Z,
unsigned int  qp,
std::vector< FluidStateProperties > &  fsp 
) const
overridevirtual

Implements PorousFlowFluidStateMultiComponentBase.

Definition at line 112 of file PorousFlowBrineCO2.C.

118 {
121 
122  // Check whether the input temperature is within the region of validity
123  checkVariables(pressure.value(), temperature.value());
124 
125  // Clear all of the FluidStateProperties data
127 
128  FluidStatePhaseEnum phase_state;
129  massFractions(pressure, temperature, Xnacl, Z, phase_state, fsp);
130 
131  switch (phase_state)
132  {
134  {
135  // Set the gas saturations
136  gas.saturation = 1.0;
137 
138  // Calculate gas properties
140 
141  break;
142  }
143 
145  {
146  // Calculate the liquid properties
147  const ADReal liquid_pressure = pressure - _pc.capillaryPressure(1.0, qp);
148  liquidProperties(liquid_pressure, temperature, Xnacl, fsp);
149 
150  break;
151  }
152 
154  {
155  // Calculate the gas and liquid properties in the two phase region
156  twoPhaseProperties(pressure, temperature, Xnacl, Z, qp, fsp);
157 
158  break;
159  }
160  }
161 
162  // Liquid saturations can now be set
163  liquid.saturation = 1.0 - gas.saturation;
164 
165  // Save pressures to FluidStateProperties object
166  gas.pressure = pressure;
167  liquid.pressure = pressure - _pc.capillaryPressure(liquid.saturation, qp);
168 }
void liquidProperties(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, std::vector< FluidStateProperties > &fsp) const
Thermophysical properties of the liquid state.
const unsigned int _aqueous_phase_number
Phase number of the aqueous phase.
unsigned int _gas_phase_number
Phase number of the gas phase.
void clearFluidStateProperties(std::vector< FluidStateProperties > &fsp) const
Clears the contents of the FluidStateProperties data structure.
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
virtual Real capillaryPressure(Real saturation, unsigned qp=0) const
Capillary pressure is calculated as a function of true saturation.
AD data structure to pass calculated thermophysical properties.
FluidStatePhaseEnum
Phase state enum.
void twoPhaseProperties(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, const ADReal &Z, unsigned int qp, std::vector< FluidStateProperties > &fsp) const
Gas and liquid properties in the two-phase region.
static const std::string Z
Definition: NS.h:169
const PorousFlowCapillaryPressure & _pc
Capillary pressure UserObject.
void massFractions(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, const ADReal &Z, FluidStatePhaseEnum &phase_state, std::vector< FluidStateProperties > &fsp) const
Mass fractions of CO2 and H2O in both phases, as well as derivatives wrt PorousFlow variables...
void gasProperties(const ADReal &pressure, const ADReal &temperature, std::vector< FluidStateProperties > &fsp) const
Thermophysical properties of the gaseous state.
static const std::string pressure
Definition: NS.h:56
virtual void checkVariables(Real pressure, Real temperature) const
Check the input variables.

◆ totalMassFraction()

Real PorousFlowBrineCO2::totalMassFraction ( Real  pressure,
Real  temperature,
Real  Xnacl,
Real  saturation,
unsigned int  qp 
) const
overridevirtual

Total mass fraction of fluid component summed over all phases in the two-phase state for a specified gas saturation.

Parameters
pressuregas pressure (Pa)
temperaturetemperature (K)
XnaclNaCl mass fraction (kg/kg)
saturationgas saturation (-)
qpquadpoint index
Returns
total mass fraction Z (-)

Implements PorousFlowFluidStateMultiComponentBase.

Definition at line 1033 of file PorousFlowBrineCO2.C.

1035 {
1036  // Check whether the input pressure and temperature are within the region of validity
1038 
1039  // As we do not require derivatives, we can simply ignore their initialisation
1040  const ADReal p = pressure;
1041  const ADReal T = temperature;
1042  const ADReal X = Xnacl;
1043 
1044  // FluidStateProperties data structure
1045  std::vector<FluidStateProperties> fsp(_num_phases, FluidStateProperties(_num_components));
1048 
1049  // Calculate equilibrium mass fractions in the two-phase state
1050  ADReal Xco2, Yh2o;
1051  equilibriumMassFractions(p, T, X, Xco2, Yh2o);
1052 
1053  // Save the mass fractions in the FluidStateMassFractions object
1054  const ADReal Yco2 = 1.0 - Yh2o;
1055  liquid.mass_fraction[_aqueous_fluid_component] = 1.0 - Xco2;
1056  liquid.mass_fraction[_gas_fluid_component] = Xco2;
1058  gas.mass_fraction[_gas_fluid_component] = Yco2;
1059 
1060  // Gas properties
1062 
1063  // Liquid properties
1064  const ADReal liquid_saturation = 1.0 - saturation;
1065  const ADReal liquid_pressure = p - _pc.capillaryPressure(liquid_saturation, qp);
1066  liquidProperties(liquid_pressure, T, X, fsp);
1067 
1068  // The total mass fraction of ncg (z) can now be calculated
1069  const ADReal Z = (saturation * gas.density * Yco2 + liquid_saturation * liquid.density * Xco2) /
1070  (saturation * gas.density + liquid_saturation * liquid.density);
1071 
1072  return Z.value();
1073 }
void liquidProperties(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, std::vector< FluidStateProperties > &fsp) const
Thermophysical properties of the liquid state.
const unsigned int _aqueous_fluid_component
Fluid component number of the aqueous component.
const unsigned int _aqueous_phase_number
Phase number of the aqueous phase.
unsigned int _num_phases
Number of phases.
unsigned int _gas_fluid_component
Fluid component number of the gas phase.
unsigned int _gas_phase_number
Phase number of the gas phase.
unsigned int _num_components
Number of components.
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
virtual Real capillaryPressure(Real saturation, unsigned qp=0) const
Capillary pressure is calculated as a function of true saturation.
void equilibriumMassFractions(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, ADReal &Xco2, ADReal &Yh2o) const
Mass fractions of CO2 in brine and water vapor in CO2 at equilibrium.
AD data structure to pass calculated thermophysical properties.
static const std::string Z
Definition: NS.h:169
const PorousFlowCapillaryPressure & _pc
Capillary pressure UserObject.
void gasProperties(const ADReal &pressure, const ADReal &temperature, std::vector< FluidStateProperties > &fsp) const
Thermophysical properties of the gaseous state.
static const std::string pressure
Definition: NS.h:56
virtual void checkVariables(Real pressure, Real temperature) const
Check the input variables.
std::vector< ADReal > mass_fraction
ADReal saturation(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, const ADReal &Z, std::vector< FluidStateProperties > &fsp) const
Gas saturation in the two-phase region.

◆ twoPhaseProperties()

void PorousFlowBrineCO2::twoPhaseProperties ( const ADReal pressure,
const ADReal temperature,
const ADReal Xnacl,
const ADReal Z,
unsigned int  qp,
std::vector< FluidStateProperties > &  fsp 
) const

Gas and liquid properties in the two-phase region.

Parameters
pressuregas pressure (Pa)
temperaturephase temperature (K)
XnaclNaCl mass fraction (kg/kg)
Ztotal mass fraction of NCG component
qpquadpoint for capillary presssure
[out]FluidStatePropertiesdata structure

Definition at line 351 of file PorousFlowBrineCO2.C.

Referenced by thermophysicalProperties().

357 {
358  auto & gas = fsp[_gas_phase_number];
359 
360  // Calculate all of the gas phase properties, as these don't depend on saturation
362 
363  // The gas saturation in the two phase case
364  gas.saturation = saturation(pressure, temperature, Xnacl, Z, fsp);
365 
366  // The liquid pressure and properties can now be calculated
367  const ADReal liquid_pressure = pressure - _pc.capillaryPressure(1.0 - gas.saturation, qp);
368  liquidProperties(liquid_pressure, temperature, Xnacl, fsp);
369 }
void liquidProperties(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, std::vector< FluidStateProperties > &fsp) const
Thermophysical properties of the liquid state.
unsigned int _gas_phase_number
Phase number of the gas phase.
static const std::string temperature
Definition: NS.h:59
DualNumber< Real, DNDerivativeType, true > ADReal
virtual Real capillaryPressure(Real saturation, unsigned qp=0) const
Capillary pressure is calculated as a function of true saturation.
static const std::string Z
Definition: NS.h:169
const PorousFlowCapillaryPressure & _pc
Capillary pressure UserObject.
void gasProperties(const ADReal &pressure, const ADReal &temperature, std::vector< FluidStateProperties > &fsp) const
Thermophysical properties of the gaseous state.
static const std::string pressure
Definition: NS.h:56
ADReal saturation(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, const ADReal &Z, std::vector< FluidStateProperties > &fsp) const
Gas saturation in the two-phase region.

◆ validParams()

InputParameters PorousFlowBrineCO2::validParams ( )
static

Definition at line 19 of file PorousFlowBrineCO2.C.

20 {
22  params.addRequiredParam<UserObjectName>("brine_fp", "The name of the user object for brine");
23  params.addRequiredParam<UserObjectName>("co2_fp", "The name of the user object for CO2");
24  params.addParam<unsigned int>("salt_component", 2, "The component number of salt");
25  params.addClassDescription("Fluid state class for brine and CO2");
26  return params;
27 }
void addParam(const std::string &name, const std::initializer_list< typename T::value_type > &value, const std::string &doc_string)
void addRequiredParam(const std::string &name, const std::string &doc_string)
void addClassDescription(const std::string &doc_string)

◆ vaporMassFraction() [1/3]

Real PorousFlowFluidStateFlash::vaporMassFraction ( Real  Z0,
Real  K0,
Real  K1 
) const
inherited

Solves Rachford-Rice equation to provide vapor mass fraction.

For two components, the analytical solution is used, while for cases with more than two components, a Newton-Raphson iterative solution is calculated.

Parameters
Zitotal mass fraction(s)
Kiequilibrium constant(s)
Returns
vapor mass fraction

Definition at line 80 of file PorousFlowFluidStateFlash.C.

Referenced by PorousFlowWaterNCG::saturation(), saturation(), and PorousFlowFluidStateFlash::vaporMassFraction().

81 {
82  return (Z0 * (K1 - K0) - (K1 - 1.0)) / ((K0 - 1.0) * (K1 - 1.0));
83 }

◆ vaporMassFraction() [2/3]

ADReal PorousFlowFluidStateFlash::vaporMassFraction ( const ADReal Z0,
const ADReal K0,
const ADReal K1 
) const
inherited

Definition at line 86 of file PorousFlowFluidStateFlash.C.

89 {
90  return (Z0 * (K1 - K0) - (K1 - 1.0)) / ((K0 - 1.0) * (K1 - 1.0));
91 }

◆ vaporMassFraction() [3/3]

Real PorousFlowFluidStateFlash::vaporMassFraction ( std::vector< Real > &  Zi,
std::vector< Real > &  Ki 
) const
inherited

Definition at line 94 of file PorousFlowFluidStateFlash.C.

95 {
96  // Check that the sizes of the mass fractions and equilibrium constant vectors are correct
97  if (Ki.size() != Zi.size() + 1)
98  mooseError("The number of mass fractions or equilibrium components passed to rachfordRice is "
99  "not correct");
100  Real v;
101 
102  // If there are only two components, an analytical solution is possible
103  if (Ki.size() == 2)
104  v = vaporMassFraction(Zi[0], Ki[0], Ki[1]);
105  else
106  {
107  // More than two components - solve the Rachford-Rice equation using
108  // Newton-Raphson method
109  // Initial guess for vapor mass fraction
110  Real v0 = 0.5;
111  unsigned int iter = 0;
112 
113  while (std::abs(rachfordRice(v0, Zi, Ki)) > _nr_tol)
114  {
115  v0 = v0 - rachfordRice(v0, Zi, Ki) / rachfordRiceDeriv(v0, Zi, Ki);
116  iter++;
117 
118  if (iter > _nr_max_its)
119  break;
120  }
121  v = v0;
122  }
123  return v;
124 }
Real rachfordRice(Real vf, std::vector< Real > &Zi, std::vector< Real > &Ki) const
Rachford-Rice equation for vapor fraction.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const std::string v
Definition: NS.h:84
Real vaporMassFraction(Real Z0, Real K0, Real K1) const
Solves Rachford-Rice equation to provide vapor mass fraction.
void mooseError(Args &&... args) const
const Real _nr_tol
Tolerance for Newton-Raphson iterations.
Real rachfordRiceDeriv(Real vf, std::vector< Real > &Zi, std::vector< Real > &Ki) const
Derivative of Rachford-Rice equation wrt vapor fraction.
const Real _nr_max_its
Maximum number of iterations for the Newton-Raphson routine.

Member Data Documentation

◆ _aqueous_fluid_component

const unsigned int PorousFlowFluidStateMultiComponentBase::_aqueous_fluid_component
protectedinherited

◆ _aqueous_phase_number

const unsigned int PorousFlowFluidStateBase::_aqueous_phase_number
protectedinherited

◆ _brine_fp

const BrineFluidProperties& PorousFlowBrineCO2::_brine_fp
protected

◆ _co2_fp

const SinglePhaseFluidProperties& PorousFlowBrineCO2::_co2_fp
protected

◆ _co2_henry

const std::vector<Real> PorousFlowBrineCO2::_co2_henry
protected

Henry's coefficeients for CO2.

Definition at line 483 of file PorousFlowBrineCO2.h.

Referenced by henryConstant().

◆ _empty_fsp

FluidStateProperties PorousFlowFluidStateBase::_empty_fsp
protectedinherited

◆ _gas_fluid_component

unsigned int PorousFlowFluidStateMultiComponentBase::_gas_fluid_component
protectedinherited

◆ _gas_phase_number

unsigned int PorousFlowFluidStateBase::_gas_phase_number
protectedinherited

◆ _invMh2o

const Real PorousFlowBrineCO2::_invMh2o
protected

◆ _Mco2

const Real PorousFlowBrineCO2::_Mco2
protected

◆ _Mh2o

const Real PorousFlowBrineCO2::_Mh2o
protected

Molar mass of water (kg/mol)

Definition at line 466 of file PorousFlowBrineCO2.h.

Referenced by equilibriumMassFractions().

◆ _Mnacl

const Real PorousFlowBrineCO2::_Mnacl
protected

◆ _nr_max_its

const Real PorousFlowFluidStateFlash::_nr_max_its
protectedinherited

Maximum number of iterations for the Newton-Raphson routine.

Definition at line 77 of file PorousFlowFluidStateFlash.h.

Referenced by PorousFlowFluidStateFlash::vaporMassFraction().

◆ _nr_tol

const Real PorousFlowFluidStateFlash::_nr_tol
protectedinherited

Tolerance for Newton-Raphson iterations.

Definition at line 79 of file PorousFlowFluidStateFlash.h.

Referenced by PorousFlowFluidStateFlash::vaporMassFraction().

◆ _num_components

unsigned int PorousFlowFluidStateBase::_num_components
protectedinherited

◆ _num_phases

unsigned int PorousFlowFluidStateBase::_num_phases
protectedinherited

◆ _pc

const PorousFlowCapillaryPressure& PorousFlowFluidStateBase::_pc
protectedinherited

◆ _pidx

const unsigned int PorousFlowFluidStateMultiComponentBase::_pidx
protectedinherited

◆ _R

const Real PorousFlowFluidStateBase::_R
protectedinherited

Universal gas constant (J/mol/K)

Definition at line 106 of file PorousFlowFluidStateBase.h.

Referenced by PorousFlowWaterNCG::enthalpyOfDissolution(), and enthalpyOfDissolutionGas().

◆ _Rbar

const Real PorousFlowBrineCO2::_Rbar
protected

Molar gas constant in bar cm^3 /(K mol)

Definition at line 474 of file PorousFlowBrineCO2.h.

Referenced by fugacityCoefficientCO2HighTemp(), fugacityCoefficientH2OHighTemp(), fugacityCoefficientsLowTemp(), funcABHighTemp(), and funcABLowTemp().

◆ _salt_component

const unsigned int PorousFlowBrineCO2::_salt_component
protected

Salt component index.

Definition at line 460 of file PorousFlowBrineCO2.h.

Referenced by massFractions(), PorousFlowBrineCO2(), and saltComponentIndex().

◆ _T_c2k

const Real PorousFlowFluidStateBase::_T_c2k
protectedinherited

◆ _Tidx

const unsigned int PorousFlowFluidStateMultiComponentBase::_Tidx
protectedinherited

◆ _Tlower

const Real PorousFlowBrineCO2::_Tlower
protected

Temperature below which the Spycher, Pruess & Ennis-King (2003) model is used (K)

Definition at line 476 of file PorousFlowBrineCO2.h.

Referenced by equilibriumMoleFractions(), and smoothCubicInterpolation().

◆ _Tupper

const Real PorousFlowBrineCO2::_Tupper
protected

Temperature above which the Spycher & Pruess (2010) model is used (K)

Definition at line 478 of file PorousFlowBrineCO2.h.

Referenced by equilibriumMoleFractions(), and smoothCubicInterpolation().

◆ _Xidx

const unsigned int PorousFlowFluidStateMultiComponentBase::_Xidx
protectedinherited

◆ _Zidx

const unsigned int PorousFlowFluidStateMultiComponentBase::_Zidx
protectedinherited

◆ _Zmin

const Real PorousFlowBrineCO2::_Zmin
protected

Minimum Z - below this value all CO2 will be dissolved.

This reduces the computational burden when small values of Z are present

Definition at line 481 of file PorousFlowBrineCO2.h.

Referenced by massFractions().


The documentation for this class was generated from the following files: