https://mooseframework.inl.gov
PorousFlowBrineCO2.C
Go to the documentation of this file.
1 //* This file is part of the MOOSE framework
2 //* https://mooseframework.inl.gov
3 //*
4 //* All rights reserved, see COPYRIGHT for full restrictions
5 //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
6 //*
7 //* Licensed under LGPL 2.1, please see LICENSE for details
8 //* https://www.gnu.org/licenses/lgpl-2.1.html
9 
10 #include "PorousFlowBrineCO2.h"
11 #include "BrineFluidProperties.h"
13 #include "MathUtils.h"
14 #include "Conversion.h"
15 
16 registerMooseObject("PorousFlowApp", PorousFlowBrineCO2);
17 
20 {
22  params.addRequiredParam<UserObjectName>("brine_fp", "The name of the user object for brine");
23  params.addRequiredParam<UserObjectName>("co2_fp", "The name of the user object for CO2");
24  params.addParam<unsigned int>("salt_component", 2, "The component number of salt");
25  params.addClassDescription("Fluid state class for brine and CO2");
26  return params;
27 }
28 
31  _salt_component(getParam<unsigned int>("salt_component")),
32  _brine_fp(getUserObject<BrineFluidProperties>("brine_fp")),
33  _co2_fp(getUserObject<SinglePhaseFluidProperties>("co2_fp")),
34  _Mh2o(_brine_fp.molarMassH2O()),
35  _invMh2o(1.0 / _Mh2o),
36  _Mco2(_co2_fp.molarMass()),
37  _Mnacl(_brine_fp.molarMassNaCl()),
38  _Rbar(_R * 10.0),
39  _Tlower(372.15),
40  _Tupper(382.15),
41  _Zmin(1.0e-4),
42  _co2_henry(_co2_fp.henryCoefficients())
43 {
44  // Check that the correct FluidProperties UserObjects have been provided
45  if (_co2_fp.fluidName() != "co2")
46  paramError("co2_fp", "A valid CO2 FluidProperties UserObject must be provided");
47 
48  if (_brine_fp.fluidName() != "brine")
49  paramError("brine_fp", "A valid Brine FluidProperties UserObject must be provided");
50 
51  // Set the number of phases and components, and their indexes
52  _num_phases = 2;
53  _num_components = 3;
56 
57  // Check that _aqueous_phase_number is <= total number of phases
59  paramError("liquid_phase_number",
60  "This value is larger than the possible number of phases ",
61  _num_phases);
62 
63  // Check that _aqueous_fluid_component is <= total number of fluid components
65  paramError("liquid_fluid_component",
66  "This value is larger than the possible number of fluid components",
68 
69  // Check that the salt component index is not identical to the liquid fluid component
71  paramError(
72  "salt_component",
73  "The value provided must be different from the value entered in liquid_fluid_component");
74 
75  // Check that _salt_component is <= total number of fluid components
77  paramError("salt_component",
78  "The value provided is larger than the possible number of fluid components",
80 
82 }
83 
84 std::string
86 {
87  return "brine-co2";
88 }
89 
90 void
92  Real temperature,
93  Real Xnacl,
94  Real Z,
95  unsigned int qp,
96  std::vector<FluidStateProperties> & fsp) const
97 {
98  // Make AD versions of primary variables then call AD thermophysicalProperties()
99  ADReal p = pressure;
100  Moose::derivInsert(p.derivatives(), _pidx, 1.0);
101  ADReal T = temperature;
102  Moose::derivInsert(T.derivatives(), _Tidx, 1.0);
103  ADReal Zco2 = Z;
104  Moose::derivInsert(Zco2.derivatives(), _Zidx, 1.0);
105  ADReal X = Xnacl;
106  Moose::derivInsert(X.derivatives(), _Xidx, 1.0);
107 
108  thermophysicalProperties(p, T, X, Zco2, qp, fsp);
109 }
110 
111 void
113  const ADReal & temperature,
114  const ADReal & Xnacl,
115  const ADReal & Z,
116  unsigned int qp,
117  std::vector<FluidStateProperties> & fsp) const
118 {
121 
122  // Check whether the input temperature is within the region of validity
123  checkVariables(pressure.value(), temperature.value());
124 
125  // Clear all of the FluidStateProperties data
127 
128  FluidStatePhaseEnum phase_state;
129  massFractions(pressure, temperature, Xnacl, Z, phase_state, fsp);
130 
131  switch (phase_state)
132  {
134  {
135  // Set the gas saturations
136  gas.saturation = 1.0;
137 
138  // Calculate gas properties
140 
141  break;
142  }
143 
145  {
146  // Calculate the liquid properties
147  const ADReal liquid_pressure = pressure - _pc.capillaryPressure(1.0, qp);
148  liquidProperties(liquid_pressure, temperature, Xnacl, fsp);
149 
150  break;
151  }
152 
154  {
155  // Calculate the gas and liquid properties in the two phase region
156  twoPhaseProperties(pressure, temperature, Xnacl, Z, qp, fsp);
157 
158  break;
159  }
160  }
161 
162  // Liquid saturations can now be set
163  liquid.saturation = 1.0 - gas.saturation;
164 
165  // Save pressures to FluidStateProperties object
166  gas.pressure = pressure;
167  liquid.pressure = pressure - _pc.capillaryPressure(liquid.saturation, qp);
168 }
169 
170 void
172  const ADReal & temperature,
173  const ADReal & Xnacl,
174  const ADReal & Z,
175  FluidStatePhaseEnum & phase_state,
176  std::vector<FluidStateProperties> & fsp) const
177 {
180 
181  ADReal Xco2 = 0.0;
182  ADReal Yh2o = 0.0;
183  ADReal Yco2 = 0.0;
184 
185  // If the amount of CO2 is less than the smallest solubility, then all CO2 will
186  // be dissolved, and the equilibrium mass fractions do not need to be computed
187  if (Z.value() < _Zmin)
188  phase_state = FluidStatePhaseEnum::LIQUID;
189 
190  else
191  {
192  // Equilibrium mass fraction of CO2 in liquid and H2O in gas phases
193  equilibriumMassFractions(pressure, temperature, Xnacl, Xco2, Yh2o);
194 
195  Yco2 = 1.0 - Yh2o;
196 
197  // Determine which phases are present based on the value of z
198  phaseState(Z.value(), Xco2.value(), Yco2.value(), phase_state);
199  }
200 
201  // The equilibrium mass fractions calculated above are only correct in the two phase
202  // state. If only liquid or gas phases are present, the mass fractions are given by
203  // the total mass fraction z
204  ADReal Xh2o = 0.0;
205 
206  switch (phase_state)
207  {
209  {
210  Xco2 = Z;
211  Yco2 = 0.0;
212  Xh2o = 1.0 - Z;
213  Yh2o = 0.0;
214  break;
215  }
216 
218  {
219  Xco2 = 0.0;
220  Yco2 = Z;
221  Yh2o = 1.0 - Z;
222  break;
223  }
224 
226  {
227  // Keep equilibrium mass fractions
228  Xh2o = 1.0 - Xco2;
229  break;
230  }
231  }
232 
233  // Save the mass fractions in the FluidStateProperties object
235  liquid.mass_fraction[_gas_fluid_component] = Xco2;
236  liquid.mass_fraction[_salt_component] = Xnacl;
239 }
240 
241 void
243  const ADReal & temperature,
244  std::vector<FluidStateProperties> & fsp) const
245 {
247 
248  // Gas density, viscosity and enthalpy are approximated with pure CO2 - no correction due
249  // to the small amount of water vapor is made
250  ADReal co2_density, co2_viscosity;
251  _co2_fp.rho_mu_from_p_T(pressure, temperature, co2_density, co2_viscosity);
252 
253  ADReal co2_enthalpy = _co2_fp.h_from_p_T(pressure, temperature);
254 
255  // Save the values to the FluidStateProperties object. Note that derivatives wrt z are 0
256  gas.density = co2_density;
257  gas.viscosity = co2_viscosity;
258  gas.enthalpy = co2_enthalpy;
259 
260  mooseAssert(gas.density.value() > 0.0, "Gas density must be greater than zero");
261  gas.internal_energy = gas.enthalpy - pressure / gas.density;
262 }
263 
264 void
266  const ADReal & temperature,
267  const ADReal & Xnacl,
268  std::vector<FluidStateProperties> & fsp) const
269 {
271 
272  // The liquid density includes the density increase due to dissolved CO2
273  const ADReal brine_density = _brine_fp.rho_from_p_T_X(pressure, temperature, Xnacl);
274 
275  // Mass fraction of CO2 in liquid phase
276  const ADReal Xco2 = liquid.mass_fraction[_gas_fluid_component];
277 
278  // The liquid density
279  const ADReal co2_partial_density = partialDensityCO2(temperature);
280 
281  const ADReal liquid_density = 1.0 / (Xco2 / co2_partial_density + (1.0 - Xco2) / brine_density);
282 
283  // Assume that liquid viscosity is just the brine viscosity
284  const ADReal liquid_viscosity = _brine_fp.mu_from_p_T_X(pressure, temperature, Xnacl);
285 
286  // Liquid enthalpy (including contribution due to the enthalpy of dissolution)
287  const ADReal brine_enthalpy = _brine_fp.h_from_p_T_X(pressure, temperature, Xnacl);
288 
289  // Enthalpy of CO2
290  const ADReal co2_enthalpy = _co2_fp.h_from_p_T(pressure, temperature);
291 
292  // Enthalpy of dissolution
294 
295  const ADReal liquid_enthalpy = (1.0 - Xco2) * brine_enthalpy + Xco2 * (co2_enthalpy + hdis);
296 
297  // Save the values to the FluidStateProperties object
298  liquid.density = liquid_density;
299  liquid.viscosity = liquid_viscosity;
300  liquid.enthalpy = liquid_enthalpy;
301 
302  mooseAssert(liquid.density.value() > 0.0, "Liquid density must be greater than zero");
303  liquid.internal_energy = liquid.enthalpy - pressure / liquid.density;
304 }
305 
306 ADReal
308  const ADReal & temperature,
309  const ADReal & Xnacl,
310  const ADReal & Z,
311  std::vector<FluidStateProperties> & fsp) const
312 {
313  auto & gas = fsp[_gas_phase_number];
314  auto & liquid = fsp[_aqueous_fluid_component];
315 
316  // Approximate liquid density as saturation isn't known yet, by using the gas
317  // pressure rather than the liquid pressure. This does result in a small error
318  // in the calculated saturation, but this is below the error associated with
319  // the correlations. A more accurate saturation could be found iteraviely,
320  // at the cost of increased computational expense
321 
322  // Gas density
323  const ADReal gas_density = _co2_fp.rho_from_p_T(pressure, temperature);
324 
325  // Approximate liquid density as saturation isn't known yet
326  const ADReal brine_density = _brine_fp.rho_from_p_T_X(pressure, temperature, Xnacl);
327 
328  // Mass fraction of CO2 in liquid phase
329  const ADReal Xco2 = liquid.mass_fraction[_gas_fluid_component];
330 
331  // The liquid density
332  const ADReal co2_partial_density = partialDensityCO2(temperature);
333 
334  const ADReal liquid_density = 1.0 / (Xco2 / co2_partial_density + (1.0 - Xco2) / brine_density);
335 
336  const ADReal Yco2 = gas.mass_fraction[_gas_fluid_component];
337 
338  // Set mass equilibrium constants used in the calculation of vapor mass fraction
339  const ADReal K0 = Yco2 / Xco2;
340  const ADReal K1 = (1.0 - Yco2) / (1.0 - Xco2);
341  const ADReal vapor_mass_fraction = vaporMassFraction(Z, K0, K1);
342 
343  // The gas saturation in the two phase case
344  const ADReal saturation = vapor_mass_fraction * liquid_density /
345  (gas_density + vapor_mass_fraction * (liquid_density - gas_density));
346 
347  return saturation;
348 }
349 
350 void
352  const ADReal & temperature,
353  const ADReal & Xnacl,
354  const ADReal & Z,
355  unsigned int qp,
356  std::vector<FluidStateProperties> & fsp) const
357 {
358  auto & gas = fsp[_gas_phase_number];
359 
360  // Calculate all of the gas phase properties, as these don't depend on saturation
362 
363  // The gas saturation in the two phase case
364  gas.saturation = saturation(pressure, temperature, Xnacl, Z, fsp);
365 
366  // The liquid pressure and properties can now be calculated
367  const ADReal liquid_pressure = pressure - _pc.capillaryPressure(1.0 - gas.saturation, qp);
368  liquidProperties(liquid_pressure, temperature, Xnacl, fsp);
369 }
370 
371 void
373  const ADReal & temperature,
374  const ADReal & Xnacl,
375  ADReal & Xco2,
376  ADReal & Yh2o) const
377 {
378  // Mole fractions at equilibrium
379  ADReal xco2, yh2o;
380  equilibriumMoleFractions(pressure, temperature, Xnacl, xco2, yh2o);
381 
382  // The mass fraction of H2O in gas (assume no salt in gas phase) and derivatives
383  // wrt p, T, and X
384  Yh2o = yh2o * _Mh2o / (yh2o * _Mh2o + (1.0 - yh2o) * _Mco2);
385 
386  // NaCl molality (mol/kg)
387  const ADReal mnacl = Xnacl / (1.0 - Xnacl) / _Mnacl;
388 
389  // The molality of CO2 in 1kg of H2O
390  const ADReal mco2 = xco2 * (2.0 * mnacl + _invMh2o) / (1.0 - xco2);
391  // The mass fraction of CO2 in brine is then
392  const ADReal denominator = (1.0 + mnacl * _Mnacl + mco2 * _Mco2);
393  Xco2 = mco2 * _Mco2 / denominator;
394 }
395 
396 void
398  const ADReal & temperature,
399  const ADReal & co2_density,
400  ADReal & fco2,
401  ADReal & fh2o) const
402 {
403  using std::log, std::exp, std::pow;
404 
405  if (temperature.value() > 373.15)
406  mooseError(name(),
407  ": fugacityCoefficientsLowTemp() is not valid for T > 373.15K. Use "
408  "fugacityCoefficientsHighTemp() instead");
409 
410  // Need pressure in bar
411  const ADReal pbar = pressure * 1.0e-5;
412 
413  // Molar volume in cm^3/mol
414  const ADReal V = _Mco2 / co2_density * 1.0e6;
415 
416  // Redlich-Kwong parameters
417  const ADReal aCO2 = 7.54e7 - 4.13e4 * temperature;
418  const Real bCO2 = 27.8;
419  const Real aCO2H2O = 7.89e7;
420  const Real bH2O = 18.18;
421 
422  const ADReal t15 = pow(temperature, 1.5);
423 
424  // The fugacity coefficients for H2O and CO2
425  auto lnPhi = [V, aCO2, bCO2, t15, this](ADReal a, ADReal b)
426  {
427  return log(V / (V - bCO2)) + b / (V - bCO2) -
428  2.0 * a / (_Rbar * t15 * bCO2) * log((V + bCO2) / V) +
429  aCO2 * b / (_Rbar * t15 * bCO2 * bCO2) * (log((V + bCO2) / V) - bCO2 / (V + bCO2));
430  };
431 
432  const ADReal lnPhiH2O = lnPhi(aCO2H2O, bH2O) - log(pbar * V / (_Rbar * temperature));
433  const ADReal lnPhiCO2 = lnPhi(aCO2, bCO2) - log(pbar * V / (_Rbar * temperature));
434 
435  fh2o = exp(lnPhiH2O);
436  fco2 = exp(lnPhiCO2);
437 }
438 
439 void
441  const ADReal & temperature,
442  const ADReal & co2_density,
443  const ADReal & xco2,
444  const ADReal & yh2o,
445  ADReal & fco2,
446  ADReal & fh2o) const
447 {
448  if (temperature.value() <= 373.15)
449  mooseError(name(),
450  ": fugacityCoefficientsHighTemp() is not valid for T <= 373.15K. Use "
451  "fugacityCoefficientsLowTemp() instead");
452 
453  fh2o = fugacityCoefficientH2OHighTemp(pressure, temperature, co2_density, xco2, yh2o);
454  fco2 = fugacityCoefficientCO2HighTemp(pressure, temperature, co2_density, xco2, yh2o);
455 }
456 
457 ADReal
459  const ADReal & temperature,
460  const ADReal & co2_density,
461  const ADReal & xco2,
462  const ADReal & yh2o) const
463 {
464  using std::sqrt, std::pow, std::log, std::exp;
465 
466  // Need pressure in bar
467  const ADReal pbar = pressure * 1.0e-5;
468  // Molar volume in cm^3/mol
469  const ADReal V = _Mco2 / co2_density * 1.0e6;
470 
471  // Redlich-Kwong parameters
472  const ADReal yco2 = 1.0 - yh2o;
473  const ADReal xh2o = 1.0 - xco2;
474 
475  const ADReal aCO2 = 8.008e7 - 4.984e4 * temperature;
476  const ADReal aH2O = 1.337e8 - 1.4e4 * temperature;
477  const Real bCO2 = 28.25;
478  const Real bH2O = 15.7;
479  const ADReal KH2OCO2 = 1.427e-2 - 4.037e-4 * temperature;
480  const ADReal KCO2H2O = 0.4228 - 7.422e-4 * temperature;
481  const ADReal kH2OCO2 = KH2OCO2 * yh2o + KCO2H2O * yco2;
482  const ADReal kCO2H2O = KCO2H2O * yh2o + KH2OCO2 * yco2;
483 
484  const ADReal aH2OCO2 = sqrt(aCO2 * aH2O) * (1.0 - kH2OCO2);
485  const ADReal aCO2H2O = sqrt(aCO2 * aH2O) * (1.0 - kCO2H2O);
486 
487  const ADReal amix = yh2o * yh2o * aH2O + yh2o * yco2 * (aH2OCO2 + aCO2H2O) + yco2 * yco2 * aCO2;
488  const ADReal bmix = yh2o * bH2O + yco2 * bCO2;
489 
490  const ADReal t15 = pow(temperature, 1.5);
491 
492  ADReal lnPhiH2O = bH2O / bmix * (pbar * V / (_Rbar * temperature) - 1.0) -
493  log(pbar * (V - bmix) / (_Rbar * temperature));
494  ADReal term3 = (2.0 * yh2o * aH2O + yco2 * (aH2OCO2 + aCO2H2O) -
495  yh2o * yco2 * sqrt(aH2O * aCO2) * (kH2OCO2 - kCO2H2O) * (yh2o - yco2) +
496  xh2o * xco2 * sqrt(aH2O * aCO2) * (kH2OCO2 - kCO2H2O)) /
497  amix;
498  term3 -= bH2O / bmix;
499  term3 *= amix / (bmix * _Rbar * t15) * log(V / (V + bmix));
500  lnPhiH2O += term3;
501 
502  return exp(lnPhiH2O);
503 }
504 
505 ADReal
507  const ADReal & temperature,
508  const ADReal & co2_density,
509  const ADReal & xco2,
510  const ADReal & yh2o) const
511 {
512  using std::sqrt, std::pow, std::log, std::exp;
513 
514  // Need pressure in bar
515  const ADReal pbar = pressure * 1.0e-5;
516  // Molar volume in cm^3/mol
517  const ADReal V = _Mco2 / co2_density * 1.0e6;
518 
519  // Redlich-Kwong parameters
520  const ADReal yco2 = 1.0 - yh2o;
521  const ADReal xh2o = 1.0 - xco2;
522 
523  const ADReal aCO2 = 8.008e7 - 4.984e4 * temperature;
524  const ADReal aH2O = 1.337e8 - 1.4e4 * temperature;
525  const Real bCO2 = 28.25;
526  const Real bH2O = 15.7;
527  const ADReal KH2OCO2 = 1.427e-2 - 4.037e-4 * temperature;
528  const ADReal KCO2H2O = 0.4228 - 7.422e-4 * temperature;
529  const ADReal kH2OCO2 = KH2OCO2 * yh2o + KCO2H2O * yco2;
530  const ADReal kCO2H2O = KCO2H2O * yh2o + KH2OCO2 * yco2;
531 
532  const ADReal aH2OCO2 = sqrt(aCO2 * aH2O) * (1.0 - kH2OCO2);
533  const ADReal aCO2H2O = sqrt(aCO2 * aH2O) * (1.0 - kCO2H2O);
534 
535  const ADReal amix = yh2o * yh2o * aH2O + yh2o * yco2 * (aH2OCO2 + aCO2H2O) + yco2 * yco2 * aCO2;
536  const ADReal bmix = yh2o * bH2O + yco2 * bCO2;
537 
538  const ADReal t15 = pow(temperature, 1.5);
539 
540  ADReal lnPhiCO2 = bCO2 / bmix * (pbar * V / (_Rbar * temperature) - 1.0) -
541  log(pbar * (V - bmix) / (_Rbar * temperature));
542 
543  ADReal term3 = (2.0 * yco2 * aCO2 + yh2o * (aH2OCO2 + aCO2H2O) -
544  yh2o * yco2 * sqrt(aH2O * aCO2) * (kH2OCO2 - kCO2H2O) * (yh2o - yco2) +
545  xh2o * xco2 * sqrt(aH2O * aCO2) * (kCO2H2O - kH2OCO2)) /
546  amix;
547 
548  lnPhiCO2 += (term3 - bCO2 / bmix) * amix / (bmix * _Rbar * t15) * log(V / (V + bmix));
549 
550  return exp(lnPhiCO2);
551 }
552 
553 ADReal
555 {
556  using std::exp;
557 
558  if (temperature.value() <= 373.15)
559  return 1.0;
560  else
561  {
562  const ADReal Tref = temperature - 373.15;
563  const ADReal xh2o = 1.0 - xco2;
564  const ADReal Am = -3.084e-2 * Tref + 1.927e-5 * Tref * Tref;
565 
566  return exp((Am - 2.0 * Am * xh2o) * xco2 * xco2);
567  }
568 }
569 
570 ADReal
572 {
573  using std::exp;
574 
575  if (temperature.value() <= 373.15)
576  return 1.0;
577  else
578  {
579  const ADReal Tref = temperature - 373.15;
580  const ADReal xh2o = 1.0 - xco2;
581  const ADReal Am = -3.084e-2 * Tref + 1.927e-5 * Tref * Tref;
582 
583  return exp(2.0 * Am * xco2 * xh2o * xh2o);
584  }
585 }
586 
587 ADReal
589  const ADReal & temperature,
590  const ADReal & Xnacl) const
591 {
592  using std::log, std::exp;
593 
594  // Need pressure in bar
595  const ADReal pbar = pressure * 1.0e-5;
596  // Need NaCl molality (mol/kg)
597  const ADReal mnacl = Xnacl / (1.0 - Xnacl) / _Mnacl;
598 
599  const ADReal lambda = -0.411370585 + 6.07632013e-4 * temperature + 97.5347708 / temperature -
600  0.0237622469 * pbar / temperature +
601  0.0170656236 * pbar / (630.0 - temperature) +
602  1.41335834e-5 * temperature * log(pbar);
603 
604  const ADReal xi = 3.36389723e-4 - 1.9829898e-5 * temperature +
605  2.12220830e-3 * pbar / temperature -
606  5.24873303e-3 * pbar / (630.0 - temperature);
607 
608  return exp(2.0 * lambda * mnacl + xi * mnacl * mnacl);
609 }
610 
611 ADReal
613  const ADReal & Xnacl) const
614 {
615  using std::exp;
616 
617  // Need NaCl molality (mol/kg)
618  const ADReal mnacl = Xnacl / (1.0 - Xnacl) / _Mnacl;
619 
620  const ADReal T2 = temperature * temperature;
621  const ADReal T3 = temperature * T2;
622 
623  const ADReal lambda = 2.217e-4 * temperature + 1.074 / temperature + 2648.0 / T2;
624  const ADReal xi = 1.3e-5 * temperature - 20.12 / temperature + 5259.0 / T2;
625 
626  return (1.0 - mnacl / _invMh2o) * exp(2.0 * lambda * mnacl + xi * mnacl * mnacl);
627 }
628 
629 ADReal
631 {
632  using std::pow;
633 
634  // Uses temperature in Celsius
635  const ADReal Tc = temperature - _T_c2k;
636  const ADReal Tc2 = Tc * Tc;
637  const ADReal Tc3 = Tc2 * Tc;
638  const ADReal Tc4 = Tc3 * Tc;
639 
640  ADReal logK0H2O;
641 
642  if (Tc <= 99.0)
643  logK0H2O = -2.209 + 3.097e-2 * Tc - 1.098e-4 * Tc2 + 2.048e-7 * Tc3;
644 
645  else if (Tc > 99.0 && Tc < 109.0)
646  {
647  const ADReal Tint = (Tc - 99.0) / 10.0;
648  const ADReal Tint2 = Tint * Tint;
649  logK0H2O = -0.0204026 + 0.0152513 * Tint + 0.417565 * Tint2 - 0.278636 * Tint * Tint2;
650  }
651 
652  else // 109 <= Tc <= 300
653  logK0H2O = -2.1077 + 2.8127e-2 * Tc - 8.4298e-5 * Tc2 + 1.4969e-7 * Tc3 - 1.1812e-10 * Tc4;
654 
655  return pow(10.0, logK0H2O);
656 }
657 
658 ADReal
660 {
661  using std::pow;
662 
663  // Uses temperature in Celsius
664  const ADReal Tc = temperature - _T_c2k;
665  const ADReal Tc2 = Tc * Tc;
666  const ADReal Tc3 = Tc2 * Tc;
667 
668  ADReal logK0CO2;
669 
670  if (Tc <= 99.0)
671  logK0CO2 = 1.189 + 1.304e-2 * Tc - 5.446e-5 * Tc2;
672 
673  else if (Tc > 99.0 && Tc < 109.0)
674  {
675  const ADReal Tint = (Tc - 99.0) / 10.0;
676  const ADReal Tint2 = Tint * Tint;
677  logK0CO2 = 1.9462 + 2.25692e-2 * Tint - 9.49577e-3 * Tint2 - 6.77721e-3 * Tint * Tint2;
678  }
679 
680  else // 109 <= Tc <= 300
681  logK0CO2 = 1.668 + 3.992e-3 * Tc - 1.156e-5 * Tc2 + 1.593e-9 * Tc3;
682 
683  return pow(10.0, logK0CO2);
684 }
685 
686 void
688  const ADReal & temperature,
689  const ADReal & Xnacl,
690  ADReal & xco2,
691  ADReal & yh2o) const
692 {
693  if (temperature.value() <= _Tlower)
694  {
696  }
697  else if (temperature.value() > _Tlower && temperature.value() < _Tupper)
698  {
699  // Cubic polynomial in this regime
700  const Real Tint = (temperature.value() - _Tlower) / 10.0;
701 
702  // Equilibrium mole fractions and derivatives at the lower temperature
703  ADReal Tlower = _Tlower;
704  Moose::derivInsert(Tlower.derivatives(), _Tidx, 1.0);
705 
706  ADReal xco2_lower, yh2o_lower;
707  equilibriumMoleFractionsLowTemp(pressure, Tlower, Xnacl, xco2_lower, yh2o_lower);
708 
709  const Real dxco2_dT_lower = xco2_lower.derivatives()[_Tidx];
710  const Real dyh2o_dT_lower = yh2o_lower.derivatives()[_Tidx];
711 
712  // Equilibrium mole fractions and derivatives at the upper temperature
713  Real xco2_upper, yh2o_upper;
714  Real co2_density_upper = _co2_fp.rho_from_p_T(pressure.value(), _Tupper);
715 
717  pressure.value(), _Tupper, Xnacl.value(), co2_density_upper, xco2_upper, yh2o_upper);
718 
719  Real A, dA_dp, dA_dT, B, dB_dp, dB_dT, dB_dX;
720  funcABHighTemp(pressure.value(),
721  _Tupper,
722  Xnacl.value(),
723  co2_density_upper,
724  xco2_upper,
725  yh2o_upper,
726  A,
727  dA_dp,
728  dA_dT,
729  B,
730  dB_dp,
731  dB_dT,
732  dB_dX);
733 
734  const Real dyh2o_dT_upper =
735  ((1.0 - B) * dA_dT + (A - 1.0) * A * dB_dT) / (1.0 - A * B) / (1.0 - A * B);
736  const Real dxco2_dT_upper = dB_dT * (1.0 - yh2o_upper) - B * dyh2o_dT_upper;
737 
738  // The mole fractions in this regime are then found by interpolation
739  Real xco2r, yh2or, dxco2_dT, dyh2o_dT;
741  Tint, xco2_lower.value(), dxco2_dT_lower, xco2_upper, dxco2_dT_upper, xco2r, dxco2_dT);
743  Tint, yh2o_lower.value(), dyh2o_dT_lower, yh2o_upper, dyh2o_dT_upper, yh2or, dyh2o_dT);
744 
745  xco2 = xco2r;
746  Moose::derivInsert(xco2.derivatives(), _pidx, xco2_lower.derivatives()[_pidx]);
747  Moose::derivInsert(xco2.derivatives(), _Tidx, dxco2_dT);
748  Moose::derivInsert(xco2.derivatives(), _Xidx, xco2_lower.derivatives()[_Xidx]);
749 
750  yh2o = yh2or;
751  Moose::derivInsert(yh2o.derivatives(), _pidx, yh2o_lower.derivatives()[_pidx]);
752  Moose::derivInsert(yh2o.derivatives(), _Tidx, dyh2o_dT);
753  Moose::derivInsert(yh2o.derivatives(), _Xidx, yh2o_lower.derivatives()[_Xidx]);
754  }
755  else
756  {
757  // CO2 density and derivatives wrt pressure and temperature
758  const Real co2_density = _co2_fp.rho_from_p_T(pressure.value(), temperature.value());
759 
760  // Equilibrium mole fractions solved using iteration in this regime
761  Real xco2r, yh2or;
763  pressure.value(), temperature.value(), Xnacl.value(), co2_density, xco2r, yh2or);
764 
765  // Can use these in funcABHighTemp() to get derivatives analytically rather than by iteration
766  Real A, dA_dp, dA_dT, B, dB_dp, dB_dT, dB_dX;
767  funcABHighTemp(pressure.value(),
768  temperature.value(),
769  Xnacl.value(),
770  co2_density,
771  xco2r,
772  yh2or,
773  A,
774  dA_dp,
775  dA_dT,
776  B,
777  dB_dp,
778  dB_dT,
779  dB_dX);
780 
781  const Real dyh2o_dp =
782  ((1.0 - B) * dA_dp + (A - 1.0) * A * dB_dp) / (1.0 - A * B) / (1.0 - A * B);
783  const Real dxco2_dp = dB_dp * (1.0 - yh2or) - B * dyh2o_dp;
784 
785  const Real dyh2o_dT =
786  ((1.0 - B) * dA_dT + (A - 1.0) * A * dB_dT) / (1.0 - A * B) / (1.0 - A * B);
787  const Real dxco2_dT = dB_dT * (1.0 - yh2or) - B * dyh2o_dT;
788 
789  const Real dyh2o_dX = ((A - 1.0) * A * dB_dX) / (1.0 - A * B) / (1.0 - A * B);
790  const Real dxco2_dX = dB_dX * (1.0 - yh2or) - B * dyh2o_dX;
791 
792  xco2 = xco2r;
793  Moose::derivInsert(xco2.derivatives(), _pidx, dxco2_dp);
794  Moose::derivInsert(xco2.derivatives(), _Tidx, dxco2_dT);
795  Moose::derivInsert(xco2.derivatives(), _Xidx, dxco2_dX);
796 
797  yh2o = yh2or;
798  Moose::derivInsert(yh2o.derivatives(), _pidx, dyh2o_dp);
799  Moose::derivInsert(yh2o.derivatives(), _Tidx, dyh2o_dT);
800  Moose::derivInsert(yh2o.derivatives(), _Xidx, dyh2o_dX);
801  }
802 }
803 
804 void
806  const ADReal & temperature,
807  const ADReal & Xnacl,
808  ADReal & xco2,
809  ADReal & yh2o) const
810 {
811  if (temperature.value() > 373.15)
812  mooseError(name(),
813  ": equilibriumMoleFractionsLowTemp() is not valid for T > 373.15K. Use "
814  "equilibriumMoleFractions() instead");
815 
816  // CO2 density and derivatives wrt pressure and temperature
817  const ADReal co2_density = _co2_fp.rho_from_p_T(pressure, temperature);
818 
819  // Assume infinite dilution (yh20 = 0 and xco2 = 0) in low temperature regime
820  ADReal A, B;
821  funcABLowTemp(pressure, temperature, co2_density, A, B);
822 
823  // As the activity coefficient for CO2 in brine used in this regime isn't a 'true'
824  // activity coefficient, we instead calculate the molality of CO2 in water, then
825  // correct it for brine, and then calculate the mole fractions.
826  // The mole fraction in pure water is
827  const ADReal yh2ow = (1.0 - B) / (1.0 / A - B);
828  const ADReal xco2w = B * (1.0 - yh2ow);
829 
830  // Molality of CO2 in pure water
831  const ADReal mco2w = xco2w * _invMh2o / (1.0 - xco2w);
832  // Molality of CO2 in brine is then calculated using gamma
833  const ADReal gamma = activityCoefficient(pressure, temperature, Xnacl);
834  const ADReal mco2 = mco2w / gamma;
835 
836  // Need NaCl molality (mol/kg)
837  const ADReal mnacl = Xnacl / (1.0 - Xnacl) / _Mnacl;
838 
839  // Mole fractions of CO2 and H2O in liquid and gas phases
840  const ADReal total_moles = 2.0 * mnacl + _invMh2o + mco2;
841  xco2 = mco2 / total_moles;
842  yh2o = A * (1.0 - xco2 - 2.0 * mnacl / total_moles);
843 }
844 
845 void
847  const ADReal & temperature,
848  const ADReal & co2_density,
849  ADReal & A,
850  ADReal & B) const
851 {
852  using std::exp;
853 
854  if (temperature.value() > 373.15)
855  mooseError(name(),
856  ": funcABLowTemp() is not valid for T > 373.15K. Use funcABHighTemp() instead");
857 
858  // Pressure in bar
859  const ADReal pbar = pressure * 1.0e-5;
860 
861  // Reference pressure and partial molar volumes
862  const Real pref = 1.0;
863  const Real vCO2 = 32.6;
864  const Real vH2O = 18.1;
865 
866  const ADReal delta_pbar = pbar - pref;
867  const ADReal Rt = _Rbar * temperature;
868 
869  // Equilibrium constants
872 
873  // Fugacity coefficients
874  ADReal phiH2O, phiCO2;
875  fugacityCoefficientsLowTemp(pressure, temperature, co2_density, phiCO2, phiH2O);
876 
877  A = K0H2O / (phiH2O * pbar) * exp(delta_pbar * vH2O / Rt);
878  B = phiCO2 * pbar / (_invMh2o * K0CO2) * exp(-delta_pbar * vCO2 / Rt);
879 }
880 
881 void
883  Real temperature,
884  Real Xnacl,
885  Real co2_density,
886  Real xco2,
887  Real yh2o,
888  Real & A,
889  Real & B) const
890 {
891  using std::exp;
892 
893  if (temperature <= 373.15)
894  mooseError(name(),
895  ": funcABHighTemp() is not valid for T <= 373.15K. Use funcABLowTemp() instead");
896 
897  // Pressure in bar
898  const Real pbar = pressure * 1.0e-5;
899  // Temperature in C
900  const Real Tc = temperature - _T_c2k;
901 
902  // Reference pressure and partial molar volumes
903  const Real pref = -1.9906e-1 + 2.0471e-3 * Tc + 1.0152e-4 * Tc * Tc - 1.4234e-6 * Tc * Tc * Tc +
904  1.4168e-8 * Tc * Tc * Tc * Tc;
905  const Real vCO2 = 32.6 + 3.413e-2 * (Tc - 100.0);
906  const Real vH2O = 18.1 + 3.137e-2 * (Tc - 100.0);
907 
908  const Real delta_pbar = pbar - pref;
909  const Real Rt = _Rbar * temperature;
910 
911  // Equilibrium constants
912  // Use dummy ADReal temperature as derivatives aren't required
913  const ADReal T = temperature;
914  Real K0H2O = equilibriumConstantH2O(T).value();
915  Real K0CO2 = equilibriumConstantCO2(T).value();
916 
917  // Fugacity coefficients
918  // Use dummy ADReal variables as derivatives aren't required
919  const ADReal p = pressure;
920  const ADReal rhoco2 = co2_density;
921  const ADReal x = xco2;
922  const ADReal y = yh2o;
923 
924  ADReal phiH2O, phiCO2;
925  fugacityCoefficientsHighTemp(p, T, rhoco2, x, y, phiCO2, phiH2O);
926 
927  // Activity coefficients
928  const Real gammaH2O = activityCoefficientH2O(T, x).value();
929  const Real gammaCO2 = activityCoefficientCO2(T, x).value();
930 
931  // Activity coefficient for CO2 in brine
932  // Use dummy ADReal Xnacl as derivatives aren't required
933  const ADReal X = Xnacl;
934  const Real gamma = activityCoefficientHighTemp(T, X).value();
935 
936  A = K0H2O * gammaH2O / (phiH2O.value() * pbar) * exp(delta_pbar * vH2O / Rt);
937  B = phiCO2.value() * pbar / (_invMh2o * K0CO2 * gamma * gammaCO2) * exp(-delta_pbar * vCO2 / Rt);
938 }
939 
940 void
942  Real temperature,
943  Real Xnacl,
944  Real co2_density,
945  Real xco2,
946  Real yh2o,
947  Real & A,
948  Real & dA_dp,
949  Real & dA_dT,
950  Real & B,
951  Real & dB_dp,
952  Real & dB_dT,
953  Real & dB_dX) const
954 {
955  funcABHighTemp(pressure, temperature, Xnacl, co2_density, xco2, yh2o, A, B);
956 
957  // Use finite differences for derivatives in the high temperature regime
958  const Real dp = 1.0e-2;
959  const Real dT = 1.0e-6;
960  const Real dX = 1.0e-8;
961 
962  Real A2, B2;
963  funcABHighTemp(pressure + dp, temperature, Xnacl, co2_density, xco2, yh2o, A2, B2);
964  dA_dp = (A2 - A) / dp;
965  dB_dp = (B2 - B) / dp;
966 
967  funcABHighTemp(pressure, temperature + dT, Xnacl, co2_density, xco2, yh2o, A2, B2);
968  dA_dT = (A2 - A) / dT;
969  dB_dT = (B2 - B) / dT;
970 
971  funcABHighTemp(pressure, temperature, Xnacl + dX, co2_density, xco2, yh2o, A2, B2);
972  dB_dX = (B2 - B) / dX;
973 }
974 
975 void
977  Real pressure, Real temperature, Real Xnacl, Real co2_density, Real & xco2, Real & yh2o) const
978 {
979  // Initial guess for yh2o and xco2 (from Spycher and Pruess (2010))
981  Real x = 0.009;
982 
983  // Need salt mass fraction in molality
984  const Real mnacl = Xnacl / (1.0 - Xnacl) / _Mnacl;
985 
986  // If y > 1, then just use y = 1, x = 0 (only a gas phase)
987  if (y >= 1.0)
988  {
989  y = 1.0;
990  x = 0.0;
991  }
992  else
993  {
994  // Residual function for Newton-Raphson
995  auto fy = [mnacl, this](Real y, Real A, Real B) {
996  return y -
997  (1.0 - B) * _invMh2o / ((1.0 / A - B) * (2.0 * mnacl + _invMh2o) + 2.0 * mnacl * B);
998  };
999 
1000  // Derivative of fy wrt y
1001  auto dfy = [mnacl, this](Real A, Real B, Real dA, Real dB)
1002  {
1003  const Real denominator = (1.0 / A - B) * (2.0 * mnacl + _invMh2o) + 2.0 * mnacl * B;
1004  return 1.0 + _invMh2o * dB / denominator +
1005  (1.0 - B) * _invMh2o *
1006  (2.0 * mnacl * dB - (2.0 * mnacl + _invMh2o) * (dB + dA / A / A)) / denominator /
1007  denominator;
1008  };
1009 
1010  Real A, B;
1011  Real dA, dB;
1012  const Real dy = 1.0e-8;
1013 
1014  // Solve for yh2o using Newton-Raphson method
1015  unsigned int iter = 0;
1016  const Real tol = 1.0e-12;
1017  const unsigned int max_its = 10;
1018  funcABHighTemp(pressure, temperature, Xnacl, co2_density, x, y, A, B);
1019 
1020  while (std::abs(fy(y, A, B)) > tol)
1021  {
1022  funcABHighTemp(pressure, temperature, Xnacl, co2_density, x, y, A, B);
1023  // Finite difference derivatives of A and B wrt y
1024  funcABHighTemp(pressure, temperature, Xnacl, co2_density, x, y + dy, dA, dB);
1025  dA = (dA - A) / dy;
1026  dB = (dB - B) / dy;
1027 
1028  y = y - fy(y, A, B) / dfy(A, B, dA, dB);
1029 
1030  x = B * (1.0 - y);
1031 
1032  // Break if not converged and just use the value
1033  if (iter > max_its)
1034  break;
1035  }
1036  }
1037 
1038  yh2o = y;
1039  xco2 = x;
1040 }
1041 
1042 ADReal
1044 {
1045  // This correlation uses temperature in C
1046  const ADReal Tc = temperature - _T_c2k;
1047  // The parial molar volume
1048  const ADReal V = 37.51 - 9.585e-2 * Tc + 8.74e-4 * Tc * Tc - 5.044e-7 * Tc * Tc * Tc;
1049 
1050  return 1.0e6 * _Mco2 / V;
1051 }
1052 
1053 Real
1055  Real pressure, Real temperature, Real Xnacl, Real saturation, unsigned int qp) const
1056 {
1057  // Check whether the input pressure and temperature are within the region of validity
1059 
1060  // As we do not require derivatives, we can simply ignore their initialisation
1061  const ADReal p = pressure;
1062  const ADReal T = temperature;
1063  const ADReal X = Xnacl;
1064 
1065  // FluidStateProperties data structure
1066  std::vector<FluidStateProperties> fsp(_num_phases, FluidStateProperties(_num_components));
1069 
1070  // Calculate equilibrium mass fractions in the two-phase state
1071  ADReal Xco2, Yh2o;
1072  equilibriumMassFractions(p, T, X, Xco2, Yh2o);
1073 
1074  // Save the mass fractions in the FluidStateMassFractions object
1075  const ADReal Yco2 = 1.0 - Yh2o;
1076  liquid.mass_fraction[_aqueous_fluid_component] = 1.0 - Xco2;
1077  liquid.mass_fraction[_gas_fluid_component] = Xco2;
1079  gas.mass_fraction[_gas_fluid_component] = Yco2;
1080 
1081  // Gas properties
1083 
1084  // Liquid properties
1085  const ADReal liquid_saturation = 1.0 - saturation;
1086  const ADReal liquid_pressure = p - _pc.capillaryPressure(liquid_saturation, qp);
1087  liquidProperties(liquid_pressure, T, X, fsp);
1088 
1089  // The total mass fraction of ncg (z) can now be calculated
1090  const ADReal Z = (saturation * gas.density * Yco2 + liquid_saturation * liquid.density * Xco2) /
1091  (saturation * gas.density + liquid_saturation * liquid.density);
1092 
1093  return Z.value();
1094 }
1095 
1096 ADReal
1098 {
1099  using std::pow;
1100 
1101  // Henry's constant for dissolution in water
1103 
1104  // The correction to salt is obtained through the salting out coefficient
1105  const std::vector<Real> b{1.19784e-1, -7.17823e-4, 4.93854e-6, -1.03826e-8, 1.08233e-11};
1106 
1107  // Need temperature in Celsius
1108  const ADReal Tc = temperature - _T_c2k;
1109 
1110  ADReal kb = 0.0;
1111  for (unsigned int i = 0; i < b.size(); ++i)
1112  kb += b[i] * pow(Tc, i);
1113 
1114  // Need salt mass fraction in molality
1115  const ADReal xmol = Xnacl / (1.0 - Xnacl) / _Mnacl;
1116 
1117  // Henry's constant and its derivative wrt temperature and salt mass fraction
1118  return Kh_h2o * pow(10.0, xmol * kb);
1119 }
1120 
1121 ADReal
1123 {
1124  // Henry's constant
1125  const ADReal Kh = henryConstant(temperature, Xnacl);
1126 
1127  ADReal hdis = -_R * temperature * temperature * Kh.derivatives()[_Tidx] / Kh / _Mco2;
1128 
1129  // Derivative of enthalpy of dissolution wrt temperature and xnacl requires the second
1130  // derivatives of Henry's constant. For simplicity, approximate these numerically
1131  const Real dT = temperature.value() * 1.0e-8;
1132  const ADReal T2 = temperature + dT;
1133  const ADReal Kh2 = henryConstant(T2, Xnacl);
1134 
1135  const Real dhdis_dT =
1136  (-_R * T2 * T2 * Kh2.derivatives()[_Tidx] / Kh2 / _Mco2 - hdis).value() / dT;
1137 
1138  const Real dX = Xnacl.value() * 1.0e-8;
1139  const ADReal X2 = Xnacl + dX;
1140  const ADReal Kh3 = henryConstant(temperature, X2);
1141 
1142  const Real dhdis_dX =
1143  (-_R * temperature * temperature * Kh3.derivatives()[_Tidx] / Kh3 / _Mco2 - hdis).value() /
1144  dX;
1145 
1146  hdis.derivatives() = temperature.derivatives() * dhdis_dT + Xnacl.derivatives() * dhdis_dX;
1147 
1148  return hdis;
1149 }
1150 
1151 ADReal
1153 {
1154  // Linear fit to model of Duan and Sun (2003) (in kJ/mol)
1155  const ADReal delta_h = -58.3533 + 0.134519 * temperature;
1156 
1157  // Convert to J/kg
1158  return delta_h * 1000.0 / _Mco2;
1159 }
1160 
1161 void
1163  Real temperature, Real f0, Real df0, Real f1, Real df1, Real & value, Real & deriv) const
1164 {
1165  // Coefficients of cubic polynomial
1166  const Real dT = _Tupper - _Tlower;
1167 
1168  const Real a = f0;
1169  const Real b = df0 * dT;
1170  const Real c = 3.0 * (f1 - f0) - (2.0 * df0 + df1) * dT;
1171  const Real d = 2.0 * (f0 - f1) + (df0 + df1) * dT;
1172 
1173  const Real t2 = temperature * temperature;
1174  const Real t3 = temperature * t2;
1175 
1176  value = a + b * temperature + c * t2 + d * t3;
1177  deriv = b + 2.0 * c * temperature + 3.0 * d * t2;
1178 }
1179 
1180 void
1182 {
1183  // The calculation of mass fractions is valid from 12C <= T <= 300C, and
1184  // pressure less than 60 MPa
1185  if (temperature < 285.15 || temperature > 573.15)
1186  mooseException(name() + ": temperature " + Moose::stringify(temperature) +
1187  " is outside range 285.15 K <= T <= 573.15 K");
1188 
1189  if (pressure > 6.0e7)
1190  mooseException(name() + ": pressure " + Moose::stringify(pressure) +
1191  " must be less than 60 MPa");
1192 }
void liquidProperties(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, std::vector< FluidStateProperties > &fsp) const
Thermophysical properties of the liquid state.
const unsigned int _aqueous_fluid_component
Fluid component number of the aqueous component.
const Real _Tlower
Temperature below which the Spycher, Pruess & Ennis-King (2003) model is used (K) ...
const unsigned int _aqueous_phase_number
Phase number of the aqueous phase.
unsigned int _num_phases
Number of phases.
const unsigned int _salt_component
Salt component index.
const Real _Mh2o
Molar mass of water (kg/mol)
ADReal activityCoefficient(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl) const
Activity coefficient for CO2 in brine.
const Real _T_c2k
Conversion from C to K.
FPADReal h_from_p_T_X(const FPADReal &pressure, const FPADReal &temperature, const FPADReal &xnacl) const
void paramError(const std::string &param, Args... args) const
static InputParameters validParams()
auto exp(const T &)
void addParam(const std::string &name, const std::initializer_list< typename T::value_type > &value, const std::string &doc_string)
virtual Real rho_from_p_T_X(Real pressure, Real temperature, Real xnacl) const override
ADReal activityCoefficientHighTemp(const ADReal &temperature, const ADReal &Xnacl) const
Activity coefficient for CO2 in brine used in the elevated temperature formulation.
const Real _Mnacl
Molar mass of NaCL.
ADReal equilibriumConstantH2O(const ADReal &temperature) const
Equilibrium constant for H2O For temperatures 12C <= T <= 99C, uses Spycher, Pruess and Ennis-King (2...
const Real _invMh2o
Inverse of molar mass of H2O (mol/kg)
const double tol
void fugacityCoefficientsHighTemp(const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, const ADReal &xco2, const ADReal &yh2o, ADReal &fco2, ADReal &fh2o) const
Fugacity coefficients for H2O and CO2 at elevated temperatures (100C < T <= 300C).
unsigned int _gas_fluid_component
Fluid component number of the gas phase.
virtual std::string fluidName() const override
Fluid name.
const std::vector< Real > _co2_henry
Henry&#39;s coefficeients for CO2.
const unsigned int _Tidx
Index of derivative wrt temperature.
virtual Real totalMassFraction(Real pressure, Real temperature, Real Xnacl, Real saturation, unsigned int qp) const override
Total mass fraction of fluid component summed over all phases in the two-phase state for a specified ...
void funcABLowTemp(const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, ADReal &A, ADReal &B) const
unsigned int _gas_phase_number
Phase number of the gas phase.
void clearFluidStateProperties(std::vector< FluidStateProperties > &fsp) const
Clears the contents of the FluidStateProperties data structure.
unsigned int _num_components
Number of components.
ADReal fugacityCoefficientH2OHighTemp(const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, const ADReal &xco2, const ADReal &yh2o) const
const Real _Mco2
Molar mass of CO2 (kg/mol)
Compositional flash routines for miscible multiphase flow classes with multiple fluid components...
ADReal enthalpyOfDissolutionGas(const ADReal &temperature, const ADReal &Xnacl) const
Enthalpy of dissolution of gas phase CO2 in brine calculated using Henry&#39;s constant From Himmelblau...
const std::vector< double > y
static const std::string temperature
Definition: NS.h:59
virtual Real mu_from_p_T_X(Real pressure, Real temperature, Real xnacl) const override
Brine (NaCl in H2O) fluid properties as a function of pressure (Pa), temperature (K) and NaCl mass fr...
DualNumber< Real, DNDerivativeType, true > ADReal
void solveEquilibriumMoleFractionHighTemp(Real pressure, Real temperature, Real Xnacl, Real co2_density, Real &xco2, Real &yh2o) const
Function to solve for yh2o and xco2 iteratively in the elevated temperature regime (T > 100C) ...
void addRequiredParam(const std::string &name, const std::string &doc_string)
const BrineFluidProperties & _brine_fp
Fluid properties UserObject for water.
Real vaporPressure(Real temperature, Real xnacl) const
Brine vapour pressure From Haas, Physical properties of the coexisting phases and thermochemical prop...
virtual std::string fluidStateName() const override
Name of FluidState.
const SinglePhaseFluidProperties & _co2_fp
Fluid properties UserObject for the CO2.
const std::string & name() const
const unsigned int _pidx
Index of derivative wrt pressure.
ADReal partialDensityCO2(const ADReal &temperature) const
Partial density of dissolved CO2 From Garcia, Density of aqueous solutions of CO2, LBNL-49023 (2001)
void funcABHighTemp(Real pressure, Real temperature, Real Xnacl, Real co2_density, Real xco2, Real yh2o, Real &A, Real &B) const
The function A (Eq.
virtual Real capillaryPressure(Real saturation, unsigned qp=0) const
Capillary pressure is calculated as a function of true saturation.
Real value(unsigned n, unsigned alpha, unsigned beta, Real x)
Real deriv(unsigned n, unsigned alpha, unsigned beta, Real x)
const std::vector< double > x
void equilibriumMassFractions(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, ADReal &Xco2, ADReal &Yh2o) const
Mass fractions of CO2 in brine and water vapor in CO2 at equilibrium.
void thermophysicalProperties(Real pressure, Real temperature, Real Xnacl, Real Z, unsigned int qp, std::vector< FluidStateProperties > &fsp) const override
Determines the complete thermophysical state of the system for a given set of primary variables...
ADReal enthalpyOfDissolution(const ADReal &temperature) const
Enthalpy of dissolution of CO2 in brine calculated using linear fit to model of Duan and Sun...
void equilibriumMoleFractionsLowTemp(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, ADReal &xco2, ADReal &yh2o) const
Mole fractions of CO2 in brine and water vapor in CO2 at equilibrium in the low temperature regime (T...
const Real _R
Universal gas constant (J/mol/K)
ADReal activityCoefficientH2O(const ADReal &temperature, const ADReal &xco2) const
Activity coefficient of H2O Eq.
AD data structure to pass calculated thermophysical properties.
Common class for single phase fluid properties.
FluidStatePhaseEnum
Phase state enum.
registerMooseObject("PorousFlowApp", PorousFlowBrineCO2)
void fugacityCoefficientsLowTemp(const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, ADReal &fco2, ADReal &fh2o) const
Fugacity coefficients for H2O and CO2 for T <= 100C Eq.
ADReal activityCoefficientCO2(const ADReal &temperature, const ADReal &xco2) const
Activity coefficient of CO2 Eq.
ADReal fugacityCoefficientCO2HighTemp(const ADReal &pressure, const ADReal &temperature, const ADReal &co2_density, const ADReal &xco2, const ADReal &yh2o) const
std::string stringify(const T &t)
auto log(const T &)
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
virtual void rho_mu_from_p_T(Real p, Real T, Real &rho, Real &mu) const
Combined methods.
void equilibriumMoleFractions(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, ADReal &xco2, ADReal &yh2o) const
Mole fractions of CO2 in brine and water vapor in CO2 at equilibrium.
void twoPhaseProperties(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, const ADReal &Z, unsigned int qp, std::vector< FluidStateProperties > &fsp) const
Gas and liquid properties in the two-phase region.
static const std::string Z
Definition: NS.h:169
const Real _Rbar
Molar gas constant in bar cm^3 /(K mol)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const PorousFlowCapillaryPressure & _pc
Capillary pressure UserObject.
void phaseState(Real Zi, Real Xi, Real Yi, FluidStatePhaseEnum &phase_state) const
Determines the phase state gven the total mass fraction and equilibrium mass fractions.
CTSub CT_OPERATOR_BINARY CTMul CTCompareLess CTCompareGreater CTCompareEqual _arg template * sqrt(_arg)) *_arg.template D< dtag >()) CT_SIMPLE_UNARY_FUNCTION(tanh
Real vaporMassFraction(Real Z0, Real K0, Real K1) const
Solves Rachford-Rice equation to provide vapor mass fraction.
void massFractions(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, const ADReal &Z, FluidStatePhaseEnum &phase_state, std::vector< FluidStateProperties > &fsp) const
Mass fractions of CO2 and H2O in both phases, as well as derivatives wrt PorousFlow variables...
void gasProperties(const ADReal &pressure, const ADReal &temperature, std::vector< FluidStateProperties > &fsp) const
Thermophysical properties of the gaseous state.
Specialized class for brine and CO2 including calculation of mutual solubility of the two fluids usin...
static const std::string pressure
Definition: NS.h:56
void mooseError(Args &&... args) const
const unsigned int _Zidx
Index of derivative wrt total mass fraction Z.
e e e e s T T T T T rho v v T e p T T virtual T std::string fluidName() const
Fluid name.
void addClassDescription(const std::string &doc_string)
void derivInsert(SemiDynamicSparseNumberArray< Real, libMesh::dof_id_type, NWrapper< N >> &derivs, libMesh::dof_id_type index, Real value)
const unsigned int _Xidx
Index of derivative wrt salt mass fraction X.
void smoothCubicInterpolation(Real temperature, Real f0, Real df0, Real f1, Real df1, Real &value, Real &deriv) const
Cubic function to smoothly interpolate between the low temperature and elevated temperature models fo...
FluidStateProperties _empty_fsp
Empty FluidStateProperties object.
Real henryConstant(Real temperature, const std::vector< Real > &coeffs) const
IAPWS formulation of Henry&#39;s law constant for dissolution in water (implemented in water FluidPropert...
virtual void checkVariables(Real pressure, Real temperature) const
Check the input variables.
const Real _Zmin
Minimum Z - below this value all CO2 will be dissolved.
MooseUnits pow(const MooseUnits &, int)
PorousFlowBrineCO2(const InputParameters &parameters)
ADReal henryConstant(const ADReal &temperature, const ADReal &Xnacl) const
Henry&#39;s constant of dissolution of gas phase CO2 in brine.
ADReal equilibriumConstantCO2(const ADReal &temperature) const
Equilibrium constant for CO2 For temperatures 12C <= T <= 99C, uses Spycher, Pruess and Ennis-King (2...
void ErrorVector unsigned int
std::vector< ADReal > mass_fraction
ADReal saturation(const ADReal &pressure, const ADReal &temperature, const ADReal &Xnacl, const ADReal &Z, std::vector< FluidStateProperties > &fsp) const
Gas saturation in the two-phase region.
const Real _Tupper
Temperature above which the Spycher & Pruess (2010) model is used (K)