#include <GaussianProcessSurrogate.h>
Public Types | |
typedef DataFileName | DataFileParameterType |
Public Member Functions | |
GaussianProcessSurrogate (const InputParameters ¶meters) | |
virtual Real | evaluate (const std::vector< Real > &x) const |
Evaluate surrogate model given a row of parameters. More... | |
virtual void | evaluate (const std::vector< Real > &x, std::vector< Real > &y) const |
Various evaluate methods that can be overriden. More... | |
virtual Real | evaluate (const std::vector< Real > &x, Real &std) const |
Evaluate methods that also return predicted standard deviation (see GaussianProcess.h) More... | |
virtual void | evaluate (const std::vector< Real > &x, std::vector< Real > &y, std::vector< Real > &std) const |
virtual void | setupCovariance (UserObjectName _covar_name) |
This function is called by LoadCovarianceDataAction when the surrogate is loading training data from a file. More... | |
StochasticTools::GaussianProcess & | gp () |
const StochasticTools::GaussianProcess & | getGP () const |
virtual Real | evaluate (const std::vector< Real > &x) const |
Evaluate surrogate model given a row of parameters. More... | |
virtual void | evaluate (const std::vector< Real > &x, std::vector< Real > &y) const |
Various evaluate methods that can be overriden. More... | |
virtual Real | evaluate (const std::vector< Real > &x, Real &std) const |
Evaluate methods that also return predicted standard deviation (see GaussianProcess.h) More... | |
virtual void | evaluate (const std::vector< Real > &x, std::vector< Real > &y, std::vector< Real > &) const |
virtual bool | enabled () const |
std::shared_ptr< MooseObject > | getSharedPtr () |
std::shared_ptr< const MooseObject > | getSharedPtr () const |
MooseApp & | getMooseApp () const |
const std::string & | type () const |
virtual const std::string & | name () const |
std::string | typeAndName () const |
std::string | errorPrefix (const std::string &error_type) const |
void | callMooseError (std::string msg, const bool with_prefix) const |
MooseObjectParameterName | uniqueParameterName (const std::string ¶meter_name) const |
const InputParameters & | parameters () const |
MooseObjectName | uniqueName () const |
const T & | getParam (const std::string &name) const |
std::vector< std::pair< T1, T2 > > | getParam (const std::string ¶m1, const std::string ¶m2) const |
const T * | queryParam (const std::string &name) const |
const T & | getRenamedParam (const std::string &old_name, const std::string &new_name) const |
T | getCheckedPointerParam (const std::string &name, const std::string &error_string="") const |
bool | isParamValid (const std::string &name) const |
bool | isParamSetByUser (const std::string &nm) const |
void | paramError (const std::string ¶m, Args... args) const |
void | paramWarning (const std::string ¶m, Args... args) const |
void | paramInfo (const std::string ¶m, Args... args) const |
void | connectControllableParams (const std::string ¶meter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const |
void | mooseError (Args &&... args) const |
void | mooseErrorNonPrefixed (Args &&... args) const |
void | mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const |
void | mooseWarning (Args &&... args) const |
void | mooseWarningNonPrefixed (Args &&... args) const |
void | mooseDeprecated (Args &&... args) const |
void | mooseInfo (Args &&... args) const |
std::string | getDataFileName (const std::string ¶m) const |
std::string | getDataFileNameByName (const std::string &relative_path) const |
std::string | getDataFilePath (const std::string &relative_path) const |
const Parallel::Communicator & | comm () const |
processor_id_type | n_processors () const |
processor_id_type | processor_id () const |
T & | getSampler (const std::string &name) |
Sampler & | getSampler (const std::string &name) |
T & | getSamplerByName (const SamplerName &name) |
Sampler & | getSamplerByName (const SamplerName &name) |
template<> | |
SurrogateModel & | getSurrogateModel (const std::string &name) const |
template<> | |
SurrogateTrainerBase & | getSurrogateTrainer (const std::string &name) const |
template<> | |
SurrogateModel & | getSurrogateModelByName (const UserObjectName &name) const |
template<> | |
SurrogateTrainerBase & | getSurrogateTrainerByName (const UserObjectName &name) const |
const std::string & | modelMetaDataName () const |
Accessor for the name of the model meta data. More... | |
const FileName & | getModelDataFileName () const |
Get the associated filename. More... | |
bool | hasModelData () const |
Check if we need to load model data (if the filename parameter is used) More... | |
template<typename T = SurrogateModel> | |
T & | getSurrogateModel (const std::string &name) const |
Get a SurrogateModel/Trainer with a given name. More... | |
template<typename T = SurrogateTrainerBase> | |
T & | getSurrogateTrainer (const std::string &name) const |
template<typename T = SurrogateModel> | |
T & | getSurrogateModelByName (const UserObjectName &name) const |
Get a sampler with a given name. More... | |
template<typename T = SurrogateTrainerBase> | |
T & | getSurrogateTrainerByName (const UserObjectName &name) const |
template<typename T , typename... Args> | |
T & | declareModelData (const std::string &data_name, Args &&... args) |
Declare model data for loading from file as well as restart. More... | |
template<typename T , typename... Args> | |
const T & | getModelData (const std::string &data_name, Args &&... args) const |
Retrieve model data from the interface. More... | |
Static Public Member Functions | |
static InputParameters | validParams () |
static MooseEnum | defaultPredictorTypes () |
static MooseEnum | defaultResponseTypes () |
Public Attributes | |
const ConsoleStream | _console |
Protected Member Functions | |
CovarianceFunctionBase * | getCovarianceFunctionByName (const UserObjectName &name) const |
Lookup a CovarianceFunction object by name and return pointer. More... | |
Protected Attributes | |
const bool & | _enabled |
MooseApp & | _app |
const std::string | _type |
const std::string | _name |
const InputParameters & | _pars |
Factory & | _factory |
ActionFactory & | _action_factory |
const Parallel::Communicator & | _communicator |
Private Attributes | |
StochasticTools::GaussianProcess & | _gp |
const RealEigenMatrix & | _training_params |
Paramaters (x) used for training. More... | |
Definition at line 18 of file GaussianProcessSurrogate.h.
GaussianProcessSurrogate::GaussianProcessSurrogate | ( | const InputParameters & | parameters | ) |
Definition at line 25 of file GaussianProcessSurrogate.C.
|
inherited |
Declare model data for loading from file as well as restart.
Definition at line 78 of file RestartableModelInterface.h.
|
inlinestaticinherited |
Definition at line 27 of file SurrogateModel.h.
|
inlinestaticinherited |
Definition at line 28 of file SurrogateModel.h.
Referenced by EvaluateSurrogate::validParams().
|
inline |
Various evaluate methods that can be overriden.
Definition at line 43 of file SurrogateModel.h.
|
inline |
Evaluate methods that also return predicted standard deviation (see GaussianProcess.h)
Definition at line 53 of file SurrogateModel.h.
|
inline |
Definition at line 59 of file SurrogateModel.h.
|
inline |
Evaluate surrogate model given a row of parameters.
Definition at line 33 of file SurrogateModel.h.
Evaluate surrogate model given a row of parameters.
Reimplemented from SurrogateModel.
Definition at line 42 of file GaussianProcessSurrogate.C.
Referenced by evaluate().
|
virtual |
Various evaluate methods that can be overriden.
Reimplemented from SurrogateModel.
Definition at line 60 of file GaussianProcessSurrogate.C.
Evaluate methods that also return predicted standard deviation (see GaussianProcess.h)
Reimplemented from SurrogateModel.
Definition at line 50 of file GaussianProcessSurrogate.C.
|
virtual |
Reimplemented from SurrogateModel.
Definition at line 68 of file GaussianProcessSurrogate.C.
|
protectedinherited |
Lookup a CovarianceFunction object by name and return pointer.
Definition at line 25 of file CovarianceInterface.C.
Referenced by ActiveLearningGaussianProcess::ActiveLearningGaussianProcess(), CovarianceFunctionBase::CovarianceFunctionBase(), GaussianProcessTrainer::GaussianProcessTrainer(), and setupCovariance().
|
inline |
Definition at line 38 of file GaussianProcessSurrogate.h.
Referenced by GaussianProcessData::initialize().
|
inherited |
Retrieve model data from the interface.
Definition at line 85 of file RestartableModelInterface.h.
|
inherited |
Get the associated filename.
Definition at line 33 of file RestartableModelInterface.C.
|
inherited |
Definition at line 46 of file SurrogateModelInterface.C.
|
inherited |
Get a SurrogateModel/Trainer with a given name.
name | The name of the parameter key of the sampler to retrieve |
Definition at line 81 of file SurrogateModelInterface.h.
Referenced by SurrogateTrainer::initialize().
|
inherited |
Definition at line 31 of file SurrogateModelInterface.C.
|
inherited |
Get a sampler with a given name.
name | The name of the sampler to retrieve |
Definition at line 88 of file SurrogateModelInterface.h.
Referenced by CrossValidationScores::CrossValidationScores(), EvaluateSurrogate::EvaluateSurrogate(), and InverseMapping::initialSetup().
|
inherited |
Definition at line 104 of file SurrogateModelInterface.h.
|
inherited |
Definition at line 60 of file SurrogateModelInterface.C.
|
inherited |
Definition at line 53 of file SurrogateModelInterface.C.
|
inherited |
Definition at line 111 of file SurrogateModelInterface.h.
Referenced by SurrogateTrainerOutput::output().
|
inline |
Definition at line 37 of file GaussianProcessSurrogate.h.
|
inherited |
Check if we need to load model data (if the filename parameter is used)
Definition at line 39 of file RestartableModelInterface.C.
|
inlineinherited |
Accessor for the name of the model meta data.
Definition at line 47 of file RestartableModelInterface.h.
Referenced by SurrogateTrainerOutput::output(), and MappingOutput::output().
|
virtual |
This function is called by LoadCovarianceDataAction when the surrogate is loading training data from a file.
The action must recreate the covariance object before this surrogate can set the correct pointer.
Definition at line 34 of file GaussianProcessSurrogate.C.
|
static |
Definition at line 18 of file GaussianProcessSurrogate.C.
|
private |
Definition at line 41 of file GaussianProcessSurrogate.h.
Referenced by evaluate(), getGP(), gp(), and setupCovariance().
|
private |
Paramaters (x) used for training.
Definition at line 44 of file GaussianProcessSurrogate.h.
Referenced by evaluate().