https://mooseframework.inl.gov
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Attributes | List of all members
GaussianProcessSurrogate Class Reference

#include <GaussianProcessSurrogate.h>

Inheritance diagram for GaussianProcessSurrogate:
[legend]

Public Types

typedef DataFileName DataFileParameterType
 

Public Member Functions

 GaussianProcessSurrogate (const InputParameters &parameters)
 
virtual Real evaluate (const std::vector< Real > &x) const
 Evaluate surrogate model given a row of parameters. More...
 
virtual void evaluate (const std::vector< Real > &x, std::vector< Real > &y) const
 Various evaluate methods that can be overriden. More...
 
virtual Real evaluate (const std::vector< Real > &x, Real &std) const
 Evaluate methods that also return predicted standard deviation (see GaussianProcess.h) More...
 
virtual void evaluate (const std::vector< Real > &x, std::vector< Real > &y, std::vector< Real > &std) const
 
virtual void setupCovariance (UserObjectName _covar_name)
 This function is called by LoadCovarianceDataAction when the surrogate is loading training data from a file. More...
 
StochasticTools::GaussianProcessgp ()
 
const StochasticTools::GaussianProcessgetGP () const
 
virtual Real evaluate (const std::vector< Real > &x) const
 Evaluate surrogate model given a row of parameters. More...
 
virtual void evaluate (const std::vector< Real > &x, std::vector< Real > &y) const
 Various evaluate methods that can be overriden. More...
 
virtual Real evaluate (const std::vector< Real > &x, Real &std) const
 Evaluate methods that also return predicted standard deviation (see GaussianProcess.h) More...
 
virtual void evaluate (const std::vector< Real > &x, std::vector< Real > &y, std::vector< Real > &) const
 
virtual bool enabled () const
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
MooseAppgetMooseApp () const
 
const std::string & type () const
 
virtual const std::string & name () const
 
std::string typeAndName () const
 
std::string errorPrefix (const std::string &error_type) const
 
void callMooseError (std::string msg, const bool with_prefix) const
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
const InputParametersparameters () const
 
MooseObjectName uniqueName () const
 
const T & getParam (const std::string &name) const
 
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 
const T * queryParam (const std::string &name) const
 
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 
bool isParamValid (const std::string &name) const
 
bool isParamSetByUser (const std::string &nm) const
 
void paramError (const std::string &param, Args... args) const
 
void paramWarning (const std::string &param, Args... args) const
 
void paramInfo (const std::string &param, Args... args) const
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 
void mooseError (Args &&... args) const
 
void mooseErrorNonPrefixed (Args &&... args) const
 
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
void mooseWarning (Args &&... args) const
 
void mooseWarningNonPrefixed (Args &&... args) const
 
void mooseDeprecated (Args &&... args) const
 
void mooseInfo (Args &&... args) const
 
std::string getDataFileName (const std::string &param) const
 
std::string getDataFileNameByName (const std::string &relative_path) const
 
std::string getDataFilePath (const std::string &relative_path) const
 
const Parallel::Communicator & comm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
T & getSampler (const std::string &name)
 
SamplergetSampler (const std::string &name)
 
T & getSamplerByName (const SamplerName &name)
 
SamplergetSamplerByName (const SamplerName &name)
 
template<>
SurrogateModelgetSurrogateModel (const std::string &name) const
 
template<>
SurrogateTrainerBasegetSurrogateTrainer (const std::string &name) const
 
template<>
SurrogateModelgetSurrogateModelByName (const UserObjectName &name) const
 
template<>
SurrogateTrainerBasegetSurrogateTrainerByName (const UserObjectName &name) const
 
const std::string & modelMetaDataName () const
 Accessor for the name of the model meta data. More...
 
const FileName & getModelDataFileName () const
 Get the associated filename. More...
 
bool hasModelData () const
 Check if we need to load model data (if the filename parameter is used) More...
 
template<typename T = SurrogateModel>
T & getSurrogateModel (const std::string &name) const
 Get a SurrogateModel/Trainer with a given name. More...
 
template<typename T = SurrogateTrainerBase>
T & getSurrogateTrainer (const std::string &name) const
 
template<typename T = SurrogateModel>
T & getSurrogateModelByName (const UserObjectName &name) const
 Get a sampler with a given name. More...
 
template<typename T = SurrogateTrainerBase>
T & getSurrogateTrainerByName (const UserObjectName &name) const
 
template<typename T , typename... Args>
T & declareModelData (const std::string &data_name, Args &&... args)
 Declare model data for loading from file as well as restart. More...
 
template<typename T , typename... Args>
const T & getModelData (const std::string &data_name, Args &&... args) const
 Retrieve model data from the interface. More...
 

Static Public Member Functions

static InputParameters validParams ()
 
static MooseEnum defaultPredictorTypes ()
 
static MooseEnum defaultResponseTypes ()
 

Public Attributes

const ConsoleStream _console
 

Protected Member Functions

CovarianceFunctionBasegetCovarianceFunctionByName (const UserObjectName &name) const
 Lookup a CovarianceFunction object by name and return pointer. More...
 

Protected Attributes

const bool & _enabled
 
MooseApp_app
 
const std::string _type
 
const std::string _name
 
const InputParameters_pars
 
Factory_factory
 
ActionFactory_action_factory
 
const Parallel::Communicator & _communicator
 

Private Attributes

StochasticTools::GaussianProcess_gp
 
const RealEigenMatrix_training_params
 Paramaters (x) used for training. More...
 

Detailed Description

Definition at line 18 of file GaussianProcessSurrogate.h.

Constructor & Destructor Documentation

◆ GaussianProcessSurrogate()

GaussianProcessSurrogate::GaussianProcessSurrogate ( const InputParameters parameters)

Definition at line 25 of file GaussianProcessSurrogate.C.

28  _gp(declareModelData<StochasticTools::GaussianProcess>("_gp")),
29  _training_params(getModelData<RealEigenMatrix>("_training_params"))
30 {
31 }
const RealEigenMatrix & _training_params
Paramaters (x) used for training.
const InputParameters & parameters() const
SurrogateModel(const InputParameters &parameters)
StochasticTools::GaussianProcess & _gp
CovarianceInterface(const InputParameters &parameters)

Member Function Documentation

◆ declareModelData()

template<typename T , typename... Args>
T & RestartableModelInterface::declareModelData ( const std::string &  data_name,
Args &&...  args 
)
inherited

Declare model data for loading from file as well as restart.

Definition at line 78 of file RestartableModelInterface.h.

79 {
80  return _model_restartable.declareRestartableData<T>(data_name, std::forward<Args>(args)...);
81 }
T & declareRestartableData(const std::string &data_name, Args &&... args)
Declare a piece of data as "restartable" and initialize it.
PublicRestartable _model_restartable
Member for interfacing with the framework&#39;s restartable system.

◆ defaultPredictorTypes()

static MooseEnum SurrogateModel::defaultPredictorTypes ( )
inlinestaticinherited

Definition at line 27 of file SurrogateModel.h.

27 { return MooseEnum("real"); }

◆ defaultResponseTypes()

static MooseEnum SurrogateModel::defaultResponseTypes ( )
inlinestaticinherited

Definition at line 28 of file SurrogateModel.h.

Referenced by EvaluateSurrogate::validParams().

28 { return MooseEnum("real vector_real"); }

◆ evaluate() [1/8]

virtual void SurrogateModel::evaluate
inline

Various evaluate methods that can be overriden.

Definition at line 43 of file SurrogateModel.h.

44  {
45  evaluateError(x, y);
46  }
void evaluateError(P x, R y, bool with_std=false) const
const std::vector< double > y
const std::vector< double > x

◆ evaluate() [2/8]

virtual Real SurrogateModel::evaluate
inline

Evaluate methods that also return predicted standard deviation (see GaussianProcess.h)

Definition at line 53 of file SurrogateModel.h.

54  {
55  evaluateError(x, std, true);
56  return 0.0;
57  }
void evaluateError(P x, R y, bool with_std=false) const
const std::vector< double > x

◆ evaluate() [3/8]

virtual void SurrogateModel::evaluate
inline

Definition at line 59 of file SurrogateModel.h.

60  {
61  evaluateError(x, y, true);
62  }
void evaluateError(P x, R y, bool with_std=false) const
const std::vector< double > y
const std::vector< double > x

◆ evaluate() [4/8]

virtual Real SurrogateModel::evaluate
inline

Evaluate surrogate model given a row of parameters.

Definition at line 33 of file SurrogateModel.h.

34  {
35  evaluateError(x, Real());
36  return 0.0;
37  };
void evaluateError(P x, R y, bool with_std=false) const
const std::vector< double > x
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ evaluate() [5/8]

Real GaussianProcessSurrogate::evaluate ( const std::vector< Real > &  x) const
virtual

Evaluate surrogate model given a row of parameters.

Reimplemented from SurrogateModel.

Definition at line 42 of file GaussianProcessSurrogate.C.

Referenced by evaluate().

43 {
44  // Overlaod for evaluate to maintain general compatibility. Only returns mean
45  Real dummy = 0;
46  return this->evaluate(x, dummy);
47 }
const std::vector< double > x
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual Real evaluate(const std::vector< Real > &x) const
Evaluate surrogate model given a row of parameters.

◆ evaluate() [6/8]

void GaussianProcessSurrogate::evaluate ( const std::vector< Real > &  x,
std::vector< Real > &  y 
) const
virtual

Various evaluate methods that can be overriden.

Reimplemented from SurrogateModel.

Definition at line 60 of file GaussianProcessSurrogate.C.

61 {
62  // Overlaod for evaluate to maintain general compatibility. Only returns mean
63  std::vector<Real> std_dummy;
64  this->evaluate(x, y, std_dummy);
65 }
const std::vector< double > y
const std::vector< double > x
virtual Real evaluate(const std::vector< Real > &x) const
Evaluate surrogate model given a row of parameters.

◆ evaluate() [7/8]

Real GaussianProcessSurrogate::evaluate ( const std::vector< Real > &  x,
Real std 
) const
virtual

Evaluate methods that also return predicted standard deviation (see GaussianProcess.h)

Reimplemented from SurrogateModel.

Definition at line 50 of file GaussianProcessSurrogate.C.

51 {
52  std::vector<Real> y;
53  std::vector<Real> std;
54  this->evaluate(x, y, std);
55  std_dev = std[0];
56  return y[0];
57 }
const std::vector< double > y
const std::vector< double > x
virtual Real evaluate(const std::vector< Real > &x) const
Evaluate surrogate model given a row of parameters.

◆ evaluate() [8/8]

void GaussianProcessSurrogate::evaluate ( const std::vector< Real > &  x,
std::vector< Real > &  y,
std::vector< Real > &  std 
) const
virtual

Reimplemented from SurrogateModel.

Definition at line 68 of file GaussianProcessSurrogate.C.

71 {
72  const unsigned int n_dims = _training_params.cols();
73 
74  mooseAssert(x.size() == n_dims,
75  "Number of parameters provided for evaluation does not match number of parameters "
76  "used for training.");
77  const unsigned int n_outputs = _gp.getCovarFunction().numOutputs();
78 
79  y = std::vector<Real>(n_outputs, 0.0);
80  std = std::vector<Real>(n_outputs, 0.0);
81 
82  RealEigenMatrix test_points(1, n_dims);
83  for (unsigned int ii = 0; ii < n_dims; ++ii)
84  test_points(0, ii) = x[ii];
85 
87 
88  RealEigenMatrix K_train_test(_training_params.rows() * n_outputs, n_outputs);
89 
91  K_train_test, _training_params, test_points, false);
92  RealEigenMatrix K_test(n_outputs, n_outputs);
93  _gp.getCovarFunction().computeCovarianceMatrix(K_test, test_points, test_points, true);
94 
95  // Compute the predicted mean value (centered)
96  RealEigenMatrix pred_value = (K_train_test.transpose() * _gp.getKResultsSolve()).transpose();
97  // De-center/scale the value and store for return
99 
100  RealEigenMatrix pred_var =
101  K_test - (K_train_test.transpose() * _gp.getKCholeskyDecomp().solve(K_train_test));
102 
103  // Vairance computed, take sqrt for standard deviation, scale up by training data std and store
104  RealEigenMatrix std_dev_mat = pred_var.array().sqrt();
105  _gp.getDataStandardizer().getDescaled(std_dev_mat);
106 
107  for (const auto output_i : make_range(n_outputs))
108  {
109  y[output_i] = pred_value(0, output_i);
110  std[output_i] = std_dev_mat(output_i, output_i);
111  }
112 }
const RealEigenMatrix & getKResultsSolve() const
void getDescaled(RealEigenMatrix &input) const
De-scales the assumed scaled input.
Definition: Standardizer.C:97
void getStandardized(RealEigenMatrix &input) const
Returns the standardized (centered and scaled) of the provided input.
Definition: Standardizer.C:80
const CovarianceFunctionBase & getCovarFunction() const
const std::vector< double > y
const RealEigenMatrix & _training_params
Paramaters (x) used for training.
const std::vector< double > x
void getDestandardized(RealEigenMatrix &input) const
De-standardizes (de-centered and de-scaled) the assumed standardized input.
Definition: Standardizer.C:88
Eigen::Matrix< Real, Eigen::Dynamic, Eigen::Dynamic > RealEigenMatrix
const Eigen::LLT< RealEigenMatrix > & getKCholeskyDecomp() const
const StochasticTools::Standardizer & getParamStandardizer() const
Get constant reference to the contained structures.
virtual void computeCovarianceMatrix(RealEigenMatrix &K, const RealEigenMatrix &x, const RealEigenMatrix &xp, const bool is_self_covariance) const =0
Generates the Covariance Matrix given two sets of points in the parameter space.
IntRange< T > make_range(T beg, T end)
StochasticTools::GaussianProcess & _gp
unsigned int numOutputs() const
Return the number of outputs assumed for this covariance function.
const StochasticTools::Standardizer & getDataStandardizer() const

◆ getCovarianceFunctionByName()

CovarianceFunctionBase * CovarianceInterface::getCovarianceFunctionByName ( const UserObjectName &  name) const
protectedinherited

Lookup a CovarianceFunction object by name and return pointer.

Definition at line 25 of file CovarianceInterface.C.

Referenced by ActiveLearningGaussianProcess::ActiveLearningGaussianProcess(), CovarianceFunctionBase::CovarianceFunctionBase(), GaussianProcessTrainer::GaussianProcessTrainer(), and setupCovariance().

26 {
27  std::vector<CovarianceFunctionBase *> models;
29  .query()
30  .condition<AttribName>(name)
31  .condition<AttribSystem>("CovarianceFunction")
32  .queryInto(models);
33  if (models.empty())
34  mooseError("Unable to find a CovarianceFunction object with the name '" + name + "'");
35  return models[0];
36 }
void mooseError(Args &&... args)
TheWarehouse & theWarehouse() const
const std::string name
Definition: Setup.h:20
Query query()
FEProblemBase & _covar_feproblem
Reference to FEProblemBase instance.

◆ getGP()

const StochasticTools::GaussianProcess& GaussianProcessSurrogate::getGP ( ) const
inline

Definition at line 38 of file GaussianProcessSurrogate.h.

Referenced by GaussianProcessData::initialize().

38 { return _gp; }
StochasticTools::GaussianProcess & _gp

◆ getModelData()

template<typename T , typename... Args>
const T & RestartableModelInterface::getModelData ( const std::string &  data_name,
Args &&...  args 
) const
inherited

Retrieve model data from the interface.

Definition at line 85 of file RestartableModelInterface.h.

86 {
87  return _model_restartable.getRestartableData<T>(data_name, std::forward<Args>(args)...);
88 }
const T & getRestartableData(const std::string &data_name) const
Declare a piece of data as "restartable" and initialize it Similar to declareRestartableData but retu...
PublicRestartable _model_restartable
Member for interfacing with the framework&#39;s restartable system.

◆ getModelDataFileName()

const FileName & RestartableModelInterface::getModelDataFileName ( ) const
inherited

Get the associated filename.

Definition at line 33 of file RestartableModelInterface.C.

34 {
35  return _model_object.getParam<FileName>("filename");
36 }
const T & getParam(const std::string &name) const
const MooseObject & _model_object
Reference to the MooseObject that uses this interface.

◆ getSurrogateModel() [1/2]

template<>
SurrogateModel& SurrogateModelInterface::getSurrogateModel ( const std::string &  name) const
inherited

Definition at line 46 of file SurrogateModelInterface.C.

47 {
48  return getSurrogateModelByName<SurrogateModel>(_smi_params.get<UserObjectName>(name));
49 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateModel() [2/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateModel ( const std::string &  name) const
inherited

Get a SurrogateModel/Trainer with a given name.

Parameters
nameThe name of the parameter key of the sampler to retrieve
Returns
The sampler with name associated with the parameter 'name'

Definition at line 81 of file SurrogateModelInterface.h.

Referenced by SurrogateTrainer::initialize().

82 {
83  return getSurrogateModelByName<T>(_smi_params.get<UserObjectName>(name));
84 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateModelByName() [1/2]

template<>
SurrogateModel& SurrogateModelInterface::getSurrogateModelByName ( const UserObjectName &  name) const
inherited

Definition at line 31 of file SurrogateModelInterface.C.

32 {
33  std::vector<SurrogateModel *> models;
35  .query()
36  .condition<AttribName>(name)
37  .condition<AttribSystem>("SurrogateModel")
38  .queryInto(models);
39  if (models.empty())
40  mooseError("Unable to find a SurrogateModel object with the name '" + name + "'");
41  return *(models[0]);
42 }
void mooseError(Args &&... args)
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
TheWarehouse & theWarehouse() const
const std::string name
Definition: Setup.h:20
Query query()

◆ getSurrogateModelByName() [2/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateModelByName ( const UserObjectName &  name) const
inherited

Get a sampler with a given name.

Parameters
nameThe name of the sampler to retrieve
Returns
The sampler with name 'name'

Definition at line 88 of file SurrogateModelInterface.h.

Referenced by CrossValidationScores::CrossValidationScores(), EvaluateSurrogate::EvaluateSurrogate(), and InverseMapping::initialSetup().

89 {
90  std::vector<T *> models;
92  .query()
93  .condition<AttribName>(name)
94  .condition<AttribSystem>("SurrogateModel")
95  .queryInto(models);
96  if (models.empty())
97  mooseError("Unable to find a SurrogateModel object of type " + std::string(typeid(T).name()) +
98  " with the name '" + name + "'");
99  return *(models[0]);
100 }
void mooseError(Args &&... args)
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
TheWarehouse & theWarehouse() const
const std::string name
Definition: Setup.h:20
Query query()

◆ getSurrogateTrainer() [1/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateTrainer ( const std::string &  name) const
inherited

Definition at line 104 of file SurrogateModelInterface.h.

105 {
106  return getSurrogateTrainerByName<T>(_smi_params.get<UserObjectName>(name));
107 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateTrainer() [2/2]

template<>
SurrogateTrainerBase& SurrogateModelInterface::getSurrogateTrainer ( const std::string &  name) const
inherited

Definition at line 60 of file SurrogateModelInterface.C.

61 {
62  return getSurrogateTrainerByName<SurrogateTrainerBase>(_smi_params.get<UserObjectName>(name));
63 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateTrainerByName() [1/2]

template<>
SurrogateTrainerBase& SurrogateModelInterface::getSurrogateTrainerByName ( const UserObjectName &  name) const
inherited

Definition at line 53 of file SurrogateModelInterface.C.

54 {
56 }
T & getUserObject(const std::string &name, unsigned int tid=0) const
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
const std::string name
Definition: Setup.h:20
This is the base trainer class whose main functionality is the API for declaring model data...

◆ getSurrogateTrainerByName() [2/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateTrainerByName ( const UserObjectName &  name) const
inherited

Definition at line 111 of file SurrogateModelInterface.h.

Referenced by SurrogateTrainerOutput::output().

112 {
113  SurrogateTrainerBase * base_ptr =
115  T * obj_ptr = dynamic_cast<T *>(base_ptr);
116  if (!obj_ptr)
117  mooseError("Failed to find a SurrogateTrainer object of type " + std::string(typeid(T).name()) +
118  " with the name '",
119  name,
120  "' for the desired type.");
121  return *obj_ptr;
122 }
T & getUserObject(const std::string &name, unsigned int tid=0) const
void mooseError(Args &&... args)
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
const std::string name
Definition: Setup.h:20
const THREAD_ID _smi_tid
Thread ID.
This is the base trainer class whose main functionality is the API for declaring model data...

◆ gp()

StochasticTools::GaussianProcess& GaussianProcessSurrogate::gp ( )
inline

Definition at line 37 of file GaussianProcessSurrogate.h.

37 { return _gp; }
StochasticTools::GaussianProcess & _gp

◆ hasModelData()

bool RestartableModelInterface::hasModelData ( ) const
inherited

Check if we need to load model data (if the filename parameter is used)

Definition at line 39 of file RestartableModelInterface.C.

40 {
41  return _model_object.isParamValid("filename");
42 }
bool isParamValid(const std::string &name) const
const MooseObject & _model_object
Reference to the MooseObject that uses this interface.

◆ modelMetaDataName()

const std::string& RestartableModelInterface::modelMetaDataName ( ) const
inlineinherited

Accessor for the name of the model meta data.

Definition at line 47 of file RestartableModelInterface.h.

Referenced by SurrogateTrainerOutput::output(), and MappingOutput::output().

47 { return _model_meta_data_name; }
const std::string _model_meta_data_name
The model meta data name.

◆ setupCovariance()

void GaussianProcessSurrogate::setupCovariance ( UserObjectName  _covar_name)
virtual

This function is called by LoadCovarianceDataAction when the surrogate is loading training data from a file.

The action must recreate the covariance object before this surrogate can set the correct pointer.

Definition at line 34 of file GaussianProcessSurrogate.C.

35 {
36  if (_gp.getCovarFunctionPtr() != nullptr)
37  ::mooseError("Attempting to redefine covariance function using setupCovariance.");
39 }
void linkCovarianceFunction(CovarianceFunctionBase *covariance_function)
Finds and links the covariance function to this object.
const CovarianceFunctionBase * getCovarFunctionPtr() const
void mooseError(Args &&... args) const
StochasticTools::GaussianProcess & _gp
CovarianceFunctionBase * getCovarianceFunctionByName(const UserObjectName &name) const
Lookup a CovarianceFunction object by name and return pointer.

◆ validParams()

InputParameters GaussianProcessSurrogate::validParams ( )
static

Definition at line 18 of file GaussianProcessSurrogate.C.

19 {
21  params.addClassDescription("Computes and evaluates Gaussian Process surrogate model.");
22  return params;
23 }
static InputParameters validParams()
void addClassDescription(const std::string &doc_string)

Member Data Documentation

◆ _gp

StochasticTools::GaussianProcess& GaussianProcessSurrogate::_gp
private

Definition at line 41 of file GaussianProcessSurrogate.h.

Referenced by evaluate(), getGP(), gp(), and setupCovariance().

◆ _training_params

const RealEigenMatrix& GaussianProcessSurrogate::_training_params
private

Paramaters (x) used for training.

Definition at line 44 of file GaussianProcessSurrogate.h.

Referenced by evaluate().


The documentation for this class was generated from the following files: