20 for (
unsigned int ii = 0; ii < n; ++ii)
32 _mean.push_back(mean);
41 for (
unsigned int ii = 0; ii < n; ++ii)
43 _mean.push_back(mean);
51 mooseAssert(mean.size() == stdev.size(),
52 "Provided mean and standard deviation vectors are of differing size.");
62 unsigned int num_samples = input.rows();
63 unsigned int n = input.cols();
68 ((input.rowwise() - mean.transpose()).colwise().squaredNorm() / num_samples)
75 RealEigenVector::Map(&
_mean[0], n) = mean;
76 RealEigenVector::Map(&
_stdev[0], n) = stdev;
82 Eigen::Map<const RealEigenVector> mean(
_mean.data(),
_mean.size());
83 Eigen::Map<const RealEigenVector> stdev(
_stdev.data(),
_stdev.size());
84 input = (input.rowwise() - mean.transpose()).array().rowwise() / stdev.transpose().array();
90 Eigen::Map<const RealEigenVector> mean(
_mean.data(),
_mean.size());
91 Eigen::Map<const RealEigenVector> stdev(
_stdev.data(),
_stdev.size());
93 (input.array().rowwise() * stdev.transpose().array()).rowwise() + mean.transpose().array();
99 Eigen::Map<const RealEigenVector> stdev(
_stdev.data(),
_stdev.size());
100 input = input.array().rowwise() * stdev.transpose().array();
107 unsigned int n =
_mean.size();
109 for (
unsigned int ii = 0; ii < n; ++ii)
111 for (
unsigned int ii = 0; ii < n; ++ii)
130 std::vector<Real> mean(n);
131 std::vector<Real> stdev(n);
132 for (
unsigned int ii = 0; ii < n; ++ii)
133 dataLoad(stream, mean[ii], context);
134 for (
unsigned int ii = 0; ii < n; ++ii)
135 dataLoad(stream, stdev[ii], context);
136 standardizer.
set(mean, stdev);
void dataLoad(std::istream &stream, StochasticTools::Standardizer &standardizer, void *context)
Eigen::Matrix< Real, Eigen::Dynamic, Eigen::Dynamic > RealEigenMatrix
Eigen::Matrix< Real, Eigen::Dynamic, 1 > RealEigenVector
void dataStore(std::ostream &stream, StochasticTools::Standardizer &standardizer, void *context)