37 ::
mooseError(
"Attempting to redefine covariance function using setupCovariance.");
53 std::vector<Real>
std;
63 std::vector<Real> std_dummy;
69 std::vector<Real> &
y,
70 std::vector<Real> &
std)
const 74 mooseAssert(
x.size() == n_dims,
75 "Number of parameters provided for evaluation does not match number of parameters " 76 "used for training.");
79 y = std::vector<Real>(n_outputs, 0.0);
80 std = std::vector<Real>(n_outputs, 0.0);
83 for (
unsigned int ii = 0; ii < n_dims; ++ii)
84 test_points(0, ii) =
x[ii];
107 for (
const auto output_i :
make_range(n_outputs))
109 y[output_i] = pred_value(0, output_i);
110 std[output_i] = std_dev_mat(output_i, output_i);
virtual void setupCovariance(UserObjectName _covar_name)
This function is called by LoadCovarianceDataAction when the surrogate is loading training data from ...
const std::vector< double > y
const RealEigenMatrix & _training_params
Paramaters (x) used for training.
static InputParameters validParams()
const std::vector< double > x
Eigen::Matrix< Real, Eigen::Dynamic, Eigen::Dynamic > RealEigenMatrix
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
registerMooseObject("StochasticToolsApp", GaussianProcessSurrogate)
virtual void computeCovarianceMatrix(RealEigenMatrix &K, const RealEigenMatrix &x, const RealEigenMatrix &xp, const bool is_self_covariance) const =0
Generates the Covariance Matrix given two sets of points in the parameter space.
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
virtual Real evaluate(const std::vector< Real > &x) const
Evaluate surrogate model given a row of parameters.
StochasticTools::GaussianProcess & _gp
unsigned int numOutputs() const
Return the number of outputs assumed for this covariance function.
static InputParameters validParams()
GaussianProcessSurrogate(const InputParameters ¶meters)
CovarianceFunctionBase * getCovarianceFunctionByName(const UserObjectName &name) const
Lookup a CovarianceFunction object by name and return pointer.