libMesh
Public Types | Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Types | Private Member Functions | List of all members
libMesh::SerialMesh Class Reference

#include <serial_mesh.h>

Inheritance diagram for libMesh::SerialMesh:
[legend]

Public Types

typedef Predicates::multi_predicate Predicate
 We need an empty, generic class to act as a predicate for this and derived mesh classes. More...
 

Public Member Functions

 SerialMesh (const Parallel::Communicator &comm_in, unsigned char dim=1)
 
 SerialMesh (const UnstructuredMesh &other_mesh)
 
virtual std::unique_ptr< MeshBaseclone () const override
 Virtual copy-constructor, creates a copy of this mesh. More...
 
 ~SerialMesh ()
 
virtual void clear () override
 Clear all internal data. More...
 
virtual void renumber_nodes_and_elements () override
 Remove nullptr elements from arrays. More...
 
virtual dof_id_type n_nodes () const override
 
virtual dof_id_type parallel_n_nodes () const override
 
virtual dof_id_type max_node_id () const override
 
virtual void reserve_nodes (const dof_id_type nn) override
 Reserves space for a known number of nodes. More...
 
virtual dof_id_type n_elem () const override
 
virtual dof_id_type parallel_n_elem () const override
 
virtual dof_id_type n_active_elem () const override
 
virtual dof_id_type max_elem_id () const override
 
virtual unique_id_type parallel_max_unique_id () const override
 
virtual void reserve_elem (const dof_id_type ne) override
 Reserves space for a known number of elements. More...
 
virtual void update_parallel_id_counts () override
 Updates parallel caches so that methods like n_elem() accurately reflect changes on other processors. More...
 
virtual const Pointpoint (const dof_id_type i) const override
 
virtual const Nodenode_ptr (const dof_id_type i) const override
 
virtual Nodenode_ptr (const dof_id_type i) override
 
virtual const Nodequery_node_ptr (const dof_id_type i) const override
 
virtual Nodequery_node_ptr (const dof_id_type i) override
 
virtual const Elemelem_ptr (const dof_id_type i) const override
 
virtual Elemelem_ptr (const dof_id_type i) override
 
virtual const Elemquery_elem_ptr (const dof_id_type i) const override
 
virtual Elemquery_elem_ptr (const dof_id_type i) override
 
virtual Nodeadd_point (const Point &p, const dof_id_type id=DofObject::invalid_id, const processor_id_type proc_id=DofObject::invalid_processor_id) override
 functions for adding /deleting nodes elements. More...
 
virtual Nodeadd_node (Node *n) override
 Add Node n to the end of the vertex array. More...
 
virtual Nodeinsert_node (Node *n) override
 Insert Node n into the Mesh at a location consistent with n->id(), allocating extra storage if necessary. More...
 
virtual void delete_node (Node *n) override
 Removes the Node n from the mesh. More...
 
virtual void renumber_node (dof_id_type old_id, dof_id_type new_id) override
 Changes the id of node old_id, both by changing node(old_id)->id() and by moving node(old_id) in the mesh's internal container. More...
 
virtual Elemadd_elem (Elem *e) override
 Add elem e to the end of the element array. More...
 
virtual Eleminsert_elem (Elem *e) override
 Insert elem e to the element array, preserving its id and replacing/deleting any existing element with the same id. More...
 
virtual void delete_elem (Elem *e) override
 Removes element e from the mesh. More...
 
virtual void renumber_elem (dof_id_type old_id, dof_id_type new_id) override
 Changes the id of element old_id, both by changing elem(old_id)->id() and by moving elem(old_id) in the mesh's internal container. More...
 
virtual void fix_broken_node_and_element_numbering () override
 There is no reason for a user to ever call this function. More...
 
void stitch_meshes (const ReplicatedMesh &other_mesh, boundary_id_type this_mesh_boundary, boundary_id_type other_mesh_boundary, Real tol=TOLERANCE, bool clear_stitched_boundary_ids=false, bool verbose=true, bool use_binary_search=true, bool enforce_all_nodes_match_on_boundaries=false)
 Stitch other_mesh to this mesh so that this mesh is the union of the two meshes. More...
 
void stitch_surfaces (boundary_id_type boundary_id_1, boundary_id_type boundary_id_2, Real tol=TOLERANCE, bool clear_stitched_boundary_ids=false, bool verbose=true, bool use_binary_search=true, bool enforce_all_nodes_match_on_boundaries=false)
 Similar to stitch_meshes, except that we stitch two adjacent surfaces within this mesh. More...
 
std::vector< dof_id_typeget_disconnected_subdomains (std::vector< subdomain_id_type > *subdomain_ids=nullptr) const
 Return IDs of representative elements of all disconnected subdomains. More...
 
std::unordered_map< dof_id_type, std::vector< std::vector< Point > > > get_boundary_points () const
 Return all points on boundary. More...
 
virtual element_iterator elements_begin () override
 Elem iterator accessor functions. More...
 
virtual const_element_iterator elements_begin () const override
 
virtual element_iterator elements_end () override
 
virtual const_element_iterator elements_end () const override
 
virtual SimpleRange< element_iteratorelement_ptr_range () override
 
virtual SimpleRange< const_element_iteratorelement_ptr_range () const override
 
virtual element_iterator active_elements_begin () override
 Active, local, and negation forms of the element iterators described above. More...
 
virtual const_element_iterator active_elements_begin () const override
 
virtual element_iterator active_elements_end () override
 
virtual const_element_iterator active_elements_end () const override
 
virtual SimpleRange< element_iteratoractive_element_ptr_range () override
 
virtual SimpleRange< const_element_iteratoractive_element_ptr_range () const override
 
virtual element_iterator ancestor_elements_begin () override
 Iterate over elements for which elem->ancestor() is true. More...
 
virtual const_element_iterator ancestor_elements_begin () const override
 
virtual element_iterator ancestor_elements_end () override
 
virtual const_element_iterator ancestor_elements_end () const override
 
virtual element_iterator subactive_elements_begin () override
 Iterate over elements for which elem->subactive() is true. More...
 
virtual const_element_iterator subactive_elements_begin () const override
 
virtual element_iterator subactive_elements_end () override
 
virtual const_element_iterator subactive_elements_end () const override
 
virtual element_iterator not_active_elements_begin () override
 
virtual const_element_iterator not_active_elements_begin () const override
 
virtual element_iterator not_active_elements_end () override
 
virtual const_element_iterator not_active_elements_end () const override
 
virtual element_iterator not_ancestor_elements_begin () override
 
virtual const_element_iterator not_ancestor_elements_begin () const override
 
virtual element_iterator not_ancestor_elements_end () override
 
virtual const_element_iterator not_ancestor_elements_end () const override
 
virtual element_iterator not_subactive_elements_begin () override
 
virtual const_element_iterator not_subactive_elements_begin () const override
 
virtual element_iterator not_subactive_elements_end () override
 
virtual const_element_iterator not_subactive_elements_end () const override
 
virtual element_iterator local_elements_begin () override
 
virtual const_element_iterator local_elements_begin () const override
 
virtual element_iterator local_elements_end () override
 
virtual const_element_iterator local_elements_end () const override
 
virtual element_iterator semilocal_elements_begin () override
 Iterate over elements for which elem->is_semilocal() is true for the current processor. More...
 
virtual const_element_iterator semilocal_elements_begin () const override
 
virtual element_iterator semilocal_elements_end () override
 
virtual const_element_iterator semilocal_elements_end () const override
 
virtual element_iterator active_semilocal_elements_begin () override
 
virtual const_element_iterator active_semilocal_elements_begin () const override
 
virtual element_iterator active_semilocal_elements_end () override
 
virtual const_element_iterator active_semilocal_elements_end () const override
 
virtual element_iterator facelocal_elements_begin () override
 Iterate over elements which are on or have a neighbor on the current processor. More...
 
virtual const_element_iterator facelocal_elements_begin () const override
 
virtual element_iterator facelocal_elements_end () override
 
virtual const_element_iterator facelocal_elements_end () const override
 
virtual element_iterator not_local_elements_begin () override
 
virtual const_element_iterator not_local_elements_begin () const override
 
virtual element_iterator not_local_elements_end () override
 
virtual const_element_iterator not_local_elements_end () const override
 
virtual element_iterator active_local_elements_begin () override
 
virtual const_element_iterator active_local_elements_begin () const override
 
virtual element_iterator active_local_elements_end () override
 
virtual const_element_iterator active_local_elements_end () const override
 
virtual SimpleRange< element_iteratoractive_local_element_ptr_range () override
 
virtual SimpleRange< const_element_iteratoractive_local_element_ptr_range () const override
 
virtual element_iterator active_not_local_elements_begin () override
 
virtual const_element_iterator active_not_local_elements_begin () const override
 
virtual element_iterator active_not_local_elements_end () override
 
virtual const_element_iterator active_not_local_elements_end () const override
 
virtual element_iterator level_elements_begin (unsigned int level) override
 Iterate over elements of a given level. More...
 
virtual const_element_iterator level_elements_begin (unsigned int level) const override
 
virtual element_iterator level_elements_end (unsigned int level) override
 
virtual const_element_iterator level_elements_end (unsigned int level) const override
 
virtual element_iterator not_level_elements_begin (unsigned int level) override
 
virtual const_element_iterator not_level_elements_begin (unsigned int level) const override
 
virtual element_iterator not_level_elements_end (unsigned int level) override
 
virtual const_element_iterator not_level_elements_end (unsigned int level) const override
 
virtual element_iterator local_level_elements_begin (unsigned int level) override
 
virtual const_element_iterator local_level_elements_begin (unsigned int level) const override
 
virtual element_iterator local_level_elements_end (unsigned int level) override
 
virtual const_element_iterator local_level_elements_end (unsigned int level) const override
 
virtual element_iterator local_not_level_elements_begin (unsigned int level) override
 
virtual const_element_iterator local_not_level_elements_begin (unsigned int level) const override
 
virtual element_iterator local_not_level_elements_end (unsigned int level) override
 
virtual const_element_iterator local_not_level_elements_end (unsigned int level) const override
 
virtual element_iterator pid_elements_begin (processor_id_type proc_id) override
 Iterate over all elements with a specified processor id. More...
 
virtual const_element_iterator pid_elements_begin (processor_id_type proc_id) const override
 
virtual element_iterator pid_elements_end (processor_id_type proc_id) override
 
virtual const_element_iterator pid_elements_end (processor_id_type proc_id) const override
 
virtual element_iterator type_elements_begin (ElemType type) override
 Iterate over all elements with a specified geometric type. More...
 
virtual const_element_iterator type_elements_begin (ElemType type) const override
 
virtual element_iterator type_elements_end (ElemType type) override
 
virtual const_element_iterator type_elements_end (ElemType type) const override
 
virtual element_iterator active_type_elements_begin (ElemType type) override
 
virtual const_element_iterator active_type_elements_begin (ElemType type) const override
 
virtual element_iterator active_type_elements_end (ElemType type) override
 
virtual const_element_iterator active_type_elements_end (ElemType type) const override
 
virtual element_iterator active_pid_elements_begin (processor_id_type proc_id) override
 
virtual const_element_iterator active_pid_elements_begin (processor_id_type proc_id) const override
 
virtual element_iterator active_pid_elements_end (processor_id_type proc_id) override
 
virtual const_element_iterator active_pid_elements_end (processor_id_type proc_id) const override
 
virtual element_iterator unpartitioned_elements_begin () override
 Iterate over unpartitioned elements in the Mesh. More...
 
virtual const_element_iterator unpartitioned_elements_begin () const override
 
virtual element_iterator unpartitioned_elements_end () override
 
virtual const_element_iterator unpartitioned_elements_end () const override
 
virtual element_iterator active_unpartitioned_elements_begin () override
 Iterate over active unpartitioned elements in the Mesh. More...
 
virtual const_element_iterator active_unpartitioned_elements_begin () const override
 
virtual element_iterator active_unpartitioned_elements_end () override
 
virtual const_element_iterator active_unpartitioned_elements_end () const override
 
virtual element_iterator active_local_subdomain_elements_begin (subdomain_id_type subdomain_id) override
 
virtual const_element_iterator active_local_subdomain_elements_begin (subdomain_id_type subdomain_id) const override
 
virtual element_iterator active_local_subdomain_elements_end (subdomain_id_type subdomain_id) override
 
virtual const_element_iterator active_local_subdomain_elements_end (subdomain_id_type subdomain_id) const override
 
virtual SimpleRange< element_iteratoractive_local_subdomain_elements_ptr_range (subdomain_id_type subdomain_id) override
 
virtual SimpleRange< const_element_iteratoractive_local_subdomain_elements_ptr_range (subdomain_id_type subdomain_id) const override
 
virtual element_iterator active_subdomain_elements_begin (subdomain_id_type subdomain_id) override
 
virtual const_element_iterator active_subdomain_elements_begin (subdomain_id_type subdomain_id) const override
 
virtual element_iterator active_subdomain_elements_end (subdomain_id_type subdomain_id) override
 
virtual const_element_iterator active_subdomain_elements_end (subdomain_id_type subdomain_id) const override
 
virtual SimpleRange< element_iteratoractive_subdomain_elements_ptr_range (subdomain_id_type subdomain_id) override
 
virtual SimpleRange< const_element_iteratoractive_subdomain_elements_ptr_range (subdomain_id_type subdomain_id) const override
 
virtual element_iterator active_subdomain_set_elements_begin (std::set< subdomain_id_type > ss) override
 
virtual const_element_iterator active_subdomain_set_elements_begin (std::set< subdomain_id_type > ss) const override
 
virtual element_iterator active_subdomain_set_elements_end (std::set< subdomain_id_type > ss) override
 
virtual const_element_iterator active_subdomain_set_elements_end (std::set< subdomain_id_type > ss) const override
 
virtual SimpleRange< element_iteratoractive_subdomain_set_elements_ptr_range (std::set< subdomain_id_type > ss) override
 
virtual SimpleRange< const_element_iteratoractive_subdomain_set_elements_ptr_range (std::set< subdomain_id_type > ss) const override
 
virtual element_iterator ghost_elements_begin () override
 Iterate over "ghost" elements in the Mesh. More...
 
virtual const_element_iterator ghost_elements_begin () const override
 
virtual element_iterator ghost_elements_end () override
 
virtual const_element_iterator ghost_elements_end () const override
 
virtual element_iterator evaluable_elements_begin (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) override
 Iterate over elements in the Mesh where the solution (as distributed by the given DofMap) can be evaluated, for the given variable var_num, or for all variables by default. More...
 
virtual const_element_iterator evaluable_elements_begin (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) const override
 
virtual element_iterator evaluable_elements_end (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) override
 
virtual const_element_iterator evaluable_elements_end (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) const override
 
virtual element_iterator flagged_elements_begin (unsigned char rflag) override
 Iterate over all elements with a specified refinement flag. More...
 
virtual const_element_iterator flagged_elements_begin (unsigned char rflag) const override
 
virtual element_iterator flagged_elements_end (unsigned char rflag) override
 
virtual const_element_iterator flagged_elements_end (unsigned char rflag) const override
 
virtual element_iterator flagged_pid_elements_begin (unsigned char rflag, processor_id_type pid) override
 Iterate over all elements with a specified refinement flag on a specified processor. More...
 
virtual const_element_iterator flagged_pid_elements_begin (unsigned char rflag, processor_id_type pid) const override
 
virtual element_iterator flagged_pid_elements_end (unsigned char rflag, processor_id_type pid) override
 
virtual const_element_iterator flagged_pid_elements_end (unsigned char rflag, processor_id_type pid) const override
 
virtual node_iterator nodes_begin () override
 Node iterator accessor functions. More...
 
virtual const_node_iterator nodes_begin () const override
 
virtual node_iterator nodes_end () override
 
virtual const_node_iterator nodes_end () const override
 
virtual SimpleRange< node_iteratornode_ptr_range () override
 
virtual SimpleRange< const_node_iteratornode_ptr_range () const override
 
virtual node_iterator active_nodes_begin () override
 Iterate over only the active nodes in the Mesh. More...
 
virtual const_node_iterator active_nodes_begin () const override
 
virtual node_iterator active_nodes_end () override
 
virtual const_node_iterator active_nodes_end () const override
 
virtual node_iterator local_nodes_begin () override
 Iterate over local nodes (nodes whose processor_id() matches the current processor). More...
 
virtual const_node_iterator local_nodes_begin () const override
 
virtual node_iterator local_nodes_end () override
 
virtual const_node_iterator local_nodes_end () const override
 
virtual SimpleRange< node_iteratorlocal_node_ptr_range () override
 
virtual SimpleRange< const_node_iteratorlocal_node_ptr_range () const override
 
virtual node_iterator pid_nodes_begin (processor_id_type proc_id) override
 Iterate over nodes with processor_id() == proc_id. More...
 
virtual const_node_iterator pid_nodes_begin (processor_id_type proc_id) const override
 
virtual node_iterator pid_nodes_end (processor_id_type proc_id) override
 
virtual const_node_iterator pid_nodes_end (processor_id_type proc_id) const override
 
virtual node_iterator bid_nodes_begin (boundary_id_type bndry_id) override
 Iterate over nodes for which BoundaryInfo::has_boundary_id(node, bndry_id) is true. More...
 
virtual const_node_iterator bid_nodes_begin (boundary_id_type bndry_id) const override
 
virtual node_iterator bid_nodes_end (boundary_id_type bndry_id) override
 
virtual const_node_iterator bid_nodes_end (boundary_id_type bndry_id) const override
 
virtual node_iterator bnd_nodes_begin () override
 Iterate over nodes for which BoundaryInfo::n_boundary_ids(node) > 0. More...
 
virtual const_node_iterator bnd_nodes_begin () const override
 
virtual node_iterator bnd_nodes_end () override
 
virtual const_node_iterator bnd_nodes_end () const override
 
virtual node_iterator evaluable_nodes_begin (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) override
 Iterate over nodes in the Mesh where the solution (as distributed by the given DofMap) can be evaluated, for the given variable var_num, or for all variables by default. More...
 
virtual const_node_iterator evaluable_nodes_begin (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) const override
 
virtual node_iterator evaluable_nodes_end (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) override
 
virtual const_node_iterator evaluable_nodes_end (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) const override
 
virtual void read (const std::string &name, void *mesh_data=nullptr, bool skip_renumber_nodes_and_elements=false, bool skip_find_neighbors=false) override
 Reads the file specified by name. More...
 
virtual void write (const std::string &name) override
 Write the file specified by name. More...
 
void write (const std::string &name, const std::vector< Number > &values, const std::vector< std::string > &variable_names)
 Write to the file specified by name. More...
 
virtual void all_first_order () override
 Converts a mesh with higher-order elements into a mesh with linear elements. More...
 
virtual void all_second_order (const bool full_ordered=true) override
 Converts a (conforming, non-refined) mesh with linear elements into a mesh with second-order elements. More...
 
void create_pid_mesh (UnstructuredMesh &pid_mesh, const processor_id_type pid) const
 Generates a new mesh containing all the elements which are assigned to processor pid. More...
 
void create_submesh (UnstructuredMesh &new_mesh, const const_element_iterator &it, const const_element_iterator &it_end) const
 Constructs a mesh called "new_mesh" from the current mesh by iterating over the elements between it and it_end and adding them to the new mesh. More...
 
virtual void copy_nodes_and_elements (const UnstructuredMesh &other_mesh, const bool skip_find_neighbors=false, dof_id_type element_id_offset=0, dof_id_type node_id_offset=0, unique_id_type unique_id_offset=0)
 Deep copy of nodes and elements from another unstructured mesh class (used by subclass copy constructors and by mesh merging operations) More...
 
virtual void find_neighbors (const bool reset_remote_elements=false, const bool reset_current_list=true) override
 Other functions from MeshBase requiring re-definition. More...
 
virtual bool contract () override
 Delete subactive (i.e. More...
 
virtual std::unique_ptr< Partitioner > & partitioner ()
 A partitioner to use at each prepare_for_use() More...
 
const BoundaryInfoget_boundary_info () const
 The information about boundary ids on the mesh. More...
 
BoundaryInfoget_boundary_info ()
 Writable information about boundary ids on the mesh. More...
 
bool is_prepared () const
 
virtual bool is_serial () const
 
virtual bool is_serial_on_zero () const
 
virtual void set_distributed ()
 Asserts that not all elements and nodes of the mesh necessarily exist on the current processor. More...
 
virtual bool is_replicated () const
 
virtual void allgather ()
 Gathers all elements and nodes of the mesh onto every processor. More...
 
virtual void gather_to_zero ()
 Gathers all elements and nodes of the mesh onto processor zero. More...
 
virtual void delete_remote_elements ()
 When supported, deletes all nonlocal elements of the mesh except for "ghosts" which touch a local element, and deletes all nodes which are not part of a local or ghost element. More...
 
unsigned int mesh_dimension () const
 
void set_mesh_dimension (unsigned char d)
 Resets the logical dimension of the mesh. More...
 
const std::set< unsigned char > & elem_dimensions () const
 
void set_elem_dimensions (const std::set< unsigned char > &elem_dims)
 Most of the time you should not need to call this, as the element dimensions will be set automatically by a call to cache_elem_dims(), therefore only call this if you know what you're doing. More...
 
unsigned int spatial_dimension () const
 
void set_spatial_dimension (unsigned char d)
 Sets the "spatial dimension" of the Mesh. More...
 
dof_id_type n_nodes_on_proc (const processor_id_type proc) const
 
dof_id_type n_local_nodes () const
 
dof_id_type n_unpartitioned_nodes () const
 
unique_id_type next_unique_id ()
 
void set_next_unique_id (unique_id_type id)
 Sets the next unique id to be used. More...
 
dof_id_type n_elem_on_proc (const processor_id_type proc) const
 
dof_id_type n_local_elem () const
 
dof_id_type n_unpartitioned_elem () const
 
dof_id_type n_active_elem_on_proc (const processor_id_type proc) const
 
dof_id_type n_active_local_elem () const
 
dof_id_type n_sub_elem () const
 
dof_id_type n_active_sub_elem () const
 Same as n_sub_elem(), but only counts active elements. More...
 
virtual const Nodenode_ref (const dof_id_type i) const
 
virtual Nodenode_ref (const dof_id_type i)
 
virtual const Nodenode (const dof_id_type i) const
 
virtual Nodenode (const dof_id_type i)
 
virtual const Elemelem_ref (const dof_id_type i) const
 
virtual Elemelem_ref (const dof_id_type i)
 
virtual const Elemelem (const dof_id_type i) const
 
virtual Elemelem (const dof_id_type i)
 
virtual const Elemquery_elem (const dof_id_type i) const
 
virtual Elemquery_elem (const dof_id_type i)
 
virtual void own_node (Node &)
 Takes ownership of node n on this partition of a distributed mesh, by setting n.processor_id() to this->processor_id(), as well as changing n.id() and moving it in the mesh's internal container to give it a new authoritative id. More...
 
ElemMappingType default_mapping_type () const
 Returns the default master space to physical space mapping basis functions to be used on newly added elements. More...
 
void set_default_mapping_type (const ElemMappingType type)
 Set the default master space to physical space mapping basis functions to be used on newly added elements. More...
 
unsigned char default_mapping_data () const
 Returns any default data value used by the master space to physical space mapping. More...
 
void set_default_mapping_data (const unsigned char data)
 Set the default master space to physical space mapping basis functions to be used on newly added elements. More...
 
unsigned int add_elem_integer (const std::string &name, bool allocate_data=true)
 Register an integer datum (of type dof_id_type) to be added to each element in the mesh. More...
 
std::vector< unsigned intadd_elem_integers (const std::vector< std::string > &names, bool allocate_data=true)
 Register integer data (of type dof_id_type) to be added to each element in the mesh, one string name for each new integer. More...
 
unsigned int get_elem_integer_index (const std::string &name) const
 
bool has_elem_integer (const std::string &name) const
 
const std::string & get_elem_integer_name (unsigned int i) const
 
unsigned int n_elem_integers () const
 
template<typename T >
unsigned int add_elem_datum (const std::string &name, bool allocate_data=true)
 Register a datum (of type T) to be added to each element in the mesh. More...
 
template<typename T >
std::vector< unsigned intadd_elem_data (const std::vector< std::string > &names, bool allocate_data=true)
 Register data (of type T) to be added to each element in the mesh. More...
 
unsigned int add_node_integer (const std::string &name, bool allocate_data=true)
 Register an integer datum (of type dof_id_type) to be added to each node in the mesh. More...
 
std::vector< unsigned intadd_node_integers (const std::vector< std::string > &names, bool allocate_data=true)
 Register integer data (of type dof_id_type) to be added to each node in the mesh. More...
 
unsigned int get_node_integer_index (const std::string &name) const
 
bool has_node_integer (const std::string &name) const
 
const std::string & get_node_integer_name (unsigned int i) const
 
unsigned int n_node_integers () const
 
template<typename T >
unsigned int add_node_datum (const std::string &name, bool allocate_data=true)
 Register a datum (of type T) to be added to each node in the mesh. More...
 
template<typename T >
std::vector< unsigned intadd_node_data (const std::vector< std::string > &name, bool allocate_data=true)
 Register data (of type T) to be added to each node in the mesh. More...
 
void prepare_for_use (const bool skip_renumber_nodes_and_elements=false, const bool skip_find_neighbors=false)
 Prepare a newly ecreated (or read) mesh for use. More...
 
virtual void partition (const unsigned int n_parts)
 Call the default partitioner (currently metis_partition()). More...
 
void partition ()
 
virtual void redistribute ()
 Redistribute elements between processors. More...
 
virtual void update_post_partitioning ()
 Recalculate any cached data after elements and nodes have been repartitioned. More...
 
void allow_renumbering (bool allow)
 If false is passed in then this mesh will no longer be renumbered when being prepared for use. More...
 
bool allow_renumbering () const
 
void allow_remote_element_removal (bool allow)
 If false is passed in then this mesh will no longer have remote elements deleted when being prepared for use; i.e. More...
 
bool allow_remote_element_removal () const
 
void skip_noncritical_partitioning (bool skip)
 If true is passed in then the elements on this mesh will no longer be (re)partitioned, and the nodes on this mesh will only be repartitioned if they are found "orphaned" via coarsening or other removal of the last element responsible for their node/element processor id consistency. More...
 
bool skip_noncritical_partitioning () const
 
void skip_partitioning (bool skip)
 If true is passed in then nothing on this mesh will be (re)partitioned. More...
 
bool skip_partitioning () const
 
void add_ghosting_functor (GhostingFunctor &ghosting_functor)
 Adds a functor which can specify ghosting requirements for use on distributed meshes. More...
 
void add_ghosting_functor (std::shared_ptr< GhostingFunctor > ghosting_functor)
 Adds a functor which can specify ghosting requirements for use on distributed meshes. More...
 
void remove_ghosting_functor (GhostingFunctor &ghosting_functor)
 Removes a functor which was previously added to the set of ghosting functors. More...
 
std::set< GhostingFunctor * >::const_iterator ghosting_functors_begin () const
 Beginning of range of ghosting functors. More...
 
std::set< GhostingFunctor * >::const_iterator ghosting_functors_end () const
 End of range of ghosting functors. More...
 
GhostingFunctordefault_ghosting ()
 Default ghosting functor. More...
 
void subdomain_ids (std::set< subdomain_id_type > &ids) const
 Constructs a list of all subdomain identifiers in the global mesh. More...
 
subdomain_id_type n_subdomains () const
 
unsigned int n_partitions () const
 
std::string get_info () const
 
void print_info (std::ostream &os=libMesh::out) const
 Prints relevant information about the mesh. More...
 
unsigned int recalculate_n_partitions ()
 In a few (very rare) cases, the user may have manually tagged the elements with specific processor IDs by hand, without using a partitioner. More...
 
const PointLocatorBasepoint_locator () const
 
std::unique_ptr< PointLocatorBasesub_point_locator () const
 
void set_point_locator_close_to_point_tol (Real val)
 Set value used by PointLocatorBase::close_to_point_tol(). More...
 
Real get_point_locator_close_to_point_tol () const
 
void clear_point_locator ()
 Releases the current PointLocator object. More...
 
void set_count_lower_dim_elems_in_point_locator (bool count_lower_dim_elems)
 In the point locator, do we count lower dimensional elements when we refine point locator regions? This is relevant in tree-based point locators, for example. More...
 
bool get_count_lower_dim_elems_in_point_locator () const
 Get the current value of _count_lower_dim_elems_in_point_locator. More...
 
virtual void libmesh_assert_valid_parallel_ids () const
 Verify id and processor_id consistency of our elements and nodes containers. More...
 
std::string & subdomain_name (subdomain_id_type id)
 
const std::string & subdomain_name (subdomain_id_type id) const
 
subdomain_id_type get_id_by_name (const std::string &name) const
 
std::map< subdomain_id_type, std::string > & set_subdomain_name_map ()
 
const std::map< subdomain_id_type, std::string > & get_subdomain_name_map () const
 
void cache_elem_dims ()
 Search the mesh and cache the different dimensions of the elements present in the mesh. More...
 
void detect_interior_parents ()
 Search the mesh for elements that have a neighboring element of dim+1 and set that element as the interior parent. More...
 
const Parallel::Communicator & comm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 

Public Attributes

std::unique_ptr< BoundaryInfoboundary_info
 This class holds the boundary information. More...
 

Protected Member Functions

unsigned intset_n_partitions ()
 
void size_elem_extra_integers ()
 Size extra-integer arrays of all elements in the mesh. More...
 
void size_node_extra_integers ()
 Size extra-integer arrays of all nodes in the mesh. More...
 
std::pair< std::vector< unsigned int >, std::vector< unsigned int > > merge_extra_integer_names (const MeshBase &other)
 Merge extra-integer arrays from an other mesh. More...
 

Protected Attributes

std::vector< Node * > _nodes
 The vertices (spatial coordinates) of the mesh. More...
 
std::vector< Elem * > _elements
 The elements in the mesh. More...
 
unsigned int _n_parts
 The number of partitions the mesh has. More...
 
ElemMappingType _default_mapping_type
 The default mapping type (typically Lagrange) between master and physical space to assign to newly added elements. More...
 
unsigned char _default_mapping_data
 The default mapping data (unused with Lagrange, used for nodal weight lookup index with rational bases) to assign to newly added elements. More...
 
bool _is_prepared
 Flag indicating if the mesh has been prepared for use. More...
 
std::unique_ptr< PointLocatorBase_point_locator
 A PointLocator class for this mesh. More...
 
bool _count_lower_dim_elems_in_point_locator
 Do we count lower dimensional elements in point locator refinement? This is relevant in tree-based point locators, for example. More...
 
std::unique_ptr< Partitioner_partitioner
 A partitioner to use at each prepare_for_use(). More...
 
unique_id_type _next_unique_id
 The next available unique id for assigning ids to DOF objects. More...
 
bool _skip_noncritical_partitioning
 If this is true then no partitioning should be done with the possible exception of orphaned nodes. More...
 
bool _skip_all_partitioning
 If this is true then no partitioning should be done. More...
 
bool _skip_renumber_nodes_and_elements
 If this is true then renumbering will be kept to a minimum. More...
 
bool _allow_remote_element_removal
 If this is false then even on DistributedMesh remote elements will not be deleted during mesh preparation. More...
 
std::map< subdomain_id_type, std::string > _block_id_to_name
 This structure maintains the mapping of named blocks for file formats that support named blocks. More...
 
std::set< unsigned char > _elem_dims
 We cache the dimension of the elements present in the mesh. More...
 
unsigned char _spatial_dimension
 The "spatial dimension" of the Mesh. More...
 
std::vector< std::string > _elem_integer_names
 The array of names for integer data associated with each element in the mesh. More...
 
std::vector< std::string > _node_integer_names
 The array of names for integer data associated with each node in the mesh. More...
 
std::unique_ptr< GhostingFunctor_default_ghosting
 The default geometric GhostingFunctor, used to implement standard libMesh element ghosting behavior. More...
 
std::set< GhostingFunctor * > _ghosting_functors
 The list of all GhostingFunctor objects to be used when distributing a DistributedMesh. More...
 
std::map< GhostingFunctor *, std::shared_ptr< GhostingFunctor > > _shared_functors
 Hang on to references to any GhostingFunctor objects we were passed in shared_ptr form. More...
 
Real _point_locator_close_to_point_tol
 If nonzero, we will call PointLocatorBase::set_close_to_point_tol() on any PointLocators that we create. More...
 
const Parallel::Communicator & _communicator
 

Private Types

typedef std::vector< Elem * >::iterator elem_iterator_imp
 Typedefs for the container implementation. More...
 
typedef std::vector< Elem * >::const_iterator const_elem_iterator_imp
 
typedef std::vector< Node * >::iterator node_iterator_imp
 Typedefs for the container implementation. More...
 
typedef std::vector< Node * >::const_iterator const_node_iterator_imp
 

Private Member Functions

void stitching_helper (const ReplicatedMesh *other_mesh, boundary_id_type boundary_id_1, boundary_id_type boundary_id_2, Real tol, bool clear_stitched_boundary_ids, bool verbose, bool use_binary_search, bool enforce_all_nodes_match_on_boundaries, bool skip_find_neighbors)
 Helper function for stitch_meshes and stitch_surfaces that does the mesh stitching. More...
 

Detailed Description

Definition at line 34 of file serial_mesh.h.

Member Typedef Documentation

◆ const_elem_iterator_imp

typedef std::vector<Elem *>::const_iterator libMesh::ReplicatedMesh::const_elem_iterator_imp
privateinherited

Definition at line 536 of file replicated_mesh.h.

◆ const_node_iterator_imp

typedef std::vector<Node *>::const_iterator libMesh::ReplicatedMesh::const_node_iterator_imp
privateinherited

Definition at line 543 of file replicated_mesh.h.

◆ elem_iterator_imp

typedef std::vector<Elem *>::iterator libMesh::ReplicatedMesh::elem_iterator_imp
privateinherited

Typedefs for the container implementation.

In this case, it's just a std::vector<Elem *>.

Definition at line 535 of file replicated_mesh.h.

◆ node_iterator_imp

typedef std::vector<Node *>::iterator libMesh::ReplicatedMesh::node_iterator_imp
privateinherited

Typedefs for the container implementation.

In this case, it's just a std::vector<Node *>.

Definition at line 542 of file replicated_mesh.h.

◆ Predicate

We need an empty, generic class to act as a predicate for this and derived mesh classes.

Definition at line 1209 of file mesh_base.h.

Constructor & Destructor Documentation

◆ SerialMesh() [1/2]

libMesh::SerialMesh::SerialMesh ( const Parallel::Communicator &  comm_in,
unsigned char  dim = 1 
)
inlineexplicit

Definition at line 38 of file serial_mesh.h.

40  : ReplicatedMesh(comm_in,dim) {}

◆ SerialMesh() [2/2]

libMesh::SerialMesh::SerialMesh ( const UnstructuredMesh other_mesh)
inline

Definition at line 42 of file serial_mesh.h.

42 : ReplicatedMesh(other_mesh) {}

◆ ~SerialMesh()

libMesh::SerialMesh::~SerialMesh ( )
inline

Definition at line 47 of file serial_mesh.h.

47 {}

Member Function Documentation

◆ active_element_ptr_range() [1/2]

virtual SimpleRange<const_element_iterator> libMesh::ReplicatedMesh::active_element_ptr_range ( ) const
inlineoverridevirtualinherited

◆ active_element_ptr_range() [2/2]

virtual SimpleRange<element_iterator> libMesh::ReplicatedMesh::active_element_ptr_range ( )
inlineoverridevirtualinherited

◆ active_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_elements_begin ( )
overridevirtualinherited

Active, local, and negation forms of the element iterators described above.

An "active" element is an element without children (i.e. has not been refined). A "local" element is one whose processor_id() matches the current processor.

Implements libMesh::MeshBase.

Referenced by libMesh::ReplicatedMesh::active_element_ptr_range(), and libMesh::ReplicatedMesh::n_active_elem().

◆ active_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_elements_end ( )
overridevirtualinherited

◆ active_local_element_ptr_range() [1/2]

virtual SimpleRange<const_element_iterator> libMesh::ReplicatedMesh::active_local_element_ptr_range ( ) const
inlineoverridevirtualinherited

◆ active_local_element_ptr_range() [2/2]

virtual SimpleRange<element_iterator> libMesh::ReplicatedMesh::active_local_element_ptr_range ( )
inlineoverridevirtualinherited

◆ active_local_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_local_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_local_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_local_elements_begin ( )
overridevirtualinherited

◆ active_local_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_local_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_local_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_local_elements_end ( )
overridevirtualinherited

◆ active_local_subdomain_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_local_subdomain_elements_begin ( subdomain_id_type  subdomain_id) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_local_subdomain_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_local_subdomain_elements_begin ( subdomain_id_type  subdomain_id)
overridevirtualinherited

◆ active_local_subdomain_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_local_subdomain_elements_end ( subdomain_id_type  subdomain_id) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_local_subdomain_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_local_subdomain_elements_end ( subdomain_id_type  subdomain_id)
overridevirtualinherited

◆ active_local_subdomain_elements_ptr_range() [1/2]

virtual SimpleRange<const_element_iterator> libMesh::ReplicatedMesh::active_local_subdomain_elements_ptr_range ( subdomain_id_type  subdomain_id) const
inlineoverridevirtualinherited

◆ active_local_subdomain_elements_ptr_range() [2/2]

virtual SimpleRange<element_iterator> libMesh::ReplicatedMesh::active_local_subdomain_elements_ptr_range ( subdomain_id_type  subdomain_id)
inlineoverridevirtualinherited

◆ active_nodes_begin() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::active_nodes_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_nodes_begin() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::active_nodes_begin ( )
overridevirtualinherited

Iterate over only the active nodes in the Mesh.

Implements libMesh::MeshBase.

◆ active_nodes_end() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::active_nodes_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_nodes_end() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::active_nodes_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_not_local_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_not_local_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_not_local_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_not_local_elements_begin ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_not_local_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_not_local_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_not_local_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_not_local_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_pid_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_pid_elements_begin ( processor_id_type  proc_id) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_pid_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_pid_elements_begin ( processor_id_type  proc_id)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_pid_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_pid_elements_end ( processor_id_type  proc_id) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_pid_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_pid_elements_end ( processor_id_type  proc_id)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_semilocal_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_semilocal_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_semilocal_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_semilocal_elements_begin ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_semilocal_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_semilocal_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_semilocal_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_semilocal_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_subdomain_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_subdomain_elements_begin ( subdomain_id_type  subdomain_id) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_subdomain_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_subdomain_elements_begin ( subdomain_id_type  subdomain_id)
overridevirtualinherited

◆ active_subdomain_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_subdomain_elements_end ( subdomain_id_type  subdomain_id) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_subdomain_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_subdomain_elements_end ( subdomain_id_type  subdomain_id)
overridevirtualinherited

◆ active_subdomain_elements_ptr_range() [1/2]

virtual SimpleRange<const_element_iterator> libMesh::ReplicatedMesh::active_subdomain_elements_ptr_range ( subdomain_id_type  subdomain_id) const
inlineoverridevirtualinherited

◆ active_subdomain_elements_ptr_range() [2/2]

virtual SimpleRange<element_iterator> libMesh::ReplicatedMesh::active_subdomain_elements_ptr_range ( subdomain_id_type  subdomain_id)
inlineoverridevirtualinherited

◆ active_subdomain_set_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_subdomain_set_elements_begin ( std::set< subdomain_id_type ss) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_subdomain_set_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_subdomain_set_elements_begin ( std::set< subdomain_id_type ss)
overridevirtualinherited

◆ active_subdomain_set_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_subdomain_set_elements_end ( std::set< subdomain_id_type ss) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_subdomain_set_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_subdomain_set_elements_end ( std::set< subdomain_id_type ss)
overridevirtualinherited

◆ active_subdomain_set_elements_ptr_range() [1/2]

virtual SimpleRange<const_element_iterator> libMesh::ReplicatedMesh::active_subdomain_set_elements_ptr_range ( std::set< subdomain_id_type ss) const
inlineoverridevirtualinherited

◆ active_subdomain_set_elements_ptr_range() [2/2]

virtual SimpleRange<element_iterator> libMesh::ReplicatedMesh::active_subdomain_set_elements_ptr_range ( std::set< subdomain_id_type ss)
inlineoverridevirtualinherited

◆ active_type_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_type_elements_begin ( ElemType  type) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_type_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_type_elements_begin ( ElemType  type)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_type_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_type_elements_end ( ElemType  type) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_type_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_type_elements_end ( ElemType  type)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_unpartitioned_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_unpartitioned_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_unpartitioned_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_unpartitioned_elements_begin ( )
overridevirtualinherited

Iterate over active unpartitioned elements in the Mesh.

Implements libMesh::MeshBase.

◆ active_unpartitioned_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::active_unpartitioned_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ active_unpartitioned_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::active_unpartitioned_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ add_elem()

Elem * libMesh::ReplicatedMesh::add_elem ( Elem e)
overridevirtualinherited

Add elem e to the end of the element array.

To add an element locally, set e->processor_id() before adding it. To ensure a specific element id, call e->set_id() before adding it; only do this in parallel if you are manually keeping ids consistent.

Users should call MeshBase::prepare_for_use() after elements are added to and/or deleted from the mesh.

Implements libMesh::MeshBase.

Definition at line 282 of file replicated_mesh.C.

283 {
284  libmesh_assert(e);
285 
286  // We no longer merely append elements with ReplicatedMesh
287 
288  // If the user requests a valid id that doesn't correspond to an
289  // existing element, let's give them that id, resizing the elements
290  // container if necessary.
291  if (!e->valid_id())
292  e->set_id (cast_int<dof_id_type>(_elements.size()));
293 
294 #ifdef LIBMESH_ENABLE_UNIQUE_ID
295  if (!e->valid_unique_id())
296  e->set_unique_id() = _next_unique_id++;
297  else
298  _next_unique_id = std::max(_next_unique_id, e->unique_id()+1);
299 #endif
300 
301  const dof_id_type id = e->id();
302 
303  if (id < _elements.size())
304  {
305  // Overwriting existing elements is still probably a mistake.
307  }
308  else
309  {
310  _elements.resize(id+1, nullptr);
311  }
312 
313  _elements[id] = e;
314 
315  // Make sure any new element is given space for any extra integers
316  // we've requested
317  e->add_extra_integers(_elem_integer_names.size());
318 
319  // And set mapping type and data on any new element
320  e->set_mapping_type(this->default_mapping_type());
321  e->set_mapping_data(this->default_mapping_data());
322 
323  return e;
324 }

References libMesh::MeshBase::_elem_integer_names, libMesh::ReplicatedMesh::_elements, libMesh::MeshBase::_next_unique_id, libMesh::DofObject::add_extra_integers(), libMesh::MeshBase::default_mapping_data(), libMesh::MeshBase::default_mapping_type(), libMesh::DofObject::id(), libMesh::libmesh_assert(), libMesh::DofObject::set_id(), libMesh::Elem::set_mapping_data(), libMesh::Elem::set_mapping_type(), libMesh::DofObject::set_unique_id(), libMesh::DofObject::unique_id(), libMesh::DofObject::valid_id(), and libMesh::DofObject::valid_unique_id().

Referenced by GetBoundaryPointsTest::build_mesh(), MixedDimensionMeshTest::build_mesh(), MeshfunctionDFEM::build_mesh(), MixedDimensionNonUniformRefinement::build_mesh(), MixedDimensionNonUniformRefinementTriangle::build_mesh(), MixedDimensionNonUniformRefinement3D::build_mesh(), and libMesh::RBEIMEvaluation::legacy_write_out_interpolation_points_elem().

◆ add_elem_data()

template<typename T >
std::vector< unsigned int > libMesh::MeshBase::add_elem_data ( const std::vector< std::string > &  names,
bool  allocate_data = true 
)
inlineinherited

Register data (of type T) to be added to each element in the mesh.

If the mesh already has elements, data is allocated in each.

Returns
The starting index number for the new data, or for the existing data if one by the same name has already been added.

If type T is larger than dof_id_type, each datum will end up spanning multiple index values, but will be queried with the starting index number.

No type checking is done with this function! If you add data of type T, don't try to access it with a call specifying type U.

Definition at line 1992 of file mesh_base.h.

1994 {
1995  std::vector<unsigned int> returnval(names.size());
1996 
1997  const std::size_t old_size = _elem_integer_names.size();
1998 
1999  for (auto i : index_range(names))
2000  returnval[i] = this->add_elem_datum<T>(names[i], false);
2001 
2002  if (allocate_data && old_size != _elem_integer_names.size())
2003  this->size_elem_extra_integers();
2004 
2005  return returnval;
2006 }

References libMesh::MeshBase::_elem_integer_names, libMesh::index_range(), and libMesh::MeshBase::size_elem_extra_integers().

◆ add_elem_datum()

template<typename T >
unsigned int libMesh::MeshBase::add_elem_datum ( const std::string &  name,
bool  allocate_data = true 
)
inlineinherited

Register a datum (of type T) to be added to each element in the mesh.

If the mesh already has elements, data by default is allocated in each of them. This may be expensive to do repeatedly; use add_elem_data instead.

Returns
The index numbers for the new data, and/or for existing data if data by some of the same names has already been added.

If type T is larger than dof_id_type, its data will end up spanning multiple index values, but will be queried with the starting index number.

No type checking is done with this function! If you add data of type T, don't try to access it with a call specifying type U.

Definition at line 1973 of file mesh_base.h.

1975 {
1976  const std::size_t old_size = _elem_integer_names.size();
1977 
1978  unsigned int start_idx = this->add_elem_integer(name, false);
1979  unsigned int n_more_integers = (sizeof(T)-1)/sizeof(dof_id_type);
1980  for (unsigned int i=0; i != n_more_integers; ++i)
1981  this->add_elem_integer(name+"__"+std::to_string(i));
1982 
1983  if (allocate_data && old_size != _elem_integer_names.size())
1984  this->size_elem_extra_integers();
1985 
1986  return start_idx;
1987 }

References libMesh::MeshBase::_elem_integer_names, libMesh::MeshBase::add_elem_integer(), and libMesh::MeshBase::size_elem_extra_integers().

Referenced by ExtraIntegersTest::build_mesh().

◆ add_elem_integer()

unsigned int libMesh::MeshBase::add_elem_integer ( const std::string &  name,
bool  allocate_data = true 
)
inherited

Register an integer datum (of type dof_id_type) to be added to each element in the mesh.

If the mesh already has elements, data by default is allocated in each of them. This may be expensive to do repeatedly; use add_elem_integers instead.

Returns
The index number for the new datum, or for the existing datum if one by the same name has already been added.

Definition at line 176 of file mesh_base.C.

178 {
179  for (auto i : index_range(_elem_integer_names))
180  if (_elem_integer_names[i] == name)
181  return i;
182 
183  _elem_integer_names.push_back(name);
184  if (allocate_data)
185  this->size_elem_extra_integers();
186  return _elem_integer_names.size()-1;
187 }

References libMesh::MeshBase::_elem_integer_names, libMesh::index_range(), libMesh::Quality::name(), and libMesh::MeshBase::size_elem_extra_integers().

Referenced by libMesh::MeshBase::add_elem_datum(), ExtraIntegersTest::build_mesh(), ExtraIntegersTest::checkpoint_helper(), libMesh::CheckpointIO::read_header(), and ExtraIntegersTest::test_helper().

◆ add_elem_integers()

std::vector< unsigned int > libMesh::MeshBase::add_elem_integers ( const std::vector< std::string > &  names,
bool  allocate_data = true 
)
inherited

Register integer data (of type dof_id_type) to be added to each element in the mesh, one string name for each new integer.

If the mesh already has elements, data by default is allocated in each of them.

Returns
The index numbers for the new data, and/or for existing data if data by some of the same names has already been added.

Definition at line 191 of file mesh_base.C.

193 {
194  std::unordered_map<std::string, std::size_t> name_indices;
195  for (auto i : index_range(_elem_integer_names))
196  name_indices[_elem_integer_names[i]] = i;
197 
198  std::vector<unsigned int> returnval(names.size());
199 
200  bool added_an_integer = false;
201  for (auto i : index_range(names))
202  {
203  const std::string & name = names[i];
204  auto it = name_indices.find(name);
205  if (it != name_indices.end())
206  returnval[i] = it->second;
207  else
208  {
209  returnval[i] = _elem_integer_names.size();
210  name_indices[name] = returnval[i];
211  _elem_integer_names.push_back(name);
212  added_an_integer = true;
213  }
214  }
215 
216  if (allocate_data && added_an_integer)
217  this->size_elem_extra_integers();
218 
219  return returnval;
220 }

References libMesh::MeshBase::_elem_integer_names, libMesh::index_range(), and libMesh::Quality::name().

Referenced by MeshStitchTest::testMeshStitch().

◆ add_ghosting_functor() [1/2]

void libMesh::MeshBase::add_ghosting_functor ( GhostingFunctor ghosting_functor)
inlineinherited

Adds a functor which can specify ghosting requirements for use on distributed meshes.

Multiple ghosting functors can be added; any element which is required by any functor will be ghosted.

GhostingFunctor memory must be managed by the code which calls this function; the GhostingFunctor lifetime is expected to extend until either the functor is removed or the Mesh is destructed.

Definition at line 1089 of file mesh_base.h.

1090  { _ghosting_functors.insert(&ghosting_functor); }

References libMesh::MeshBase::_ghosting_functors.

Referenced by libMesh::DofMap::add_algebraic_ghosting_functor(), libMesh::DofMap::add_coupling_functor(), libMesh::MeshBase::add_ghosting_functor(), main(), and EquationSystemsTest::testDisableDefaultGhosting().

◆ add_ghosting_functor() [2/2]

void libMesh::MeshBase::add_ghosting_functor ( std::shared_ptr< GhostingFunctor ghosting_functor)
inlineinherited

Adds a functor which can specify ghosting requirements for use on distributed meshes.

Multiple ghosting functors can be added; any element which is required by any functor will be ghosted.

GhostingFunctor memory when using this method is managed by the shared_ptr mechanism.

Definition at line 1100 of file mesh_base.h.

1101  { _shared_functors[ghosting_functor.get()] = ghosting_functor;
1102  this->add_ghosting_functor(*ghosting_functor); }

References libMesh::MeshBase::_shared_functors, and libMesh::MeshBase::add_ghosting_functor().

◆ add_node()

Node * libMesh::ReplicatedMesh::add_node ( Node n)
overridevirtualinherited

Add Node n to the end of the vertex array.

Implements libMesh::MeshBase.

Definition at line 472 of file replicated_mesh.C.

473 {
474  libmesh_assert(n);
475  // We only append points with ReplicatedMesh
476  libmesh_assert(!n->valid_id() || n->id() == _nodes.size());
477 
478  n->set_id (cast_int<dof_id_type>(_nodes.size()));
479 
480 #ifdef LIBMESH_ENABLE_UNIQUE_ID
481  if (!n->valid_unique_id())
482  n->set_unique_id() = _next_unique_id++;
483 #endif
484 
485  n->add_extra_integers(_node_integer_names.size());
486 
487  _nodes.push_back(n);
488 
489  return n;
490 }

References libMesh::MeshBase::_next_unique_id, libMesh::MeshBase::_node_integer_names, libMesh::ReplicatedMesh::_nodes, libMesh::DofObject::add_extra_integers(), libMesh::DofObject::id(), libMesh::libmesh_assert(), libMesh::DofObject::set_id(), libMesh::DofObject::set_unique_id(), libMesh::DofObject::valid_id(), and libMesh::DofObject::valid_unique_id().

◆ add_node_data()

template<typename T >
std::vector< unsigned int > libMesh::MeshBase::add_node_data ( const std::vector< std::string > &  name,
bool  allocate_data = true 
)
inlineinherited

Register data (of type T) to be added to each node in the mesh.

If the mesh already has nodes, data by default is allocated in each.

Returns
The starting index number for the new data, or for the existing data if one by the same name has already been added.

If type T is larger than dof_id_type, its data will end up spanning multiple index values, but will be queried with the starting index number.

No type checking is done with this function! If you add data of type T, don't try to access it with a call specifying type U.

Definition at line 2030 of file mesh_base.h.

2032 {
2033  std::vector<unsigned int> returnval(names.size());
2034 
2035  const std::size_t old_size = _node_integer_names.size();
2036 
2037  for (auto i : index_range(names))
2038  returnval[i] = this->add_node_datum<T>(names[i], false);
2039 
2040  if (allocate_data && old_size != _node_integer_names.size())
2041  this->size_node_extra_integers();
2042 
2043  return returnval;
2044 }

References libMesh::MeshBase::_node_integer_names, libMesh::index_range(), and libMesh::MeshBase::size_node_extra_integers().

◆ add_node_datum()

template<typename T >
unsigned int libMesh::MeshBase::add_node_datum ( const std::string &  name,
bool  allocate_data = true 
)
inlineinherited

Register a datum (of type T) to be added to each node in the mesh.

If the mesh already has nodes, data by default is allocated in each of them. This may be expensive to do repeatedly; use add_node_data instead.

Returns
The starting index number for the new datum, or for the existing datum if one by the same name has already been added.

If type T is larger than dof_id_type, its data will end up spanning multiple index values, but will be queried with the starting index number.

No type checking is done with this function! If you add data of type T, don't try to access it with a call specifying type U.

Definition at line 2011 of file mesh_base.h.

2013 {
2014  const std::size_t old_size = _node_integer_names.size();
2015 
2016  unsigned int start_idx = this->add_node_integer(name, false);
2017  unsigned int n_more_integers = (sizeof(T)-1)/sizeof(dof_id_type);
2018  for (unsigned int i=0; i != n_more_integers; ++i)
2019  this->add_node_integer(name+"__"+std::to_string(i), false);
2020 
2021  if (allocate_data && old_size != _node_integer_names.size())
2022  this->size_node_extra_integers();
2023 
2024  return start_idx;
2025 }

References libMesh::MeshBase::_node_integer_names, libMesh::MeshBase::add_node_integer(), and libMesh::MeshBase::size_node_extra_integers().

Referenced by ExtraIntegersTest::build_mesh(), libMesh::DynaIO::read_mesh(), RationalMapTest< elem_type >::setUp(), and FETest< order, family, elem_type >::setUp().

◆ add_node_integer()

unsigned int libMesh::MeshBase::add_node_integer ( const std::string &  name,
bool  allocate_data = true 
)
inherited

Register an integer datum (of type dof_id_type) to be added to each node in the mesh.

If the mesh already has nodes, data by default is allocated in each of them. This may be expensive to do repeatedly; use add_node_integers instead.

Returns
The index number for the new datum, or for the existing datum if one by the same name has already been added.

Definition at line 247 of file mesh_base.C.

249 {
250  for (auto i : index_range(_node_integer_names))
251  if (_node_integer_names[i] == name)
252  return i;
253 
254  _node_integer_names.push_back(name);
255  if (allocate_data)
256  this->size_node_extra_integers();
257  return _node_integer_names.size()-1;
258 }

References libMesh::index_range(), and libMesh::Quality::name().

Referenced by libMesh::MeshBase::add_node_datum(), ExtraIntegersTest::build_mesh(), ExtraIntegersTest::checkpoint_helper(), libMesh::CheckpointIO::read_header(), RationalMapTest< elem_type >::setUp(), FETest< order, family, elem_type >::setUp(), and ExtraIntegersTest::test_helper().

◆ add_node_integers()

std::vector< unsigned int > libMesh::MeshBase::add_node_integers ( const std::vector< std::string > &  names,
bool  allocate_data = true 
)
inherited

Register integer data (of type dof_id_type) to be added to each node in the mesh.

If the mesh already has nodes, data by default is allocated in each.

Returns
The index numbers for the new data, and/or for existing data if data by some of the same names has already been added.

Definition at line 262 of file mesh_base.C.

264 {
265  std::unordered_map<std::string, std::size_t> name_indices;
266  for (auto i : index_range(_node_integer_names))
267  name_indices[_node_integer_names[i]] = i;
268 
269  std::vector<unsigned int> returnval(names.size());
270 
271  bool added_an_integer = false;
272  for (auto i : index_range(names))
273  {
274  const std::string & name = names[i];
275  auto it = name_indices.find(name);
276  if (it != name_indices.end())
277  returnval[i] = it->second;
278  else
279  {
280  returnval[i] = _node_integer_names.size();
281  name_indices[name] = returnval[i];
282  _node_integer_names.push_back(name);
283  added_an_integer = true;
284  }
285  }
286 
287  if (allocate_data && added_an_integer)
288  this->size_node_extra_integers();
289 
290  return returnval;
291 }

References libMesh::index_range(), and libMesh::Quality::name().

Referenced by MeshStitchTest::testMeshStitch().

◆ add_point()

Node * libMesh::ReplicatedMesh::add_point ( const Point p,
const dof_id_type  id = DofObject::invalid_id,
const processor_id_type  proc_id = DofObject::invalid_processor_id 
)
overridevirtualinherited

functions for adding /deleting nodes elements.

Implements libMesh::MeshBase.

Definition at line 417 of file replicated_mesh.C.

420 {
421  // // We only append points with ReplicatedMesh
422  // libmesh_assert(id == DofObject::invalid_id || id == _nodes.size());
423  // Node *n = Node::build(p, _nodes.size()).release();
424  // n->processor_id() = proc_id;
425  // _nodes.push_back (n);
426 
427  Node * n = nullptr;
428 
429  // If the user requests a valid id, either
430  // provide the existing node or resize the container
431  // to fit the new node.
432  if (id != DofObject::invalid_id)
433  if (id < _nodes.size())
434  n = _nodes[id];
435  else
436  _nodes.resize(id+1);
437  else
438  _nodes.push_back (static_cast<Node *>(nullptr));
439 
440  // if the node already exists, then assign new (x,y,z) values
441  if (n)
442  *n = p;
443  // otherwise build a new node, put it in the right spot, and return
444  // a valid pointer.
445  else
446  {
447  n = Node::build(p, (id == DofObject::invalid_id) ?
448  cast_int<dof_id_type>(_nodes.size()-1) : id).release();
449  n->processor_id() = proc_id;
450 
451  n->add_extra_integers(_node_integer_names.size());
452 
453 #ifdef LIBMESH_ENABLE_UNIQUE_ID
454  if (!n->valid_unique_id())
455  n->set_unique_id() = _next_unique_id++;
456 #endif
457 
458  if (id == DofObject::invalid_id)
459  _nodes.back() = n;
460  else
461  _nodes[id] = n;
462  }
463 
464  // better not pass back a nullptr.
465  libmesh_assert (n);
466 
467  return n;
468 }

References libMesh::MeshBase::_next_unique_id, libMesh::MeshBase::_node_integer_names, libMesh::ReplicatedMesh::_nodes, libMesh::DofObject::add_extra_integers(), libMesh::Node::build(), libMesh::DofObject::invalid_id, libMesh::libmesh_assert(), libMesh::DofObject::processor_id(), libMesh::DofObject::set_unique_id(), and libMesh::DofObject::valid_unique_id().

Referenced by GetBoundaryPointsTest::build_mesh(), MixedDimensionMeshTest::build_mesh(), MeshfunctionDFEM::build_mesh(), MixedDimensionNonUniformRefinement::build_mesh(), MixedDimensionNonUniformRefinementTriangle::build_mesh(), MixedDimensionNonUniformRefinement3D::build_mesh(), and libMesh::RBEIMEvaluation::legacy_write_out_interpolation_points_elem().

◆ all_first_order()

void libMesh::UnstructuredMesh::all_first_order ( )
overridevirtualinherited

Converts a mesh with higher-order elements into a mesh with linear elements.

For example, a mesh consisting of Tet10 will be converted to a mesh with Tet4 etc.

Prepare to identify (and then delete) a bunch of no-longer-used nodes.

If the second order element had any boundary conditions they should be transferred to the first-order element. The old boundary conditions will be removed from the BoundaryInfo data structure by insert_elem.

Implements libMesh::MeshBase.

Definition at line 860 of file unstructured_mesh.C.

861 {
862  /*
863  * when the mesh is not prepared,
864  * at least renumber the nodes and
865  * elements, so that the node ids
866  * are correct
867  */
868  if (!this->_is_prepared)
870 
871  START_LOG("all_first_order()", "Mesh");
872 
876  std::vector<bool> node_touched_by_me(this->max_node_id(), false);
877 
878  // Loop over the high-ordered elements.
879  // First make sure they _are_ indeed high-order, and then replace
880  // them with an equivalent first-order element.
881  for (auto & so_elem : element_ptr_range())
882  {
883  libmesh_assert(so_elem);
884 
885  /*
886  * build the first-order equivalent, add to
887  * the new_elements list.
888  */
889  Elem * lo_elem = Elem::build
891  (so_elem->type()), so_elem->parent()).release();
892 
893  const unsigned short n_sides = so_elem->n_sides();
894 
895  for (unsigned short s=0; s != n_sides; ++s)
896  if (so_elem->neighbor_ptr(s) == remote_elem)
897  lo_elem->set_neighbor(s, const_cast<RemoteElem *>(remote_elem));
898 
899 #ifdef LIBMESH_ENABLE_AMR
900  /*
901  * Reset the parent links of any child elements
902  */
903  if (so_elem->has_children())
904  for (unsigned int c = 0, nc = so_elem->n_children(); c != nc; ++c)
905  {
906  Elem * child = so_elem->child_ptr(c);
907  if (child != remote_elem)
908  child->set_parent(lo_elem);
909  lo_elem->add_child(child, c);
910  }
911 
912  /*
913  * Reset the child link of any parent element
914  */
915  if (so_elem->parent())
916  {
917  unsigned int c =
918  so_elem->parent()->which_child_am_i(so_elem);
919  lo_elem->parent()->replace_child(lo_elem, c);
920  }
921 
922  /*
923  * Copy as much data to the new element as makes sense
924  */
925  lo_elem->set_p_level(so_elem->p_level());
926  lo_elem->set_refinement_flag(so_elem->refinement_flag());
927  lo_elem->set_p_refinement_flag(so_elem->p_refinement_flag());
928 #endif
929 
930  libmesh_assert_equal_to (lo_elem->n_vertices(), so_elem->n_vertices());
931 
932  /*
933  * By definition the vertices of the linear and
934  * second order element are identically numbered.
935  * transfer these.
936  */
937  for (unsigned int v=0, snv=so_elem->n_vertices(); v < snv; v++)
938  {
939  lo_elem->set_node(v) = so_elem->node_ptr(v);
940  node_touched_by_me[lo_elem->node_id(v)] = true;
941  }
942 
943  /*
944  * find_neighbors relies on remote_elem neighbor links being
945  * properly maintained.
946  */
947  for (unsigned short s=0; s != n_sides; s++)
948  {
949  if (so_elem->neighbor_ptr(s) == remote_elem)
950  lo_elem->set_neighbor(s, const_cast<RemoteElem*>(remote_elem));
951  }
952 
960  (this->get_boundary_info(), so_elem, lo_elem);
961 
962  /*
963  * The new first-order element is ready.
964  * Inserting it into the mesh will replace and delete
965  * the second-order element.
966  */
967  lo_elem->set_id(so_elem->id());
968 #ifdef LIBMESH_ENABLE_UNIQUE_ID
969  lo_elem->set_unique_id() = so_elem->unique_id();
970 #endif
971  lo_elem->processor_id() = so_elem->processor_id();
972  lo_elem->subdomain_id() = so_elem->subdomain_id();
973  this->insert_elem(lo_elem);
974  }
975 
976  // Deleting nodes does not invalidate iterators, so this is safe.
977  for (const auto & node : this->node_ptr_range())
978  if (!node_touched_by_me[node->id()])
979  this->delete_node(node);
980 
981  // If crazy people applied boundary info to non-vertices and then
982  // deleted those non-vertices, we should make sure their boundary id
983  // caches are correct.
985 
986  STOP_LOG("all_first_order()", "Mesh");
987 
988  // On hanging nodes that used to also be second order nodes, we
989  // might now have an invalid nodal processor_id()
991 
992  // delete or renumber nodes if desired
993  this->prepare_for_use();
994 }

References libMesh::MeshBase::_is_prepared, libMesh::Elem::add_child(), libMesh::Elem::build(), libMesh::Elem::child_ptr(), libMesh::BoundaryInfo::copy_boundary_ids(), libMesh::MeshBase::delete_node(), libMesh::MeshBase::element_ptr_range(), libMesh::Elem::first_order_equivalent_type(), libMesh::MeshBase::get_boundary_info(), libMesh::DofObject::id(), libMesh::MeshBase::insert_elem(), libMesh::libmesh_assert(), libMesh::MeshBase::max_node_id(), libMesh::Elem::n_vertices(), libMesh::MeshBase::node(), libMesh::Elem::node_id(), libMesh::MeshBase::node_ptr_range(), libMesh::Elem::parent(), libMesh::MeshBase::prepare_for_use(), libMesh::DofObject::processor_id(), libMesh::BoundaryInfo::regenerate_id_sets(), libMesh::remote_elem, libMesh::MeshBase::renumber_nodes_and_elements(), libMesh::Elem::replace_child(), libMesh::DofObject::set_id(), libMesh::Elem::set_neighbor(), libMesh::Elem::set_node(), libMesh::Partitioner::set_node_processor_ids(), libMesh::Elem::set_p_level(), libMesh::Elem::set_p_refinement_flag(), libMesh::Elem::set_parent(), libMesh::Elem::set_refinement_flag(), libMesh::DofObject::set_unique_id(), and libMesh::Elem::subdomain_id().

◆ all_second_order()

void libMesh::UnstructuredMesh::all_second_order ( const bool  full_ordered = true)
overridevirtualinherited

Converts a (conforming, non-refined) mesh with linear elements into a mesh with second-order elements.

For example, a mesh consisting of Tet4 will be converted to a mesh with Tet10 etc.

Note
For some elements like Hex8 there exist two higher order equivalents, Hex20 and Hex27. When full_ordered is true (default), then Hex27 is built. Otherwise, Hex20 is built. The same holds obviously for Quad4, Prism6, etc.

On distributed meshes we currently only support unpartitioned meshes (where we'll add every node in sync) or completely-partitioned meshes (where we'll sync nodes later); let's keep track to make sure we're not in any in-between state.

Loop over the low-ordered elements in the elements vector. First make sure they _are indeed low-order, and then replace them with an equivalent second-order element. Don't forget to delete the low-order element, or else it will leak!

If the linear element had any boundary conditions they should be transferred to the second-order element. The old boundary conditions will be removed from the BoundaryInfo data structure by insert_elem.

Also, prepare_for_use() will reconstruct most of our neighbor links, but if we have any remote_elem links in a distributed mesh, they need to be preserved. We do that in the same loop here.

Implements libMesh::MeshBase.

Definition at line 998 of file unstructured_mesh.C.

999 {
1000  // This function must be run on all processors at once
1001  parallel_object_only();
1002 
1003  /*
1004  * when the mesh is not prepared,
1005  * at least renumber the nodes and
1006  * elements, so that the node ids
1007  * are correct
1008  */
1009  if (!this->_is_prepared)
1010  this->renumber_nodes_and_elements ();
1011 
1012  /*
1013  * If the mesh is empty
1014  * then we have nothing to do
1015  */
1016  if (!this->n_elem())
1017  return;
1018 
1019  /*
1020  * If the mesh is already second order
1021  * then we have nothing to do.
1022  * We have to test for this in a round-about way to avoid
1023  * a bug on distributed parallel meshes with more processors
1024  * than elements.
1025  */
1026  bool already_second_order = false;
1027  if (this->elements_begin() != this->elements_end() &&
1028  (*(this->elements_begin()))->default_order() != FIRST)
1029  already_second_order = true;
1030  this->comm().max(already_second_order);
1031  if (already_second_order)
1032  return;
1033 
1034  START_LOG("all_second_order()", "Mesh");
1035 
1036  /*
1037  * this map helps in identifying second order
1038  * nodes. Namely, a second-order node:
1039  * - edge node
1040  * - face node
1041  * - bubble node
1042  * is uniquely defined through a set of adjacent
1043  * vertices. This set of adjacent vertices is
1044  * used to identify already added higher-order
1045  * nodes. We are safe to use node id's since we
1046  * make sure that these are correctly numbered.
1047  */
1048  std::map<std::vector<dof_id_type>, Node *> adj_vertices_to_so_nodes;
1049 
1050  /*
1051  * for speed-up of the \p add_point() method, we
1052  * can reserve memory. Guess the number of additional
1053  * nodes for different dimensions
1054  */
1055  switch (this->mesh_dimension())
1056  {
1057  case 1:
1058  /*
1059  * in 1D, there can only be order-increase from Edge2
1060  * to Edge3. Something like 1/2 of n_nodes() have
1061  * to be added
1062  */
1063  this->reserve_nodes(static_cast<unsigned int>
1064  (1.5*static_cast<double>(this->n_nodes())));
1065  break;
1066 
1067  case 2:
1068  /*
1069  * in 2D, either refine from Tri3 to Tri6 (double the nodes)
1070  * or from Quad4 to Quad8 (again, double) or Quad9 (2.25 that much)
1071  */
1072  this->reserve_nodes(static_cast<unsigned int>
1073  (2*static_cast<double>(this->n_nodes())));
1074  break;
1075 
1076 
1077  case 3:
1078  /*
1079  * in 3D, either refine from Tet4 to Tet10 (factor = 2.5) up to
1080  * Hex8 to Hex27 (something > 3). Since in 3D there _are_ already
1081  * quite some nodes, and since we do not want to overburden the memory by
1082  * a too conservative guess, use the lower bound
1083  */
1084  this->reserve_nodes(static_cast<unsigned int>
1085  (2.5*static_cast<double>(this->n_nodes())));
1086  break;
1087 
1088  default:
1089  // Hm?
1090  libmesh_error_msg("Unknown mesh dimension " << this->mesh_dimension());
1091  }
1092 
1093 
1094 
1095  /*
1096  * form a vector that will hold the node id's of
1097  * the vertices that are adjacent to the son-th
1098  * second-order node. Pull this outside of the
1099  * loop so that silly compilers don't repeatedly
1100  * create and destroy the vector.
1101  */
1102  std::vector<dof_id_type> adjacent_vertices_ids;
1103 
1111  n_partitioned_elem = 0;
1112  const processor_id_type my_pid = this->processor_id();
1113 
1120  element_iterator
1121  it = elements_begin(),
1122  endit = elements_end();
1123 
1124  for (; it != endit; ++it)
1125  {
1126  // the linear-order element
1127  Elem * lo_elem = *it;
1128 
1129  libmesh_assert(lo_elem);
1130 
1131  // make sure it is linear order
1132  if (lo_elem->default_order() != FIRST)
1133  libmesh_error_msg("ERROR: This is not a linear element: type=" << lo_elem->type());
1134 
1135  // this does _not_ work for refined elements
1136  libmesh_assert_equal_to (lo_elem->level (), 0);
1137 
1138  const processor_id_type lo_pid = lo_elem->processor_id();
1139 
1140  if (lo_pid == DofObject::invalid_processor_id)
1142  else
1143  ++n_partitioned_elem;
1144 
1145  /*
1146  * build the second-order equivalent, add to
1147  * the new_elements list. Note that this here
1148  * is the only point where \p full_ordered
1149  * is necessary. The remaining code works well
1150  * for either type of second-order equivalent, e.g.
1151  * Hex20 or Hex27, as equivalents for Hex8
1152  */
1153  Elem * so_elem =
1155  full_ordered) ).release();
1156 
1157  libmesh_assert_equal_to (lo_elem->n_vertices(), so_elem->n_vertices());
1158 
1159 
1160  /*
1161  * By definition the vertices of the linear and
1162  * second order element are identically numbered.
1163  * transfer these.
1164  */
1165  for (unsigned int v=0, lnv=lo_elem->n_vertices(); v < lnv; v++)
1166  so_elem->set_node(v) = lo_elem->node_ptr(v);
1167 
1168  /*
1169  * Now handle the additional mid-side nodes. This
1170  * is simply handled through a map that remembers
1171  * the already-added nodes. This map maps the global
1172  * ids of the vertices (that uniquely define this
1173  * higher-order node) to the new node.
1174  * Notation: son = second-order node
1175  */
1176  const unsigned int son_begin = so_elem->n_vertices();
1177  const unsigned int son_end = so_elem->n_nodes();
1178 
1179 
1180  for (unsigned int son=son_begin; son<son_end; son++)
1181  {
1182  const unsigned int n_adjacent_vertices =
1183  so_elem->n_second_order_adjacent_vertices(son);
1184 
1185  adjacent_vertices_ids.resize(n_adjacent_vertices);
1186 
1187  for (unsigned int v=0; v<n_adjacent_vertices; v++)
1188  adjacent_vertices_ids[v] =
1189  so_elem->node_id( so_elem->second_order_adjacent_vertex(son,v) );
1190 
1191  /*
1192  * \p adjacent_vertices_ids is now in order of the current
1193  * side. sort it, so that comparisons with the
1194  * \p adjacent_vertices_ids created through other elements'
1195  * sides can match
1196  */
1197  std::sort(adjacent_vertices_ids.begin(),
1198  adjacent_vertices_ids.end());
1199 
1200 
1201  // does this set of vertices already have a mid-node added?
1202  auto pos = adj_vertices_to_so_nodes.equal_range (adjacent_vertices_ids);
1203 
1204  // no, not added yet
1205  if (pos.first == pos.second)
1206  {
1207  /*
1208  * for this set of vertices, there is no
1209  * second_order node yet. Add it.
1210  *
1211  * compute the location of the new node as
1212  * the average over the adjacent vertices.
1213  */
1214  Point new_location = this->point(adjacent_vertices_ids[0]);
1215  for (unsigned int v=1; v<n_adjacent_vertices; v++)
1216  new_location += this->point(adjacent_vertices_ids[v]);
1217 
1218  new_location /= static_cast<Real>(n_adjacent_vertices);
1219 
1220  /* Add the new point to the mesh.
1221  * If we are on a serialized mesh, then we're doing this
1222  * all in sync, and the node processor_id will be
1223  * consistent between processors.
1224  * If we are on a distributed mesh, we can fix
1225  * inconsistent processor ids later, but only if every
1226  * processor gives new nodes a *locally* consistent
1227  * processor id, so we'll give the new node the
1228  * processor id of an adjacent element for now and then
1229  * we'll update that later if appropriate.
1230  */
1231  Node * so_node = this->add_point
1232  (new_location, DofObject::invalid_id, lo_pid);
1233 
1234  /*
1235  * insert the new node with its defining vertex
1236  * set into the map, and relocate pos to this
1237  * new entry, so that the so_elem can use
1238  * \p pos for inserting the node
1239  */
1240  adj_vertices_to_so_nodes.insert(pos.first,
1241  std::make_pair(adjacent_vertices_ids,
1242  so_node));
1243 
1244  so_elem->set_node(son) = so_node;
1245  }
1246  // yes, already added.
1247  else
1248  {
1249  Node * so_node = pos.first->second;
1250  libmesh_assert(so_node);
1251 
1252  so_elem->set_node(son) = so_node;
1253 
1254  // We need to ensure that the processor who should own a
1255  // node *knows* they own the node. And because
1256  // Node::choose_processor_id() may depend on Node id,
1257  // which may not yet be authoritative, we still have to
1258  // use a dumb-but-id-independent partitioning heuristic.
1259  processor_id_type chosen_pid =
1260  std::min (so_node->processor_id(), lo_pid);
1261 
1262  // Plus, if we just discovered that we own this node,
1263  // then on a distributed mesh we need to make sure to
1264  // give it a valid id, not just a placeholder id!
1265  if (!this->is_replicated() &&
1266  so_node->processor_id() != my_pid &&
1267  chosen_pid == my_pid)
1268  this->own_node(*so_node);
1269 
1270  so_node->processor_id() = chosen_pid;
1271  }
1272  }
1273 
1274  /*
1275  * find_neighbors relies on remote_elem neighbor links being
1276  * properly maintained.
1277  */
1278  for (auto s : lo_elem->side_index_range())
1279  {
1280  if (lo_elem->neighbor_ptr(s) == remote_elem)
1281  so_elem->set_neighbor(s, const_cast<RemoteElem*>(remote_elem));
1282  }
1283 
1296  (this->get_boundary_info(), lo_elem, so_elem);
1297 
1298  /*
1299  * The new second-order element is ready.
1300  * Inserting it into the mesh will replace and delete
1301  * the first-order element.
1302  */
1303  so_elem->set_id(lo_elem->id());
1304 #ifdef LIBMESH_ENABLE_UNIQUE_ID
1305  so_elem->set_unique_id() = lo_elem->unique_id();
1306 #endif
1307  so_elem->processor_id() = lo_pid;
1308  so_elem->subdomain_id() = lo_elem->subdomain_id();
1309  this->insert_elem(so_elem);
1310  }
1311 
1312  // we can clear the map
1313  adj_vertices_to_so_nodes.clear();
1314 
1315 
1316  STOP_LOG("all_second_order()", "Mesh");
1317 
1318  // On a DistributedMesh our ghost node processor ids may be bad,
1319  // the ids of nodes touching remote elements may be inconsistent,
1320  // unique_ids of newly added non-local nodes remain unset, and our
1321  // partitioning of new nodes may not be well balanced.
1322  //
1323  // make_nodes_parallel_consistent() will fix all this.
1324  if (!this->is_replicated())
1325  {
1326  dof_id_type max_unpartitioned_elem = n_unpartitioned_elem;
1327  this->comm().max(max_unpartitioned_elem);
1328  if (max_unpartitioned_elem)
1329  {
1330  // We'd better be effectively serialized here. In theory we
1331  // could support more complicated cases but in practice we
1332  // only support "completely partitioned" and/or "serialized"
1333  if (!this->comm().verify(n_unpartitioned_elem) ||
1334  !this->comm().verify(n_partitioned_elem) ||
1335  !this->is_serial())
1336  libmesh_not_implemented();
1337  }
1338  else
1339  {
1340  MeshCommunication().make_nodes_parallel_consistent (*this);
1341  }
1342  }
1343 
1344  // renumber nodes, elements etc
1345  this->prepare_for_use(/*skip_renumber =*/ false);
1346 }

References libMesh::MeshBase::_is_prepared, libMesh::MeshBase::add_point(), libMesh::Elem::build(), libMesh::ParallelObject::comm(), libMesh::BoundaryInfo::copy_boundary_ids(), libMesh::Elem::default_order(), libMesh::MeshBase::elements_begin(), libMesh::MeshBase::elements_end(), libMesh::FIRST, libMesh::MeshBase::get_boundary_info(), libMesh::DofObject::id(), libMesh::MeshBase::insert_elem(), libMesh::DofObject::invalid_id, libMesh::DofObject::invalid_processor_id, libMesh::MeshBase::is_replicated(), libMesh::MeshBase::is_serial(), libMesh::Elem::level(), libMesh::libmesh_assert(), libMesh::MeshBase::mesh_dimension(), libMesh::MeshBase::MeshCommunication, libMesh::MeshBase::n_elem(), libMesh::MeshBase::n_nodes(), libMesh::Elem::n_nodes(), libMesh::Elem::n_second_order_adjacent_vertices(), libMesh::MeshBase::n_unpartitioned_elem(), libMesh::Elem::n_vertices(), libMesh::Elem::neighbor_ptr(), libMesh::Elem::node_id(), libMesh::Elem::node_ptr(), libMesh::MeshBase::own_node(), libMesh::MeshBase::point(), libMesh::MeshBase::prepare_for_use(), libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), libMesh::remote_elem, libMesh::MeshBase::renumber_nodes_and_elements(), libMesh::MeshBase::reserve_nodes(), libMesh::Elem::second_order_adjacent_vertex(), libMesh::Elem::second_order_equivalent_type(), libMesh::DofObject::set_id(), libMesh::Elem::set_neighbor(), libMesh::Elem::set_node(), libMesh::DofObject::set_unique_id(), libMesh::Elem::side_index_range(), libMesh::Elem::subdomain_id(), libMesh::Elem::type(), and libMesh::DofObject::unique_id().

◆ allgather()

virtual void libMesh::MeshBase::allgather ( )
inlinevirtualinherited

Gathers all elements and nodes of the mesh onto every processor.

Reimplemented in libMesh::DistributedMesh.

Definition at line 188 of file mesh_base.h.

188 {}

Referenced by libMesh::EquationSystems::allgather(), libMesh::MeshSerializer::MeshSerializer(), and PartitionerTest< PartitionerSubclass, MeshClass >::testPartition().

◆ allow_remote_element_removal() [1/2]

bool libMesh::MeshBase::allow_remote_element_removal ( ) const
inlineinherited

◆ allow_remote_element_removal() [2/2]

void libMesh::MeshBase::allow_remote_element_removal ( bool  allow)
inlineinherited

If false is passed in then this mesh will no longer have remote elements deleted when being prepared for use; i.e.

even a DistributedMesh will remain (if it is already) serialized. This may adversely affect performance and memory use.

Definition at line 1034 of file mesh_base.h.

1034 { _allow_remote_element_removal = allow; }

References libMesh::MeshBase::_allow_remote_element_removal.

Referenced by libMesh::DynaIO::add_spline_constraints(), AllSecondOrderTest::allSecondOrder(), libMesh::UnstructuredMesh::copy_nodes_and_elements(), main(), MeshInputTest::testDynaReadElem(), and MeshInputTest::testDynaReadPatch().

◆ allow_renumbering() [1/2]

bool libMesh::MeshBase::allow_renumbering ( ) const
inlineinherited

◆ allow_renumbering() [2/2]

void libMesh::MeshBase::allow_renumbering ( bool  allow)
inlineinherited

If false is passed in then this mesh will no longer be renumbered when being prepared for use.

This may slightly adversely affect performance during subsequent element access, particularly when using a distributed mesh.

Important! When allow_renumbering(false) is set, ReplicatedMesh::n_elem() and ReplicatedMesh::n_nodes() will return wrong values whenever adaptive refinement is followed by adaptive coarsening. (Uniform refinement followed by uniform coarsening is OK.) This is due to the fact that n_elem() and n_nodes() are currently O(1) functions that just return the size of the respective underlying vectors, and this size is wrong when the numbering includes "gaps" from nodes and elements that have been deleted. We plan to implement a caching mechanism in the near future that will fix this incorrect behavior.

Definition at line 1025 of file mesh_base.h.

References libMesh::MeshBase::_skip_renumber_nodes_and_elements.

Referenced by libMesh::DynaIO::add_spline_constraints(), GetBoundaryPointsTest::build_mesh(), SlitMeshTest::build_mesh(), libMesh::UnstructuredMesh::copy_nodes_and_elements(), main(), libMesh::RBEIMEvaluation::RBEIMEvaluation(), libMesh::NameBasedIO::read(), libMesh::GMVIO::read(), MeshInputTest::testDynaReadElem(), MeshInputTest::testDynaReadPatch(), SystemsTest::testProjectMatrix1D(), SystemsTest::testProjectMatrix2D(), SystemsTest::testProjectMatrix3D(), EquationSystemsTest::testRefineThenReinitPreserveFlags(), EquationSystemsTest::testRepartitionThenReinit(), WriteSidesetData::testWrite(), and WriteVecAndScalar::testWrite().

◆ ancestor_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::ancestor_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ ancestor_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::ancestor_elements_begin ( )
overridevirtualinherited

Iterate over elements for which elem->ancestor() is true.

Implements libMesh::MeshBase.

◆ ancestor_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::ancestor_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ ancestor_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::ancestor_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ bid_nodes_begin() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::bid_nodes_begin ( boundary_id_type  bndry_id) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ bid_nodes_begin() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::bid_nodes_begin ( boundary_id_type  bndry_id)
overridevirtualinherited

Iterate over nodes for which BoundaryInfo::has_boundary_id(node, bndry_id) is true.

Implements libMesh::MeshBase.

◆ bid_nodes_end() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::bid_nodes_end ( boundary_id_type  bndry_id) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ bid_nodes_end() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::bid_nodes_end ( boundary_id_type  bndry_id)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ bnd_nodes_begin() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::bnd_nodes_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ bnd_nodes_begin() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::bnd_nodes_begin ( )
overridevirtualinherited

Iterate over nodes for which BoundaryInfo::n_boundary_ids(node) > 0.

Implements libMesh::MeshBase.

◆ bnd_nodes_end() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::bnd_nodes_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ bnd_nodes_end() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::bnd_nodes_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ cache_elem_dims()

void libMesh::MeshBase::cache_elem_dims ( )
inherited

Search the mesh and cache the different dimensions of the elements present in the mesh.

This is done in prepare_for_use(), but can be done manually by other classes after major mesh modifications.

Definition at line 753 of file mesh_base.C.

754 {
755  // This requires an inspection on every processor
756  parallel_object_only();
757 
758  // Need to clear _elem_dims first in case all elements of a
759  // particular dimension have been deleted.
760  _elem_dims.clear();
761 
762  for (const auto & elem : this->active_element_ptr_range())
763  _elem_dims.insert(cast_int<unsigned char>(elem->dim()));
764 
765  // Some different dimension elements may only live on other processors
766  this->comm().set_union(_elem_dims);
767 
768  // If the largest element dimension found is larger than the current
769  // _spatial_dimension, increase _spatial_dimension.
770  unsigned int max_dim = this->mesh_dimension();
771  if (max_dim > _spatial_dimension)
772  _spatial_dimension = cast_int<unsigned char>(max_dim);
773 
774  // _spatial_dimension may need to increase from 1->2 or 2->3 if the
775  // mesh is full of 1D elements but they are not x-aligned, or the
776  // mesh is full of 2D elements but they are not in the x-y plane.
777  // If the mesh is x-aligned or x-y planar, we will end up checking
778  // every node's coordinates and not breaking out of the loop
779  // early...
780 #if LIBMESH_DIM > 1
781  if (_spatial_dimension < 3)
782  {
783  for (const auto & node : this->node_ptr_range())
784  {
785  // Note: the exact floating point comparison is intentional,
786  // we don't want to get tripped up by tolerances.
787  if ((*node)(1) != 0.)
788  {
789  _spatial_dimension = 2;
790 #if LIBMESH_DIM == 2
791  // If libmesh is compiled in 2D mode, this is the
792  // largest spatial dimension possible so we can break
793  // out.
794  break;
795 #endif
796  }
797 
798 #if LIBMESH_DIM > 2
799  if ((*node)(2) != 0.)
800  {
801  // Spatial dimension can't get any higher than this, so
802  // we can break out.
803  _spatial_dimension = 3;
804  break;
805  }
806 #endif
807  }
808  }
809 #endif // LIBMESH_DIM > 1
810 }

Referenced by libMesh::MeshBase::set_elem_dimensions().

◆ clear()

void libMesh::ReplicatedMesh::clear ( )
overridevirtualinherited

Clear all internal data.

Reimplemented from libMesh::MeshBase.

Definition at line 593 of file replicated_mesh.C.

594 {
595  // Call parent clear function
596  MeshBase::clear();
597 
598  // Clear our elements and nodes
599  // There is no need to remove the elements from
600  // the BoundaryInfo data structure since we
601  // already cleared it.
602  for (auto & elem : _elements)
603  delete elem;
604 
605  _elements.clear();
606 
607  // clear the nodes data structure
608  // There is no need to remove the nodes from
609  // the BoundaryInfo data structure since we
610  // already cleared it.
611  for (auto & node : _nodes)
612  delete node;
613 
614  _nodes.clear();
615 }

References libMesh::ReplicatedMesh::_elements, libMesh::ReplicatedMesh::_nodes, libMesh::MeshBase::clear(), libMesh::MeshBase::elem(), and libMesh::MeshBase::node().

Referenced by libMesh::RBEIMEvaluation::clear(), libMesh::RBEIMEvaluation::legacy_write_out_interpolation_points_elem(), libMesh::RBDataDeserialization::load_rb_eim_evaluation_data(), and libMesh::ReplicatedMesh::~ReplicatedMesh().

◆ clear_point_locator()

void libMesh::MeshBase::clear_point_locator ( )
inherited

Releases the current PointLocator object.

Definition at line 696 of file mesh_base.C.

697 {
698  _point_locator.reset(nullptr);
699 }

Referenced by libMesh::UnstructuredMesh::contract(), and libMesh::MeshCommunication::delete_remote_elements().

◆ clone()

virtual std::unique_ptr<MeshBase> libMesh::SerialMesh::clone ( ) const
inlineoverridevirtual

Virtual copy-constructor, creates a copy of this mesh.

Reimplemented from libMesh::ReplicatedMesh.

Definition at line 44 of file serial_mesh.h.

45  { return libmesh_make_unique<SerialMesh>(*this); }

◆ comm()

const Parallel::Communicator& libMesh::ParallelObject::comm ( ) const
inlineinherited
Returns
A reference to the Parallel::Communicator object used by this mesh.

Definition at line 94 of file parallel_object.h.

95  { return _communicator; }

References libMesh::ParallelObject::_communicator.

Referenced by libMesh::__libmesh_petsc_diff_solver_jacobian(), libMesh::__libmesh_petsc_diff_solver_monitor(), libMesh::__libmesh_petsc_diff_solver_residual(), libMesh::__libmesh_tao_equality_constraints(), libMesh::__libmesh_tao_equality_constraints_jacobian(), libMesh::__libmesh_tao_gradient(), libMesh::__libmesh_tao_hessian(), libMesh::__libmesh_tao_inequality_constraints(), libMesh::__libmesh_tao_inequality_constraints_jacobian(), libMesh::__libmesh_tao_objective(), libMesh::MeshRefinement::_coarsen_elements(), libMesh::ExactSolution::_compute_error(), libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::BoundaryInfo::_find_id_maps(), libMesh::PetscLinearSolver< Number >::_petsc_shell_matrix_get_diagonal(), libMesh::SlepcEigenSolver< libMesh::Number >::_petsc_shell_matrix_get_diagonal(), libMesh::PetscLinearSolver< Number >::_petsc_shell_matrix_mult(), libMesh::SlepcEigenSolver< libMesh::Number >::_petsc_shell_matrix_mult(), libMesh::PetscLinearSolver< Number >::_petsc_shell_matrix_mult_add(), libMesh::EquationSystems::_read_impl(), libMesh::MeshRefinement::_refine_elements(), libMesh::MeshRefinement::_smooth_flags(), libMesh::DofMap::add_constraints_to_send_list(), add_cube_convex_hull_to_mesh(), libMesh::PetscDMWrapper::add_dofs_helper(), libMesh::PetscDMWrapper::add_dofs_to_section(), libMesh::TransientRBConstruction::add_IC_to_RB_space(), libMesh::ImplicitSystem::add_matrix(), libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::DynaIO::add_spline_constraints(), libMesh::System::add_vector(), libMesh::UnstructuredMesh::all_second_order(), libMesh::MeshTools::Modification::all_tri(), libMesh::LaplaceMeshSmoother::allgather_graph(), libMesh::DofMap::allgather_recursive_constraints(), libMesh::TransientRBConstruction::allocate_data_structures(), libMesh::RBConstruction::allocate_data_structures(), libMesh::TransientRBConstruction::assemble_affine_expansion(), libMesh::FEMSystem::assemble_qoi(), libMesh::MeshCommunication::assign_global_indices(), libMesh::DofMap::attach_matrix(), libMesh::MeshTools::Generation::build_extrusion(), libMesh::BoundaryInfo::build_node_list_from_side_list(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::PetscDMWrapper::build_section(), libMesh::PetscDMWrapper::build_sf(), libMesh::System::calculate_norm(), libMesh::DofMap::check_dirichlet_bcid_consistency(), libMesh::RBConstruction::compute_Fq_representor_innerprods(), libMesh::RBConstruction::compute_max_error_bound(), libMesh::Nemesis_IO_Helper::compute_num_global_elem_blocks(), libMesh::Nemesis_IO_Helper::compute_num_global_nodesets(), libMesh::Nemesis_IO_Helper::compute_num_global_sidesets(), libMesh::RBConstruction::compute_output_dual_innerprods(), libMesh::RBConstruction::compute_residual_dual_norm_slow(), libMesh::RBSCMConstruction::compute_SCM_bounds_on_training_set(), libMesh::Problem_Interface::computeF(), libMesh::Problem_Interface::computeJacobian(), libMesh::Problem_Interface::computePreconditioner(), libMesh::ExodusII_IO::copy_elemental_solution(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::MeshTools::correct_node_proc_ids(), libMesh::MeshTools::create_bounding_box(), libMesh::DofMap::create_dof_constraints(), libMesh::MeshTools::create_nodal_bounding_box(), libMesh::MeshRefinement::create_parent_error_vector(), libMesh::MeshTools::create_processor_bounding_box(), libMesh::MeshTools::create_subdomain_bounding_box(), libMesh::MeshCommunication::delete_remote_elements(), libMesh::DofMap::distribute_dofs(), DMlibMeshFunction(), DMlibMeshJacobian(), DMlibMeshSetSystem_libMesh(), DMVariableBounds_libMesh(), libMesh::DTKSolutionTransfer::DTKSolutionTransfer(), libMesh::MeshRefinement::eliminate_unrefined_patches(), libMesh::RBEIMConstruction::enrich_RB_space(), libMesh::TransientRBConstruction::enrich_RB_space(), libMesh::RBConstruction::enrich_RB_space(), libMesh::EpetraVector< T >::EpetraVector(), AssembleOptimization::equality_constraints(), libMesh::WeightedPatchRecoveryErrorEstimator::estimate_error(), libMesh::PatchRecoveryErrorEstimator::estimate_error(), libMesh::JumpErrorEstimator::estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), libMesh::RBEIMConstruction::evaluate_mesh_function(), libMesh::MeshRefinement::flag_elements_by_elem_fraction(), libMesh::MeshRefinement::flag_elements_by_error_fraction(), libMesh::MeshRefinement::flag_elements_by_error_tolerance(), libMesh::MeshRefinement::flag_elements_by_mean_stddev(), libMesh::MeshRefinement::flag_elements_by_nelem_target(), libMesh::DofMap::gather_constraints(), libMesh::MeshfreeInterpolation::gather_remote_data(), libMesh::CondensedEigenSystem::get_eigenpair(), libMesh::DofMap::get_info(), libMesh::ImplicitSystem::get_linear_solver(), AssembleOptimization::inequality_constraints(), AssembleOptimization::inequality_constraints_jacobian(), libMesh::LocationMap< T >::init(), libMesh::TimeSolver::init(), libMesh::SystemSubsetBySubdomain::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::EigenSystem::init_matrices(), libMesh::OptimizationSystem::initialize_equality_constraints_storage(), libMesh::OptimizationSystem::initialize_inequality_constraints_storage(), libMesh::RBEIMConstruction::initialize_rb_construction(), integrate_function(), libMesh::MeshTools::libmesh_assert_consistent_distributed(), libMesh::MeshTools::libmesh_assert_consistent_distributed_nodes(), libMesh::MeshTools::libmesh_assert_contiguous_dof_ids(), libMesh::MeshTools::libmesh_assert_parallel_consistent_new_node_procids(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Elem >(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_topology_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_valid_boundary_ids(), libMesh::MeshTools::libmesh_assert_valid_dof_ids(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libMesh::DistributedMesh::libmesh_assert_valid_parallel_flags(), libMesh::DistributedMesh::libmesh_assert_valid_parallel_object_ids(), libMesh::DistributedMesh::libmesh_assert_valid_parallel_p_levels(), libMesh::MeshTools::libmesh_assert_valid_refinement_flags(), libMesh::MeshTools::libmesh_assert_valid_unique_ids(), libMesh::libmesh_petsc_preconditioner_apply(), libMesh::libmesh_petsc_snes_fd_residual(), libMesh::libmesh_petsc_snes_jacobian(), libMesh::libmesh_petsc_snes_mffd_residual(), libMesh::libmesh_petsc_snes_postcheck(), libMesh::libmesh_petsc_snes_residual(), libMesh::libmesh_petsc_snes_residual_helper(), libMesh::MeshRefinement::limit_level_mismatch_at_edge(), libMesh::MeshRefinement::limit_level_mismatch_at_node(), libMesh::MeshRefinement::limit_overrefined_boundary(), libMesh::MeshRefinement::limit_underrefined_boundary(), main(), libMesh::MeshRefinement::make_coarsening_compatible(), libMesh::MeshCommunication::make_elems_parallel_consistent(), libMesh::MeshRefinement::make_flags_parallel_consistent(), libMesh::MeshCommunication::make_new_node_proc_ids_parallel_consistent(), libMesh::MeshCommunication::make_new_nodes_parallel_consistent(), libMesh::MeshCommunication::make_node_ids_parallel_consistent(), libMesh::MeshCommunication::make_node_proc_ids_parallel_consistent(), libMesh::MeshCommunication::make_node_unique_ids_parallel_consistent(), libMesh::MeshCommunication::make_nodes_parallel_consistent(), libMesh::MeshCommunication::make_p_levels_parallel_consistent(), libMesh::MeshRefinement::make_refinement_compatible(), libMesh::TransientRBConstruction::mass_matrix_scaled_matvec(), libMesh::FEMSystem::mesh_position_set(), LinearElasticityWithContact::move_mesh(), libMesh::DistributedMesh::n_active_elem(), libMesh::MeshTools::n_active_levels(), libMesh::BoundaryInfo::n_boundary_conds(), libMesh::DofMap::n_constrained_dofs(), libMesh::BoundaryInfo::n_edge_conds(), libMesh::CondensedEigenSystem::n_global_non_condensed_dofs(), libMesh::MeshTools::n_levels(), libMesh::BoundaryInfo::n_nodeset_conds(), libMesh::MeshTools::n_p_levels(), libMesh::BoundaryInfo::n_shellface_conds(), libMesh::DistributedMesh::parallel_max_elem_id(), libMesh::DistributedMesh::parallel_max_node_id(), libMesh::ReplicatedMesh::parallel_max_unique_id(), libMesh::DistributedMesh::parallel_max_unique_id(), libMesh::DistributedMesh::parallel_n_elem(), libMesh::DistributedMesh::parallel_n_nodes(), libMesh::SparsityPattern::Build::parallel_sync(), libMesh::MeshTools::paranoid_n_levels(), libMesh::petsc_auto_fieldsplit(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::DofMap::print_dof_constraints(), FEMParameters::read(), libMesh::Nemesis_IO::read(), libMesh::XdrIO::read(), libMesh::CheckpointIO::read_header(), libMesh::XdrIO::read_header(), libMesh::System::read_header(), libMesh::RBEvaluation::read_in_vectors_from_multiple_files(), libMesh::System::read_legacy_data(), libMesh::TransientRBConstruction::read_riesz_representors_from_files(), libMesh::RBConstruction::read_riesz_representors_from_files(), libMesh::System::read_SCALAR_dofs(), libMesh::XdrIO::read_serialized_bc_names(), libMesh::XdrIO::read_serialized_bcs_helper(), libMesh::System::read_serialized_blocked_dof_objects(), libMesh::XdrIO::read_serialized_connectivity(), libMesh::XdrIO::read_serialized_nodes(), libMesh::XdrIO::read_serialized_nodesets(), libMesh::XdrIO::read_serialized_subdomain_names(), libMesh::System::read_serialized_vector(), libMesh::MeshRefinement::refine_and_coarsen_elements(), libMesh::DistributedMesh::renumber_dof_objects(), LinearElasticityWithContact::residual_and_jacobian(), OverlappingAlgebraicGhostingTest::run_ghosting_test(), OverlappingCouplingGhostingTest::run_sparsity_pattern_test(), libMesh::DofMap::scatter_constraints(), libMesh::CheckpointIO::select_split_config(), libMesh::TransientRBConstruction::set_error_temporal_data(), libMesh::RBEIMConstruction::set_explicit_sys_subvector(), libMesh::DofMap::set_nonlocal_dof_objects(), libMesh::PetscDMWrapper::set_point_range_in_section(), libMesh::PetscDiffSolver::setup_petsc_data(), libMesh::LaplaceMeshSmoother::smooth(), libMesh::split_mesh(), libMesh::BoundaryInfo::sync(), libMesh::MeshRefinement::test_level_one(), MeshfunctionDFEM::test_mesh_function_dfem(), MeshfunctionDFEM::test_mesh_function_dfem_grad(), MeshFunctionTest::test_p_level(), libMesh::MeshRefinement::test_unflagged(), SystemsTest::testBlockRestrictedVarNDofs(), PointLocatorTest::testLocator(), BoundaryInfoTest::testMesh(), SystemsTest::testProjectCubeWithMeshFunction(), CheckpointIOTest::testSplitter(), libMesh::MeshTools::total_weight(), libMesh::MeshFunctionSolutionTransfer::transfer(), libMesh::MeshfreeSolutionTransfer::transfer(), libMesh::TransientRBConstruction::truth_assembly(), libMesh::RBConstruction::truth_assembly(), libMesh::MeshRefinement::uniformly_coarsen(), libMesh::TransientRBConstruction::update_RB_initial_condition_all_N(), libMesh::RBEIMConstruction::update_RB_system_matrices(), libMesh::TransientRBConstruction::update_RB_system_matrices(), libMesh::RBConstruction::update_RB_system_matrices(), libMesh::TransientRBConstruction::update_residual_terms(), libMesh::RBConstruction::update_residual_terms(), libMesh::NameBasedIO::write(), libMesh::XdrIO::write(), libMesh::VTKIO::write_nodal_data(), libMesh::RBEvaluation::write_out_vectors(), libMesh::TransientRBConstruction::write_riesz_representors_to_files(), libMesh::RBConstruction::write_riesz_representors_to_files(), libMesh::System::write_SCALAR_dofs(), libMesh::XdrIO::write_serialized_bcs_helper(), libMesh::System::write_serialized_blocked_dof_objects(), libMesh::XdrIO::write_serialized_connectivity(), libMesh::XdrIO::write_serialized_nodes(), libMesh::XdrIO::write_serialized_nodesets(), libMesh::RBDataSerialization::RBEvaluationSerialization::write_to_file(), libMesh::RBDataSerialization::TransientRBEvaluationSerialization::write_to_file(), libMesh::RBDataSerialization::RBEIMEvaluationSerialization::write_to_file(), and libMesh::RBDataSerialization::RBSCMEvaluationSerialization::write_to_file().

◆ contract()

bool libMesh::UnstructuredMesh::contract ( )
overridevirtualinherited

Delete subactive (i.e.

children of coarsened) elements. This removes all elements descended from currently active elements in the mesh.

Implements libMesh::MeshBase.

Definition at line 797 of file unstructured_mesh.C.

798 {
799  LOG_SCOPE ("contract()", "Mesh");
800 
801  // Flag indicating if this call actually changes the mesh
802  bool mesh_changed = false;
803 
804 #ifdef DEBUG
805  for (const auto & elem : this->element_ptr_range())
807 #endif
808 
809  // Loop over the elements.
810  for (auto & elem : this->element_ptr_range())
811  {
812  // Delete all the subactive ones
813  if (elem->subactive())
814  {
815  // No level-0 element should be subactive.
816  // Note that we CAN'T test elem->level(), as that
817  // touches elem->parent()->dim(), and elem->parent()
818  // might have already been deleted!
820 
821  // Delete the element
822  // This just sets a pointer to nullptr, and doesn't
823  // invalidate any iterators
824  this->delete_elem(elem);
825 
826  // the mesh has certainly changed
827  mesh_changed = true;
828  }
829  else
830  {
831  // Compress all the active ones
832  if (elem->active())
833  elem->contract();
834  else
836  }
837  }
838 
839  // Strip any newly-created nullptr voids out of the element array
841 
842  // FIXME: Need to understand why deleting subactive children
843  // invalidates the point locator. For now we will clear it explicitly
844  this->clear_point_locator();
845 
846  // Allow our GhostingFunctor objects to reinit if necessary.
847  for (auto & gf : as_range(this->ghosting_functors_begin(),
848  this->ghosting_functors_end()))
849  {
850  libmesh_assert(gf);
851  gf->mesh_reinit();
852  }
853 
854  return mesh_changed;
855 }

References libMesh::Elem::active(), libMesh::Elem::ancestor(), libMesh::as_range(), libMesh::MeshBase::clear_point_locator(), libMesh::Elem::contract(), libMesh::MeshBase::delete_elem(), libMesh::MeshBase::elem(), libMesh::MeshBase::element_ptr_range(), libMesh::MeshBase::ghosting_functors_begin(), libMesh::MeshBase::ghosting_functors_end(), libMesh::libmesh_assert(), libMesh::Elem::parent(), libMesh::MeshBase::renumber_nodes_and_elements(), and libMesh::Elem::subactive().

◆ copy_nodes_and_elements()

void libMesh::UnstructuredMesh::copy_nodes_and_elements ( const UnstructuredMesh other_mesh,
const bool  skip_find_neighbors = false,
dof_id_type  element_id_offset = 0,
dof_id_type  node_id_offset = 0,
unique_id_type  unique_id_offset = 0 
)
virtualinherited

Deep copy of nodes and elements from another unstructured mesh class (used by subclass copy constructors and by mesh merging operations)

This will not copy most "high level" data in the mesh; that is done separately by constructors. An exception is that, if the other_mesh has element or node extra_integer data, any names for that data which do not already exist on this mesh are added so that all such data can be copied.

Definition at line 61 of file unstructured_mesh.C.

70 {
71  LOG_SCOPE("copy_nodes_and_elements()", "UnstructuredMesh");
72 
73  std::pair<std::vector<unsigned int>, std::vector<unsigned int>>
74  extra_int_maps = this->merge_extra_integer_names(other_mesh);
75 
76  const unsigned int n_old_node_ints = extra_int_maps.second.size(),
77  n_new_node_ints = _node_integer_names.size(),
78  n_old_elem_ints = extra_int_maps.first.size(),
79  n_new_elem_ints = _elem_integer_names.size();
80 
81  // If we are partitioned into fewer parts than the incoming mesh,
82  // then we need to "wrap" the other Mesh's processor ids to fit
83  // within our range. This can happen, for example, while stitching
84  // ReplicatedMeshes with small numbers of elements in parallel...
85  bool wrap_proc_ids = (_n_parts < other_mesh._n_parts);
86 
87  // We're assuming our subclass data needs no copy
88  libmesh_assert_equal_to (_is_prepared, other_mesh._is_prepared);
89 
90  // We're assuming the other mesh has proper element number ordering,
91  // so that we add parents before their children, and that the other
92  // mesh is consistently partitioned.
93 #ifdef DEBUG
95  MeshTools::libmesh_assert_valid_procids<Node>(other_mesh);
96 #endif
97 
98  //Copy in Nodes
99  {
100  //Preallocate Memory if necessary
101  this->reserve_nodes(other_mesh.n_nodes());
102 
103  for (const auto & oldn : other_mesh.node_ptr_range())
104  {
105  processor_id_type added_pid = cast_int<processor_id_type>
106  (wrap_proc_ids ? oldn->processor_id() % _n_parts : oldn->processor_id());
107 
108  // Add new nodes in old node Point locations
109  Node * newn =
110  this->add_point(*oldn,
111  oldn->id() + node_id_offset,
112  added_pid);
113 
114  newn->add_extra_integers(n_new_node_ints);
115  for (unsigned int i = 0; i != n_old_node_ints; ++i)
116  newn->set_extra_integer(extra_int_maps.second[i],
117  oldn->get_extra_integer(i));
118 
119 #ifdef LIBMESH_ENABLE_UNIQUE_ID
120  newn->set_unique_id() =
121  oldn->unique_id() + unique_id_offset;
122 #endif
123  }
124  }
125 
126  //Copy in Elements
127  {
128  //Preallocate Memory if necessary
129  this->reserve_elem(other_mesh.n_elem());
130 
131  // Declare a map linking old and new elements, needed to copy the neighbor lists
132  typedef std::unordered_map<const Elem *, Elem *> map_type;
133  map_type old_elems_to_new_elems;
134 
135  // Loop over the elements
136  for (const auto & old : other_mesh.element_ptr_range())
137  {
138  // Build a new element
139  Elem * newparent = old->parent() ?
140  this->elem_ptr(old->parent()->id() + element_id_offset) :
141  nullptr;
142  std::unique_ptr<Elem> ap = Elem::build(old->type(), newparent);
143  Elem * el = ap.release();
144 
145  el->subdomain_id() = old->subdomain_id();
146 
147 #ifdef LIBMESH_ENABLE_AMR
148  if (old->has_children())
149  for (unsigned int c = 0, nc = old->n_children(); c != nc; ++c)
150  if (old->child_ptr(c) == remote_elem)
151  el->add_child(const_cast<RemoteElem *>(remote_elem), c);
152 
153  //Create the parent's child pointers if necessary
154  if (newparent)
155  {
156  unsigned int oldc = old->parent()->which_child_am_i(old);
157  newparent->add_child(el, oldc);
158  }
159 
160  // Copy the refinement flags
161  el->set_refinement_flag(old->refinement_flag());
162 
163  // Use hack_p_level since we may not have sibling elements
164  // added yet
165  el->hack_p_level(old->p_level());
166 
167  el->set_p_refinement_flag(old->p_refinement_flag());
168 #endif // #ifdef LIBMESH_ENABLE_AMR
169 
170  //Assign all the nodes
171  for (auto i : el->node_index_range())
172  el->set_node(i) =
173  this->node_ptr(old->node_id(i) + node_id_offset);
174 
175  // And start it off with the same processor id (mod _n_parts).
176  el->processor_id() = cast_int<processor_id_type>
177  (wrap_proc_ids ? old->processor_id() % _n_parts : old->processor_id());
178 
179  // Give it the same element and unique ids
180  el->set_id(old->id() + element_id_offset);
181 
182  el->add_extra_integers(n_new_elem_ints);
183  for (unsigned int i = 0; i != n_old_elem_ints; ++i)
184  el->set_extra_integer(extra_int_maps.first[i],
185  old->get_extra_integer(i));
186 
187 #ifdef LIBMESH_ENABLE_UNIQUE_ID
188  el->set_unique_id() =
189  old->unique_id() + unique_id_offset;
190 #endif
191 
192  //Hold onto it
193  if (!skip_find_neighbors)
194  {
195  for (auto s : old->side_index_range())
196  if (old->neighbor_ptr(s) == remote_elem)
197  el->set_neighbor(s, const_cast<RemoteElem *>(remote_elem));
198  this->add_elem(el);
199  }
200  else
201  {
202  Elem * new_el = this->add_elem(el);
203  old_elems_to_new_elems[old] = new_el;
204  }
205  }
206 
207  // Loop (again) over the elements to fill in the neighbors
208  if (skip_find_neighbors)
209  {
210  old_elems_to_new_elems[remote_elem] = const_cast<RemoteElem*>(remote_elem);
211 
212  for (const auto & old_elem : other_mesh.element_ptr_range())
213  {
214  Elem * new_elem = old_elems_to_new_elems[old_elem];
215  for (auto s : old_elem->side_index_range())
216  {
217  const Elem * old_neighbor = old_elem->neighbor_ptr(s);
218  Elem * new_neighbor = old_elems_to_new_elems[old_neighbor];
219  new_elem->set_neighbor(s, new_neighbor);
220  }
221  }
222  }
223  }
224 
225  //Finally prepare the new Mesh for use. Keep the same numbering and
226  //partitioning for now.
227  this->allow_renumbering(false);
228  this->allow_remote_element_removal(false);
229 
230  // We should generally be able to skip *all* partitioning here
231  // because we're only adding one already-consistent mesh to another.
232  this->skip_partitioning(true);
233 
234  this->prepare_for_use(false, skip_find_neighbors);
235 
236  //But in the long term, use the same renumbering and partitioning
237  //policies as our source mesh.
238  this->allow_renumbering(other_mesh.allow_renumbering());
239  this->allow_remote_element_removal(other_mesh.allow_remote_element_removal());
240  this->skip_partitioning(other_mesh._skip_all_partitioning);
241  this->skip_noncritical_partitioning(other_mesh._skip_noncritical_partitioning);
242 }

References libMesh::MeshBase::_elem_integer_names, libMesh::MeshBase::_is_prepared, libMesh::MeshBase::_n_parts, libMesh::MeshBase::_node_integer_names, libMesh::MeshBase::_skip_all_partitioning, libMesh::MeshBase::_skip_noncritical_partitioning, libMesh::Elem::add_child(), libMesh::MeshBase::add_elem(), libMesh::DofObject::add_extra_integers(), libMesh::MeshBase::add_point(), libMesh::MeshBase::allow_remote_element_removal(), libMesh::MeshBase::allow_renumbering(), libMesh::Elem::build(), libMesh::MeshBase::elem_ptr(), libMesh::MeshBase::element_ptr_range(), libMesh::MeshTools::libmesh_assert_valid_amr_elem_ids(), libMesh::MeshBase::merge_extra_integer_names(), libMesh::MeshBase::n_elem(), libMesh::MeshBase::n_nodes(), libMesh::Elem::neighbor_ptr(), libMesh::MeshBase::node_ptr(), libMesh::MeshBase::node_ptr_range(), libMesh::Elem::parent(), libMesh::MeshBase::prepare_for_use(), libMesh::DofObject::processor_id(), libMesh::remote_elem, libMesh::MeshBase::reserve_elem(), libMesh::MeshBase::reserve_nodes(), libMesh::Elem::set_neighbor(), libMesh::MeshBase::skip_noncritical_partitioning(), libMesh::MeshBase::skip_partitioning(), and libMesh::Elem::subdomain_id().

Referenced by libMesh::DistributedMesh::DistributedMesh(), libMesh::ReplicatedMesh::ReplicatedMesh(), and libMesh::ReplicatedMesh::stitching_helper().

◆ create_pid_mesh()

void libMesh::UnstructuredMesh::create_pid_mesh ( UnstructuredMesh pid_mesh,
const processor_id_type  pid 
) const
inherited

Generates a new mesh containing all the elements which are assigned to processor pid.

This mesh is written to the pid_mesh reference which you must create and pass to the function.

Definition at line 672 of file unstructured_mesh.C.

674 {
675 
676  // Issue a warning if the number the number of processors
677  // currently available is less that that requested for
678  // partitioning. This is not necessarily an error since
679  // you may run on one processor and still partition the
680  // mesh into several partitions.
681 #ifdef DEBUG
682  if (this->n_processors() < pid)
683  {
684  libMesh::out << "WARNING: You are creating a "
685  << "mesh for a processor id (="
686  << pid
687  << ") greater than "
688  << "the number of processors available for "
689  << "the calculation. (="
690  << this->n_processors()
691  << ")."
692  << std::endl;
693  }
694 #endif
695 
696  this->create_submesh (pid_mesh,
697  this->active_pid_elements_begin(pid),
698  this->active_pid_elements_end(pid));
699 }

References libMesh::MeshBase::active_pid_elements_begin(), libMesh::MeshBase::active_pid_elements_end(), libMesh::UnstructuredMesh::create_submesh(), libMesh::ParallelObject::n_processors(), and libMesh::out.

◆ create_submesh()

void libMesh::UnstructuredMesh::create_submesh ( UnstructuredMesh new_mesh,
const const_element_iterator it,
const const_element_iterator it_end 
) const
inherited

Constructs a mesh called "new_mesh" from the current mesh by iterating over the elements between it and it_end and adding them to the new mesh.

Definition at line 707 of file unstructured_mesh.C.

710 {
711  // Just in case the subdomain_mesh already has some information
712  // in it, get rid of it.
713  new_mesh.clear();
714 
715  // If we're not serial, our submesh isn't either.
716  // There are no remote elements to delete on an empty mesh, but
717  // calling the method to do so marks the mesh as parallel.
718  if (!this->is_serial())
719  new_mesh.delete_remote_elements();
720 
721  // Fail if (*this == new_mesh), we cannot create a submesh inside ourself!
722  // This may happen if the user accidentally passes the original mesh into
723  // this function! We will check this by making sure we did not just
724  // clear ourself.
725  libmesh_assert_not_equal_to (this->n_nodes(), 0);
726  libmesh_assert_not_equal_to (this->n_elem(), 0);
727 
728  // Container to catch boundary IDs handed back by BoundaryInfo
729  std::vector<boundary_id_type> bc_ids;
730 
731  // Put any extra integers on the new mesh too
732  new_mesh.merge_extra_integer_names(*this);
733  const unsigned int n_node_ints = _node_integer_names.size(),
734  n_elem_ints = _elem_integer_names.size();
735 
736  for (const auto & old_elem : as_range(it, it_end))
737  {
738  // Add an equivalent element type to the new_mesh.
739  // Copy ids for this element.
740  Elem * new_elem = Elem::build(old_elem->type()).release();
741  new_elem->set_id() = old_elem->id();
742 #ifdef LIBMESH_ENABLE_UNIQUE_ID
743  new_elem->set_unique_id() = old_elem->unique_id();
744 #endif
745  new_elem->subdomain_id() = old_elem->subdomain_id();
746  new_elem->processor_id() = old_elem->processor_id();
747 
748  new_elem->add_extra_integers(n_elem_ints);
749  for (unsigned int i = 0; i != n_elem_ints; ++i)
750  new_elem->set_extra_integer(i, old_elem->get_extra_integer(i));
751 
752  new_mesh.add_elem (new_elem);
753 
754  libmesh_assert(new_elem);
755 
756  // Loop over the nodes on this element.
757  for (auto n : old_elem->node_index_range())
758  {
759  const dof_id_type this_node_id = old_elem->node_id(n);
760 
761  // Add this node to the new mesh if it's not there already
762  if (!new_mesh.query_node_ptr(this_node_id))
763  {
764  Node * newn =
765  new_mesh.add_point (old_elem->point(n),
766  this_node_id,
767  old_elem->node_ptr(n)->processor_id());
768 
769  newn->add_extra_integers(n_node_ints);
770  for (unsigned int i = 0; i != n_node_ints; ++i)
771  newn->set_extra_integer(i, old_elem->node_ptr(n)->get_extra_integer(i));
772 
773 #ifdef LIBMESH_ENABLE_UNIQUE_ID
774  newn->set_unique_id() = old_elem->node_ptr(n)->unique_id();
775 #endif
776  }
777 
778  // Define this element's connectivity on the new mesh
779  new_elem->set_node(n) = new_mesh.node_ptr(this_node_id);
780  }
781 
782  // Maybe add boundary conditions for this element
783  for (auto s : old_elem->side_index_range())
784  {
785  this->get_boundary_info().boundary_ids(old_elem, s, bc_ids);
786  new_mesh.get_boundary_info().add_side (new_elem, s, bc_ids);
787  }
788  } // end loop over elements
789 
790  // Prepare the new_mesh for use
791  new_mesh.prepare_for_use(/*skip_renumber =*/false);
792 }

References libMesh::MeshBase::_elem_integer_names, libMesh::MeshBase::_node_integer_names, libMesh::MeshBase::add_elem(), libMesh::DofObject::add_extra_integers(), libMesh::MeshBase::add_point(), libMesh::BoundaryInfo::add_side(), libMesh::as_range(), libMesh::BoundaryInfo::boundary_ids(), libMesh::Elem::build(), libMesh::MeshBase::clear(), libMesh::MeshBase::delete_remote_elements(), libMesh::MeshBase::get_boundary_info(), libMesh::MeshBase::is_serial(), libMesh::libmesh_assert(), libMesh::MeshBase::merge_extra_integer_names(), libMesh::MeshBase::n_elem(), libMesh::MeshBase::n_nodes(), libMesh::MeshBase::node_ptr(), libMesh::MeshBase::prepare_for_use(), libMesh::DofObject::processor_id(), libMesh::MeshBase::query_node_ptr(), libMesh::DofObject::set_extra_integer(), libMesh::DofObject::set_id(), libMesh::Elem::set_node(), libMesh::DofObject::set_unique_id(), and libMesh::Elem::subdomain_id().

Referenced by libMesh::UnstructuredMesh::create_pid_mesh().

◆ default_ghosting()

GhostingFunctor& libMesh::MeshBase::default_ghosting ( )
inlineinherited

Default ghosting functor.

Definition at line 1125 of file mesh_base.h.

1125 { return *_default_ghosting; }

References libMesh::MeshBase::_default_ghosting.

◆ default_mapping_data()

unsigned char libMesh::MeshBase::default_mapping_data ( ) const
inlineinherited

◆ default_mapping_type()

ElemMappingType libMesh::MeshBase::default_mapping_type ( ) const
inlineinherited

Returns the default master space to physical space mapping basis functions to be used on newly added elements.

Definition at line 708 of file mesh_base.h.

708  {
709  return _default_mapping_type;
710  }

References libMesh::MeshBase::_default_mapping_type.

Referenced by libMesh::ReplicatedMesh::add_elem(), libMesh::DistributedMesh::add_elem(), libMesh::ReplicatedMesh::insert_elem(), libMesh::DistributedMesh::insert_elem(), MeshInputTest::testDynaReadElem(), and MeshInputTest::testDynaReadPatch().

◆ delete_elem()

void libMesh::ReplicatedMesh::delete_elem ( Elem e)
overridevirtualinherited

Removes element e from the mesh.

This method must be implemented in derived classes in such a way that it does not invalidate element iterators. Users should call MeshBase::prepare_for_use() after elements are added to and/or deleted from the mesh.

Note
Calling this method may produce isolated nodes, i.e. nodes not connected to any element.

Implements libMesh::MeshBase.

Definition at line 360 of file replicated_mesh.C.

361 {
362  libmesh_assert(e);
363 
364  // Initialize an iterator to eventually point to the element we want to delete
365  std::vector<Elem *>::iterator pos = _elements.end();
366 
367  // In many cases, e->id() gives us a clue as to where e
368  // is located in the _elements vector. Try that first
369  // before trying the O(n_elem) search.
370  libmesh_assert_less (e->id(), _elements.size());
371 
372  if (_elements[e->id()] == e)
373  {
374  // We found it!
375  pos = _elements.begin();
376  std::advance(pos, e->id());
377  }
378 
379  else
380  {
381  // This search is O(n_elem)
382  pos = std::find (_elements.begin(),
383  _elements.end(),
384  e);
385  }
386 
387  // Huh? Element not in the vector?
388  libmesh_assert (pos != _elements.end());
389 
390  // Remove the element from the BoundaryInfo object
391  this->get_boundary_info().remove(e);
392 
393  // delete the element
394  delete e;
395 
396  // explicitly zero the pointer
397  *pos = nullptr;
398 }

References libMesh::ReplicatedMesh::_elements, libMesh::MeshBase::get_boundary_info(), libMesh::DofObject::id(), libMesh::libmesh_assert(), and libMesh::BoundaryInfo::remove().

Referenced by libMesh::ReplicatedMesh::insert_elem().

◆ delete_node()

void libMesh::ReplicatedMesh::delete_node ( Node n)
overridevirtualinherited

Removes the Node n from the mesh.

Implements libMesh::MeshBase.

Definition at line 539 of file replicated_mesh.C.

540 {
541  libmesh_assert(n);
542  libmesh_assert_less (n->id(), _nodes.size());
543 
544  // Initialize an iterator to eventually point to the element we want
545  // to delete
546  std::vector<Node *>::iterator pos;
547 
548  // In many cases, e->id() gives us a clue as to where e
549  // is located in the _elements vector. Try that first
550  // before trying the O(n_elem) search.
551  if (_nodes[n->id()] == n)
552  {
553  pos = _nodes.begin();
554  std::advance(pos, n->id());
555  }
556  else
557  {
558  pos = std::find (_nodes.begin(),
559  _nodes.end(),
560  n);
561  }
562 
563  // Huh? Node not in the vector?
564  libmesh_assert (pos != _nodes.end());
565 
566  // Delete the node from the BoundaryInfo object
567  this->get_boundary_info().remove(n);
568 
569  // delete the node
570  delete n;
571 
572  // explicitly zero the pointer
573  *pos = nullptr;
574 }

References libMesh::ReplicatedMesh::_nodes, libMesh::MeshBase::get_boundary_info(), libMesh::DofObject::id(), libMesh::libmesh_assert(), and libMesh::BoundaryInfo::remove().

Referenced by libMesh::ReplicatedMesh::stitching_helper().

◆ delete_remote_elements()

virtual void libMesh::MeshBase::delete_remote_elements ( )
inlinevirtualinherited

When supported, deletes all nonlocal elements of the mesh except for "ghosts" which touch a local element, and deletes all nodes which are not part of a local or ghost element.

Reimplemented in libMesh::DistributedMesh.

Definition at line 201 of file mesh_base.h.

201 {}

Referenced by libMesh::MeshTools::Generation::build_extrusion(), libMesh::UnstructuredMesh::create_submesh(), libMesh::Nemesis_IO::read(), libMesh::BoundaryInfo::sync(), and libMesh::MeshSerializer::~MeshSerializer().

◆ detect_interior_parents()

void libMesh::MeshBase::detect_interior_parents ( )
inherited

Search the mesh for elements that have a neighboring element of dim+1 and set that element as the interior parent.

Definition at line 812 of file mesh_base.C.

813 {
814  // This requires an inspection on every processor
815  parallel_object_only();
816 
817  // Check if the mesh contains mixed dimensions. If so, then set interior parents, otherwise return.
818  if (this->elem_dimensions().size() == 1)
819  return;
820 
821  //This map will be used to set interior parents
822  std::unordered_map<dof_id_type, std::vector<dof_id_type>> node_to_elem;
823 
824  for (const auto & elem : this->active_element_ptr_range())
825  {
826  // Populating the node_to_elem map, same as MeshTools::build_nodes_to_elem_map
827  for (auto n : IntRange<unsigned int>(0, elem->n_vertices()))
828  {
829  libmesh_assert_less (elem->id(), this->max_elem_id());
830 
831  node_to_elem[elem->node_id(n)].push_back(elem->id());
832  }
833  }
834 
835  // Automatically set interior parents
836  for (const auto & element : this->element_ptr_range())
837  {
838  // Ignore an 3D element or an element that already has an interior parent
839  if (element->dim()>=LIBMESH_DIM || element->interior_parent())
840  continue;
841 
842  // Start by generating a SET of elements that are dim+1 to the current
843  // element at each vertex of the current element, thus ignoring interior nodes.
844  // If one of the SET of elements is empty, then we will not have an interior parent
845  // since an interior parent must be connected to all vertices of the current element
846  std::vector<std::set<dof_id_type>> neighbors( element->n_vertices() );
847 
848  bool found_interior_parents = false;
849 
850  for (auto n : IntRange<unsigned int>(0, element->n_vertices()))
851  {
852  std::vector<dof_id_type> & element_ids = node_to_elem[element->node_id(n)];
853  for (const auto & eid : element_ids)
854  if (this->elem_ref(eid).dim() == element->dim()+1)
855  neighbors[n].insert(eid);
856 
857  if (neighbors[n].size()>0)
858  {
859  found_interior_parents = true;
860  }
861  else
862  {
863  // We have found an empty set, no reason to continue
864  // Ensure we set this flag to false before the break since it could have
865  // been set to true for previous vertex
866  found_interior_parents = false;
867  break;
868  }
869  }
870 
871  // If we have successfully generated a set of elements for each vertex, we will compare
872  // the set for vertex 0 will the sets for the vertices until we find a id that exists in
873  // all sets. If found, this is our an interior parent id. The interior parent id found
874  // will be the lowest element id if there is potential for multiple interior parents.
875  if (found_interior_parents)
876  {
877  std::set<dof_id_type> & neighbors_0 = neighbors[0];
878  for (const auto & interior_parent_id : neighbors_0)
879  {
880  found_interior_parents = false;
881  for (auto n : IntRange<unsigned int>(1, element->n_vertices()))
882  {
883  if (neighbors[n].find(interior_parent_id)!=neighbors[n].end())
884  {
885  found_interior_parents=true;
886  }
887  else
888  {
889  found_interior_parents=false;
890  break;
891  }
892  }
893  if (found_interior_parents)
894  {
895  element->set_interior_parent(this->elem_ptr(interior_parent_id));
896  break;
897  }
898  }
899  }
900  }
901 }

References dim.

◆ elem() [1/2]

virtual Elem* libMesh::MeshBase::elem ( const dof_id_type  i)
inlinevirtualinherited
Returns
A writable pointer to the \( i^{th} \) element, which should be present in this processor's subset of the mesh data structure.

Definition at line 569 of file mesh_base.h.

570  {
571  libmesh_deprecated();
572  return this->elem_ptr(i);
573  }

References libMesh::MeshBase::elem_ptr().

◆ elem() [2/2]

virtual const Elem* libMesh::MeshBase::elem ( const dof_id_type  i) const
inlinevirtualinherited
Returns
A pointer to the \( i^{th} \) element, which should be present in this processor's subset of the mesh data structure.

Definition at line 554 of file mesh_base.h.

555  {
556  libmesh_deprecated();
557  return this->elem_ptr(i);
558  }

References libMesh::MeshBase::elem_ptr().

Referenced by libMesh::ReplicatedMesh::clear(), libMesh::DistributedMesh::clear(), libMesh::UnstructuredMesh::contract(), libMesh::DistributedMesh::DistributedMesh(), libMesh::ReplicatedMesh::get_boundary_points(), libMesh::ReplicatedMesh::get_disconnected_subdomains(), libMesh::DistributedMesh::renumber_nodes_and_elements(), and libMesh::ReplicatedMesh::stitching_helper().

◆ elem_dimensions()

const std::set<unsigned char>& libMesh::MeshBase::elem_dimensions ( ) const
inlineinherited
Returns
A const reference to a std::set of element dimensions present in the mesh.

Definition at line 225 of file mesh_base.h.

226  { return _elem_dims; }

References libMesh::MeshBase::_elem_dims.

Referenced by libMesh::System::calculate_norm(), and libMesh::TreeNode< N >::insert().

◆ elem_ptr() [1/2]

const Elem * libMesh::ReplicatedMesh::elem_ptr ( const dof_id_type  i) const
overridevirtualinherited

◆ elem_ptr() [2/2]

Elem * libMesh::ReplicatedMesh::elem_ptr ( const dof_id_type  i)
overridevirtualinherited
Returns
A writable pointer to the \( i^{th} \) element, which should be present in this processor's subset of the mesh data structure.

Implements libMesh::MeshBase.

Definition at line 244 of file replicated_mesh.C.

245 {
246  libmesh_assert_less (i, this->n_elem());
248  libmesh_assert_equal_to (_elements[i]->id(), i); // This will change soon
249 
250  return _elements[i];
251 }

References libMesh::ReplicatedMesh::_elements, libMesh::libmesh_assert(), and libMesh::ReplicatedMesh::n_elem().

◆ elem_ref() [1/2]

virtual Elem& libMesh::MeshBase::elem_ref ( const dof_id_type  i)
inlinevirtualinherited
Returns
A writable reference to the \( i^{th} \) element, which should be present in this processor's subset of the mesh data structure.

Definition at line 530 of file mesh_base.h.

530  {
531  return *this->elem_ptr(i);
532  }

References libMesh::MeshBase::elem_ptr().

◆ elem_ref() [2/2]

virtual const Elem& libMesh::MeshBase::elem_ref ( const dof_id_type  i) const
inlinevirtualinherited

◆ element_ptr_range() [1/2]

virtual SimpleRange<const_element_iterator> libMesh::ReplicatedMesh::element_ptr_range ( ) const
inlineoverridevirtualinherited

◆ element_ptr_range() [2/2]

virtual SimpleRange<element_iterator> libMesh::ReplicatedMesh::element_ptr_range ( )
inlineoverridevirtualinherited

◆ elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::elements_begin ( )
overridevirtualinherited

Elem iterator accessor functions.

Implements libMesh::MeshBase.

Referenced by libMesh::ReplicatedMesh::element_ptr_range().

◆ elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::elements_end ( )
overridevirtualinherited

◆ evaluable_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::evaluable_elements_begin ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ evaluable_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::evaluable_elements_begin ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
)
overridevirtualinherited

Iterate over elements in the Mesh where the solution (as distributed by the given DofMap) can be evaluated, for the given variable var_num, or for all variables by default.

Implements libMesh::MeshBase.

◆ evaluable_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::evaluable_elements_end ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ evaluable_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::evaluable_elements_end ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ evaluable_nodes_begin() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::evaluable_nodes_begin ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ evaluable_nodes_begin() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::evaluable_nodes_begin ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
)
overridevirtualinherited

Iterate over nodes in the Mesh where the solution (as distributed by the given DofMap) can be evaluated, for the given variable var_num, or for all variables by default.

Implements libMesh::MeshBase.

◆ evaluable_nodes_end() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::evaluable_nodes_end ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ evaluable_nodes_end() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::evaluable_nodes_end ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ facelocal_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::facelocal_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ facelocal_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::facelocal_elements_begin ( )
overridevirtualinherited

Iterate over elements which are on or have a neighbor on the current processor.

Implements libMesh::MeshBase.

◆ facelocal_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::facelocal_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ facelocal_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::facelocal_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ find_neighbors()

void libMesh::UnstructuredMesh::find_neighbors ( const bool  reset_remote_elements = false,
const bool  reset_current_list = true 
)
overridevirtualinherited

Other functions from MeshBase requiring re-definition.

Here we look at all of the child elements which don't already have valid neighbors.

If a child element has a nullptr neighbor it is either because it is on the boundary or because its neighbor is at a different level. In the latter case we must get the neighbor from the parent.

If a child element has a remote_elem neighbor on a boundary it shares with its parent, that info may have become out-dated through coarsening of the neighbor's parent. In this case, if the parent's neighbor is active then the child should share it.

Furthermore, that neighbor better be active, otherwise we missed a child somewhere.

We also need to look through children ordered by increasing refinement level in order to add new interior_parent() links in boundary elements which have just been generated by refinement, and fix links in boundary elements whose previous interior_parent() has just been coarsened away.

Implements libMesh::MeshBase.

Definition at line 257 of file unstructured_mesh.C.

259 {
260  // We might actually want to run this on an empty mesh
261  // (e.g. the boundary mesh for a nonexistent bcid!)
262  // libmesh_assert_not_equal_to (this->n_nodes(), 0);
263  // libmesh_assert_not_equal_to (this->n_elem(), 0);
264 
265  // This function must be run on all processors at once
266  parallel_object_only();
267 
268  LOG_SCOPE("find_neighbors()", "Mesh");
269 
270  //TODO:[BSK] This should be removed later?!
271  if (reset_current_list)
272  for (const auto & e : this->element_ptr_range())
273  for (auto s : e->side_index_range())
274  if (e->neighbor_ptr(s) != remote_elem || reset_remote_elements)
275  e->set_neighbor(s, nullptr);
276 
277  // Find neighboring elements by first finding elements
278  // with identical side keys and then check to see if they
279  // are neighbors
280  {
281  // data structures -- Use the hash_multimap if available
282  typedef unsigned int key_type;
283  typedef std::pair<Elem *, unsigned char> val_type;
284  typedef std::pair<key_type, val_type> key_val_pair;
285 
286  typedef std::unordered_multimap<key_type, val_type> map_type;
287 
288  // A map from side keys to corresponding elements & side numbers
289  map_type side_to_elem_map;
290 
291  // Pull objects out of the loop to reduce heap operations
292  std::unique_ptr<Elem> my_side, their_side;
293 
294  for (const auto & element : this->element_ptr_range())
295  {
296  for (auto ms : element->side_index_range())
297  {
298  next_side:
299  // If we haven't yet found a neighbor on this side, try.
300  // Even if we think our neighbor is remote, that
301  // information may be out of date.
302  if (element->neighbor_ptr(ms) == nullptr ||
303  element->neighbor_ptr(ms) == remote_elem)
304  {
305  // Get the key for the side of this element
306  const unsigned int key = element->key(ms);
307 
308  // Look for elements that have an identical side key
309  auto bounds = side_to_elem_map.equal_range(key);
310 
311  // May be multiple keys, check all the possible
312  // elements which _might_ be neighbors.
313  if (bounds.first != bounds.second)
314  {
315  // Get the side for this element
316  element->side_ptr(my_side, ms);
317 
318  // Look at all the entries with an equivalent key
319  while (bounds.first != bounds.second)
320  {
321  // Get the potential element
322  Elem * neighbor = bounds.first->second.first;
323 
324  // Get the side for the neighboring element
325  const unsigned int ns = bounds.first->second.second;
326  neighbor->side_ptr(their_side, ns);
327  //libmesh_assert(my_side.get());
328  //libmesh_assert(their_side.get());
329 
330  // If found a match with my side
331  //
332  // We need special tests here for 1D:
333  // since parents and children have an equal
334  // side (i.e. a node), we need to check
335  // ns != ms, and we also check level() to
336  // avoid setting our neighbor pointer to
337  // any of our neighbor's descendants
338  if ((*my_side == *their_side) &&
339  (element->level() == neighbor->level()) &&
340  ((element->dim() != 1) || (ns != ms)))
341  {
342  // So share a side. Is this a mixed pair
343  // of subactive and active/ancestor
344  // elements?
345  // If not, then we're neighbors.
346  // If so, then the subactive's neighbor is
347 
348  if (element->subactive() ==
349  neighbor->subactive())
350  {
351  // an element is only subactive if it has
352  // been coarsened but not deleted
353  element->set_neighbor (ms,neighbor);
354  neighbor->set_neighbor(ns,element);
355  }
356  else if (element->subactive())
357  {
358  element->set_neighbor(ms,neighbor);
359  }
360  else if (neighbor->subactive())
361  {
362  neighbor->set_neighbor(ns,element);
363  }
364  side_to_elem_map.erase (bounds.first);
365 
366  // get out of this nested crap
367  goto next_side;
368  }
369 
370  ++bounds.first;
371  }
372  }
373 
374  // didn't find a match...
375  // Build the map entry for this element
376  key_val_pair kvp;
377 
378  kvp.first = key;
379  kvp.second.first = element;
380  kvp.second.second = cast_int<unsigned char>(ms);
381  side_to_elem_map.insert (kvp);
382  }
383  }
384  }
385  }
386 
387 #ifdef LIBMESH_ENABLE_AMR
388 
416  const unsigned int n_levels = MeshTools::n_levels(*this);
417  for (unsigned int level = 1; level < n_levels; ++level)
418  {
419  for (auto & current_elem : as_range(level_elements_begin(level),
420  level_elements_end(level)))
421  {
422  libmesh_assert(current_elem);
423  Elem * parent = current_elem->parent();
424  libmesh_assert(parent);
425  const unsigned int my_child_num = parent->which_child_am_i(current_elem);
426 
427  for (auto s : current_elem->side_index_range())
428  {
429  if (current_elem->neighbor_ptr(s) == nullptr ||
430  (current_elem->neighbor_ptr(s) == remote_elem &&
431  parent->is_child_on_side(my_child_num, s)))
432  {
433  Elem * neigh = parent->neighbor_ptr(s);
434 
435  // If neigh was refined and had non-subactive children
436  // made remote earlier, then our current elem should
437  // actually have one of those remote children as a
438  // neighbor
439  if (neigh &&
440  (neigh->ancestor() ||
441  // If neigh has subactive children which should have
442  // matched as neighbors of the current element but
443  // did not, then those likewise must be remote
444  // children.
445  (current_elem->subactive() && neigh->has_children() &&
446  (neigh->level()+1) == current_elem->level())))
447  {
448 #ifdef DEBUG
449  // Let's make sure that "had children made remote"
450  // situation is actually the case
451  libmesh_assert(neigh->has_children());
452  bool neigh_has_remote_children = false;
453  for (auto & child : neigh->child_ref_range())
454  if (&child == remote_elem)
455  neigh_has_remote_children = true;
456  libmesh_assert(neigh_has_remote_children);
457 
458  // And let's double-check that we don't have
459  // a remote_elem neighboring an active local element
460  if (current_elem->active())
461  libmesh_assert_not_equal_to (current_elem->processor_id(),
462  this->processor_id());
463 #endif // DEBUG
464  neigh = const_cast<RemoteElem *>(remote_elem);
465  }
466  // If neigh and current_elem are more than one level
467  // apart, figuring out whether we have a remote
468  // neighbor here becomes much harder.
469  else if (neigh && (current_elem->subactive() &&
470  neigh->has_children()))
471  {
472  // Find the deepest descendant of neigh which
473  // we could consider for a neighbor. If we run
474  // out of neigh children, then that's our
475  // neighbor. If we find a potential neighbor
476  // with remote_children and we don't find any
477  // potential neighbors among its non-remote
478  // children, then our neighbor must be remote.
479  while (neigh != remote_elem &&
480  neigh->has_children())
481  {
482  bool found_neigh = false;
483  for (unsigned int c = 0, nc = neigh->n_children();
484  !found_neigh && c != nc; ++c)
485  {
486  Elem * child = neigh->child_ptr(c);
487  if (child == remote_elem)
488  continue;
489  for (auto ncn : child->neighbor_ptr_range())
490  {
491  if (ncn != remote_elem &&
492  ncn->is_ancestor_of(current_elem))
493  {
494  neigh = ncn;
495  found_neigh = true;
496  break;
497  }
498  }
499  }
500  if (!found_neigh)
501  neigh = const_cast<RemoteElem *>(remote_elem);
502  }
503  }
504  current_elem->set_neighbor(s, neigh);
505 #ifdef DEBUG
506  if (neigh != nullptr && neigh != remote_elem)
507  // We ignore subactive elements here because
508  // we don't care about neighbors of subactive element.
509  if ((!neigh->active()) && (!current_elem->subactive()))
510  {
511  libMesh::err << "On processor " << this->processor_id()
512  << std::endl;
513  libMesh::err << "Bad element ID = " << current_elem->id()
514  << ", Side " << s << ", Bad neighbor ID = " << neigh->id() << std::endl;
515  libMesh::err << "Bad element proc_ID = " << current_elem->processor_id()
516  << ", Bad neighbor proc_ID = " << neigh->processor_id() << std::endl;
517  libMesh::err << "Bad element size = " << current_elem->hmin()
518  << ", Bad neighbor size = " << neigh->hmin() << std::endl;
519  libMesh::err << "Bad element center = " << current_elem->centroid()
520  << ", Bad neighbor center = " << neigh->centroid() << std::endl;
521  libMesh::err << "ERROR: "
522  << (current_elem->active()?"Active":"Ancestor")
523  << " Element at level "
524  << current_elem->level() << std::endl;
525  libMesh::err << "with "
526  << (parent->active()?"active":
527  (parent->subactive()?"subactive":"ancestor"))
528  << " parent share "
529  << (neigh->subactive()?"subactive":"ancestor")
530  << " neighbor at level " << neigh->level()
531  << std::endl;
532  NameBasedIO(*this).write ("bad_mesh.gmv");
533  libmesh_error_msg("Problematic mesh written to bad_mesh.gmv.");
534  }
535 #endif // DEBUG
536  }
537  }
538 
539  // We can skip to the next element if we're full-dimension
540  // and therefore don't have any interior parents
541  if (current_elem->dim() >= LIBMESH_DIM)
542  continue;
543 
544  // We have no interior parents unless we can find one later
545  current_elem->set_interior_parent(nullptr);
546 
547  Elem * pip = parent->interior_parent();
548 
549  if (!pip)
550  continue;
551 
552  // If there's no interior_parent children, whether due to a
553  // remote element or a non-conformity, then there's no
554  // children to search.
555  if (pip == remote_elem || pip->active())
556  {
557  current_elem->set_interior_parent(pip);
558  continue;
559  }
560 
561  // For node comparisons we'll need a sensible tolerance
562  Real node_tolerance = current_elem->hmin() * TOLERANCE;
563 
564  // Otherwise our interior_parent should be a child of our
565  // parent's interior_parent.
566  for (auto & child : pip->child_ref_range())
567  {
568  // If we have a remote_elem, that might be our
569  // interior_parent. We'll set it provisionally now and
570  // keep trying to find something better.
571  if (&child == remote_elem)
572  {
573  current_elem->set_interior_parent
574  (const_cast<RemoteElem *>(remote_elem));
575  continue;
576  }
577 
578  bool child_contains_our_nodes = true;
579  for (auto & n : current_elem->node_ref_range())
580  {
581  bool child_contains_this_node = false;
582  for (auto & cn : child.node_ref_range())
583  if (cn.absolute_fuzzy_equals
584  (n, node_tolerance))
585  {
586  child_contains_this_node = true;
587  break;
588  }
589  if (!child_contains_this_node)
590  {
591  child_contains_our_nodes = false;
592  break;
593  }
594  }
595  if (child_contains_our_nodes)
596  {
597  current_elem->set_interior_parent(&child);
598  break;
599  }
600  }
601 
602  // We should have found *some* interior_parent at this
603  // point, whether semilocal or remote.
604  libmesh_assert(current_elem->interior_parent());
605  }
606  }
607 
608 #endif // AMR
609 
610 
611 #ifdef DEBUG
613  !reset_remote_elements);
615 #endif
616 }

References libMesh::Elem::active(), libMesh::Elem::ancestor(), libMesh::as_range(), libMesh::Elem::centroid(), libMesh::Elem::child_ptr(), libMesh::Elem::child_ref_range(), libMesh::MeshBase::element_ptr_range(), libMesh::err, libMesh::Elem::has_children(), libMesh::Elem::hmin(), libMesh::DofObject::id(), libMesh::Elem::interior_parent(), libMesh::Elem::is_ancestor_of(), libMesh::Elem::is_child_on_side(), libMesh::Elem::level(), libMesh::MeshBase::level_elements_begin(), libMesh::MeshBase::level_elements_end(), libMesh::libmesh_assert(), libMesh::MeshTools::libmesh_assert_valid_amr_interior_parents(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libMesh::Elem::n_children(), libMesh::MeshTools::n_levels(), libMesh::Elem::neighbor_ptr(), libMesh::Elem::neighbor_ptr_range(), libMesh::Elem::parent(), libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), libMesh::Real, libMesh::remote_elem, libMesh::Elem::set_interior_parent(), libMesh::Elem::set_neighbor(), libMesh::Elem::side_ptr(), libMesh::Elem::subactive(), libMesh::TOLERANCE, libMesh::Elem::which_child_am_i(), and libMesh::NameBasedIO::write().

Referenced by libMesh::TriangleWrapper::copy_tri_to_mesh(), and libMesh::DistributedMesh::redistribute().

◆ fix_broken_node_and_element_numbering()

void libMesh::ReplicatedMesh::fix_broken_node_and_element_numbering ( )
overridevirtualinherited

There is no reason for a user to ever call this function.

This function restores a previously broken element/node numbering such that mesh.node_ref(n).id() == n.

Implements libMesh::MeshBase.

Definition at line 798 of file replicated_mesh.C.

799 {
800  // Nodes first
801  for (auto n : index_range(_nodes))
802  if (this->_nodes[n] != nullptr)
803  this->_nodes[n]->set_id() = cast_int<dof_id_type>(n);
804 
805  // Elements next
806  for (auto e : index_range(_elements))
807  if (this->_elements[e] != nullptr)
808  this->_elements[e]->set_id() = cast_int<dof_id_type>(e);
809 }

References libMesh::ReplicatedMesh::_elements, libMesh::ReplicatedMesh::_nodes, and libMesh::index_range().

◆ flagged_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::flagged_elements_begin ( unsigned char  rflag) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ flagged_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::flagged_elements_begin ( unsigned char  rflag)
overridevirtualinherited

Iterate over all elements with a specified refinement flag.

Implements libMesh::MeshBase.

◆ flagged_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::flagged_elements_end ( unsigned char  rflag) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ flagged_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::flagged_elements_end ( unsigned char  rflag)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ flagged_pid_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::flagged_pid_elements_begin ( unsigned char  rflag,
processor_id_type  pid 
) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ flagged_pid_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::flagged_pid_elements_begin ( unsigned char  rflag,
processor_id_type  pid 
)
overridevirtualinherited

Iterate over all elements with a specified refinement flag on a specified processor.

Implements libMesh::MeshBase.

◆ flagged_pid_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::flagged_pid_elements_end ( unsigned char  rflag,
processor_id_type  pid 
) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ flagged_pid_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::flagged_pid_elements_end ( unsigned char  rflag,
processor_id_type  pid 
)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ gather_to_zero()

virtual void libMesh::MeshBase::gather_to_zero ( )
inlinevirtualinherited

Gathers all elements and nodes of the mesh onto processor zero.

Reimplemented in libMesh::DistributedMesh.

Definition at line 194 of file mesh_base.h.

194 {}

Referenced by libMesh::MeshSerializer::MeshSerializer().

◆ get_boundary_info() [1/2]

BoundaryInfo& libMesh::MeshBase::get_boundary_info ( )
inlineinherited

Writable information about boundary ids on the mesh.

Definition at line 137 of file mesh_base.h.

137 { return *boundary_info; }

References libMesh::MeshBase::boundary_info.

◆ get_boundary_info() [2/2]

const BoundaryInfo& libMesh::MeshBase::get_boundary_info ( ) const
inlineinherited

The information about boundary ids on the mesh.

Definition at line 132 of file mesh_base.h.

132 { return *boundary_info; }

References libMesh::MeshBase::boundary_info.

Referenced by libMesh::MeshRefinement::_coarsen_elements(), libMesh::MeshTools::Subdivision::add_boundary_ghosts(), libMesh::RBConstruction::add_scaled_matrix_and_vector(), libMesh::UnstructuredMesh::all_first_order(), libMesh::UnstructuredMesh::all_second_order(), libMesh::MeshTools::Subdivision::all_subdivision(), libMesh::MeshTools::Modification::all_tri(), LinearElasticity::assemble(), assemble_elasticity(), assemble_poisson(), assemble_shell(), libMesh::AbaqusIO::assign_boundary_node_ids(), libMesh::AbaqusIO::assign_sideset_ids(), AssemblyA0::boundary_assembly(), AssemblyF0::boundary_assembly(), AssemblyA1::boundary_assembly(), AssemblyF1::boundary_assembly(), AssemblyF2::boundary_assembly(), AssemblyA2::boundary_assembly(), libMesh::MeshTools::Generation::build_delaunay_square(), libMesh::MeshTools::Generation::build_extrusion(), libMesh::MeshTools::Modification::change_boundary_id(), libMesh::DofMap::check_dirichlet_bcid_consistency(), libMesh::Nemesis_IO_Helper::compute_num_global_nodesets(), libMesh::Nemesis_IO_Helper::compute_num_global_sidesets(), libMesh::FEGenericBase< FEOutputType< T >::type >::compute_periodic_constraints(), libMesh::TriangleWrapper::copy_tri_to_mesh(), libMesh::UnstructuredMesh::create_submesh(), libMesh::TetGenMeshInterface::delete_2D_hull_elements(), libMesh::ReplicatedMesh::delete_elem(), libMesh::DistributedMesh::delete_elem(), libMesh::ReplicatedMesh::delete_node(), libMesh::DistributedMesh::delete_node(), libMesh::MeshCommunication::delete_remote_elements(), libMesh::DistributedMesh::DistributedMesh(), libMesh::MeshTools::Modification::flatten(), libMesh::UNVIO::groups_in(), LinearElasticityWithContact::initialize_contact_load_paths(), libMesh::MeshTools::libmesh_assert_valid_boundary_ids(), main(), AugmentSparsityOnInterface::mesh_reinit(), libMesh::Parallel::Packing< const Node * >::pack(), libMesh::Parallel::Packing< const Elem * >::pack(), libMesh::Parallel::Packing< const Node * >::packable_size(), libMesh::Parallel::Packing< const Elem * >::packable_size(), libMesh::TetGenMeshInterface::pointset_convexhull(), libMesh::Nemesis_IO::prepare_to_write_nodal_data(), libMesh::AbaqusIO::read(), libMesh::Nemesis_IO::read(), libMesh::ExodusII_IO::read(), libMesh::CheckpointIO::read_bcs(), libMesh::CheckpointIO::read_header(), libMesh::GmshIO::read_mesh(), libMesh::CheckpointIO::read_nodesets(), libMesh::XdrIO::read_serialized_bcs_helper(), libMesh::XdrIO::read_serialized_nodesets(), libMesh::ReplicatedMesh::renumber_nodes_and_elements(), libMesh::DistributedMesh::renumber_nodes_and_elements(), libMesh::ReplicatedMesh::ReplicatedMesh(), libMesh::ReplicatedMesh::stitching_helper(), libMesh::BoundaryInfo::sync(), AllTriTest::test_helper_2D(), AllTriTest::test_helper_3D(), SystemsTest::testBoundaryProjectCube(), BoundaryInfoTest::testEdgeBoundaryConditions(), BoundaryInfoTest::testMesh(), BoundaryInfoTest::testShellFaceConstraints(), WriteEdgesetData::testWrite(), WriteSidesetData::testWrite(), libMesh::Parallel::Packing< Node * >::unpack(), libMesh::Parallel::Packing< Elem * >::unpack(), libMesh::FroIO::write(), libMesh::Nemesis_IO::write(), libMesh::ExodusII_IO::write(), libMesh::XdrIO::write(), libMesh::CheckpointIO::write(), libMesh::GmshIO::write_mesh(), libMesh::XdrIO::write_serialized_bcs_helper(), and libMesh::XdrIO::write_serialized_nodesets().

◆ get_boundary_points()

std::unordered_map< dof_id_type, std::vector< std::vector< Point > > > libMesh::ReplicatedMesh::get_boundary_points ( ) const
inherited

Return all points on boundary.

The key of the returned unordered map is the ID of a representative element of all disconnected subdomains. Subdomains are considered connected only when they are sharing at least one d-1 dimensional object (side in 2D), where d is the mesh dimension. The size of the unordered map value is the number of disconnected boundaries for a subdomain. Boundaries are considered connected only when they are sharing a d-2 dimensional object. This function currently only works for 2D meshes. The points of each boundary are ordered to form an enclosure.

Definition at line 1498 of file replicated_mesh.C.

1499 {
1500  if (mesh_dimension() != 2)
1501  libmesh_error_msg("Error: get_boundary_points only works for 2D now");
1502 
1503  // find number of disconnected subdomains
1504  // subdomains will hold the IDs of disconnected subdomains for all elements.
1505  std::vector<subdomain_id_type> subdomains;
1506  std::vector<dof_id_type> elem_ids = get_disconnected_subdomains(&subdomains);
1507 
1508  std::unordered_map<dof_id_type, std::vector<std::vector<Point>>> boundary_points;
1509 
1510  // get all boundary sides that are to be erased later during visiting
1511  // use a comparison functor to avoid run-time randomness due to pointers
1512  struct boundary_side_compare
1513  {
1514  bool operator()(const std::pair<const Elem *, unsigned int> & lhs,
1515  const std::pair<const Elem *, unsigned int> & rhs) const
1516  {
1517  if (lhs.first->id() < rhs.first->id())
1518  return true;
1519  else if (lhs.first->id() == rhs.first->id())
1520  {
1521  if (lhs.second < rhs.second)
1522  return true;
1523  }
1524  return false;
1525  }
1526  };
1527  std::set<std::pair<const Elem *, unsigned int>, boundary_side_compare> boundary_elements;
1528  for (const auto & elem : active_element_ptr_range())
1529  for (auto s : elem->side_index_range())
1530  if (elem->neighbor_ptr(s) == nullptr)
1531  boundary_elements.insert(std::pair<const Elem *, unsigned int>(elem, s));
1532 
1533  while (!boundary_elements.empty())
1534  {
1535  // get the first entry as the seed
1536  const Elem * eseed = boundary_elements.begin()->first;
1537  unsigned int sseed = boundary_elements.begin()->second;
1538 
1539  // get the subdomain ID that these boundary sides attached to
1540  subdomain_id_type subdomain_id = subdomains[eseed->id()];
1541 
1542  // start visiting the mesh to find all boundary nodes with the seed
1543  std::vector<Point> bpoints;
1544  const Elem * elem = eseed;
1545  unsigned int s = sseed;
1546  std::vector<unsigned int> local_side_nodes = elem->nodes_on_side(s);
1547  while (true)
1548  {
1549  std::pair<const Elem *, unsigned int> side(elem, s);
1550  libmesh_assert(boundary_elements.find(side) != boundary_elements.end());
1551  boundary_elements.erase(side);
1552 
1553  // push all nodes on the side except the node on the other end of the side (index 1)
1554  for (auto i : index_range(local_side_nodes))
1555  if (i != 1)
1556  bpoints.push_back(*static_cast<const Point *>(elem->node_ptr(local_side_nodes[i])));
1557 
1558  // use the last node to find next element and side
1559  const Node * node = elem->node_ptr(local_side_nodes[1]);
1560  std::set<const Elem *> neighbors;
1561  elem->find_point_neighbors(*node, neighbors);
1562 
1563  // if only one neighbor is found (itself), this node is a cornor node on boundary
1564  if (neighbors.size() != 1)
1565  neighbors.erase(elem);
1566 
1567  // find the connecting side
1568  bool found = false;
1569  for (const auto & neighbor : neighbors)
1570  {
1571  for (auto ss : neighbor->side_index_range())
1572  if (neighbor->neighbor_ptr(ss) == nullptr && !(elem == neighbor && s == ss))
1573  {
1574  local_side_nodes = neighbor->nodes_on_side(ss);
1575  // we expect the starting point of the side to be the same as the end of the previous side
1576  if (neighbor->node_ptr(local_side_nodes[0]) == node)
1577  {
1578  elem = neighbor;
1579  s = ss;
1580  found = true;
1581  break;
1582  }
1583  else if (neighbor->node_ptr(local_side_nodes[1]) == node)
1584  {
1585  elem = neighbor;
1586  s = ss;
1587  found = true;
1588  // flip nodes in local_side_nodes because the side is in an opposite direction
1589  auto temp(local_side_nodes);
1590  local_side_nodes[0] = temp[1];
1591  local_side_nodes[1] = temp[0];
1592  for (unsigned int i = 2; i < temp.size(); ++i)
1593  local_side_nodes[temp.size() + 1 - i] = temp[i];
1594  break;
1595  }
1596  }
1597  if (found)
1598  break;
1599  }
1600  if (!found)
1601  libmesh_error_msg("ERROR: mesh topology error on visiting boundary sides");
1602 
1603  // exit if we reach the starting point
1604  if (elem == eseed && s == sseed)
1605  break;
1606  }
1607  boundary_points[elem_ids[subdomain_id]].push_back(bpoints);
1608  }
1609 
1610  return boundary_points;
1611 }

References libMesh::ReplicatedMesh::active_element_ptr_range(), libMesh::MeshBase::elem(), libMesh::Elem::find_point_neighbors(), libMesh::ReplicatedMesh::get_disconnected_subdomains(), libMesh::DofObject::id(), libMesh::index_range(), libMesh::libmesh_assert(), libMesh::MeshBase::mesh_dimension(), libMesh::Elem::neighbor_ptr(), libMesh::MeshBase::node(), libMesh::Elem::node_ptr(), libMesh::Elem::nodes_on_side(), and libMesh::Elem::side_index_range().

Referenced by GetBoundaryPointsTest::testMesh().

◆ get_count_lower_dim_elems_in_point_locator()

bool libMesh::MeshBase::get_count_lower_dim_elems_in_point_locator ( ) const
inherited

Get the current value of _count_lower_dim_elems_in_point_locator.

Definition at line 710 of file mesh_base.C.

711 {
713 }

Referenced by libMesh::TreeNode< N >::insert().

◆ get_disconnected_subdomains()

std::vector< dof_id_type > libMesh::ReplicatedMesh::get_disconnected_subdomains ( std::vector< subdomain_id_type > *  subdomain_ids = nullptr) const
inherited

Return IDs of representative elements of all disconnected subdomains.

Subdomains are considered connected only when they are sharing at least one d-1 dimensional object (side in 2D, face in 3D), where d is the mesh dimension. The optional argument can be used for getting the subdomain IDs of all elements with element IDs as the index. This function cannot be called for a mesh with hanging nodes from adaptive mesh refinement.

Definition at line 1431 of file replicated_mesh.C.

1432 {
1433  // find number of disconnected subdomains
1434  std::vector<dof_id_type> representative_elem_ids;
1435 
1436  // use subdomain_ids as markers for all elements to indicate if the elements
1437  // have been visited. Note: here subdomain ID is unrelated with element
1438  // subdomain_id().
1439  std::vector<subdomain_id_type> subdomains;
1440  if (!subdomain_ids)
1441  subdomain_ids = &subdomains;
1442  subdomain_ids->clear();
1444 
1445  // counter of disconnected subdomains
1446  subdomain_id_type subdomain_counter = 0;
1447 
1448  // a stack for visiting elements, make its capacity sufficiently large to avoid
1449  // memory allocation and deallocation when the vector size changes
1450  std::vector<Elem *> list;
1451  list.reserve(n_elem());
1452 
1453  // counter of visited elements
1454  dof_id_type visited = 0;
1455  dof_id_type n_active = n_active_elem();
1456  do
1457  {
1458  for (const auto & elem : active_element_ptr_range())
1460  {
1461  list.push_back(elem);
1462  (*subdomain_ids)[elem->id()] = subdomain_counter;
1463  break;
1464  }
1465  // we should be able to find a seed here
1466  libmesh_assert(list.size() > 0);
1467 
1468  dof_id_type min_id = std::numeric_limits<dof_id_type>::max();
1469  while (list.size() > 0)
1470  {
1471  // pop up an element
1472  Elem * elem = list.back(); list.pop_back(); ++visited;
1473 
1474  min_id = std::min(elem->id(), min_id);
1475 
1476  for (auto s : elem->side_index_range())
1477  {
1478  Elem * neighbor = elem->neighbor_ptr(s);
1479  if (neighbor != nullptr && (*subdomain_ids)[neighbor->id()] == Elem::invalid_subdomain_id)
1480  {
1481  // neighbor must be active
1482  libmesh_assert(neighbor->active());
1483  list.push_back(neighbor);
1484  (*subdomain_ids)[neighbor->id()] = subdomain_counter;
1485  }
1486  }
1487  }
1488 
1489  representative_elem_ids.push_back(min_id);
1490  subdomain_counter++;
1491  }
1492  while (visited != n_active);
1493 
1494  return representative_elem_ids;
1495 }

References libMesh::Elem::active(), libMesh::ReplicatedMesh::active_element_ptr_range(), libMesh::MeshBase::elem(), libMesh::DofObject::id(), libMesh::Elem::invalid_subdomain_id, libMesh::libmesh_assert(), libMesh::ReplicatedMesh::max_elem_id(), libMesh::ReplicatedMesh::n_active_elem(), libMesh::ReplicatedMesh::n_elem(), libMesh::Elem::neighbor_ptr(), libMesh::Elem::side_index_range(), and libMesh::MeshBase::subdomain_ids().

Referenced by libMesh::ReplicatedMesh::get_boundary_points().

◆ get_elem_integer_index()

unsigned int libMesh::MeshBase::get_elem_integer_index ( const std::string &  name) const
inherited

Definition at line 224 of file mesh_base.C.

225 {
226  for (auto i : index_range(_elem_integer_names))
227  if (_elem_integer_names[i] == name)
228  return i;
229 
230  libmesh_error_msg("Unknown elem integer " << name);
231  return libMesh::invalid_uint;
232 }

References libMesh::index_range(), libMesh::invalid_uint, and libMesh::Quality::name().

◆ get_elem_integer_name()

const std::string& libMesh::MeshBase::get_elem_integer_name ( unsigned int  i) const
inlineinherited

Definition at line 818 of file mesh_base.h.

819  { return _elem_integer_names[i]; }

References libMesh::MeshBase::_elem_integer_names.

Referenced by libMesh::CheckpointIO::write().

◆ get_id_by_name()

subdomain_id_type libMesh::MeshBase::get_id_by_name ( const std::string &  name) const
inherited
Returns
The id of the named subdomain if it exists, Elem::invalid_subdomain_id otherwise.

Definition at line 737 of file mesh_base.C.

738 {
739  // Linear search over the map values.
740  std::map<subdomain_id_type, std::string>::const_iterator
741  iter = _block_id_to_name.begin(),
742  end_iter = _block_id_to_name.end();
743 
744  for ( ; iter != end_iter; ++iter)
745  if (iter->second == name)
746  return iter->first;
747 
748  // If we made it here without returning, we don't have a subdomain
749  // with the requested name, so return Elem::invalid_subdomain_id.
751 }

References libMesh::Quality::name().

◆ get_info()

std::string libMesh::MeshBase::get_info ( ) const
inherited
Returns
A string containing relevant information about the mesh.

Definition at line 551 of file mesh_base.C.

552 {
553  std::ostringstream oss;
554 
555  oss << " Mesh Information:" << '\n';
556 
557  if (!_elem_dims.empty())
558  {
559  oss << " elem_dimensions()={";
560  std::copy(_elem_dims.begin(),
561  --_elem_dims.end(), // --end() is valid if the set is non-empty
562  std::ostream_iterator<unsigned int>(oss, ", "));
563  oss << cast_int<unsigned int>(*_elem_dims.rbegin());
564  oss << "}\n";
565  }
566 
567  oss << " spatial_dimension()=" << this->spatial_dimension() << '\n'
568  << " n_nodes()=" << this->n_nodes() << '\n'
569  << " n_local_nodes()=" << this->n_local_nodes() << '\n'
570  << " n_elem()=" << this->n_elem() << '\n'
571  << " n_local_elem()=" << this->n_local_elem() << '\n'
572 #ifdef LIBMESH_ENABLE_AMR
573  << " n_active_elem()=" << this->n_active_elem() << '\n'
574 #endif
575  << " n_subdomains()=" << static_cast<std::size_t>(this->n_subdomains()) << '\n'
576  << " n_partitions()=" << static_cast<std::size_t>(this->n_partitions()) << '\n'
577  << " n_processors()=" << static_cast<std::size_t>(this->n_processors()) << '\n'
578  << " n_threads()=" << static_cast<std::size_t>(libMesh::n_threads()) << '\n'
579  << " processor_id()=" << static_cast<std::size_t>(this->processor_id()) << '\n';
580 
581  return oss.str();
582 }

References libMesh::MeshTools::n_elem(), n_nodes, and libMesh::n_threads().

◆ get_node_integer_index()

unsigned int libMesh::MeshBase::get_node_integer_index ( const std::string &  name) const
inherited

Definition at line 295 of file mesh_base.C.

296 {
297  for (auto i : index_range(_node_integer_names))
298  if (_node_integer_names[i] == name)
299  return i;
300 
301  libmesh_error_msg("Unknown node integer " << name);
302  return libMesh::invalid_uint;
303 }

References libMesh::index_range(), libMesh::invalid_uint, and libMesh::Quality::name().

◆ get_node_integer_name()

const std::string& libMesh::MeshBase::get_node_integer_name ( unsigned int  i) const
inlineinherited

Definition at line 915 of file mesh_base.h.

916  { return _node_integer_names[i]; }

References libMesh::MeshBase::_node_integer_names.

Referenced by libMesh::CheckpointIO::write().

◆ get_point_locator_close_to_point_tol()

Real libMesh::MeshBase::get_point_locator_close_to_point_tol ( ) const
inherited

Definition at line 919 of file mesh_base.C.

920 {
922 }

◆ get_subdomain_name_map()

const std::map<subdomain_id_type, std::string>& libMesh::MeshBase::get_subdomain_name_map ( ) const
inlineinherited

◆ ghost_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::ghost_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ ghost_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::ghost_elements_begin ( )
overridevirtualinherited

Iterate over "ghost" elements in the Mesh.

A ghost element is one which is not local, but is semilocal.

Implements libMesh::MeshBase.

◆ ghost_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::ghost_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ ghost_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::ghost_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ ghosting_functors_begin()

std::set<GhostingFunctor *>::const_iterator libMesh::MeshBase::ghosting_functors_begin ( ) const
inlineinherited

◆ ghosting_functors_end()

std::set<GhostingFunctor *>::const_iterator libMesh::MeshBase::ghosting_functors_end ( ) const
inlineinherited

◆ has_elem_integer()

bool libMesh::MeshBase::has_elem_integer ( const std::string &  name) const
inherited

Definition at line 236 of file mesh_base.C.

237 {
238  for (auto & entry : _elem_integer_names)
239  if (entry == name)
240  return true;
241 
242  return false;
243 }

References libMesh::Quality::name().

◆ has_node_integer()

bool libMesh::MeshBase::has_node_integer ( const std::string &  name) const
inherited

Definition at line 307 of file mesh_base.C.

308 {
309  for (auto & entry : _node_integer_names)
310  if (entry == name)
311  return true;
312 
313  return false;
314 }

References libMesh::Quality::name().

◆ insert_elem()

Elem * libMesh::ReplicatedMesh::insert_elem ( Elem e)
overridevirtualinherited

Insert elem e to the element array, preserving its id and replacing/deleting any existing element with the same id.

Users should call MeshBase::prepare_for_use() after elements are added to and/or deleted from the mesh.

Implements libMesh::MeshBase.

Definition at line 328 of file replicated_mesh.C.

329 {
330 #ifdef LIBMESH_ENABLE_UNIQUE_ID
331  if (!e->valid_unique_id())
332  e->set_unique_id() = _next_unique_id++;
333 #endif
334 
335  dof_id_type eid = e->id();
336  libmesh_assert_less (eid, _elements.size());
337  Elem * oldelem = _elements[eid];
338 
339  if (oldelem)
340  {
341  libmesh_assert_equal_to (oldelem->id(), eid);
342  this->delete_elem(oldelem);
343  }
344 
345  _elements[e->id()] = e;
346 
347  // Make sure any new element is given space for any extra integers
348  // we've requested
349  e->add_extra_integers(_elem_integer_names.size());
350 
351  // And set mapping type and data on any new element
352  e->set_mapping_type(this->default_mapping_type());
353  e->set_mapping_data(this->default_mapping_data());
354 
355  return e;
356 }

References libMesh::MeshBase::_elem_integer_names, libMesh::ReplicatedMesh::_elements, libMesh::MeshBase::_next_unique_id, libMesh::DofObject::add_extra_integers(), libMesh::MeshBase::default_mapping_data(), libMesh::MeshBase::default_mapping_type(), libMesh::ReplicatedMesh::delete_elem(), libMesh::DofObject::id(), libMesh::Elem::set_mapping_data(), libMesh::Elem::set_mapping_type(), libMesh::DofObject::set_unique_id(), and libMesh::DofObject::valid_unique_id().

◆ insert_node()

Node * libMesh::ReplicatedMesh::insert_node ( Node n)
overridevirtualinherited

Insert Node n into the Mesh at a location consistent with n->id(), allocating extra storage if necessary.

Throws an error if: .) n==nullptr .) n->id() == DofObject::invalid_id .) A node already exists in position n->id().

This function differs from the ReplicatedMesh::add_node() function, which is only capable of appending nodes at the end of the nodes storage.

Implements libMesh::MeshBase.

Definition at line 494 of file replicated_mesh.C.

495 {
496  if (!n)
497  libmesh_error_msg("Error, attempting to insert nullptr node.");
498 
499  if (n->id() == DofObject::invalid_id)
500  libmesh_error_msg("Error, cannot insert node with invalid id.");
501 
502  if (n->id() < _nodes.size())
503  {
504  // Don't allow inserting on top of an existing Node.
505 
506  // Doing so doesn't have to be *error*, in the case where a
507  // redundant insert is done, but when that happens we ought to
508  // always be able to make the code more efficient by avoiding
509  // the redundant insert, so let's keep screaming "Error" here.
510  if (_nodes[ n->id() ] != nullptr)
511  libmesh_error_msg("Error, cannot insert node on top of existing node.");
512  }
513  else
514  {
515  // Allocate just enough space to store the new node. This will
516  // cause highly non-ideal memory allocation behavior if called
517  // repeatedly...
518  _nodes.resize(n->id() + 1);
519  }
520 
521 #ifdef LIBMESH_ENABLE_UNIQUE_ID
522  if (!n->valid_unique_id())
523  n->set_unique_id() = _next_unique_id++;
524 #endif
525 
526  n->add_extra_integers(_node_integer_names.size());
527 
528  // We have enough space and this spot isn't already occupied by
529  // another node, so go ahead and add it.
530  _nodes[ n->id() ] = n;
531 
532  // If we made it this far, we just inserted the node the user handed
533  // us, so we can give it right back.
534  return n;
535 }

References libMesh::MeshBase::_next_unique_id, libMesh::MeshBase::_node_integer_names, libMesh::ReplicatedMesh::_nodes, libMesh::DofObject::add_extra_integers(), libMesh::DofObject::id(), libMesh::DofObject::invalid_id, libMesh::DofObject::set_unique_id(), and libMesh::DofObject::valid_unique_id().

◆ is_prepared()

bool libMesh::MeshBase::is_prepared ( ) const
inlineinherited
Returns
true if the mesh has been prepared via a call to prepare_for_use, false otherwise.

Definition at line 152 of file mesh_base.h.

153  { return _is_prepared; }

References libMesh::MeshBase::_is_prepared.

Referenced by libMesh::MeshRefinement::_refine_elements(), and libMesh::DofMap::create_dof_constraints().

◆ is_replicated()

virtual bool libMesh::MeshBase::is_replicated ( ) const
inlinevirtualinherited
Returns
true if new elements and nodes can and should be created in synchronization on all processors, false otherwise

Reimplemented in libMesh::DistributedMesh.

Definition at line 181 of file mesh_base.h.

182  { return true; }

Referenced by libMesh::MeshRefinement::_refine_elements(), libMesh::DynaIO::add_spline_constraints(), libMesh::UnstructuredMesh::all_second_order(), main(), libMesh::MeshRefinement::make_coarsening_compatible(), libMesh::CheckpointIO::read(), and libMesh::MeshRefinement::uniformly_coarsen().

◆ is_serial()

virtual bool libMesh::MeshBase::is_serial ( ) const
inlinevirtualinherited

◆ is_serial_on_zero()

virtual bool libMesh::MeshBase::is_serial_on_zero ( ) const
inlinevirtualinherited
Returns
true if all elements and nodes of the mesh exist on the processor 0, false otherwise

Reimplemented in libMesh::DistributedMesh.

Definition at line 166 of file mesh_base.h.

167  { return true; }

◆ level_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::level_elements_begin ( unsigned int  level) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ level_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::level_elements_begin ( unsigned int  level)
overridevirtualinherited

Iterate over elements of a given level.

Implements libMesh::MeshBase.

◆ level_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::level_elements_end ( unsigned int  level) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ level_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::level_elements_end ( unsigned int  level)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ libmesh_assert_valid_parallel_ids()

virtual void libMesh::MeshBase::libmesh_assert_valid_parallel_ids ( ) const
inlinevirtualinherited

Verify id and processor_id consistency of our elements and nodes containers.

Calls libmesh_assert() on each possible failure. Currently only implemented on DistributedMesh; a serial data structure is much harder to get out of sync.

Reimplemented in libMesh::DistributedMesh.

Definition at line 1297 of file mesh_base.h.

1297 {}

Referenced by libMesh::MeshRefinement::_refine_elements(), libMesh::InfElemBuilder::build_inf_elem(), and libMesh::MeshRefinement::refine_and_coarsen_elements().

◆ local_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::local_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ local_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::local_elements_begin ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ local_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::local_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ local_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::local_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ local_level_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::local_level_elements_begin ( unsigned int  level) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ local_level_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::local_level_elements_begin ( unsigned int  level)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ local_level_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::local_level_elements_end ( unsigned int  level) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ local_level_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::local_level_elements_end ( unsigned int  level)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ local_node_ptr_range() [1/2]

virtual SimpleRange<const_node_iterator> libMesh::ReplicatedMesh::local_node_ptr_range ( ) const
inlineoverridevirtualinherited

◆ local_node_ptr_range() [2/2]

virtual SimpleRange<node_iterator> libMesh::ReplicatedMesh::local_node_ptr_range ( )
inlineoverridevirtualinherited

◆ local_nodes_begin() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::local_nodes_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ local_nodes_begin() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::local_nodes_begin ( )
overridevirtualinherited

Iterate over local nodes (nodes whose processor_id() matches the current processor).

Implements libMesh::MeshBase.

Referenced by libMesh::ReplicatedMesh::local_node_ptr_range().

◆ local_nodes_end() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::local_nodes_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ local_nodes_end() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::local_nodes_end ( )
overridevirtualinherited

◆ local_not_level_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::local_not_level_elements_begin ( unsigned int  level) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ local_not_level_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::local_not_level_elements_begin ( unsigned int  level)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ local_not_level_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::local_not_level_elements_end ( unsigned int  level) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ local_not_level_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::local_not_level_elements_end ( unsigned int  level)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ max_elem_id()

virtual dof_id_type libMesh::ReplicatedMesh::max_elem_id ( ) const
inlineoverridevirtualinherited
Returns
A number greater than or equal to the maximum element id in the mesh.

Implements libMesh::MeshBase.

Definition at line 124 of file replicated_mesh.h.

125  { return cast_int<dof_id_type>(_elements.size()); }

References libMesh::ReplicatedMesh::_elements.

Referenced by libMesh::ReplicatedMesh::get_disconnected_subdomains(), and libMesh::ReplicatedMesh::stitching_helper().

◆ max_node_id()

virtual dof_id_type libMesh::ReplicatedMesh::max_node_id ( ) const
inlineoverridevirtualinherited
Returns
A number greater than or equal to the maximum node id in the mesh.

Implements libMesh::MeshBase.

Definition at line 110 of file replicated_mesh.h.

111  { return cast_int<dof_id_type>(_nodes.size()); }

References libMesh::ReplicatedMesh::_nodes.

Referenced by libMesh::ReplicatedMesh::stitching_helper().

◆ merge_extra_integer_names()

std::pair< std::vector< unsigned int >, std::vector< unsigned int > > libMesh::MeshBase::merge_extra_integer_names ( const MeshBase other)
protectedinherited

Merge extra-integer arrays from an other mesh.

Returns two mappings from index values in other to (possibly newly created) index values with the same string name in this mesh, the first for element integers and the second for node integers.

Definition at line 944 of file mesh_base.C.

945 {
946  std::pair<std::vector<unsigned int>, std::vector<unsigned int>> returnval;
947  returnval.first = this->add_elem_integers(other._elem_integer_names);
948  returnval.second = this->add_node_integers(other._node_integer_names);
949  return returnval;
950 }

References libMesh::MeshBase::_elem_integer_names, and libMesh::MeshBase::_node_integer_names.

Referenced by libMesh::UnstructuredMesh::copy_nodes_and_elements(), and libMesh::UnstructuredMesh::create_submesh().

◆ mesh_dimension()

unsigned int libMesh::MeshBase::mesh_dimension ( ) const
inherited
Returns
The logical dimension of the mesh; i.e. the manifold dimension of the elements in the mesh. If we ever support multi-dimensional meshes (e.g. hexes and quads in the same mesh) then this will return the largest such dimension.

Definition at line 135 of file mesh_base.C.

136 {
137  if (!_elem_dims.empty())
138  return cast_int<unsigned int>(*_elem_dims.rbegin());
139  return 0;
140 }

References libMesh::MeshBase::_elem_dims.

Referenced by libMesh::HPCoarsenTest::add_projection(), libMesh::UnstructuredMesh::all_second_order(), libMesh::MeshTools::Modification::all_tri(), assemble(), LinearElasticity::assemble(), assemble_1D(), AssembleOptimization::assemble_A_and_F(), assemble_biharmonic(), assemble_cd(), assemble_elasticity(), assemble_ellipticdg(), assemble_helmholtz(), assemble_laplace(), assemble_mass(), assemble_matrices(), assemble_poisson(), assemble_SchroedingerEquation(), assemble_shell(), assemble_stokes(), assemble_wave(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::EquationSystems::build_variable_names(), compute_jacobian(), compute_residual(), LinearElasticityWithContact::compute_stresses(), LinearElasticity::compute_stresses(), compute_stresses(), LargeDeformationElasticity::compute_stresses(), libMesh::DofMap::create_dof_constraints(), libMesh::MeshTools::Modification::distort(), SolidSystem::element_time_derivative(), libMesh::MeshRefinement::flag_elements_by_elem_fraction(), libMesh::MeshRefinement::flag_elements_by_nelem_target(), libMesh::ReplicatedMesh::get_boundary_points(), libMesh::LaplaceMeshSmoother::init(), libMesh::PointLocatorTree::init(), SolidSystem::init_data(), libMesh::ExodusII_IO_Helper::initialize(), libMesh::RBEIMAssembly::initialize_fe(), integrate_function(), LaplaceYoung::jacobian(), LargeDeformationElasticity::jacobian(), main(), libMesh::Nemesis_IO::read(), libMesh::ExodusII_IO::read(), libMesh::GMVIO::read(), libMesh::VTKIO::read(), libMesh::System::read_header(), libMesh::UCDIO::read_implementation(), libMesh::XdrIO::read_serialized_connectivity(), LaplaceYoung::residual(), LargeDeformationElasticity::residual(), LinearElasticityWithContact::residual_and_jacobian(), SolidSystem::save_initial_mesh(), setup(), libMesh::MeshTools::Modification::smooth(), MeshSpatialDimensionTest::test1D(), MeshSpatialDimensionTest::test2D(), InfFERadialTest::testSingleOrder(), libMesh::BoundaryVolumeSolutionTransfer::transfer(), libMesh::DTKSolutionTransfer::transfer(), libMesh::DofMap::use_coupled_neighbor_dofs(), libMesh::PostscriptIO::write(), libMesh::CheckpointIO::write(), libMesh::TecplotIO::write_binary(), libMesh::GMVIO::write_binary(), libMesh::GMVIO::write_discontinuous_gmv(), libMesh::UCDIO::write_implementation(), libMesh::UCDIO::write_nodal_data(), libMesh::EnsightIO::write_scalar_ascii(), libMesh::GnuPlotIO::write_solution(), and libMesh::EnsightIO::write_vector_ascii().

◆ n_active_elem()

dof_id_type libMesh::ReplicatedMesh::n_active_elem ( ) const
overridevirtualinherited
Returns
The number of active elements in the mesh.

Implemented in terms of active_element_iterators.

Implements libMesh::MeshBase.

Definition at line 1424 of file replicated_mesh.C.

1425 {
1426  return static_cast<dof_id_type>(std::distance (this->active_elements_begin(),
1427  this->active_elements_end()));
1428 }

References libMesh::ReplicatedMesh::active_elements_begin(), libMesh::ReplicatedMesh::active_elements_end(), and distance().

Referenced by libMesh::ReplicatedMesh::get_disconnected_subdomains(), MixedDimensionNonUniformRefinement::testMesh(), MixedDimensionNonUniformRefinementTriangle::testMesh(), and MixedDimensionNonUniformRefinement3D::testMesh().

◆ n_active_elem_on_proc()

dof_id_type libMesh::MeshBase::n_active_elem_on_proc ( const processor_id_type  proc) const
inherited
Returns
The number of active elements on processor proc.

Definition at line 518 of file mesh_base.C.

519 {
520  libmesh_assert_less (proc_id, this->n_processors());
521  return static_cast<dof_id_type>(std::distance (this->active_pid_elements_begin(proc_id),
522  this->active_pid_elements_end (proc_id)));
523 }

References distance().

Referenced by libMesh::MeshBase::n_active_local_elem().

◆ n_active_local_elem()

dof_id_type libMesh::MeshBase::n_active_local_elem ( ) const
inlineinherited
Returns
The number of active elements on the local processor.

Definition at line 420 of file mesh_base.h.

421  { return this->n_active_elem_on_proc (this->processor_id()); }

References libMesh::MeshBase::n_active_elem_on_proc(), and libMesh::ParallelObject::processor_id().

Referenced by libMesh::VTKIO::cells_to_vtk().

◆ n_active_sub_elem()

dof_id_type libMesh::MeshBase::n_active_sub_elem ( ) const
inherited

Same as n_sub_elem(), but only counts active elements.

Definition at line 539 of file mesh_base.C.

540 {
541  dof_id_type ne=0;
542 
543  for (const auto & elem : this->active_element_ptr_range())
544  ne += elem->n_sub_elem();
545 
546  return ne;
547 }

Referenced by libMesh::TecplotIO::write_ascii(), libMesh::GMVIO::write_ascii_old_impl(), and libMesh::TecplotIO::write_binary().

◆ n_elem()

virtual dof_id_type libMesh::ReplicatedMesh::n_elem ( ) const
inlineoverridevirtualinherited

◆ n_elem_integers()

unsigned int libMesh::MeshBase::n_elem_integers ( ) const
inlineinherited

◆ n_elem_on_proc()

dof_id_type libMesh::MeshBase::n_elem_on_proc ( const processor_id_type  proc) const
inherited
Returns
The number of elements on processor proc.

Definition at line 505 of file mesh_base.C.

506 {
507  // We're either counting a processor's elements or unpartitioned
508  // elements
509  libmesh_assert (proc_id < this->n_processors() ||
511 
512  return static_cast<dof_id_type>(std::distance (this->pid_elements_begin(proc_id),
513  this->pid_elements_end (proc_id)));
514 }

References distance(), and libMesh::libmesh_assert().

Referenced by libMesh::MeshBase::n_local_elem(), and libMesh::MeshBase::n_unpartitioned_elem().

◆ n_local_elem()

dof_id_type libMesh::MeshBase::n_local_elem ( ) const
inlineinherited
Returns
The number of elements on the local processor.

Definition at line 403 of file mesh_base.h.

404  { return this->n_elem_on_proc (this->processor_id()); }

References libMesh::MeshBase::n_elem_on_proc(), and libMesh::ParallelObject::processor_id().

Referenced by libMesh::DTKAdapter::DTKAdapter(), and libMesh::DistributedMesh::parallel_n_elem().

◆ n_local_nodes()

dof_id_type libMesh::MeshBase::n_local_nodes ( ) const
inlineinherited
Returns
The number of nodes on the local processor.

Definition at line 303 of file mesh_base.h.

304  { return this->n_nodes_on_proc (this->processor_id()); }

References libMesh::MeshBase::n_nodes_on_proc(), and libMesh::ParallelObject::processor_id().

Referenced by libMesh::VTKIO::nodes_to_vtk(), and libMesh::DistributedMesh::parallel_n_nodes().

◆ n_node_integers()

unsigned int libMesh::MeshBase::n_node_integers ( ) const
inlineinherited

Definition at line 926 of file mesh_base.h.

926 { return _node_integer_names.size(); }

References libMesh::MeshBase::_node_integer_names.

Referenced by libMesh::CheckpointIO::read_nodes(), and libMesh::CheckpointIO::write().

◆ n_nodes()

virtual dof_id_type libMesh::ReplicatedMesh::n_nodes ( ) const
inlineoverridevirtualinherited
Returns
The number of nodes in the mesh.

This function and others must be defined in derived classes since the MeshBase class has no specific storage for nodes or elements. The standard n_nodes() function may return a cached value on distributed meshes, and so can be called by any processor at any time.

Implements libMesh::MeshBase.

Definition at line 104 of file replicated_mesh.h.

105  { return cast_int<dof_id_type>(_nodes.size()); }

References libMesh::ReplicatedMesh::_nodes.

Referenced by libMesh::ReplicatedMesh::node_ptr(), libMesh::ReplicatedMesh::query_node_ptr(), MixedDimensionMeshTest::testMesh(), MixedDimensionNonUniformRefinement::testMesh(), MixedDimensionNonUniformRefinementTriangle::testMesh(), and MixedDimensionNonUniformRefinement3D::testMesh().

◆ n_nodes_on_proc()

dof_id_type libMesh::MeshBase::n_nodes_on_proc ( const processor_id_type  proc) const
inherited
Returns
The number of nodes on processor proc.

Definition at line 492 of file mesh_base.C.

493 {
494  // We're either counting a processor's nodes or unpartitioned
495  // nodes
496  libmesh_assert (proc_id < this->n_processors() ||
498 
499  return static_cast<dof_id_type>(std::distance (this->pid_nodes_begin(proc_id),
500  this->pid_nodes_end (proc_id)));
501 }

References distance(), and libMesh::libmesh_assert().

Referenced by libMesh::MeshBase::n_local_nodes(), and libMesh::MeshBase::n_unpartitioned_nodes().

◆ n_partitions()

unsigned int libMesh::MeshBase::n_partitions ( ) const
inlineinherited
Returns
The number of partitions which have been defined via a call to either mesh.partition() or by building a Partitioner object and calling partition.
Note
The partitioner object is responsible for setting this value.

Definition at line 1153 of file mesh_base.h.

1154  { return _n_parts; }

References libMesh::MeshBase::_n_parts.

Referenced by libMesh::BoundaryInfo::sync(), libMesh::NameBasedIO::write(), libMesh::GMVIO::write_ascii_new_impl(), and libMesh::GMVIO::write_ascii_old_impl().

◆ n_processors()

processor_id_type libMesh::ParallelObject::n_processors ( ) const
inlineinherited
Returns
The number of processors in the group.

Definition at line 100 of file parallel_object.h.

101  { return cast_int<processor_id_type>(_communicator.size()); }

References libMesh::ParallelObject::_communicator.

Referenced by libMesh::BoundaryInfo::_find_id_maps(), libMesh::DofMap::add_constraints_to_send_list(), libMesh::PetscDMWrapper::add_dofs_to_section(), libMesh::DistributedMesh::add_elem(), libMesh::DofMap::add_neighbors_to_send_list(), libMesh::DistributedMesh::add_node(), libMesh::LaplaceMeshSmoother::allgather_graph(), libMesh::DofMap::allgather_recursive_constraints(), libMesh::FEMSystem::assembly(), libMesh::AztecLinearSolver< T >::AztecLinearSolver(), libMesh::BoundaryInfo::build_node_list_from_side_list(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::DistributedMesh::clear(), libMesh::Nemesis_IO_Helper::compute_border_node_ids(), libMesh::Nemesis_IO_Helper::construct_nemesis_filename(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::UnstructuredMesh::create_pid_mesh(), libMesh::MeshTools::create_processor_bounding_box(), libMesh::DofMap::distribute_dofs(), libMesh::DofMap::distribute_local_dofs_node_major(), libMesh::DofMap::distribute_local_dofs_var_major(), libMesh::EnsightIO::EnsightIO(), libMesh::SystemSubsetBySubdomain::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), libMesh::Nemesis_IO_Helper::initialize(), libMesh::DistributedMesh::insert_elem(), libMesh::MeshTools::libmesh_assert_contiguous_dof_ids(), libMesh::MeshTools::libmesh_assert_parallel_consistent_new_node_procids(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Elem >(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_topology_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_valid_boundary_ids(), libMesh::MeshTools::libmesh_assert_valid_dof_ids(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libMesh::MeshTools::libmesh_assert_valid_refinement_flags(), libMesh::DofMap::local_variable_indices(), libMesh::MeshRefinement::make_coarsening_compatible(), libMesh::MeshBase::partition(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::DofMap::prepare_send_list(), libMesh::DofMap::print_dof_constraints(), libMesh::NameBasedIO::read(), libMesh::Nemesis_IO::read(), libMesh::CheckpointIO::read(), libMesh::CheckpointIO::read_connectivity(), libMesh::XdrIO::read_header(), libMesh::CheckpointIO::read_nodes(), libMesh::System::read_parallel_data(), libMesh::System::read_SCALAR_dofs(), libMesh::System::read_serialized_blocked_dof_objects(), libMesh::System::read_serialized_vector(), libMesh::DistributedMesh::renumber_dof_objects(), OverlappingFunctorTest::run_partitioner_test(), libMesh::DofMap::scatter_constraints(), libMesh::DofMap::set_nonlocal_dof_objects(), libMesh::PetscDMWrapper::set_point_range_in_section(), CheckpointIOTest::testSplitter(), WriteVecAndScalar::testWrite(), libMesh::MeshRefinement::uniformly_coarsen(), libMesh::DistributedMesh::update_parallel_id_counts(), libMesh::GMVIO::write_binary(), libMesh::GMVIO::write_discontinuous_gmv(), libMesh::VTKIO::write_nodal_data(), libMesh::System::write_parallel_data(), libMesh::System::write_SCALAR_dofs(), libMesh::XdrIO::write_serialized_bcs_helper(), libMesh::System::write_serialized_blocked_dof_objects(), libMesh::XdrIO::write_serialized_connectivity(), libMesh::XdrIO::write_serialized_nodes(), and libMesh::XdrIO::write_serialized_nodesets().

◆ n_sub_elem()

dof_id_type libMesh::MeshBase::n_sub_elem ( ) const
inherited
Returns
The number of elements that will be written out in certain I/O formats.

For example, a 9-noded quadrilateral will be broken into 4 linear sub-elements for plotting purposes. Thus, for a mesh of 2 QUAD9 elements n_tecplot_elem() will return 8. Implemented in terms of element_iterators.

Definition at line 527 of file mesh_base.C.

528 {
529  dof_id_type ne=0;
530 
531  for (const auto & elem : this->element_ptr_range())
532  ne += elem->n_sub_elem();
533 
534  return ne;
535 }

◆ n_subdomains()

subdomain_id_type libMesh::MeshBase::n_subdomains ( ) const
inherited
Returns
The number of subdomains in the global mesh. Subdomains correspond to separate subsets of the mesh which could correspond e.g. to different materials in a solid mechanics application, or regions where different physical processes are important. The subdomain mapping is independent from the parallel decomposition.

Definition at line 477 of file mesh_base.C.

478 {
479  // This requires an inspection on every processor
480  parallel_object_only();
481 
482  std::set<subdomain_id_type> ids;
483 
484  this->subdomain_ids (ids);
485 
486  return cast_int<subdomain_id_type>(ids.size());
487 }

Referenced by libMesh::XdrIO::write(), and libMesh::NameBasedIO::write_nodal_data().

◆ n_unpartitioned_elem()

dof_id_type libMesh::MeshBase::n_unpartitioned_elem ( ) const
inlineinherited
Returns
The number of elements owned by no processor.

Definition at line 409 of file mesh_base.h.

References libMesh::DofObject::invalid_processor_id, and libMesh::MeshBase::n_elem_on_proc().

Referenced by libMesh::UnstructuredMesh::all_second_order(), and libMesh::DistributedMesh::parallel_n_elem().

◆ n_unpartitioned_nodes()

dof_id_type libMesh::MeshBase::n_unpartitioned_nodes ( ) const
inlineinherited
Returns
The number of nodes owned by no processor.

Definition at line 309 of file mesh_base.h.

References libMesh::DofObject::invalid_processor_id, and libMesh::MeshBase::n_nodes_on_proc().

Referenced by libMesh::DistributedMesh::parallel_n_nodes().

◆ next_unique_id()

unique_id_type libMesh::MeshBase::next_unique_id ( )
inlineinherited
Returns
The next unique id to be used.

Definition at line 322 of file mesh_base.h.

322 { return _next_unique_id; }

References libMesh::MeshBase::_next_unique_id.

◆ node() [1/2]

virtual Node& libMesh::MeshBase::node ( const dof_id_type  i)
inlinevirtualinherited
Returns
A reference to the \( i^{th} \) node, which should be present in this processor's subset of the mesh data structure.

Definition at line 485 of file mesh_base.h.

486  {
487  libmesh_deprecated();
488  return *this->node_ptr(i);
489  }

References libMesh::MeshBase::node_ptr().

◆ node() [2/2]

virtual const Node& libMesh::MeshBase::node ( const dof_id_type  i) const
inlinevirtualinherited
Returns
A constant reference (for reading only) to the \( i^{th} \) node, which should be present in this processor's subset of the mesh data structure.

Definition at line 471 of file mesh_base.h.

472  {
473  libmesh_deprecated();
474  return *this->node_ptr(i);
475  }

References libMesh::MeshBase::node_ptr().

Referenced by libMesh::UnstructuredMesh::all_first_order(), libMesh::ReplicatedMesh::clear(), libMesh::DistributedMesh::clear(), libMesh::ReplicatedMesh::get_boundary_points(), libMesh::ReplicatedMesh::renumber_nodes_and_elements(), libMesh::DistributedMesh::renumber_nodes_and_elements(), and libMesh::ReplicatedMesh::stitching_helper().

◆ node_ptr() [1/2]

const Node * libMesh::ReplicatedMesh::node_ptr ( const dof_id_type  i) const
overridevirtualinherited
Returns
A pointer to the \( i^{th} \) node, which should be present in this processor's subset of the mesh data structure.

Implements libMesh::MeshBase.

Definition at line 182 of file replicated_mesh.C.

183 {
184  libmesh_assert_less (i, this->n_nodes());
186  libmesh_assert_equal_to (_nodes[i]->id(), i); // This will change soon
187 
188  return _nodes[i];
189 }

References libMesh::ReplicatedMesh::_nodes, libMesh::libmesh_assert(), and libMesh::ReplicatedMesh::n_nodes().

Referenced by GetBoundaryPointsTest::build_mesh(), MixedDimensionMeshTest::build_mesh(), MeshfunctionDFEM::build_mesh(), MixedDimensionNonUniformRefinement::build_mesh(), MixedDimensionNonUniformRefinementTriangle::build_mesh(), MixedDimensionNonUniformRefinement3D::build_mesh(), libMesh::RBEIMEvaluation::legacy_write_out_interpolation_points_elem(), and libMesh::ReplicatedMesh::stitching_helper().

◆ node_ptr() [2/2]

Node * libMesh::ReplicatedMesh::node_ptr ( const dof_id_type  i)
overridevirtualinherited
Returns
A writable pointer to the \( i^{th} \) node, which should be present in this processor's subset of the mesh data structure.

Implements libMesh::MeshBase.

Definition at line 194 of file replicated_mesh.C.

195 {
196  libmesh_assert_less (i, this->n_nodes());
198  libmesh_assert_equal_to (_nodes[i]->id(), i); // This will change soon
199 
200  return _nodes[i];
201 }

References libMesh::ReplicatedMesh::_nodes, libMesh::libmesh_assert(), and libMesh::ReplicatedMesh::n_nodes().

◆ node_ptr_range() [1/2]

virtual SimpleRange<const_node_iterator> libMesh::ReplicatedMesh::node_ptr_range ( ) const
inlineoverridevirtualinherited

Implements libMesh::MeshBase.

Definition at line 460 of file replicated_mesh.h.

460 { return {nodes_begin(), nodes_end()}; }

References libMesh::ReplicatedMesh::nodes_begin(), and libMesh::ReplicatedMesh::nodes_end().

◆ node_ptr_range() [2/2]

virtual SimpleRange<node_iterator> libMesh::ReplicatedMesh::node_ptr_range ( )
inlineoverridevirtualinherited

Implements libMesh::MeshBase.

Definition at line 459 of file replicated_mesh.h.

459 { return {nodes_begin(), nodes_end()}; }

References libMesh::ReplicatedMesh::nodes_begin(), and libMesh::ReplicatedMesh::nodes_end().

◆ node_ref() [1/2]

virtual Node& libMesh::MeshBase::node_ref ( const dof_id_type  i)
inlinevirtualinherited
Returns
A reference to the \( i^{th} \) node, which should be present in this processor's subset of the mesh data structure.

Definition at line 459 of file mesh_base.h.

459  {
460  return *this->node_ptr(i);
461  }

References libMesh::MeshBase::node_ptr().

◆ node_ref() [2/2]

virtual const Node& libMesh::MeshBase::node_ref ( const dof_id_type  i) const
inlinevirtualinherited

◆ nodes_begin() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::nodes_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ nodes_begin() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::nodes_begin ( )
overridevirtualinherited

Node iterator accessor functions.

Implements libMesh::MeshBase.

Referenced by libMesh::ReplicatedMesh::node_ptr_range().

◆ nodes_end() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::nodes_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ nodes_end() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::nodes_end ( )
overridevirtualinherited

◆ not_active_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::not_active_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_active_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::not_active_elements_begin ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_active_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::not_active_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_active_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::not_active_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_ancestor_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::not_ancestor_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_ancestor_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::not_ancestor_elements_begin ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_ancestor_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::not_ancestor_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_ancestor_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::not_ancestor_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_level_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::not_level_elements_begin ( unsigned int  level) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_level_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::not_level_elements_begin ( unsigned int  level)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_level_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::not_level_elements_end ( unsigned int  level) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_level_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::not_level_elements_end ( unsigned int  level)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_local_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::not_local_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_local_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::not_local_elements_begin ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_local_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::not_local_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_local_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::not_local_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_subactive_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::not_subactive_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_subactive_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::not_subactive_elements_begin ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_subactive_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::not_subactive_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ not_subactive_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::not_subactive_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ own_node()

virtual void libMesh::MeshBase::own_node ( Node )
inlinevirtualinherited

Takes ownership of node n on this partition of a distributed mesh, by setting n.processor_id() to this->processor_id(), as well as changing n.id() and moving it in the mesh's internal container to give it a new authoritative id.

Reimplemented in libMesh::DistributedMesh.

Definition at line 656 of file mesh_base.h.

656 {}

Referenced by libMesh::UnstructuredMesh::all_second_order().

◆ parallel_max_unique_id()

unique_id_type libMesh::ReplicatedMesh::parallel_max_unique_id ( ) const
overridevirtualinherited
Returns
A number greater than or equal to the maximum unique_id in the mesh.

Implements libMesh::MeshBase.

Definition at line 629 of file replicated_mesh.C.

630 {
631  // This function must be run on all processors at once
632  parallel_object_only();
633 
634  unique_id_type max_local = _next_unique_id;
635  this->comm().max(max_local);
636  return max_local;
637 }

References libMesh::MeshBase::_next_unique_id, and libMesh::ParallelObject::comm().

Referenced by libMesh::ReplicatedMesh::stitching_helper(), and libMesh::ReplicatedMesh::update_parallel_id_counts().

◆ parallel_n_elem()

virtual dof_id_type libMesh::ReplicatedMesh::parallel_n_elem ( ) const
inlineoverridevirtualinherited
Returns
The number of elements in the mesh.

The parallel_n_elem() function computes a parallel-synchronized value on distributed meshes, and so must be called in parallel only.

Implements libMesh::MeshBase.

Definition at line 119 of file replicated_mesh.h.

120  { return cast_int<dof_id_type>(_elements.size()); }

References libMesh::ReplicatedMesh::_elements.

◆ parallel_n_nodes()

virtual dof_id_type libMesh::ReplicatedMesh::parallel_n_nodes ( ) const
inlineoverridevirtualinherited
Returns
The number of nodes in the mesh.

This function and others must be overridden in derived classes since the MeshBase class has no specific storage for nodes or elements. The parallel_n_nodes() function computes a parallel-synchronized value on distributed meshes, and so must be called in parallel only.

Implements libMesh::MeshBase.

Definition at line 107 of file replicated_mesh.h.

108  { return cast_int<dof_id_type>(_nodes.size()); }

References libMesh::ReplicatedMesh::_nodes.

◆ partition() [1/2]

void libMesh::MeshBase::partition ( )
inlineinherited

Definition at line 992 of file mesh_base.h.

993  { this->partition(this->n_processors()); }

References libMesh::ParallelObject::n_processors().

◆ partition() [2/2]

void libMesh::MeshBase::partition ( const unsigned int  n_parts)
virtualinherited

Call the default partitioner (currently metis_partition()).

Definition at line 599 of file mesh_base.C.

600 {
601  // If we get here and we have unpartitioned elements, we need that
602  // fixed.
603  if (this->n_unpartitioned_elem() > 0)
604  {
606  libmesh_assert (this->is_serial());
607  partitioner()->partition (*this, n_parts);
608  }
609  // A nullptr partitioner or a skip_partitioning(true) call or a
610  // skip_noncritical_partitioning(true) call means don't repartition;
611  // skip_noncritical_partitioning() checks all these.
612  else if (!skip_noncritical_partitioning())
613  {
614  partitioner()->partition (*this, n_parts);
615  }
616  else
617  {
618  // Adaptive coarsening may have "orphaned" nodes on processors
619  // whose elements no longer share them. We need to check for
620  // and possibly fix that.
622 
623  // Make sure locally cached partition count is correct
624  this->recalculate_n_partitions();
625 
626  // Make sure any other locally cached data is correct
627  this->update_post_partitioning();
628  }
629 }

References libMesh::MeshTools::correct_node_proc_ids(), libMesh::ReferenceElem::get(), and libMesh::libmesh_assert().

Referenced by main(), libMesh::split_mesh(), ExtraIntegersTest::test_helper(), MappedSubdomainPartitionerTest::testMappedSubdomainPartitioner(), EquationSystemsTest::testRepartitionThenReinit(), and CheckpointIOTest::testSplitter().

◆ partitioner()

virtual std::unique_ptr<Partitioner>& libMesh::MeshBase::partitioner ( )
inlinevirtualinherited

◆ pid_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::pid_elements_begin ( processor_id_type  proc_id) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ pid_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::pid_elements_begin ( processor_id_type  proc_id)
overridevirtualinherited

Iterate over all elements with a specified processor id.

Implements libMesh::MeshBase.

◆ pid_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::pid_elements_end ( processor_id_type  proc_id) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ pid_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::pid_elements_end ( processor_id_type  proc_id)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ pid_nodes_begin() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::pid_nodes_begin ( processor_id_type  proc_id) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ pid_nodes_begin() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::pid_nodes_begin ( processor_id_type  proc_id)
overridevirtualinherited

Iterate over nodes with processor_id() == proc_id.

Implements libMesh::MeshBase.

◆ pid_nodes_end() [1/2]

virtual const_node_iterator libMesh::ReplicatedMesh::pid_nodes_end ( processor_id_type  proc_id) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ pid_nodes_end() [2/2]

virtual node_iterator libMesh::ReplicatedMesh::pid_nodes_end ( processor_id_type  proc_id)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ point()

const Point & libMesh::ReplicatedMesh::point ( const dof_id_type  i) const
overridevirtualinherited
Returns
A constant reference (for reading only) to the \( i^{th} \) point, which should be present in this processor's subset of the mesh data structure.

Implements libMesh::MeshBase.

Definition at line 174 of file replicated_mesh.C.

175 {
176  return this->node_ref(i);
177 }

References libMesh::MeshBase::node_ref().

Referenced by libMesh::ReplicatedMesh::stitching_helper().

◆ point_locator()

const PointLocatorBase & libMesh::MeshBase::point_locator ( ) const
inherited
Returns
A pointer to a PointLocatorBase object for this mesh, constructing a master PointLocator first if necessary.

Definition at line 652 of file mesh_base.C.

653 {
654  libmesh_deprecated();
655 
656  if (_point_locator.get() == nullptr)
657  {
658  // PointLocator construction may not be safe within threads
660 
662 
664  _point_locator->set_close_to_point_tol(_point_locator_close_to_point_tol);
665  }
666 
667  return *_point_locator;
668 }

References libMesh::Threads::in_threads, libMesh::libmesh_assert(), and libMesh::TREE_ELEMENTS.

◆ prepare_for_use()

void libMesh::MeshBase::prepare_for_use ( const bool  skip_renumber_nodes_and_elements = false,
const bool  skip_find_neighbors = false 
)
inherited

Prepare a newly ecreated (or read) mesh for use.

This involves 4 steps: 1.) call find_neighbors() 2.) call partition() 3.) call renumber_nodes_and_elements() 4.) call cache_elem_dims()

The argument to skip renumbering is now deprecated - to prevent a mesh from being renumbered, set allow_renumbering(false).

If this is a distributed mesh, local copies of remote elements will be deleted here - to keep those elements replicated during preparation, set allow_remote_element_removal(false).

Definition at line 318 of file mesh_base.C.

319 {
320  LOG_SCOPE("prepare_for_use()", "MeshBase");
321 
322  parallel_object_only();
323 
324  libmesh_assert(this->comm().verify(this->is_serial()));
325 
326  // A distributed mesh may have processors with no elements (or
327  // processors with no elements of higher dimension, if we ever
328  // support mixed-dimension meshes), but we want consistent
329  // mesh_dimension anyways.
330  //
331  // cache_elem_dims() should get the elem_dimensions() and
332  // mesh_dimension() correct later, and we don't need it earlier.
333 
334 
335  // Renumber the nodes and elements so that they in contiguous
336  // blocks. By default, _skip_renumber_nodes_and_elements is false.
337  //
338  // We may currently change that by passing
339  // skip_renumber_nodes_and_elements==true to this function, but we
340  // should use the allow_renumbering() accessor instead.
341  //
342  // Instances where you if prepare_for_use() should not renumber the nodes
343  // and elements include reading in e.g. an xda/r or gmv file. In
344  // this case, the ordering of the nodes may depend on an accompanying
345  // solution, and the node ordering cannot be changed.
346 
347  if (skip_renumber_nodes_and_elements)
348  {
349  libmesh_deprecated();
350  this->allow_renumbering(false);
351  }
352 
353  // Mesh modification operations might not leave us with consistent
354  // id counts, but our partitioner might need that consistency.
357  else
359 
360  // Let all the elements find their neighbors
361  if (!skip_find_neighbors)
362  this->find_neighbors();
363 
364  // The user may have set boundary conditions. We require that the
365  // boundary conditions were set consistently. Because we examine
366  // neighbors when evaluating non-raw boundary condition IDs, this
367  // assert is only valid when our neighbor links are in place.
368 #ifdef DEBUG
370 #endif
371 
372  // Search the mesh for all the dimensions of the elements
373  // and cache them.
374  this->cache_elem_dims();
375 
376  // Search the mesh for elements that have a neighboring element
377  // of dim+1 and set that element as the interior parent
378  this->detect_interior_parents();
379 
380  // Fix up node unique ids in case mesh generation code didn't take
381  // exceptional care to do so.
382  // MeshCommunication().make_node_unique_ids_parallel_consistent(*this);
383 
384  // We're going to still require that mesh generation code gets
385  // element unique ids consistent.
386 #if defined(DEBUG) && defined(LIBMESH_ENABLE_UNIQUE_ID)
388 #endif
389 
390  // Reset our PointLocator. Any old locator is invalidated any time
391  // the elements in the underlying elements in the mesh have changed,
392  // so we clear it here.
393  this->clear_point_locator();
394 
395  // Allow our GhostingFunctor objects to reinit if necessary.
396  // Do this before partitioning and redistributing, and before
397  // deleting remote elements.
398  for (auto & gf : _ghosting_functors)
399  {
400  libmesh_assert(gf);
401  gf->mesh_reinit();
402  }
403 
404  // Partition the mesh unless *all* partitioning is to be skipped.
405  // If only noncritical partitioning is to be skipped, the
406  // partition() call will still check for orphaned nodes.
407  if (!skip_partitioning())
408  this->partition();
409 
410  // If we're using DistributedMesh, we'll probably want it
411  // parallelized.
413  this->delete_remote_elements();
414 
417 
418  // The mesh is now prepared for use.
419  _is_prepared = true;
420 
421 #if defined(DEBUG) && defined(LIBMESH_ENABLE_UNIQUE_ID)
424 #endif
425 }

References libMesh::libmesh_assert(), libMesh::MeshTools::libmesh_assert_valid_boundary_ids(), and libMesh::MeshTools::libmesh_assert_valid_unique_ids().

Referenced by LinearElasticityWithContact::add_contact_edge_elements(), libMesh::UnstructuredMesh::all_first_order(), libMesh::UnstructuredMesh::all_second_order(), libMesh::MeshTools::Subdivision::all_subdivision(), libMesh::MeshTools::Modification::all_tri(), libMesh::MeshTools::Generation::build_extrusion(), libMesh::InfElemBuilder::build_inf_elem(), GetBoundaryPointsTest::build_mesh(), MixedDimensionMeshTest::build_mesh(), MeshfunctionDFEM::build_mesh(), SlitMeshTest::build_mesh(), MixedDimensionNonUniformRefinement::build_mesh(), MixedDimensionNonUniformRefinementTriangle::build_mesh(), MixedDimensionNonUniformRefinement3D::build_mesh(), libMesh::MeshRefinement::coarsen_elements(), libMesh::UnstructuredMesh::copy_nodes_and_elements(), libMesh::UnstructuredMesh::create_submesh(), libMesh::MeshTools::Modification::flatten(), main(), libMesh::MeshTools::Subdivision::prepare_subdivision_mesh(), libMesh::GMVIO::read(), libMesh::UnstructuredMesh::read(), libMesh::MeshRefinement::refine_and_coarsen_elements(), libMesh::MeshRefinement::refine_elements(), libMesh::ReplicatedMesh::stitching_helper(), libMesh::BoundaryInfo::sync(), MeshSpatialDimensionTest::test1D(), MeshSpatialDimensionTest::test2D(), SystemsTest::testBlockRestrictedVarNDofs(), SystemsTest::testDofCouplingWithVarGroups(), MeshInputTest::testDynaReadElem(), MeshInputTest::testDynaReadPatch(), MeshInputTest::testExodusCopyElementSolution(), MeshInputTest::testExodusWriteElementDataFromDiscontinuousNodalData(), EquationSystemsTest::testPostInitAddElem(), SystemsTest::testProjectMatrix3D(), EquationSystemsTest::testReinitWithNodeElem(), BoundaryInfoTest::testShellFaceConstraints(), WriteVecAndScalar::testWrite(), tetrahedralize_domain(), libMesh::TriangleInterface::triangulate(), libMesh::MeshRefinement::uniformly_coarsen(), and libMesh::MeshRefinement::uniformly_refine().

◆ print_info()

void libMesh::MeshBase::print_info ( std::ostream &  os = libMesh::out) const
inherited

Prints relevant information about the mesh.

Definition at line 585 of file mesh_base.C.

586 {
587  os << this->get_info()
588  << std::endl;
589 }

Referenced by assemble_and_solve(), libMesh::InfElemBuilder::build_inf_elem(), main(), and libMesh::operator<<().

◆ processor_id()

processor_id_type libMesh::ParallelObject::processor_id ( ) const
inlineinherited
Returns
The rank of this processor in the group.

Definition at line 106 of file parallel_object.h.

107  { return cast_int<processor_id_type>(_communicator.rank()); }

References libMesh::ParallelObject::_communicator.

Referenced by libMesh::BoundaryInfo::_find_id_maps(), libMesh::EquationSystems::_read_impl(), libMesh::PetscDMWrapper::add_dofs_to_section(), libMesh::DistributedMesh::add_elem(), libMesh::BoundaryInfo::add_elements(), libMesh::DofMap::add_neighbors_to_send_list(), libMesh::DistributedMesh::add_node(), libMesh::UnstructuredMesh::all_second_order(), libMesh::MeshTools::Modification::all_tri(), libMesh::DofMap::allgather_recursive_constraints(), libMesh::FEMSystem::assembly(), libMesh::Nemesis_IO_Helper::build_element_and_node_maps(), libMesh::InfElemBuilder::build_inf_elem(), libMesh::BoundaryInfo::build_node_list_from_side_list(), libMesh::EquationSystems::build_parallel_elemental_solution_vector(), libMesh::DistributedMesh::clear(), libMesh::ExodusII_IO_Helper::close(), libMesh::Nemesis_IO_Helper::compute_border_node_ids(), libMesh::Nemesis_IO_Helper::compute_communication_map_parameters(), libMesh::Nemesis_IO_Helper::compute_internal_and_border_elems_and_internal_nodes(), libMesh::RBConstruction::compute_max_error_bound(), libMesh::Nemesis_IO_Helper::compute_node_communication_maps(), libMesh::Nemesis_IO_Helper::compute_num_global_elem_blocks(), libMesh::Nemesis_IO_Helper::compute_num_global_nodesets(), libMesh::Nemesis_IO_Helper::compute_num_global_sidesets(), libMesh::Nemesis_IO_Helper::construct_nemesis_filename(), libMesh::ExodusII_IO::copy_scalar_solution(), libMesh::MeshTools::correct_node_proc_ids(), libMesh::ExodusII_IO_Helper::create(), libMesh::DistributedMesh::delete_elem(), libMesh::DistributedMesh::delete_node(), libMesh::MeshCommunication::delete_remote_elements(), libMesh::DofMap::distribute_dofs(), libMesh::DofMap::distribute_local_dofs_node_major(), libMesh::DofMap::distribute_local_dofs_var_major(), libMesh::DistributedMesh::DistributedMesh(), libMesh::DofMap::end_dof(), libMesh::DofMap::end_old_dof(), libMesh::EnsightIO::EnsightIO(), libMesh::RBEIMConstruction::evaluate_mesh_function(), libMesh::MeshFunction::find_element(), libMesh::MeshFunction::find_elements(), libMesh::UnstructuredMesh::find_neighbors(), libMesh::DofMap::first_dof(), libMesh::DofMap::first_old_dof(), libMesh::Nemesis_IO_Helper::get_cmap_params(), libMesh::Nemesis_IO_Helper::get_eb_info_global(), libMesh::Nemesis_IO_Helper::get_elem_cmap(), libMesh::Nemesis_IO_Helper::get_elem_map(), libMesh::DofMap::get_info(), libMesh::Nemesis_IO_Helper::get_init_global(), libMesh::Nemesis_IO_Helper::get_init_info(), libMesh::Nemesis_IO_Helper::get_loadbal_param(), libMesh::DofMap::get_local_constraints(), libMesh::Nemesis_IO_Helper::get_node_cmap(), libMesh::Nemesis_IO_Helper::get_node_map(), libMesh::Nemesis_IO_Helper::get_ns_param_global(), libMesh::Nemesis_IO_Helper::get_ss_param_global(), libMesh::SparsityPattern::Build::handle_vi_vj(), libMesh::SystemSubsetBySubdomain::init(), libMesh::PetscDMWrapper::init_and_attach_petscdm(), HeatSystem::init_data(), libMesh::ExodusII_IO_Helper::initialize(), libMesh::ExodusII_IO_Helper::initialize_element_variables(), libMesh::ExodusII_IO_Helper::initialize_global_variables(), libMesh::ExodusII_IO_Helper::initialize_nodal_variables(), libMesh::DistributedMesh::insert_elem(), libMesh::DofMap::is_evaluable(), libMesh::SparsityPattern::Build::join(), libMesh::DofMap::last_dof(), libMesh::TransientRBEvaluation::legacy_write_offline_data_to_files(), libMesh::RBEIMEvaluation::legacy_write_offline_data_to_files(), libMesh::RBEvaluation::legacy_write_offline_data_to_files(), libMesh::RBSCMEvaluation::legacy_write_offline_data_to_files(), libMesh::RBEIMEvaluation::legacy_write_out_interpolation_points_elem(), libMesh::MeshTools::libmesh_assert_consistent_distributed(), libMesh::MeshTools::libmesh_assert_consistent_distributed_nodes(), libMesh::MeshTools::libmesh_assert_contiguous_dof_ids(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Elem >(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libMesh::DistributedMesh::libmesh_assert_valid_parallel_object_ids(), libMesh::DofMap::local_variable_indices(), main(), libMesh::MeshRefinement::make_coarsening_compatible(), AugmentSparsityOnInterface::mesh_reinit(), libMesh::MeshBase::n_active_local_elem(), libMesh::BoundaryInfo::n_boundary_conds(), libMesh::BoundaryInfo::n_edge_conds(), libMesh::DofMap::n_local_dofs(), libMesh::System::n_local_dofs(), libMesh::MeshBase::n_local_elem(), libMesh::MeshBase::n_local_nodes(), libMesh::BoundaryInfo::n_nodeset_conds(), libMesh::BoundaryInfo::n_shellface_conds(), libMesh::SparsityPattern::Build::operator()(), libMesh::DistributedMesh::own_node(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::DofMap::print_dof_constraints(), libMesh::Nemesis_IO_Helper::put_cmap_params(), libMesh::Nemesis_IO_Helper::put_elem_cmap(), libMesh::Nemesis_IO_Helper::put_elem_map(), libMesh::Nemesis_IO_Helper::put_loadbal_param(), libMesh::Nemesis_IO_Helper::put_node_cmap(), libMesh::Nemesis_IO_Helper::put_node_map(), libMesh::NameBasedIO::read(), libMesh::Nemesis_IO::read(), libMesh::XdrIO::read(), libMesh::CheckpointIO::read(), libMesh::ExodusII_IO_Helper::read_elem_num_map(), libMesh::ExodusII_IO_Helper::read_global_values(), libMesh::CheckpointIO::read_header(), libMesh::XdrIO::read_header(), libMesh::System::read_header(), libMesh::RBEvaluation::read_in_vectors_from_multiple_files(), libMesh::System::read_legacy_data(), libMesh::ExodusII_IO_Helper::read_node_num_map(), libMesh::System::read_parallel_data(), libMesh::TransientRBConstruction::read_riesz_representors_from_files(), libMesh::RBConstruction::read_riesz_representors_from_files(), libMesh::System::read_SCALAR_dofs(), libMesh::XdrIO::read_serialized_bc_names(), libMesh::XdrIO::read_serialized_bcs_helper(), libMesh::System::read_serialized_blocked_dof_objects(), libMesh::XdrIO::read_serialized_connectivity(), libMesh::System::read_serialized_data(), libMesh::XdrIO::read_serialized_nodes(), libMesh::XdrIO::read_serialized_nodesets(), libMesh::XdrIO::read_serialized_subdomain_names(), libMesh::System::read_serialized_vector(), libMesh::System::read_serialized_vectors(), libMesh::DistributedMesh::renumber_dof_objects(), libMesh::DofMap::scatter_constraints(), libMesh::CheckpointIO::select_split_config(), libMesh::DofMap::set_nonlocal_dof_objects(), libMesh::PetscDMWrapper::set_point_range_in_section(), libMesh::LaplaceMeshSmoother::smooth(), DefaultCouplingTest::testCoupling(), PointNeighborCouplingTest::testCoupling(), MeshInputTest::testDynaReadElem(), MeshInputTest::testDynaReadPatch(), MeshInputTest::testExodusCopyElementSolution(), MeshInputTest::testExodusWriteElementDataFromDiscontinuousNodalData(), SystemsTest::testProjectMatrix1D(), SystemsTest::testProjectMatrix2D(), SystemsTest::testProjectMatrix3D(), BoundaryInfoTest::testShellFaceConstraints(), CheckpointIOTest::testSplitter(), WriteVecAndScalar::testWrite(), libMesh::MeshTools::total_weight(), libMesh::MeshRefinement::uniformly_coarsen(), libMesh::Parallel::Packing< Node * >::unpack(), libMesh::Parallel::Packing< Elem * >::unpack(), libMesh::DistributedMesh::update_parallel_id_counts(), libMesh::DTKAdapter::update_variable_values(), libMesh::NameBasedIO::write(), libMesh::XdrIO::write(), libMesh::CheckpointIO::write(), libMesh::EquationSystems::write(), libMesh::GMVIO::write_discontinuous_gmv(), libMesh::ExodusII_IO::write_element_data(), libMesh::ExodusII_IO_Helper::write_element_values(), libMesh::ExodusII_IO_Helper::write_element_values_element_major(), libMesh::ExodusII_IO_Helper::write_elements(), libMesh::ExodusII_IO::write_global_data(), libMesh::ExodusII_IO_Helper::write_global_values(), libMesh::System::write_header(), libMesh::ExodusII_IO::write_information_records(), libMesh::ExodusII_IO_Helper::write_information_records(), libMesh::ExodusII_IO_Helper::write_nodal_coordinates(), libMesh::VTKIO::write_nodal_data(), libMesh::UCDIO::write_nodal_data(), libMesh::ExodusII_IO::write_nodal_data(), libMesh::ExodusII_IO::write_nodal_data_discontinuous(), libMesh::ExodusII_IO_Helper::write_nodal_values(), libMesh::Nemesis_IO_Helper::write_nodesets(), libMesh::ExodusII_IO_Helper::write_nodesets(), libMesh::RBEvaluation::write_out_vectors(), write_output_solvedata(), libMesh::System::write_parallel_data(), libMesh::RBConstruction::write_riesz_representors_to_files(), libMesh::System::write_SCALAR_dofs(), libMesh::XdrIO::write_serialized_bc_names(), libMesh::XdrIO::write_serialized_bcs_helper(), libMesh::System::write_serialized_blocked_dof_objects(), libMesh::XdrIO::write_serialized_connectivity(), libMesh::System::write_serialized_data(), libMesh::XdrIO::write_serialized_nodes(), libMesh::XdrIO::write_serialized_nodesets(), libMesh::XdrIO::write_serialized_subdomain_names(), libMesh::System::write_serialized_vector(), libMesh::System::write_serialized_vectors(), libMesh::ExodusII_IO_Helper::write_sideset_data(), libMesh::Nemesis_IO_Helper::write_sidesets(), libMesh::ExodusII_IO_Helper::write_sidesets(), libMesh::ExodusII_IO::write_timestep(), libMesh::ExodusII_IO_Helper::write_timestep(), and libMesh::ExodusII_IO::write_timestep_discontinuous().

◆ query_elem() [1/2]

virtual Elem* libMesh::MeshBase::query_elem ( const dof_id_type  i)
inlinevirtualinherited
Returns
A writable pointer to the \( i^{th} \) element, or nullptr if no such element exists in this processor's mesh data structure.

Definition at line 609 of file mesh_base.h.

610  {
611  libmesh_deprecated();
612  return this->query_elem_ptr(i);
613  }

References libMesh::MeshBase::query_elem_ptr().

◆ query_elem() [2/2]

virtual const Elem* libMesh::MeshBase::query_elem ( const dof_id_type  i) const
inlinevirtualinherited
Returns
A pointer to the \( i^{th} \) element, or nullptr if no such element exists in this processor's mesh data structure.

Definition at line 595 of file mesh_base.h.

596  {
597  libmesh_deprecated();
598  return this->query_elem_ptr(i);
599  }

References libMesh::MeshBase::query_elem_ptr().

◆ query_elem_ptr() [1/2]

const Elem * libMesh::ReplicatedMesh::query_elem_ptr ( const dof_id_type  i) const
overridevirtualinherited
Returns
A pointer to the \( i^{th} \) element, or nullptr if no such element exists in this processor's mesh data structure.

Implements libMesh::MeshBase.

Definition at line 256 of file replicated_mesh.C.

257 {
258  if (i >= this->n_elem())
259  return nullptr;
260  libmesh_assert (_elements[i] == nullptr ||
261  _elements[i]->id() == i); // This will change soon
262 
263  return _elements[i];
264 }

References libMesh::ReplicatedMesh::_elements, libMesh::libmesh_assert(), and libMesh::ReplicatedMesh::n_elem().

◆ query_elem_ptr() [2/2]

Elem * libMesh::ReplicatedMesh::query_elem_ptr ( const dof_id_type  i)
overridevirtualinherited
Returns
A writable pointer to the \( i^{th} \) element, or nullptr if no such element exists in this processor's mesh data structure.

Implements libMesh::MeshBase.

Definition at line 269 of file replicated_mesh.C.

270 {
271  if (i >= this->n_elem())
272  return nullptr;
273  libmesh_assert (_elements[i] == nullptr ||
274  _elements[i]->id() == i); // This will change soon
275 
276  return _elements[i];
277 }

References libMesh::ReplicatedMesh::_elements, libMesh::libmesh_assert(), and libMesh::ReplicatedMesh::n_elem().

◆ query_node_ptr() [1/2]

const Node * libMesh::ReplicatedMesh::query_node_ptr ( const dof_id_type  i) const
overridevirtualinherited
Returns
A pointer to the \( i^{th} \) node, or nullptr if no such node exists in this processor's mesh data structure.

Implements libMesh::MeshBase.

Definition at line 206 of file replicated_mesh.C.

207 {
208  if (i >= this->n_nodes())
209  return nullptr;
210  libmesh_assert (_nodes[i] == nullptr ||
211  _nodes[i]->id() == i); // This will change soon
212 
213  return _nodes[i];
214 }

References libMesh::ReplicatedMesh::_nodes, libMesh::libmesh_assert(), and libMesh::ReplicatedMesh::n_nodes().

◆ query_node_ptr() [2/2]

Node * libMesh::ReplicatedMesh::query_node_ptr ( const dof_id_type  i)
overridevirtualinherited
Returns
A writable pointer to the \( i^{th} \) node, or nullptr if no such node exists in this processor's mesh data structure.

Implements libMesh::MeshBase.

Definition at line 219 of file replicated_mesh.C.

220 {
221  if (i >= this->n_nodes())
222  return nullptr;
223  libmesh_assert (_nodes[i] == nullptr ||
224  _nodes[i]->id() == i); // This will change soon
225 
226  return _nodes[i];
227 }

References libMesh::ReplicatedMesh::_nodes, libMesh::libmesh_assert(), and libMesh::ReplicatedMesh::n_nodes().

◆ read()

void libMesh::UnstructuredMesh::read ( const std::string &  name,
void *  mesh_data = nullptr,
bool  skip_renumber_nodes_and_elements = false,
bool  skip_find_neighbors = false 
)
overridevirtualinherited

Reads the file specified by name.

Attempts to figure out the proper method by the file extension. This is now the only way to read a mesh. The UnstructuredMesh then initializes its data structures and is ready for use.

The skip_renumber_nodes_and_elements argument is now deprecated - to disallow renumbering, set MeshBase::allow_renumbering(false).

Set skip_find_neighbors=true to skip the find-neighbors operation during prepare_for_use. This operation isn't always necessary and it can be time-consuming, which is why we provide an option to skip it.

Implements libMesh::MeshBase.

Definition at line 620 of file unstructured_mesh.C.

624 {
625  // Set the skip_renumber_nodes_and_elements flag on all processors
626  // if necessary.
627  // This ensures that renumber_nodes_and_elements is *not* called
628  // during prepare_for_use() for certain types of mesh files.
629  // This is required in cases where there is an associated solution
630  // file which expects a certain ordering of the nodes.
631  if (name.rfind(".gmv") + 4 == name.size())
632  this->allow_renumbering(false);
633 
634  NameBasedIO(*this).read(name);
635 
636  if (skip_renumber_nodes_and_elements)
637  {
638  // Use MeshBase::allow_renumbering() yourself instead.
639  libmesh_deprecated();
640  this->allow_renumbering(false);
641  }
642 
643  // Done reading the mesh. Now prepare it for use.
644  this->prepare_for_use(/*skip_renumber (deprecated)*/ false,
645  skip_find_neighbors);
646 }

References libMesh::MeshBase::allow_renumbering(), libMesh::Quality::name(), libMesh::MeshBase::prepare_for_use(), and libMesh::NameBasedIO::read().

Referenced by ExtraIntegersTest::checkpoint_helper(), libMesh::RBEIMEvaluation::legacy_read_in_interpolation_points_elem(), main(), and SlitMeshRefinedSystemTest::testRestart().

◆ recalculate_n_partitions()

unsigned int libMesh::MeshBase::recalculate_n_partitions ( )
inherited

In a few (very rare) cases, the user may have manually tagged the elements with specific processor IDs by hand, without using a partitioner.

In this case, the Mesh will not know that the total number of partitions, _n_parts, has changed, unless you call this function. This is an O(N active elements) calculation. The return value is the number of partitions, and _n_parts is also set by this function.

Definition at line 631 of file mesh_base.C.

632 {
633  // This requires an inspection on every processor
634  parallel_object_only();
635 
636  unsigned int max_proc_id=0;
637 
638  for (const auto & elem : this->active_local_element_ptr_range())
639  max_proc_id = std::max(max_proc_id, static_cast<unsigned int>(elem->processor_id()));
640 
641  // The number of partitions is one more than the max processor ID.
642  _n_parts = max_proc_id+1;
643 
644  this->comm().max(_n_parts);
645 
646  return _n_parts;
647 }

◆ redistribute()

virtual void libMesh::MeshBase::redistribute ( )
inlinevirtualinherited

Redistribute elements between processors.

This gets called automatically by the Partitioner, and is a no-op in the case of a ReplicatedMesh or serialized DistributedMesh

Reimplemented in libMesh::DistributedMesh.

Definition at line 1000 of file mesh_base.h.

1000 {}

◆ remove_ghosting_functor()

void libMesh::MeshBase::remove_ghosting_functor ( GhostingFunctor ghosting_functor)
inherited

Removes a functor which was previously added to the set of ghosting functors.

Definition at line 450 of file mesh_base.C.

451 {
452  _ghosting_functors.erase(&ghosting_functor);
453 
454  auto it = _shared_functors.find(&ghosting_functor);
455  if (it != _shared_functors.end())
456  _shared_functors.erase(it);
457 }

Referenced by libMesh::DofMap::clear(), libMesh::DofMap::remove_algebraic_ghosting_functor(), libMesh::DofMap::remove_coupling_functor(), EquationSystemsTest::testDisableDefaultGhosting(), and libMesh::DofMap::~DofMap().

◆ renumber_elem()

void libMesh::ReplicatedMesh::renumber_elem ( dof_id_type  old_id,
dof_id_type  new_id 
)
overridevirtualinherited

Changes the id of element old_id, both by changing elem(old_id)->id() and by moving elem(old_id) in the mesh's internal container.

No element with the id new_id should already exist.

Implements libMesh::MeshBase.

Definition at line 402 of file replicated_mesh.C.

404 {
405  // This doesn't get used in serial yet
406  Elem * el = _elements[old_id];
407  libmesh_assert (el);
408 
409  el->set_id(new_id);
410  libmesh_assert (!_elements[new_id]);
411  _elements[new_id] = el;
412  _elements[old_id] = nullptr;
413 }

References libMesh::ReplicatedMesh::_elements, libMesh::libmesh_assert(), and libMesh::DofObject::set_id().

◆ renumber_node()

void libMesh::ReplicatedMesh::renumber_node ( dof_id_type  old_id,
dof_id_type  new_id 
)
overridevirtualinherited

Changes the id of node old_id, both by changing node(old_id)->id() and by moving node(old_id) in the mesh's internal container.

No element with the id new_id should already exist.

Implements libMesh::MeshBase.

Definition at line 578 of file replicated_mesh.C.

580 {
581  // This doesn't get used in serial yet
582  Node * nd = _nodes[old_id];
583  libmesh_assert (nd);
584 
585  nd->set_id(new_id);
586  libmesh_assert (!_nodes[new_id]);
587  _nodes[new_id] = nd;
588  _nodes[old_id] = nullptr;
589 }

References libMesh::ReplicatedMesh::_nodes, libMesh::libmesh_assert(), and libMesh::DofObject::set_id().

◆ renumber_nodes_and_elements()

void libMesh::ReplicatedMesh::renumber_nodes_and_elements ( )
overridevirtualinherited

Remove nullptr elements from arrays.

Implements libMesh::MeshBase.

Definition at line 642 of file replicated_mesh.C.

643 {
644  LOG_SCOPE("renumber_nodes_and_elem()", "Mesh");
645 
646  // node and element id counters
647  dof_id_type next_free_elem = 0;
648  dof_id_type next_free_node = 0;
649 
650  // Will hold the set of nodes that are currently connected to elements
651  std::unordered_set<Node *> connected_nodes;
652 
653  // Loop over the elements. Note that there may
654  // be nullptrs in the _elements vector from the coarsening
655  // process. Pack the elements in to a contiguous array
656  // and then trim any excess.
657  {
658  std::vector<Elem *>::iterator in = _elements.begin();
659  std::vector<Elem *>::iterator out_iter = _elements.begin();
660  const std::vector<Elem *>::iterator end = _elements.end();
661 
662  for (; in != end; ++in)
663  if (*in != nullptr)
664  {
665  Elem * el = *in;
666 
667  *out_iter = *in;
668  ++out_iter;
669 
670  // Increment the element counter
671  el->set_id (next_free_elem++);
672 
674  {
675  // Add this elements nodes to the connected list
676  for (auto & n : el->node_ref_range())
677  connected_nodes.insert(&n);
678  }
679  else // We DO want node renumbering
680  {
681  // Loop over this element's nodes. Number them,
682  // if they have not been numbered already. Also,
683  // position them in the _nodes vector so that they
684  // are packed contiguously from the beginning.
685  for (auto & n : el->node_ref_range())
686  if (n.id() == next_free_node) // don't need to process
687  next_free_node++; // [(src == dst) below]
688 
689  else if (n.id() > next_free_node) // need to process
690  {
691  // The source and destination indices
692  // for this node
693  const dof_id_type src_idx = n.id();
694  const dof_id_type dst_idx = next_free_node++;
695 
696  // ensure we want to swap a valid nodes
697  libmesh_assert(_nodes[src_idx]);
698 
699  // Swap the source and destination nodes
700  std::swap(_nodes[src_idx],
701  _nodes[dst_idx] );
702 
703  // Set proper indices where that makes sense
704  if (_nodes[src_idx] != nullptr)
705  _nodes[src_idx]->set_id (src_idx);
706  _nodes[dst_idx]->set_id (dst_idx);
707  }
708  }
709  }
710 
711  // Erase any additional storage. These elements have been
712  // copied into nullptr voids by the procedure above, and are
713  // thus repeated and unnecessary.
714  _elements.erase (out_iter, end);
715  }
716 
717 
719  {
720  // Loop over the nodes. Note that there may
721  // be nullptrs in the _nodes vector from the coarsening
722  // process. Pack the nodes in to a contiguous array
723  // and then trim any excess.
724 
725  std::vector<Node *>::iterator in = _nodes.begin();
726  std::vector<Node *>::iterator out_iter = _nodes.begin();
727  const std::vector<Node *>::iterator end = _nodes.end();
728 
729  for (; in != end; ++in)
730  if (*in != nullptr)
731  {
732  // This is a reference so that if we change the pointer it will change in the vector
733  Node * & nd = *in;
734 
735  // If this node is still connected to an elem, put it in the list
736  if (connected_nodes.find(nd) != connected_nodes.end())
737  {
738  *out_iter = nd;
739  ++out_iter;
740 
741  // Increment the node counter
742  nd->set_id (next_free_node++);
743  }
744  else // This node is orphaned, delete it!
745  {
746  this->get_boundary_info().remove (nd);
747 
748  // delete the node
749  delete nd;
750  nd = nullptr;
751  }
752  }
753 
754  // Erase any additional storage. Whatever was
755  _nodes.erase (out_iter, end);
756  }
757  else // We really DO want node renumbering
758  {
759  // Any nodes in the vector >= _nodes[next_free_node]
760  // are not connected to any elements and may be deleted
761  // if desired.
762 
763  // Now, delete the unused nodes
764  {
765  std::vector<Node *>::iterator nd = _nodes.begin();
766  const std::vector<Node *>::iterator end = _nodes.end();
767 
768  std::advance (nd, next_free_node);
769 
770  for (auto & node : as_range(nd, end))
771  {
772  // Mesh modification code might have already deleted some
773  // nodes
774  if (node == nullptr)
775  continue;
776 
777  // remove any boundary information associated with
778  // this node
779  this->get_boundary_info().remove (node);
780 
781  // delete the node
782  delete node;
783  node = nullptr;
784  }
785 
786  _nodes.erase (nd, end);
787  }
788  }
789 
790  libmesh_assert_equal_to (next_free_elem, _elements.size());
791  libmesh_assert_equal_to (next_free_node, _nodes.size());
792 
794 }

References libMesh::ReplicatedMesh::_elements, libMesh::ReplicatedMesh::_nodes, libMesh::MeshBase::_skip_renumber_nodes_and_elements, libMesh::as_range(), end, libMesh::MeshBase::get_boundary_info(), libMesh::libmesh_assert(), libMesh::MeshBase::node(), libMesh::Elem::node_ref_range(), libMesh::BoundaryInfo::remove(), libMesh::DofObject::set_id(), swap(), and libMesh::ReplicatedMesh::update_parallel_id_counts().

◆ reserve_elem()

virtual void libMesh::ReplicatedMesh::reserve_elem ( const dof_id_type  ne)
inlineoverridevirtualinherited

Reserves space for a known number of elements.

Note
This method may or may not do anything, depending on the actual Mesh implementation. If you know the number of elements you will add and call this method before repeatedly calling add_point() the implementation will be more efficient.

Implements libMesh::MeshBase.

Definition at line 131 of file replicated_mesh.h.

132  { _elements.reserve (ne); }

References libMesh::ReplicatedMesh::_elements.

◆ reserve_nodes()

virtual void libMesh::ReplicatedMesh::reserve_nodes ( const dof_id_type  nn)
inlineoverridevirtualinherited

Reserves space for a known number of nodes.

Note
This method may or may not do anything, depending on the actual Mesh implementation. If you know the number of nodes you will add and call this method before repeatedly calling add_point() the implementation will be more efficient.

Implements libMesh::MeshBase.

Definition at line 113 of file replicated_mesh.h.

114  { _nodes.reserve (nn); }

References libMesh::ReplicatedMesh::_nodes.

◆ semilocal_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::semilocal_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ semilocal_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::semilocal_elements_begin ( )
overridevirtualinherited

Iterate over elements for which elem->is_semilocal() is true for the current processor.

Implements libMesh::MeshBase.

◆ semilocal_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::semilocal_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ semilocal_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::semilocal_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ set_count_lower_dim_elems_in_point_locator()

void libMesh::MeshBase::set_count_lower_dim_elems_in_point_locator ( bool  count_lower_dim_elems)
inherited

In the point locator, do we count lower dimensional elements when we refine point locator regions? This is relevant in tree-based point locators, for example.

Definition at line 703 of file mesh_base.C.

704 {
705  _count_lower_dim_elems_in_point_locator = count_lower_dim_elems;
706 }

◆ set_default_mapping_data()

void libMesh::MeshBase::set_default_mapping_data ( const unsigned char  data)
inlineinherited

Set the default master space to physical space mapping basis functions to be used on newly added elements.

Definition at line 732 of file mesh_base.h.

732  {
734  }

References libMesh::MeshBase::_default_mapping_data, and data.

Referenced by libMesh::DynaIO::read_mesh(), RationalMapTest< elem_type >::setUp(), and FETest< order, family, elem_type >::setUp().

◆ set_default_mapping_type()

void libMesh::MeshBase::set_default_mapping_type ( const ElemMappingType  type)
inlineinherited

Set the default master space to physical space mapping basis functions to be used on newly added elements.

Definition at line 716 of file mesh_base.h.

716  {
717  _default_mapping_type = type;
718  }

References libMesh::MeshBase::_default_mapping_type.

Referenced by libMesh::DynaIO::read_mesh(), and RationalMapTest< elem_type >::setUp().

◆ set_distributed()

virtual void libMesh::MeshBase::set_distributed ( )
inlinevirtualinherited

Asserts that not all elements and nodes of the mesh necessarily exist on the current processor.

Only valid to call on classes which can be created in a distributed form.

Reimplemented in libMesh::DistributedMesh.

Definition at line 174 of file mesh_base.h.

175  { libmesh_error(); }

Referenced by libMesh::CheckpointIO::read().

◆ set_elem_dimensions()

void libMesh::MeshBase::set_elem_dimensions ( const std::set< unsigned char > &  elem_dims)
inherited

Most of the time you should not need to call this, as the element dimensions will be set automatically by a call to cache_elem_dims(), therefore only call this if you know what you're doing.

In some specialized situations, for example when adding a single Elem on all procs, it can be faster to skip calling cache_elem_dims() and simply specify the element dimensions manually, which is why this setter exists.

Definition at line 144 of file mesh_base.C.

145 {
146 #ifdef DEBUG
147  // In debug mode, we call cache_elem_dims() and then make sure
148  // the result actually agrees with what the user specified.
149  parallel_object_only();
150 
151  this->cache_elem_dims();
152  libmesh_assert_msg(_elem_dims == elem_dims, \
153  "Specified element dimensions does not match true element dimensions!");
154 #endif
155 
156  _elem_dims = elem_dims;
157 }

References libMesh::MeshBase::_elem_dims, and libMesh::MeshBase::cache_elem_dims().

◆ set_mesh_dimension()

void libMesh::MeshBase::set_mesh_dimension ( unsigned char  d)
inlineinherited

◆ set_n_partitions()

unsigned int& libMesh::MeshBase::set_n_partitions ( )
inlineprotectedinherited
Returns
A writable reference to the number of partitions.

Definition at line 1667 of file mesh_base.h.

1668  { return _n_parts; }

References libMesh::MeshBase::_n_parts.

Referenced by libMesh::BoundaryInfo::sync().

◆ set_next_unique_id()

void libMesh::MeshBase::set_next_unique_id ( unique_id_type  id)
inlineinherited

Sets the next unique id to be used.

Definition at line 327 of file mesh_base.h.

327 { _next_unique_id = id; }

References libMesh::MeshBase::_next_unique_id.

◆ set_point_locator_close_to_point_tol()

void libMesh::MeshBase::set_point_locator_close_to_point_tol ( Real  val)
inherited

Set value used by PointLocatorBase::close_to_point_tol().

Defaults to 0.0. If nonzero, calls close_to_point_tol() whenever a new PointLocator is built for use by this Mesh. Since the Mesh controls the creation and destruction of the PointLocator, if there are any parameters we need to customize on it, the Mesh will need to know about them.

Definition at line 905 of file mesh_base.C.

906 {
908  if (_point_locator)
909  {
910  if (val > 0.)
911  _point_locator->set_close_to_point_tol(val);
912  else
913  _point_locator->unset_close_to_point_tol();
914  }
915 }

◆ set_spatial_dimension()

void libMesh::MeshBase::set_spatial_dimension ( unsigned char  d)
inherited

Sets the "spatial dimension" of the Mesh.

See the documentation for Mesh::spatial_dimension() for more information.

Definition at line 166 of file mesh_base.C.

167 {
168  // The user can set the _spatial_dimension however they wish,
169  // libMesh will only *increase* the spatial dimension, however,
170  // never decrease it.
171  _spatial_dimension = d;
172 }

References libMesh::MeshBase::_spatial_dimension.

Referenced by MeshSpatialDimensionTest::test2D().

◆ set_subdomain_name_map()

std::map<subdomain_id_type, std::string>& libMesh::MeshBase::set_subdomain_name_map ( )
inlineinherited

◆ size_elem_extra_integers()

void libMesh::MeshBase::size_elem_extra_integers ( )
protectedinherited

Size extra-integer arrays of all elements in the mesh.

Definition at line 926 of file mesh_base.C.

927 {
928  const std::size_t new_size = _elem_integer_names.size();
929  for (auto elem : this->element_ptr_range())
930  elem->add_extra_integers(new_size);
931 }

Referenced by libMesh::MeshBase::add_elem_data(), libMesh::MeshBase::add_elem_datum(), and libMesh::MeshBase::add_elem_integer().

◆ size_node_extra_integers()

void libMesh::MeshBase::size_node_extra_integers ( )
protectedinherited

Size extra-integer arrays of all nodes in the mesh.

Definition at line 935 of file mesh_base.C.

936 {
937  const std::size_t new_size = _node_integer_names.size();
938  for (auto node : this->node_ptr_range())
939  node->add_extra_integers(new_size);
940 }

Referenced by libMesh::MeshBase::add_node_data(), and libMesh::MeshBase::add_node_datum().

◆ skip_noncritical_partitioning() [1/2]

bool libMesh::MeshBase::skip_noncritical_partitioning ( ) const
inlineinherited

◆ skip_noncritical_partitioning() [2/2]

void libMesh::MeshBase::skip_noncritical_partitioning ( bool  skip)
inlineinherited

If true is passed in then the elements on this mesh will no longer be (re)partitioned, and the nodes on this mesh will only be repartitioned if they are found "orphaned" via coarsening or other removal of the last element responsible for their node/element processor id consistency.

Note
It would probably be a bad idea to call this on a DistributedMesh before the first partitioning has happened... because no elements would get assigned to your processor pool.
Skipping partitioning can have adverse effects on your performance when using AMR... i.e. you could get large load imbalances. However you might still want to use this if the communication and computation of the rebalance and repartition is too high for your application.

It is also possible, for backwards-compatibility purposes, to skip noncritical partitioning by resetting the partitioner() pointer for this mesh.

Definition at line 1058 of file mesh_base.h.

1059  { _skip_noncritical_partitioning = skip; }

References libMesh::MeshBase::_skip_noncritical_partitioning.

Referenced by libMesh::MeshTools::correct_node_proc_ids().

◆ skip_partitioning() [1/2]

bool libMesh::MeshBase::skip_partitioning ( ) const
inlineinherited

◆ skip_partitioning() [2/2]

void libMesh::MeshBase::skip_partitioning ( bool  skip)
inlineinherited

If true is passed in then nothing on this mesh will be (re)partitioned.

Note
The caveats for skip_noncritical_partitioning() still apply, and removing elements from a mesh with this setting enabled can leave node processor ids in an inconsistent state (not matching any attached element), causing failures in other library code. Do not use this setting along with element deletion or coarsening.

Definition at line 1076 of file mesh_base.h.

1076 { _skip_all_partitioning = skip; }

References libMesh::MeshBase::_skip_all_partitioning.

◆ spatial_dimension()

unsigned int libMesh::MeshBase::spatial_dimension ( ) const
inherited
Returns
The "spatial dimension" of the mesh.

The spatial dimension is defined as:

1 - for an exactly x-aligned mesh of 1D elements 2 - for an exactly x-y planar mesh of 2D elements 3 - otherwise

No tolerance checks are performed to determine whether the Mesh is x-aligned or x-y planar, only strict equality with zero in the higher dimensions is checked. Also, x-z and y-z planar meshes are considered to have spatial dimension == 3.

The spatial dimension is updated during prepare_for_use() based on the dimensions of the various elements present in the Mesh, but is never automatically decreased by this function.

For example, if the user calls set_spatial_dimension(2) and then later inserts 3D elements into the mesh, Mesh::spatial_dimension() will return 3 after the next call to prepare_for_use(). On the other hand, if the user calls set_spatial_dimension(3) and then inserts only x-aligned 1D elements into the Mesh, mesh.spatial_dimension() will remain 3.

Definition at line 159 of file mesh_base.C.

160 {
161  return cast_int<unsigned int>(_spatial_dimension);
162 }

References libMesh::MeshBase::_spatial_dimension.

Referenced by MeshSpatialDimensionTest::test1D(), and MeshSpatialDimensionTest::test2D().

◆ stitch_meshes()

void libMesh::ReplicatedMesh::stitch_meshes ( const ReplicatedMesh other_mesh,
boundary_id_type  this_mesh_boundary,
boundary_id_type  other_mesh_boundary,
Real  tol = TOLERANCE,
bool  clear_stitched_boundary_ids = false,
bool  verbose = true,
bool  use_binary_search = true,
bool  enforce_all_nodes_match_on_boundaries = false 
)
inherited

Stitch other_mesh to this mesh so that this mesh is the union of the two meshes.

this_mesh_boundary and other_mesh_boundary are used to specify a dim-1 dimensional surface on which we seek to merge any "overlapping" nodes, where we use the parameter tol as a relative tolerance (relative to the smallest edge length on the surfaces being stitched) to determine whether or not nodes are overlapping. If clear_stitched_boundary_ids==true, this function clears boundary_info IDs in this mesh associated this_mesh_boundary and other_mesh_boundary. If use_binary_search is true, we use an optimized "sort then binary search" algorithm for finding matching nodes. Otherwise we use a N^2 algorithm (which can be more reliable at dealing with slightly misaligned meshes). If enforce_all_nodes_match_on_boundaries is true, we throw an error if the number of nodes on the specified boundaries don't match the number of nodes that were merged. This is a helpful error check in some cases. If skip_find_neighbors is true, a faster stitching method is used, where the lists of neighbors for each elements are copied as well and patched, without calling the time-consuming find_neighbors() function.

Note that the element IDs for elements in the stitched mesh corresponding to "this" mesh will be unchanged. The IDs for elements corresponding to other_mesh will be incremented by this->max_elem_id().

There is no simple a priori relationship between node IDs in "this" mesh and other_mesh and node IDs in the stitched mesh because the number of nodes (and hence the node IDs) in the stitched mesh depend on how many nodes are stitched.

Definition at line 812 of file replicated_mesh.C.

820 {
821  LOG_SCOPE("stitch_meshes()", "ReplicatedMesh");
822  stitching_helper(&other_mesh,
823  this_mesh_boundary_id,
824  other_mesh_boundary_id,
825  tol,
826  clear_stitched_boundary_ids,
827  verbose,
828  use_binary_search,
829  enforce_all_nodes_match_on_boundaries,
830  true);
831 }

References libMesh::ReplicatedMesh::stitching_helper().

◆ stitch_surfaces()

void libMesh::ReplicatedMesh::stitch_surfaces ( boundary_id_type  boundary_id_1,
boundary_id_type  boundary_id_2,
Real  tol = TOLERANCE,
bool  clear_stitched_boundary_ids = false,
bool  verbose = true,
bool  use_binary_search = true,
bool  enforce_all_nodes_match_on_boundaries = false 
)
inherited

Similar to stitch_meshes, except that we stitch two adjacent surfaces within this mesh.

Definition at line 833 of file replicated_mesh.C.

840 {
841  stitching_helper(nullptr,
842  boundary_id_1,
843  boundary_id_2,
844  tol,
845  clear_stitched_boundary_ids,
846  verbose,
847  use_binary_search,
848  enforce_all_nodes_match_on_boundaries,
849  true);
850 }

References libMesh::ReplicatedMesh::stitching_helper().

◆ stitching_helper()

void libMesh::ReplicatedMesh::stitching_helper ( const ReplicatedMesh other_mesh,
boundary_id_type  boundary_id_1,
boundary_id_type  boundary_id_2,
Real  tol,
bool  clear_stitched_boundary_ids,
bool  verbose,
bool  use_binary_search,
bool  enforce_all_nodes_match_on_boundaries,
bool  skip_find_neighbors 
)
privateinherited

Helper function for stitch_meshes and stitch_surfaces that does the mesh stitching.

Definition at line 852 of file replicated_mesh.C.

861 {
862  std::map<dof_id_type, dof_id_type> node_to_node_map, other_to_this_node_map; // The second is the inverse map of the first
863  std::map<dof_id_type, std::vector<dof_id_type>> node_to_elems_map;
864 
865  typedef dof_id_type key_type;
866  typedef std::pair<Elem *, unsigned char> val_type;
867  typedef std::pair<key_type, val_type> key_val_pair;
868  typedef std::unordered_multimap<key_type, val_type> map_type;
869  // Mapping between all side keys in this mesh and elements+side numbers relevant to the boundary in this mesh as well.
870  map_type side_to_elem_map;
871 
872  // If there is only one mesh (i.e. other_mesh == nullptr), then loop over this mesh twice
873  if (!other_mesh)
874  {
875  other_mesh = this;
876  }
877 
878  if ((this_mesh_boundary_id != BoundaryInfo::invalid_id) &&
879  (other_mesh_boundary_id != BoundaryInfo::invalid_id))
880  {
881  LOG_SCOPE("stitch_meshes node merging", "ReplicatedMesh");
882 
883  // While finding nodes on the boundary, also find the minimum edge length
884  // of all faces on both boundaries. This will later be used in relative
885  // distance checks when stitching nodes.
886  Real h_min = std::numeric_limits<Real>::max();
887  bool h_min_updated = false;
888 
889  // Loop below fills in these sets for the two meshes.
890  std::set<dof_id_type> this_boundary_node_ids, other_boundary_node_ids;
891 
892  // Pull objects out of the loop to reduce heap operations
893  std::unique_ptr<Elem> side;
894 
895  {
896  // Make temporary fixed-size arrays for loop
897  boundary_id_type id_array[2] = {this_mesh_boundary_id, other_mesh_boundary_id};
898  std::set<dof_id_type> * set_array[2] = {&this_boundary_node_ids, &other_boundary_node_ids};
899  const ReplicatedMesh * mesh_array[2] = {this, other_mesh};
900 
901  for (unsigned i=0; i<2; ++i)
902  {
903  // First we deal with node boundary IDs.
904  // We only enter this loop if we have at least one
905  // nodeset.
906  if (mesh_array[i]->get_boundary_info().n_nodeset_conds() > 0)
907  {
908  // build_node_list() returns a vector of (node-id, bc-id) tuples
909  for (const auto & t : mesh_array[i]->get_boundary_info().build_node_list())
910  {
911  boundary_id_type node_bc_id = std::get<1>(t);
912  if (node_bc_id == id_array[i])
913  {
914  dof_id_type this_node_id = std::get<0>(t);
915  set_array[i]->insert( this_node_id );
916 
917  // We need to set h_min to some value. It's too expensive to
918  // search for the element that actually contains this node,
919  // since that would require a PointLocator. As a result, we
920  // just use the first (non-NodeElem!) element in the mesh to
921  // give us hmin if it's never been set before.
922  if (!h_min_updated)
923  {
924  for (const auto & elem : mesh_array[i]->active_element_ptr_range())
925  {
926  Real current_h_min = elem->hmin();
927  if (current_h_min > 0.)
928  {
929  h_min = current_h_min;
930  h_min_updated = true;
931  break;
932  }
933  }
934 
935  // If, after searching all the active elements, we did not update
936  // h_min, give up and set h_min to 1 so that we don't repeat this
937  // fruitless search
938  if (!h_min_updated)
939  {
940  h_min_updated = true;
941  h_min = 1.0;
942  }
943  }
944  }
945  }
946  }
947 
948  // Container to catch boundary IDs passed back from BoundaryInfo.
949  std::vector<boundary_id_type> bc_ids;
950 
951  for (auto & el : mesh_array[i]->element_ptr_range())
952  {
953  // Now check whether elem has a face on the specified boundary
954  for (auto side_id : el->side_index_range())
955  if (el->neighbor_ptr(side_id) == nullptr)
956  {
957  // Get *all* boundary IDs on this side, not just the first one!
958  mesh_array[i]->get_boundary_info().boundary_ids (el, side_id, bc_ids);
959 
960  if (std::find(bc_ids.begin(), bc_ids.end(), id_array[i]) != bc_ids.end())
961  {
962  el->build_side_ptr(side, side_id);
963  for (auto & n : side->node_ref_range())
964  set_array[i]->insert(n.id());
965 
966  h_min = std::min(h_min, side->hmin());
967  h_min_updated = true;
968 
969  // This side is on the boundary, add its information to side_to_elem
970  if (skip_find_neighbors && (i==0))
971  {
972  key_type key = el->key(side_id);
973  val_type val;
974  val.first = el;
975  val.second = cast_int<unsigned char>(side_id);
976 
977  key_val_pair kvp;
978  kvp.first = key;
979  kvp.second = val;
980  side_to_elem_map.insert (kvp);
981  }
982  }
983 
984  // Also, check the edges on this side. We don't have to worry about
985  // updating neighbor info in this case since elements don't store
986  // neighbor info on edges.
987  for (auto edge_id : el->edge_index_range())
988  {
989  if (el->is_edge_on_side(edge_id, side_id))
990  {
991  // Get *all* boundary IDs on this edge, not just the first one!
992  mesh_array[i]->get_boundary_info().edge_boundary_ids (el, edge_id, bc_ids);
993 
994  if (std::find(bc_ids.begin(), bc_ids.end(), id_array[i]) != bc_ids.end())
995  {
996  std::unique_ptr<Elem> edge (el->build_edge_ptr(edge_id));
997  for (auto & n : edge->node_ref_range())
998  set_array[i]->insert( n.id() );
999 
1000  h_min = std::min(h_min, edge->hmin());
1001  h_min_updated = true;
1002  }
1003  }
1004  }
1005  }
1006  }
1007  }
1008  }
1009 
1010  if (verbose)
1011  {
1012  libMesh::out << "In ReplicatedMesh::stitch_meshes:\n"
1013  << "This mesh has " << this_boundary_node_ids.size()
1014  << " nodes on boundary " << this_mesh_boundary_id << ".\n"
1015  << "Other mesh has " << other_boundary_node_ids.size()
1016  << " nodes on boundary " << other_mesh_boundary_id << ".\n";
1017 
1018  if (h_min_updated)
1019  {
1020  libMesh::out << "Minimum edge length on both surfaces is " << h_min << ".\n";
1021  }
1022  else
1023  {
1024  libMesh::out << "No elements on specified surfaces." << std::endl;
1025  }
1026  }
1027 
1028  // We require nanoflann for the "binary search" (really kd-tree)
1029  // option to work. If it's not available, turn that option off,
1030  // warn the user, and fall back on the N^2 search algorithm.
1031  if (use_binary_search)
1032  {
1033 #ifndef LIBMESH_HAVE_NANOFLANN
1034  use_binary_search = false;
1035  libmesh_warning("The use_binary_search option in the "
1036  "ReplicatedMesh stitching algorithms requires nanoflann "
1037  "support. Falling back on N^2 search algorithm.");
1038 #endif
1039  }
1040 
1041  if (this_boundary_node_ids.size())
1042  {
1043  if (use_binary_search)
1044  {
1045 #ifdef LIBMESH_HAVE_NANOFLANN
1046  typedef nanoflann::KDTreeSingleIndexAdaptor<nanoflann::L2_Simple_Adaptor<Real, VectorOfNodesAdaptor>, VectorOfNodesAdaptor, 3> kd_tree_t;
1047 
1048  // Create the dataset needed to build the kd tree with nanoflann
1049  std::vector<std::pair<Point, dof_id_type>> this_mesh_nodes(this_boundary_node_ids.size());
1050  std::set<dof_id_type>::iterator current_node = this_boundary_node_ids.begin(),
1051  node_ids_end = this_boundary_node_ids.end();
1052  for (unsigned int ctr = 0; current_node != node_ids_end; ++current_node, ++ctr)
1053  {
1054  this_mesh_nodes[ctr].first = this->point(*current_node);
1055  this_mesh_nodes[ctr].second = *current_node;
1056  }
1057 
1058  VectorOfNodesAdaptor vec_nodes_adaptor(this_mesh_nodes);
1059 
1060  kd_tree_t this_kd_tree(3, vec_nodes_adaptor, 10);
1061  this_kd_tree.buildIndex();
1062 
1063  // Storage for nearest neighbor in the loop below
1064  std::vector<size_t> ret_index(1);
1065  std::vector<Real> ret_dist_sqr(1);
1066 
1067  // Loop over other mesh. For each node, find its nearest neighbor in this mesh, and fill in the maps.
1068  for (auto node : other_boundary_node_ids)
1069  {
1070  const Real query_pt[] = {other_mesh->point(node)(0), other_mesh->point(node)(1), other_mesh->point(node)(2)};
1071  this_kd_tree.knnSearch(&query_pt[0], 1, &ret_index[0], &ret_dist_sqr[0]);
1072  if (ret_dist_sqr[0] < TOLERANCE*TOLERANCE)
1073  {
1074  node_to_node_map[this_mesh_nodes[ret_index[0]].second] = node;
1075  other_to_this_node_map[node] = this_mesh_nodes[ret_index[0]].second;
1076  }
1077  }
1078 
1079  // If the 2 maps don't have the same size, it means we have overwritten a value in node_to_node_map
1080  // It means one node in this mesh is the nearest neighbor of several nodes in other mesh.
1081  // Not possible !
1082  if (node_to_node_map.size() != other_to_this_node_map.size())
1083  libmesh_error_msg("Error: Found multiple matching nodes in stitch_meshes");
1084 #endif
1085  }
1086  else
1087  {
1088  // In the unlikely event that two meshes composed entirely of
1089  // NodeElems are being stitched together, we will not have
1090  // selected a valid h_min value yet, and the distance
1091  // comparison below will be true for essentially any two
1092  // nodes. In this case we simply fall back on an absolute
1093  // distance check.
1094  if (!h_min_updated)
1095  {
1096  libmesh_warning("No valid h_min value was found, falling back on "
1097  "absolute distance check in the N^2 search algorithm.");
1098  h_min = 1.;
1099  }
1100 
1101  // Otherwise, use a simple N^2 search to find the closest matching points. This can be helpful
1102  // in the case that we have tolerance issues which cause mismatch between the two surfaces
1103  // that are being stitched.
1104  for (const auto & this_node_id : this_boundary_node_ids)
1105  {
1106  Node & this_node = this->node_ref(this_node_id);
1107 
1108  bool found_matching_nodes = false;
1109 
1110  for (const auto & other_node_id : other_boundary_node_ids)
1111  {
1112  const Node & other_node = other_mesh->node_ref(other_node_id);
1113 
1114  Real node_distance = (this_node - other_node).norm();
1115 
1116  if (node_distance < tol*h_min)
1117  {
1118  // Make sure we didn't already find a matching node!
1119  if (found_matching_nodes)
1120  libmesh_error_msg("Error: Found multiple matching nodes in stitch_meshes");
1121 
1122  node_to_node_map[this_node_id] = other_node_id;
1123  other_to_this_node_map[other_node_id] = this_node_id;
1124 
1125  found_matching_nodes = true;
1126  }
1127  }
1128  }
1129  }
1130  }
1131 
1132  // Build up the node_to_elems_map, using only one loop over other_mesh
1133  for (auto & el : other_mesh->element_ptr_range())
1134  {
1135  // For each node on the element, find the corresponding node
1136  // on "this" Mesh, 'this_node_id', if it exists, and push
1137  // the current element ID back onto node_to_elems_map[this_node_id].
1138  // For that we will use the reverse mapping we created at
1139  // the same time as the forward mapping.
1140  for (auto & n : el->node_ref_range())
1141  {
1142  dof_id_type other_node_id = n.id();
1143  std::map<dof_id_type, dof_id_type>::iterator it =
1144  other_to_this_node_map.find(other_node_id);
1145 
1146  if (it != other_to_this_node_map.end())
1147  {
1148  dof_id_type this_node_id = it->second;
1149  node_to_elems_map[this_node_id].push_back( el->id() );
1150  }
1151  }
1152  }
1153 
1154  if (verbose)
1155  {
1156  libMesh::out << "In ReplicatedMesh::stitch_meshes:\n"
1157  << "Found " << node_to_node_map.size()
1158  << " matching nodes.\n"
1159  << std::endl;
1160  }
1161 
1162  if (enforce_all_nodes_match_on_boundaries)
1163  {
1164  std::size_t n_matching_nodes = node_to_node_map.size();
1165  std::size_t this_mesh_n_nodes = this_boundary_node_ids.size();
1166  std::size_t other_mesh_n_nodes = other_boundary_node_ids.size();
1167  if ((n_matching_nodes != this_mesh_n_nodes) || (n_matching_nodes != other_mesh_n_nodes))
1168  libmesh_error_msg("Error: We expected the number of nodes to match.");
1169  }
1170  }
1171  else
1172  {
1173  if (verbose)
1174  {
1175  libMesh::out << "Skip node merging in ReplicatedMesh::stitch_meshes:" << std::endl;
1176  }
1177  }
1178 
1179  dof_id_type node_delta = this->max_node_id();
1180  dof_id_type elem_delta = this->max_elem_id();
1181 
1182  unique_id_type unique_delta =
1183 #ifdef LIBMESH_ENABLE_UNIQUE_ID
1184  this->parallel_max_unique_id();
1185 #else
1186  0;
1187 #endif
1188 
1189  // If other_mesh != nullptr, then we have to do a bunch of work
1190  // in order to copy it to this mesh
1191  if (this!=other_mesh)
1192  {
1193  LOG_SCOPE("stitch_meshes copying", "ReplicatedMesh");
1194 
1195  // Increment the node_to_node_map and node_to_elems_map
1196  // to account for id offsets
1197  for (auto & pr : node_to_node_map)
1198  pr.second += node_delta;
1199 
1200  for (auto & pr : node_to_elems_map)
1201  for (auto & entry : pr.second)
1202  entry += elem_delta;
1203 
1204  // Copy mesh data. If we skip the call to find_neighbors(), the lists
1205  // of neighbors will be copied verbatim from the other mesh
1206  this->copy_nodes_and_elements(*other_mesh, skip_find_neighbors,
1207  elem_delta, node_delta,
1208  unique_delta);
1209 
1210  // Copy BoundaryInfo from other_mesh too. We do this via the
1211  // list APIs rather than element-by-element for speed.
1212  BoundaryInfo & boundary = this->get_boundary_info();
1213  const BoundaryInfo & other_boundary = other_mesh->get_boundary_info();
1214 
1215  for (const auto & t : other_boundary.build_node_list())
1216  boundary.add_node(std::get<0>(t) + node_delta,
1217  std::get<1>(t));
1218 
1219  for (const auto & t : other_boundary.build_side_list())
1220  boundary.add_side(std::get<0>(t) + elem_delta,
1221  std::get<1>(t),
1222  std::get<2>(t));
1223 
1224  for (const auto & t : other_boundary.build_edge_list())
1225  boundary.add_edge(std::get<0>(t) + elem_delta,
1226  std::get<1>(t),
1227  std::get<2>(t));
1228 
1229  for (const auto & t : other_boundary.build_shellface_list())
1230  boundary.add_shellface(std::get<0>(t) + elem_delta,
1231  std::get<1>(t),
1232  std::get<2>(t));
1233 
1234  } // end if (other_mesh)
1235 
1236  // Finally, we need to "merge" the overlapping nodes
1237  // We do this by iterating over node_to_elems_map and updating
1238  // the elements so that they "point" to the nodes that came
1239  // from this mesh, rather than from other_mesh.
1240  // Then we iterate over node_to_node_map and delete the
1241  // duplicate nodes that came from other_mesh.
1242 
1243  {
1244  LOG_SCOPE("stitch_meshes node updates", "ReplicatedMesh");
1245 
1246  // Container to catch boundary IDs passed back from BoundaryInfo.
1247  std::vector<boundary_id_type> bc_ids;
1248 
1249  for (const auto & pr : node_to_elems_map)
1250  {
1251  dof_id_type target_node_id = pr.first;
1252  dof_id_type other_node_id = node_to_node_map[target_node_id];
1253  Node & target_node = this->node_ref(target_node_id);
1254 
1255  std::size_t n_elems = pr.second.size();
1256  for (std::size_t i=0; i<n_elems; i++)
1257  {
1258  dof_id_type elem_id = pr.second[i];
1259  Elem * el = this->elem_ptr(elem_id);
1260 
1261  // find the local node index that we want to update
1262  unsigned int local_node_index = el->local_node(other_node_id);
1263  libmesh_assert_not_equal_to(local_node_index, libMesh::invalid_uint);
1264 
1265  // We also need to copy over the nodeset info here,
1266  // because the node will get deleted below
1267  this->get_boundary_info().boundary_ids(el->node_ptr(local_node_index), bc_ids);
1268  el->set_node(local_node_index) = &target_node;
1269  this->get_boundary_info().add_node(&target_node, bc_ids);
1270  }
1271  }
1272  }
1273 
1274  {
1275  LOG_SCOPE("stitch_meshes node deletion", "ReplicatedMesh");
1276  for (const auto & pr : node_to_node_map)
1277  {
1278  // In the case that this==other_mesh, the two nodes might be the same (e.g. if
1279  // we're stitching a "sliver"), hence we need to skip node deletion in that case.
1280  if ((this == other_mesh) && (pr.second == pr.first))
1281  continue;
1282 
1283  dof_id_type this_node_id = pr.second;
1284  this->delete_node( this->node_ptr(this_node_id) );
1285  }
1286  }
1287 
1288  // If find_neighbors() wasn't called in prepare_for_use(), we need to
1289  // manually loop once more over all elements adjacent to the stitched boundary
1290  // and fix their lists of neighbors.
1291  // This is done according to the following steps:
1292  // 1. Loop over all copied elements adjacent to the boundary using node_to_elems_map (trying to avoid duplicates)
1293  // 2. Look at all their sides with a nullptr neighbor and update them using side_to_elem_map if necessary
1294  // 3. Update the corresponding side in side_to_elem_map as well
1295  if (skip_find_neighbors)
1296  {
1297  LOG_SCOPE("stitch_meshes neighbor fixes", "ReplicatedMesh");
1298 
1299  // Pull objects out of the loop to reduce heap operations
1300  std::unique_ptr<Elem> my_side, their_side;
1301 
1302  std::set<dof_id_type> fixed_elems;
1303  for (const auto & pr : node_to_elems_map)
1304  {
1305  std::size_t n_elems = pr.second.size();
1306  for (std::size_t i=0; i<n_elems; i++)
1307  {
1308  dof_id_type elem_id = pr.second[i];
1309  if (fixed_elems.find(elem_id) == fixed_elems.end())
1310  {
1311  Elem * el = this->elem_ptr(elem_id);
1312  fixed_elems.insert(elem_id);
1313  for (auto s : el->side_index_range())
1314  {
1315  if (el->neighbor_ptr(s) == nullptr)
1316  {
1317  key_type key = el->key(s);
1318  auto bounds = side_to_elem_map.equal_range(key);
1319 
1320  if (bounds.first != bounds.second)
1321  {
1322  // Get the side for this element
1323  el->side_ptr(my_side, s);
1324 
1325  // Look at all the entries with an equivalent key
1326  while (bounds.first != bounds.second)
1327  {
1328  // Get the potential element
1329  Elem * neighbor = bounds.first->second.first;
1330 
1331  // Get the side for the neighboring element
1332  const unsigned int ns = bounds.first->second.second;
1333  neighbor->side_ptr(their_side, ns);
1334  //libmesh_assert(my_side.get());
1335  //libmesh_assert(their_side.get());
1336 
1337  // If found a match with my side
1338  //
1339  // We need special tests here for 1D:
1340  // since parents and children have an equal
1341  // side (i.e. a node), we need to check
1342  // ns != ms, and we also check level() to
1343  // avoid setting our neighbor pointer to
1344  // any of our neighbor's descendants
1345  if ((*my_side == *their_side) &&
1346  (el->level() == neighbor->level()) &&
1347  ((el->dim() != 1) || (ns != s)))
1348  {
1349  // So share a side. Is this a mixed pair
1350  // of subactive and active/ancestor
1351  // elements?
1352  // If not, then we're neighbors.
1353  // If so, then the subactive's neighbor is
1354 
1355  if (el->subactive() ==
1356  neighbor->subactive())
1357  {
1358  // an element is only subactive if it has
1359  // been coarsened but not deleted
1360  el->set_neighbor (s,neighbor);
1361  neighbor->set_neighbor(ns,el);
1362  }
1363  else if (el->subactive())
1364  {
1365  el->set_neighbor(s,neighbor);
1366  }
1367  else if (neighbor->subactive())
1368  {
1369  neighbor->set_neighbor(ns,el);
1370  }
1371  // It's OK to invalidate the
1372  // bounds.first iterator here,
1373  // as we are immediately going
1374  // to break out of this while
1375  // loop. bounds.first will
1376  // therefore not be used for
1377  // anything else.
1378  side_to_elem_map.erase (bounds.first);
1379  break;
1380  }
1381 
1382  ++bounds.first;
1383  }
1384  }
1385  }
1386  }
1387  }
1388  }
1389  }
1390  }
1391 
1392  this->prepare_for_use( /*skip_renumber_nodes_and_elements= */ false, skip_find_neighbors);
1393 
1394  // After the stitching, we may want to clear boundary IDs from element
1395  // faces that are now internal to the mesh
1396  if (clear_stitched_boundary_ids)
1397  {
1398  LOG_SCOPE("stitch_meshes clear bcids", "ReplicatedMesh");
1399 
1400  // Container to catch boundary IDs passed back from BoundaryInfo.
1401  std::vector<boundary_id_type> bc_ids;
1402 
1403  for (auto & el : element_ptr_range())
1404  for (auto side_id : el->side_index_range())
1405  if (el->neighbor_ptr(side_id) != nullptr)
1406  {
1407  // Completely remove the side from the boundary_info object if it has either
1408  // this_mesh_boundary_id or other_mesh_boundary_id.
1409  this->get_boundary_info().boundary_ids (el, side_id, bc_ids);
1410 
1411  if (std::find(bc_ids.begin(), bc_ids.end(), this_mesh_boundary_id) != bc_ids.end() ||
1412  std::find(bc_ids.begin(), bc_ids.end(), other_mesh_boundary_id) != bc_ids.end())
1413  this->get_boundary_info().remove_side(el, side_id);
1414  }
1415 
1416  // Removing stitched-away boundary ids might have removed an id
1417  // *entirely*, so we need to recompute boundary id sets to check
1418  // for that.
1420  }
1421 }

References libMesh::ReplicatedMesh::active_element_ptr_range(), libMesh::BoundaryInfo::add_edge(), libMesh::BoundaryInfo::add_node(), libMesh::BoundaryInfo::add_shellface(), libMesh::BoundaryInfo::add_side(), libMesh::BoundaryInfo::boundary_ids(), libMesh::BoundaryInfo::build_edge_list(), libMesh::BoundaryInfo::build_node_list(), libMesh::BoundaryInfo::build_shellface_list(), libMesh::BoundaryInfo::build_side_list(), libMesh::UnstructuredMesh::copy_nodes_and_elements(), libMesh::ReplicatedMesh::delete_node(), libMesh::Elem::dim(), libMesh::BoundaryInfo::edge_boundary_ids(), libMesh::MeshBase::elem(), libMesh::ReplicatedMesh::elem_ptr(), libMesh::ReplicatedMesh::element_ptr_range(), libMesh::MeshBase::get_boundary_info(), libMesh::Elem::hmin(), libMesh::BoundaryInfo::invalid_id, libMesh::invalid_uint, libMesh::Elem::key(), libMesh::Elem::level(), libMesh::Elem::local_node(), libMesh::ReplicatedMesh::max_elem_id(), libMesh::ReplicatedMesh::max_node_id(), libMesh::Elem::neighbor_ptr(), libMesh::MeshBase::node(), libMesh::ReplicatedMesh::node_ptr(), libMesh::Elem::node_ptr(), libMesh::MeshBase::node_ref(), std::norm(), libMesh::out, libMesh::ReplicatedMesh::parallel_max_unique_id(), libMesh::ReplicatedMesh::point(), libMesh::MeshBase::prepare_for_use(), libMesh::Real, libMesh::BoundaryInfo::regenerate_id_sets(), libMesh::BoundaryInfo::remove_side(), libMesh::Elem::set_neighbor(), libMesh::Elem::set_node(), libMesh::Elem::side_index_range(), libMesh::Elem::side_ptr(), libMesh::Elem::subactive(), and libMesh::TOLERANCE.

Referenced by libMesh::ReplicatedMesh::stitch_meshes(), and libMesh::ReplicatedMesh::stitch_surfaces().

◆ sub_point_locator()

std::unique_ptr< PointLocatorBase > libMesh::MeshBase::sub_point_locator ( ) const
inherited
Returns
A pointer to a subordinate PointLocatorBase object for this mesh, constructing a master PointLocator first if necessary. This should not be used in threaded or non-parallel_only code unless the master has already been constructed.

Definition at line 672 of file mesh_base.C.

673 {
674  // If there's no master point locator, then we need one.
675  if (_point_locator.get() == nullptr)
676  {
677  // PointLocator construction may not be safe within threads
679 
680  // And it may require parallel communication
681  parallel_object_only();
682 
684 
686  _point_locator->set_close_to_point_tol(_point_locator_close_to_point_tol);
687  }
688 
689  // Otherwise there was a master point locator, and we can grab a
690  // sub-locator easily.
692 }

References libMesh::Threads::in_threads, libMesh::libmesh_assert(), and libMesh::TREE_ELEMENTS.

Referenced by MeshfunctionDFEM::build_mesh(), libMesh::DofMap::create_dof_constraints(), libMesh::MeshFunction::init(), libMesh::MeshTools::libmesh_assert_consistent_distributed_nodes(), libMesh::MeshRefinement::make_coarsening_compatible(), libMesh::MeshRefinement::make_refinement_compatible(), libMesh::DefaultCoupling::mesh_reinit(), libMesh::PointNeighborCoupling::mesh_reinit(), libMesh::MeshRefinement::test_level_one(), PointLocatorTest::testLocator(), MixedDimensionMeshTest::testPointLocatorTree(), SystemsTest::testProjectCube(), SystemsTest::testProjectLine(), and SystemsTest::testProjectSquare().

◆ subactive_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::subactive_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ subactive_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::subactive_elements_begin ( )
overridevirtualinherited

Iterate over elements for which elem->subactive() is true.

Implements libMesh::MeshBase.

◆ subactive_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::subactive_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ subactive_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::subactive_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ subdomain_ids()

void libMesh::MeshBase::subdomain_ids ( std::set< subdomain_id_type > &  ids) const
inherited

Constructs a list of all subdomain identifiers in the global mesh.

Subdomains correspond to separate subsets of the mesh which could correspond e.g. to different materials in a solid mechanics application, or regions where different physical processes are important. The subdomain mapping is independent from the parallel decomposition.

Definition at line 461 of file mesh_base.C.

462 {
463  // This requires an inspection on every processor
464  parallel_object_only();
465 
466  ids.clear();
467 
468  for (const auto & elem : this->active_local_element_ptr_range())
469  ids.insert(elem->subdomain_id());
470 
471  // Some subdomains may only live on other processors
472  this->comm().set_union(ids);
473 }

Referenced by libMesh::ReplicatedMesh::get_disconnected_subdomains(), and libMesh::TecplotIO::TecplotIO().

◆ subdomain_name() [1/2]

std::string & libMesh::MeshBase::subdomain_name ( subdomain_id_type  id)
inherited
Returns
A writable reference for getting/setting an optional name for a subdomain.

Definition at line 717 of file mesh_base.C.

718 {
719  return _block_id_to_name[id];
720 }

Referenced by libMesh::AbaqusIO::assign_subdomain_ids(), DMlibMeshSetSystem_libMesh(), libMesh::UNVIO::groups_in(), libMesh::ExodusII_IO::read(), libMesh::GmshIO::read_mesh(), and libMesh::TecplotIO::write_binary().

◆ subdomain_name() [2/2]

const std::string & libMesh::MeshBase::subdomain_name ( subdomain_id_type  id) const
inherited

Definition at line 722 of file mesh_base.C.

723 {
724  // An empty string to return when no matching subdomain name is found
725  static const std::string empty;
726 
727  std::map<subdomain_id_type, std::string>::const_iterator iter = _block_id_to_name.find(id);
728  if (iter == _block_id_to_name.end())
729  return empty;
730  else
731  return iter->second;
732 }

◆ type_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::type_elements_begin ( ElemType  type) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ type_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::type_elements_begin ( ElemType  type)
overridevirtualinherited

Iterate over all elements with a specified geometric type.

Implements libMesh::MeshBase.

◆ type_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::type_elements_end ( ElemType  type) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ type_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::type_elements_end ( ElemType  type)
overridevirtualinherited

Implements libMesh::MeshBase.

◆ unpartitioned_elements_begin() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::unpartitioned_elements_begin ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ unpartitioned_elements_begin() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::unpartitioned_elements_begin ( )
overridevirtualinherited

Iterate over unpartitioned elements in the Mesh.

Implements libMesh::MeshBase.

◆ unpartitioned_elements_end() [1/2]

virtual const_element_iterator libMesh::ReplicatedMesh::unpartitioned_elements_end ( ) const
overridevirtualinherited

Implements libMesh::MeshBase.

◆ unpartitioned_elements_end() [2/2]

virtual element_iterator libMesh::ReplicatedMesh::unpartitioned_elements_end ( )
overridevirtualinherited

Implements libMesh::MeshBase.

◆ update_parallel_id_counts()

void libMesh::ReplicatedMesh::update_parallel_id_counts ( )
overridevirtualinherited

Updates parallel caches so that methods like n_elem() accurately reflect changes on other processors.

Implements libMesh::MeshBase.

Definition at line 619 of file replicated_mesh.C.

620 {
621 #ifdef LIBMESH_ENABLE_UNIQUE_ID
623 #endif
624 }

References libMesh::MeshBase::_next_unique_id, and libMesh::ReplicatedMesh::parallel_max_unique_id().

Referenced by libMesh::ReplicatedMesh::renumber_nodes_and_elements().

◆ update_post_partitioning()

virtual void libMesh::MeshBase::update_post_partitioning ( )
inlinevirtualinherited

Recalculate any cached data after elements and nodes have been repartitioned.

Reimplemented in libMesh::DistributedMesh.

Definition at line 1006 of file mesh_base.h.

1006 {}

Referenced by libMesh::Nemesis_IO::read().

◆ write() [1/2]

void libMesh::UnstructuredMesh::write ( const std::string &  name)
overridevirtualinherited

Write the file specified by name.

Attempts to figure out the proper method by the file extension.

Implements libMesh::MeshBase.

Definition at line 650 of file unstructured_mesh.C.

651 {
652  LOG_SCOPE("write()", "Mesh");
653 
654  NameBasedIO(*this).write(name);
655 }

References libMesh::Quality::name(), and libMesh::NameBasedIO::write().

Referenced by libMesh::RBEIMEvaluation::legacy_write_out_interpolation_points_elem(), and main().

◆ write() [2/2]

void libMesh::UnstructuredMesh::write ( const std::string &  name,
const std::vector< Number > &  values,
const std::vector< std::string > &  variable_names 
)
inherited

Write to the file specified by name.

Attempts to figure out the proper method by the file extension. Also writes data.

Definition at line 659 of file unstructured_mesh.C.

662 {
663  LOG_SCOPE("write()", "Mesh");
664 
665  NameBasedIO(*this).write_nodal_data(name, v, vn);
666 }

References libMesh::Quality::name(), and libMesh::NameBasedIO::write_nodal_data().

Member Data Documentation

◆ _allow_remote_element_removal

bool libMesh::MeshBase::_allow_remote_element_removal
protectedinherited

If this is false then even on DistributedMesh remote elements will not be deleted during mesh preparation.

This is true by default.

Definition at line 1754 of file mesh_base.h.

Referenced by libMesh::MeshBase::allow_remote_element_removal().

◆ _block_id_to_name

std::map<subdomain_id_type, std::string> libMesh::MeshBase::_block_id_to_name
protectedinherited

This structure maintains the mapping of named blocks for file formats that support named blocks.

Currently this is only implemented for ExodusII

Definition at line 1761 of file mesh_base.h.

Referenced by libMesh::MeshBase::get_subdomain_name_map(), and libMesh::MeshBase::set_subdomain_name_map().

◆ _communicator

const Parallel::Communicator& libMesh::ParallelObject::_communicator
protectedinherited

◆ _count_lower_dim_elems_in_point_locator

bool libMesh::MeshBase::_count_lower_dim_elems_in_point_locator
protectedinherited

Do we count lower dimensional elements in point locator refinement? This is relevant in tree-based point locators, for example.

Definition at line 1713 of file mesh_base.h.

◆ _default_ghosting

std::unique_ptr<GhostingFunctor> libMesh::MeshBase::_default_ghosting
protectedinherited

The default geometric GhostingFunctor, used to implement standard libMesh element ghosting behavior.

We use a base class pointer here to avoid dragging in more header dependencies.

Definition at line 1812 of file mesh_base.h.

Referenced by libMesh::MeshBase::default_ghosting(), and libMesh::MeshBase::MeshBase().

◆ _default_mapping_data

unsigned char libMesh::MeshBase::_default_mapping_data
protectedinherited

The default mapping data (unused with Lagrange, used for nodal weight lookup index with rational bases) to assign to newly added elements.

Definition at line 1693 of file mesh_base.h.

Referenced by libMesh::MeshBase::default_mapping_data(), and libMesh::MeshBase::set_default_mapping_data().

◆ _default_mapping_type

ElemMappingType libMesh::MeshBase::_default_mapping_type
protectedinherited

The default mapping type (typically Lagrange) between master and physical space to assign to newly added elements.

Definition at line 1686 of file mesh_base.h.

Referenced by libMesh::MeshBase::default_mapping_type(), and libMesh::MeshBase::set_default_mapping_type().

◆ _elem_dims

std::set<unsigned char> libMesh::MeshBase::_elem_dims
protectedinherited

We cache the dimension of the elements present in the mesh.

So, if we have a mesh with 1D and 2D elements, this structure will contain 1 and 2.

Definition at line 1768 of file mesh_base.h.

Referenced by libMesh::MeshBase::elem_dimensions(), libMesh::MeshBase::mesh_dimension(), libMesh::MeshBase::MeshBase(), libMesh::MeshBase::set_elem_dimensions(), and libMesh::MeshBase::set_mesh_dimension().

◆ _elem_integer_names

std::vector<std::string> libMesh::MeshBase::_elem_integer_names
protectedinherited

◆ _elements

std::vector<Elem *> libMesh::ReplicatedMesh::_elements
protectedinherited

◆ _ghosting_functors

std::set<GhostingFunctor *> libMesh::MeshBase::_ghosting_functors
protectedinherited

The list of all GhostingFunctor objects to be used when distributing a DistributedMesh.

Basically unused by ReplicatedMesh for now, but belongs to MeshBase because the cost is trivial.

Definition at line 1821 of file mesh_base.h.

Referenced by libMesh::MeshBase::add_ghosting_functor(), libMesh::MeshBase::ghosting_functors_begin(), libMesh::MeshBase::ghosting_functors_end(), and libMesh::MeshBase::MeshBase().

◆ _is_prepared

bool libMesh::MeshBase::_is_prepared
protectedinherited

◆ _n_parts

unsigned int libMesh::MeshBase::_n_parts
protectedinherited

The number of partitions the mesh has.

This is set by the partitioners, and may not be changed directly by the user.

Note
The number of partitions need not equal this->n_processors(), consider for example the case where you simply want to partition a mesh on one processor and view the result in GMV.

Definition at line 1680 of file mesh_base.h.

Referenced by libMesh::UnstructuredMesh::copy_nodes_and_elements(), libMesh::MeshBase::n_partitions(), and libMesh::MeshBase::set_n_partitions().

◆ _next_unique_id

unique_id_type libMesh::MeshBase::_next_unique_id
protectedinherited

◆ _node_integer_names

std::vector<std::string> libMesh::MeshBase::_node_integer_names
protectedinherited

◆ _nodes

std::vector<Node *> libMesh::ReplicatedMesh::_nodes
protectedinherited

◆ _partitioner

std::unique_ptr<Partitioner> libMesh::MeshBase::_partitioner
protectedinherited

A partitioner to use at each prepare_for_use().

This will be built in the constructor of each derived class, but can be replaced by the user through the partitioner() accessor.

Definition at line 1721 of file mesh_base.h.

Referenced by libMesh::DistributedMesh::DistributedMesh(), libMesh::MeshBase::MeshBase(), libMesh::MeshBase::partitioner(), libMesh::ReplicatedMesh::ReplicatedMesh(), and libMesh::MeshBase::skip_noncritical_partitioning().

◆ _point_locator

std::unique_ptr<PointLocatorBase> libMesh::MeshBase::_point_locator
mutableprotectedinherited

A PointLocator class for this mesh.

This will not actually be built unless needed. Further, since we want our point_locator() method to be const (yet do the dynamic allocating) this needs to be mutable. Since the PointLocatorBase::build() member is used, and it operates on a constant reference to the mesh, this is OK.

Definition at line 1707 of file mesh_base.h.

◆ _point_locator_close_to_point_tol

Real libMesh::MeshBase::_point_locator_close_to_point_tol
protectedinherited

If nonzero, we will call PointLocatorBase::set_close_to_point_tol() on any PointLocators that we create.

Definition at line 1833 of file mesh_base.h.

◆ _shared_functors

std::map<GhostingFunctor *, std::shared_ptr<GhostingFunctor> > libMesh::MeshBase::_shared_functors
protectedinherited

Hang on to references to any GhostingFunctor objects we were passed in shared_ptr form.

Definition at line 1827 of file mesh_base.h.

Referenced by libMesh::MeshBase::add_ghosting_functor().

◆ _skip_all_partitioning

bool libMesh::MeshBase::_skip_all_partitioning
protectedinherited

If this is true then no partitioning should be done.

Definition at line 1739 of file mesh_base.h.

Referenced by libMesh::UnstructuredMesh::copy_nodes_and_elements(), libMesh::MeshBase::skip_noncritical_partitioning(), and libMesh::MeshBase::skip_partitioning().

◆ _skip_noncritical_partitioning

bool libMesh::MeshBase::_skip_noncritical_partitioning
protectedinherited

If this is true then no partitioning should be done with the possible exception of orphaned nodes.

Definition at line 1734 of file mesh_base.h.

Referenced by libMesh::UnstructuredMesh::copy_nodes_and_elements(), and libMesh::MeshBase::skip_noncritical_partitioning().

◆ _skip_renumber_nodes_and_elements

bool libMesh::MeshBase::_skip_renumber_nodes_and_elements
protectedinherited

If this is true then renumbering will be kept to a minimum.

This is set when prepare_for_use() is called.

Definition at line 1746 of file mesh_base.h.

Referenced by libMesh::MeshBase::allow_renumbering(), libMesh::ReplicatedMesh::renumber_nodes_and_elements(), and libMesh::DistributedMesh::renumber_nodes_and_elements().

◆ _spatial_dimension

unsigned char libMesh::MeshBase::_spatial_dimension
protectedinherited

The "spatial dimension" of the Mesh.

See the documentation for Mesh::spatial_dimension() for more information.

Definition at line 1774 of file mesh_base.h.

Referenced by libMesh::MeshBase::set_spatial_dimension(), and libMesh::MeshBase::spatial_dimension().

◆ boundary_info

std::unique_ptr<BoundaryInfo> libMesh::MeshBase::boundary_info
inherited

This class holds the boundary information.

It can store nodes, edges, and faces with a corresponding id that facilitates setting boundary conditions.

Direct access to this class will be removed in future libMesh versions. Use the get_boundary_info() accessor instead.

Definition at line 1659 of file mesh_base.h.

Referenced by libMesh::MeshBase::get_boundary_info(), and MeshInputTest::testMeshMoveConstructor().


The documentation for this class was generated from the following file:
libMesh::MeshBase::pid_elements_begin
virtual element_iterator pid_elements_begin(processor_id_type proc_id)=0
Iterate over all elements with a specified processor id.
libMesh::MeshBase::MeshCommunication
friend class MeshCommunication
Make the MeshCommunication class a friend so that it can directly broadcast *_integer_names.
Definition: mesh_base.h:1857
libMesh::ReplicatedMesh::update_parallel_id_counts
virtual void update_parallel_id_counts() override
Updates parallel caches so that methods like n_elem() accurately reflect changes on other processors.
Definition: replicated_mesh.C:619
libMesh::MeshBase::_is_prepared
bool _is_prepared
Flag indicating if the mesh has been prepared for use.
Definition: mesh_base.h:1698
libMesh::MeshBase::ghosting_functors_begin
std::set< GhostingFunctor * >::const_iterator ghosting_functors_begin() const
Beginning of range of ghosting functors.
Definition: mesh_base.h:1113
libMesh::Elem::find_point_neighbors
void find_point_neighbors(const Point &p, std::set< const Elem * > &neighbor_set) const
This function finds all active elements (including this one) which are in the same manifold as this e...
Definition: elem.C:560
libMesh::dof_id_type
uint8_t dof_id_type
Definition: id_types.h:67
libMesh::BoundaryInfo::boundary_ids
std::vector< boundary_id_type > boundary_ids(const Node *node) const
Definition: boundary_info.C:985
libMesh::MeshBase::update_post_partitioning
virtual void update_post_partitioning()
Recalculate any cached data after elements and nodes have been repartitioned.
Definition: mesh_base.h:1006
libMesh::subdomain_id_type
TestClass subdomain_id_type
Based on the 4-byte comment warning above, this probably doesn't work with exodusII at all....
Definition: id_types.h:43
libMesh::MeshBase::ghosting_functors_end
std::set< GhostingFunctor * >::const_iterator ghosting_functors_end() const
End of range of ghosting functors.
Definition: mesh_base.h:1119
libMesh::ReplicatedMesh::element_ptr_range
virtual SimpleRange< element_iterator > element_ptr_range() override
Definition: replicated_mesh.h:266
libMesh::MeshBase::allow_renumbering
bool allow_renumbering() const
Definition: mesh_base.h:1026
libMesh::invalid_uint
const unsigned int invalid_uint
A number which is used quite often to represent an invalid or uninitialized value.
Definition: libmesh.h:249
libMesh::MeshBase::delete_node
virtual void delete_node(Node *n)=0
Removes the Node n from the mesh.
libMesh::ReplicatedMesh::max_node_id
virtual dof_id_type max_node_id() const override
Definition: replicated_mesh.h:110
libMesh::MeshBase::reserve_nodes
virtual void reserve_nodes(const dof_id_type nn)=0
Reserves space for a known number of nodes.
libMesh::MeshBase::default_mapping_type
ElemMappingType default_mapping_type() const
Returns the default master space to physical space mapping basis functions to be used on newly added ...
Definition: mesh_base.h:708
libMesh::MeshBase::merge_extra_integer_names
std::pair< std::vector< unsigned int >, std::vector< unsigned int > > merge_extra_integer_names(const MeshBase &other)
Merge extra-integer arrays from an other mesh.
Definition: mesh_base.C:944
libMesh::ReplicatedMesh::_nodes
std::vector< Node * > _nodes
The vertices (spatial coordinates) of the mesh.
Definition: replicated_mesh.h:508
libMesh::MeshBase::_elem_dims
std::set< unsigned char > _elem_dims
We cache the dimension of the elements present in the mesh.
Definition: mesh_base.h:1768
libMesh::ReplicatedMesh::_elements
std::vector< Elem * > _elements
The elements in the mesh.
Definition: replicated_mesh.h:513
libMesh::MeshBase::active_pid_elements_end
virtual element_iterator active_pid_elements_end(processor_id_type proc_id)=0
libMesh::unique_id_type
uint8_t unique_id_type
Definition: id_types.h:86
libMesh::ReplicatedMesh::nodes_end
virtual node_iterator nodes_end() override
libMesh::MeshBase::get_boundary_info
const BoundaryInfo & get_boundary_info() const
The information about boundary ids on the mesh.
Definition: mesh_base.h:132
libMesh::MeshTools::libmesh_assert_valid_boundary_ids
void libmesh_assert_valid_boundary_ids(const MeshBase &mesh)
A function for verifying that boundary condition ids match across processors.
Definition: mesh_tools.C:1396
libMesh::ReplicatedMesh::delete_elem
virtual void delete_elem(Elem *e) override
Removes element e from the mesh.
Definition: replicated_mesh.C:360
libMesh::MeshBase::_default_ghosting
std::unique_ptr< GhostingFunctor > _default_ghosting
The default geometric GhostingFunctor, used to implement standard libMesh element ghosting behavior.
Definition: mesh_base.h:1812
libMesh::MeshBase::is_serial
virtual bool is_serial() const
Definition: mesh_base.h:159
libMesh::ReplicatedMesh::parallel_max_unique_id
virtual unique_id_type parallel_max_unique_id() const override
Definition: replicated_mesh.C:629
libMesh::MeshBase::recalculate_n_partitions
unsigned int recalculate_n_partitions()
In a few (very rare) cases, the user may have manually tagged the elements with specific processor ID...
Definition: mesh_base.C:631
libMesh::BoundaryInfo::add_node
void add_node(const Node *node, const boundary_id_type id)
Add Node node with boundary id id to the boundary information data structures.
Definition: boundary_info.C:636
libMesh::ReplicatedMesh::node_ptr
virtual const Node * node_ptr(const dof_id_type i) const override
Definition: replicated_mesh.C:182
libMesh::n_threads
unsigned int n_threads()
Definition: libmesh_base.h:96
libMesh::MeshBase::point
virtual const Point & point(const dof_id_type i) const =0
libMesh::MeshBase::add_elem_integers
std::vector< unsigned int > add_elem_integers(const std::vector< std::string > &names, bool allocate_data=true)
Register integer data (of type dof_id_type) to be added to each element in the mesh,...
Definition: mesh_base.C:191
libMesh::ReplicatedMesh::active_subdomain_elements_begin
virtual element_iterator active_subdomain_elements_begin(subdomain_id_type subdomain_id) override
libMesh::MeshBase::delete_elem
virtual void delete_elem(Elem *e)=0
Removes element e from the mesh.
libMesh::MeshBase::active_local_element_ptr_range
virtual SimpleRange< element_iterator > active_local_element_ptr_range()=0
libMesh::MeshBase::pid_elements_end
virtual element_iterator pid_elements_end(processor_id_type proc_id)=0
libMesh::Elem::contract
void contract()
Contract an active element, i.e.
Definition: elem_refinement.C:230
libMesh::Elem::ancestor
bool ancestor() const
Definition: elem.C:1350
libMesh::ReplicatedMesh::delete_node
virtual void delete_node(Node *n) override
Removes the Node n from the mesh.
Definition: replicated_mesh.C:539
libMesh::MeshBase::active_element_ptr_range
virtual SimpleRange< element_iterator > active_element_ptr_range()=0
libMesh::MeshTools::libmesh_assert_valid_amr_elem_ids
void libmesh_assert_valid_amr_elem_ids(const MeshBase &mesh)
A function for verifying that ids of elements are correctly sorted for AMR (parents have lower ids th...
Definition: mesh_tools.C:1315
libMesh::MeshBase::n_elem
virtual dof_id_type n_elem() const =0
libMesh::TREE_ELEMENTS
Definition: enum_point_locator_type.h:37
libMesh::MeshBase::elem_ref
virtual const Elem & elem_ref(const dof_id_type i) const
Definition: mesh_base.h:521
libMesh::index_range
IntRange< std::size_t > index_range(const std::vector< T > &vec)
Helper function that returns an IntRange<std::size_t> representing all the indices of the passed-in v...
Definition: int_range.h:106
libMesh::MeshBase::max_elem_id
virtual dof_id_type max_elem_id() const =0
libMesh::UnstructuredMesh::copy_nodes_and_elements
virtual void copy_nodes_and_elements(const UnstructuredMesh &other_mesh, const bool skip_find_neighbors=false, dof_id_type element_id_offset=0, dof_id_type node_id_offset=0, unique_id_type unique_id_offset=0)
Deep copy of nodes and elements from another unstructured mesh class (used by subclass copy construct...
Definition: unstructured_mesh.C:61
libMesh::Elem::dim
virtual unsigned short dim() const =0
libMesh::MeshBase::detect_interior_parents
void detect_interior_parents()
Search the mesh for elements that have a neighboring element of dim+1 and set that element as the int...
Definition: mesh_base.C:812
libMesh::MeshTools::libmesh_assert_valid_neighbors
void libmesh_assert_valid_neighbors(const MeshBase &mesh, bool assert_valid_remote_elems=true)
A function for verifying that neighbor connectivity is correct (each element is a neighbor of or desc...
Definition: mesh_tools.C:2061
libMesh::MeshBase::_skip_all_partitioning
bool _skip_all_partitioning
If this is true then no partitioning should be done.
Definition: mesh_base.h:1739
libMesh::MeshBase::_n_parts
unsigned int _n_parts
The number of partitions the mesh has.
Definition: mesh_base.h:1680
end
IterBase * end
Also have a polymorphic pointer to the end object, this prevents iterating past the end.
Definition: variant_filter_iterator.h:343
libMesh::ReplicatedMesh::active_elements_begin
virtual element_iterator active_elements_begin() override
Active, local, and negation forms of the element iterators described above.
libMesh::TOLERANCE
static const Real TOLERANCE
Definition: libmesh_common.h:128
libMesh::DofObject::add_extra_integers
void add_extra_integers(const unsigned int n_integers)
Assigns a set of extra integers to this DofObject.
Definition: dof_object.C:503
libMesh::ParallelObject::comm
const Parallel::Communicator & comm() const
Definition: parallel_object.h:94
libMesh::MeshBase::size_node_extra_integers
void size_node_extra_integers()
Size extra-integer arrays of all nodes in the mesh.
Definition: mesh_base.C:935
libMesh::MeshBase::n_partitions
unsigned int n_partitions() const
Definition: mesh_base.h:1153
libMesh::MeshBase::node_ptr
virtual const Node * node_ptr(const dof_id_type i) const =0
libMesh::ReplicatedMesh::stitching_helper
void stitching_helper(const ReplicatedMesh *other_mesh, boundary_id_type boundary_id_1, boundary_id_type boundary_id_2, Real tol, bool clear_stitched_boundary_ids, bool verbose, bool use_binary_search, bool enforce_all_nodes_match_on_boundaries, bool skip_find_neighbors)
Helper function for stitch_meshes and stitch_surfaces that does the mesh stitching.
Definition: replicated_mesh.C:852
libMesh::MeshBase::mesh_dimension
unsigned int mesh_dimension() const
Definition: mesh_base.C:135
libMesh::MeshBase::_allow_remote_element_removal
bool _allow_remote_element_removal
If this is false then even on DistributedMesh remote elements will not be deleted during mesh prepara...
Definition: mesh_base.h:1754
libMesh::MeshBase::max_node_id
virtual dof_id_type max_node_id() const =0
libMesh::MeshBase::partition
void partition()
Definition: mesh_base.h:992
libMesh::MeshBase::active_pid_elements_begin
virtual element_iterator active_pid_elements_begin(processor_id_type proc_id)=0
libMesh::boundary_id_type
int8_t boundary_id_type
Definition: id_types.h:51
libMesh::DofObject::processor_id
processor_id_type processor_id() const
Definition: dof_object.h:829
libMesh::MeshBase::elem_ptr
virtual const Elem * elem_ptr(const dof_id_type i) const =0
libMesh::MeshBase::elements_begin
virtual element_iterator elements_begin()=0
Iterate over all the elements in the Mesh.
libMesh::Elem::active
bool active() const
Definition: elem.h:2345
libMesh::MeshBase::pid_nodes_begin
virtual node_iterator pid_nodes_begin(processor_id_type proc_id)=0
Iterate over nodes with processor_id() == proc_id.
libMesh::MeshTools::n_levels
unsigned int n_levels(const MeshBase &mesh)
Definition: mesh_tools.C:656
libMesh::BoundaryInfo::remove
void remove(const Node *node)
Removes the boundary conditions associated with node node, if any exist.
Definition: boundary_info.C:1358
libMesh::MeshBase::_count_lower_dim_elems_in_point_locator
bool _count_lower_dim_elems_in_point_locator
Do we count lower dimensional elements in point locator refinement? This is relevant in tree-based po...
Definition: mesh_base.h:1713
dim
unsigned int dim
Definition: adaptivity_ex3.C:113
libMesh::MeshBase::query_elem_ptr
virtual const Elem * query_elem_ptr(const dof_id_type i) const =0
libMesh::MeshBase::add_node_integers
std::vector< unsigned int > add_node_integers(const std::vector< std::string > &names, bool allocate_data=true)
Register integer data (of type dof_id_type) to be added to each node in the mesh.
Definition: mesh_base.C:262
libMesh::ReplicatedMesh::active_local_elements_begin
virtual element_iterator active_local_elements_begin() override
libMesh::BoundaryInfo::copy_boundary_ids
void copy_boundary_ids(const BoundaryInfo &old_boundary_info, const Elem *const old_elem, const Elem *const new_elem)
Definition: boundary_info.C:1328
libMesh::Elem::invalid_subdomain_id
static const subdomain_id_type invalid_subdomain_id
A static integral constant representing an invalid subdomain id.
Definition: elem.h:244
libMesh::MeshBase::element_ptr_range
virtual SimpleRange< element_iterator > element_ptr_range()=0
libMesh::MeshBase::_default_mapping_data
unsigned char _default_mapping_data
The default mapping data (unused with Lagrange, used for nodal weight lookup index with rational base...
Definition: mesh_base.h:1693
libMesh::ReplicatedMesh::active_element_ptr_range
virtual SimpleRange< element_iterator > active_element_ptr_range() override
Definition: replicated_mesh.h:273
libMesh::libmesh_assert
libmesh_assert(ctx)
libMesh::MeshBase::own_node
virtual void own_node(Node &)
Takes ownership of node n on this partition of a distributed mesh, by setting n.processor_id() to thi...
Definition: mesh_base.h:656
libMesh::MeshBase::n_local_nodes
dof_id_type n_local_nodes() const
Definition: mesh_base.h:303
libMesh::MeshBase::n_subdomains
subdomain_id_type n_subdomains() const
Definition: mesh_base.C:477
libMesh::Elem::subactive
bool subactive() const
Definition: elem.h:2363
libMesh::PointLocatorBase::build
static std::unique_ptr< PointLocatorBase > build(PointLocatorType t, const MeshBase &mesh, const PointLocatorBase *master=nullptr)
Builds an PointLocator for the mesh mesh.
Definition: point_locator_base.C:66
libMesh::MeshTools::libmesh_assert_valid_unique_ids
void libmesh_assert_valid_unique_ids(const MeshBase &mesh)
A function for verifying that unique ids match across processors.
Definition: mesh_tools.C:1634
libMesh::MeshBase::_spatial_dimension
unsigned char _spatial_dimension
The "spatial dimension" of the Mesh.
Definition: mesh_base.h:1774
libMesh::MeshBase::level_elements_begin
virtual element_iterator level_elements_begin(unsigned int level)=0
Iterate over elements of a given level.
libMesh::MeshBase::_elem_integer_names
std::vector< std::string > _elem_integer_names
The array of names for integer data associated with each element in the mesh.
Definition: mesh_base.h:1780
libMesh::ReplicatedMesh::max_elem_id
virtual dof_id_type max_elem_id() const override
Definition: replicated_mesh.h:124
libMesh::MeshBase::subdomain_ids
void subdomain_ids(std::set< subdomain_id_type > &ids) const
Constructs a list of all subdomain identifiers in the global mesh.
Definition: mesh_base.C:461
libMesh::MeshBase::BoundaryInfo
friend class BoundaryInfo
Make the BoundaryInfo class a friend so that it can create and interact with BoundaryMesh.
Definition: mesh_base.h:1851
libMesh::ParallelObject::n_processors
processor_id_type n_processors() const
Definition: parallel_object.h:100
libMesh::Threads::in_threads
bool in_threads
A boolean which is true iff we are in a Threads:: function It may be useful to assert(!...
Definition: threads.C:31
libMesh::MeshBase::_next_unique_id
unique_id_type _next_unique_id
The next available unique id for assigning ids to DOF objects.
Definition: mesh_base.h:1727
libMesh::MeshBase::node_ptr_range
virtual SimpleRange< node_iterator > node_ptr_range()=0
libMesh::MeshBase::elem
virtual const Elem * elem(const dof_id_type i) const
Definition: mesh_base.h:554
libMesh::MeshBase::clear_point_locator
void clear_point_locator()
Releases the current PointLocator object.
Definition: mesh_base.C:696
libMesh::Elem::first_order_equivalent_type
static ElemType first_order_equivalent_type(const ElemType et)
Definition: elem.C:2369
libMesh::RemoteElem::is_child_on_side
virtual bool is_child_on_side(const unsigned int, const unsigned int) const override
Definition: remote_elem.h:152
libMesh::ParallelObject::processor_id
processor_id_type processor_id() const
Definition: parallel_object.h:106
libMesh::DofObject::invalid_id
static const dof_id_type invalid_id
An invalid id to distinguish an uninitialized DofObject.
Definition: dof_object.h:421
libMesh::MeshBase::pid_nodes_end
virtual node_iterator pid_nodes_end(processor_id_type proc_id)=0
libMesh::ParallelObject::_communicator
const Parallel::Communicator & _communicator
Definition: parallel_object.h:112
libMesh::processor_id_type
uint8_t processor_id_type
Definition: id_types.h:104
libMesh::ReplicatedMesh::point
virtual const Point & point(const dof_id_type i) const override
Definition: replicated_mesh.C:174
libMesh::MeshBase::skip_noncritical_partitioning
bool skip_noncritical_partitioning() const
Definition: mesh_base.h:1061
libMesh::MeshBase::insert_elem
virtual Elem * insert_elem(Elem *e)=0
Insert elem e to the element array, preserving its id and replacing/deleting any existing element wit...
libMesh::MeshBase::add_elem_integer
unsigned int add_elem_integer(const std::string &name, bool allocate_data=true)
Register an integer datum (of type dof_id_type) to be added to each element in the mesh.
Definition: mesh_base.C:176
libMesh::Node::build
static std::unique_ptr< Node > build(const Node &n)
Definition: node.h:314
libMesh::MeshBase::elem_dimensions
const std::set< unsigned char > & elem_dimensions() const
Definition: mesh_base.h:225
libMesh::ReplicatedMesh::n_nodes
virtual dof_id_type n_nodes() const override
Definition: replicated_mesh.h:104
libMesh::Elem::n_vertices
virtual unsigned int n_vertices() const =0
libMesh::MeshBase::size_elem_extra_integers
void size_elem_extra_integers()
Size extra-integer arrays of all elements in the mesh.
Definition: mesh_base.C:926
libMesh::MeshBase::_ghosting_functors
std::set< GhostingFunctor * > _ghosting_functors
The list of all GhostingFunctor objects to be used when distributing a DistributedMesh.
Definition: mesh_base.h:1821
libMesh::ReplicatedMesh::local_nodes_begin
virtual node_iterator local_nodes_begin() override
Iterate over local nodes (nodes whose processor_id() matches the current processor).
libMesh::MeshBase::spatial_dimension
unsigned int spatial_dimension() const
Definition: mesh_base.C:159
libMesh::MeshBase::node
virtual const Node & node(const dof_id_type i) const
Definition: mesh_base.h:471
libMesh::BoundaryInfo::remove_side
void remove_side(const Elem *elem, const unsigned short int side)
Removes all boundary conditions associated with side side of element elem, if any exist.
Definition: boundary_info.C:1462
libMesh::as_range
SimpleRange< IndexType > as_range(const std::pair< IndexType, IndexType > &p)
Helper function that allows us to treat a homogenous pair as a range.
Definition: simple_range.h:57
libMesh::MeshBase::_point_locator_close_to_point_tol
Real _point_locator_close_to_point_tol
If nonzero, we will call PointLocatorBase::set_close_to_point_tol() on any PointLocators that we crea...
Definition: mesh_base.h:1833
libMesh::MeshBase::n_local_elem
dof_id_type n_local_elem() const
Definition: mesh_base.h:403
libMesh::MeshBase::add_node_integer
unsigned int add_node_integer(const std::string &name, bool allocate_data=true)
Register an integer datum (of type dof_id_type) to be added to each node in the mesh.
Definition: mesh_base.C:247
libMesh::MeshBase::n_active_elem_on_proc
dof_id_type n_active_elem_on_proc(const processor_id_type proc) const
Definition: mesh_base.C:518
libMesh::ReplicatedMesh::active_local_elements_end
virtual element_iterator active_local_elements_end() override
libMesh::MeshBase::_shared_functors
std::map< GhostingFunctor *, std::shared_ptr< GhostingFunctor > > _shared_functors
Hang on to references to any GhostingFunctor objects we were passed in shared_ptr form.
Definition: mesh_base.h:1827
libMesh::BoundaryInfo::regenerate_id_sets
void regenerate_id_sets()
Clears and regenerates the cached sets of ids.
Definition: boundary_info.C:159
libMesh::MeshBase::_node_integer_names
std::vector< std::string > _node_integer_names
The array of names for integer data associated with each node in the mesh.
Definition: mesh_base.h:1786
libMesh::MeshBase::delete_remote_elements
virtual void delete_remote_elements()
When supported, deletes all nonlocal elements of the mesh except for "ghosts" which touch a local ele...
Definition: mesh_base.h:201
libMesh::MeshBase::cache_elem_dims
void cache_elem_dims()
Search the mesh and cache the different dimensions of the elements present in the mesh.
Definition: mesh_base.C:753
libMesh::MeshBase::_point_locator
std::unique_ptr< PointLocatorBase > _point_locator
A PointLocator class for this mesh.
Definition: mesh_base.h:1707
libMesh::MeshBase::node_ref
virtual const Node & node_ref(const dof_id_type i) const
Definition: mesh_base.h:451
libMesh::MeshBase::_partitioner
std::unique_ptr< Partitioner > _partitioner
A partitioner to use at each prepare_for_use().
Definition: mesh_base.h:1721
libMesh::MeshBase::renumber_nodes_and_elements
virtual void renumber_nodes_and_elements()=0
After partitioning a mesh it is useful to renumber the nodes and elements so that they lie in contigu...
libMesh::Elem::parent
const Elem * parent() const
Definition: elem.h:2434
libMesh::MeshBase::n_nodes
virtual dof_id_type n_nodes() const =0
libMesh::MeshBase::add_ghosting_functor
void add_ghosting_functor(GhostingFunctor &ghosting_functor)
Adds a functor which can specify ghosting requirements for use on distributed meshes.
Definition: mesh_base.h:1089
distance
Real distance(const Point &p)
Definition: subdomains_ex3.C:50
libMesh::MeshBase::boundary_info
std::unique_ptr< BoundaryInfo > boundary_info
This class holds the boundary information.
Definition: mesh_base.h:1659
swap
void swap(Iterator &lhs, Iterator &rhs)
swap, used to implement op=
Definition: variant_filter_iterator.h:478
libMesh::MeshBase::_skip_renumber_nodes_and_elements
bool _skip_renumber_nodes_and_elements
If this is true then renumbering will be kept to a minimum.
Definition: mesh_base.h:1746
libMesh::ReplicatedMesh::n_elem
virtual dof_id_type n_elem() const override
Definition: replicated_mesh.h:116
libMesh::ReferenceElem::get
const Elem & get(const ElemType type_in)
Definition: reference_elem.C:237
libMesh::MeshBase::_block_id_to_name
std::map< subdomain_id_type, std::string > _block_id_to_name
This structure maintains the mapping of named blocks for file formats that support named blocks.
Definition: mesh_base.h:1761
libMesh::Elem::is_ancestor_of
bool is_ancestor_of(const Elem *descendant) const
Definition: elem.h:2413
libMesh::ReplicatedMesh::active_local_subdomain_elements_end
virtual element_iterator active_local_subdomain_elements_end(subdomain_id_type subdomain_id) override
libMesh::MeshBase::add_elem
virtual Elem * add_elem(Elem *e)=0
Add elem e to the end of the element array.
libMesh::Elem::hmin
virtual Real hmin() const
Definition: elem.C:359
libMesh::Partitioner::set_node_processor_ids
static void set_node_processor_ids(MeshBase &mesh)
This function is called after partitioning to set the processor IDs for the nodes.
Definition: partitioner.C:691
libMesh::MeshBase::n_unpartitioned_elem
dof_id_type n_unpartitioned_elem() const
Definition: mesh_base.h:409
libMesh::Elem::subdomain_id
subdomain_id_type subdomain_id() const
Definition: elem.h:2069
libMesh::ReplicatedMesh::local_nodes_end
virtual node_iterator local_nodes_end() override
libMesh::DofObject::id
dof_id_type id() const
Definition: dof_object.h:767
libMesh::ReplicatedMesh::nodes_begin
virtual node_iterator nodes_begin() override
Node iterator accessor functions.
libMesh::ReplicatedMesh::elem_ptr
virtual const Elem * elem_ptr(const dof_id_type i) const override
Definition: replicated_mesh.C:232
libMesh::MeshBase::elements_end
virtual element_iterator elements_end()=0
libMesh::MeshBase::n_nodes_on_proc
dof_id_type n_nodes_on_proc(const processor_id_type proc) const
Definition: mesh_base.C:492
libMesh::MeshBase::n_elem_on_proc
dof_id_type n_elem_on_proc(const processor_id_type proc) const
Definition: mesh_base.C:505
libMesh::Elem::has_children
bool has_children() const
Definition: elem.h:2383
libMesh::Elem::side_index_range
IntRange< unsigned short > side_index_range() const
Definition: elem.h:2188
libMesh::MeshTools::libmesh_assert_valid_amr_interior_parents
void libmesh_assert_valid_amr_interior_parents(const MeshBase &mesh)
A function for verifying that any interior_parent pointers on elements are consistent with AMR (paren...
Definition: mesh_tools.C:1335
libMesh::DofObject::invalid_processor_id
static const processor_id_type invalid_processor_id
An invalid processor_id to distinguish DoFs that have not been assigned to a processor.
Definition: dof_object.h:432
libMesh::Elem::second_order_equivalent_type
static ElemType second_order_equivalent_type(const ElemType et, const bool full_ordered=true)
Definition: elem.C:2432
libMesh::ReplicatedMesh::active_subdomain_set_elements_end
virtual element_iterator active_subdomain_set_elements_end(std::set< subdomain_id_type > ss) override
std::norm
MetaPhysicL::DualNumber< T, D > norm(const MetaPhysicL::DualNumber< T, D > &in)
libMesh::MeshBase::_default_mapping_type
ElemMappingType _default_mapping_type
The default mapping type (typically Lagrange) between master and physical space to assign to newly ad...
Definition: mesh_base.h:1686
data
IterBase * data
Ideally this private member data should have protected access.
Definition: variant_filter_iterator.h:337
libMesh::UnstructuredMesh::create_submesh
void create_submesh(UnstructuredMesh &new_mesh, const const_element_iterator &it, const const_element_iterator &it_end) const
Constructs a mesh called "new_mesh" from the current mesh by iterating over the elements between it a...
Definition: unstructured_mesh.C:707
libMesh::MeshBase::allow_remote_element_removal
bool allow_remote_element_removal() const
Definition: mesh_base.h:1035
libMesh::MeshBase::add_point
virtual Node * add_point(const Point &p, const dof_id_type id=DofObject::invalid_id, const processor_id_type proc_id=DofObject::invalid_processor_id)=0
Add a new Node at Point p to the end of the vertex array, with processor_id procid.
libMesh::MeshBase::level_elements_end
virtual element_iterator level_elements_end(unsigned int level)=0
libMesh::err
OStreamProxy err
libMesh::ReplicatedMesh::elements_begin
virtual element_iterator elements_begin() override
Elem iterator accessor functions.
libMesh::ReplicatedMesh::active_subdomain_set_elements_begin
virtual element_iterator active_subdomain_set_elements_begin(std::set< subdomain_id_type > ss) override
libMesh::MeshBase::default_mapping_data
unsigned char default_mapping_data() const
Returns any default data value used by the master space to physical space mapping.
Definition: mesh_base.h:724
libMesh::ReplicatedMesh::ReplicatedMesh
ReplicatedMesh(const Parallel::Communicator &comm_in, unsigned char dim=1)
Constructor.
Definition: replicated_mesh.C:85
libMesh::Elem::neighbor_ptr
const Elem * neighbor_ptr(unsigned int i) const
Definition: elem.h:2085
libMesh::Elem::node_id
dof_id_type node_id(const unsigned int i) const
Definition: elem.h:1977
libMesh::ReplicatedMesh::get_disconnected_subdomains
std::vector< dof_id_type > get_disconnected_subdomains(std::vector< subdomain_id_type > *subdomain_ids=nullptr) const
Return IDs of representative elements of all disconnected subdomains.
Definition: replicated_mesh.C:1431
libMesh::Real
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
Definition: libmesh_common.h:121
libMesh::MeshBase::prepare_for_use
void prepare_for_use(const bool skip_renumber_nodes_and_elements=false, const bool skip_find_neighbors=false)
Prepare a newly ecreated (or read) mesh for use.
Definition: mesh_base.C:318
libMesh::MeshBase::clear
virtual void clear()
Deletes all the element and node data that is currently stored.
Definition: mesh_base.C:429
libMesh::Elem::n_sub_elem
virtual unsigned int n_sub_elem() const =0
libMesh::Elem::build
static std::unique_ptr< Elem > build(const ElemType type, Elem *p=nullptr)
Definition: elem.C:246
libMesh::BoundaryInfo::invalid_id
static const boundary_id_type invalid_id
Number used for internal use.
Definition: boundary_info.h:899
libMesh::MeshBase::update_parallel_id_counts
virtual void update_parallel_id_counts()=0
Updates parallel caches so that methods like n_elem() accurately reflect changes on other processors.
libMesh::out
OStreamProxy out
libMesh::Elem::node_ptr
const Node * node_ptr(const unsigned int i) const
Definition: elem.h:2009
libMesh::ReplicatedMesh::active_local_subdomain_elements_begin
virtual element_iterator active_local_subdomain_elements_begin(subdomain_id_type subdomain_id) override
libMesh::MeshBase::_skip_noncritical_partitioning
bool _skip_noncritical_partitioning
If this is true then no partitioning should be done with the possible exception of orphaned nodes.
Definition: mesh_base.h:1734
libMesh::ReplicatedMesh::active_subdomain_elements_end
virtual element_iterator active_subdomain_elements_end(subdomain_id_type subdomain_id) override
libMesh::MeshBase::get_info
std::string get_info() const
Definition: mesh_base.C:551
libMesh::Elem::nodes_on_side
virtual std::vector< unsigned int > nodes_on_side(const unsigned int) const =0
libMesh::MeshBase::find_neighbors
virtual void find_neighbors(const bool reset_remote_elements=false, const bool reset_current_list=true)=0
Locate element face (edge in 2D) neighbors.
libMesh::FIRST
Definition: enum_order.h:42
libMesh::MeshBase::skip_partitioning
bool skip_partitioning() const
Definition: mesh_base.h:1078
libMesh::remote_elem
const RemoteElem * remote_elem
Definition: remote_elem.C:57
libMesh::MeshBase::reserve_elem
virtual void reserve_elem(const dof_id_type ne)=0
Reserves space for a known number of elements.
libMesh::MeshBase::n_active_elem
virtual dof_id_type n_active_elem() const =0
libMesh::MeshTools::correct_node_proc_ids
void correct_node_proc_ids(MeshBase &)
Changes the processor ids on each node so be the same as the id of the lowest element touching that n...
Definition: mesh_tools.C:2252
libMesh::Quality::name
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42
libMesh::ReplicatedMesh::elements_end
virtual element_iterator elements_end() override
libMesh::ReplicatedMesh::active_elements_end
virtual element_iterator active_elements_end() override
libMesh::MeshBase::is_replicated
virtual bool is_replicated() const
Definition: mesh_base.h:181
libMesh::ReplicatedMesh::n_active_elem
virtual dof_id_type n_active_elem() const override
Definition: replicated_mesh.C:1424
libMesh::MeshBase::partitioner
virtual std::unique_ptr< Partitioner > & partitioner()
A partitioner to use at each prepare_for_use()
Definition: mesh_base.h:127