libMesh
systems_of_equations_ex4.C
Go to the documentation of this file.
1 // The libMesh Finite Element Library.
2 // Copyright (C) 2002-2019 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
3 
4 // This library is free software; you can redistribute it and/or
5 // modify it under the terms of the GNU Lesser General Public
6 // License as published by the Free Software Foundation; either
7 // version 2.1 of the License, or (at your option) any later version.
8 
9 // This library is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 // Lesser General Public License for more details.
13 
14 // You should have received a copy of the GNU Lesser General Public
15 // License along with this library; if not, write to the Free Software
16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 
18 
19 
20 // <h1> Systems Example 4 - Linear Elastic Cantilever </h1>
21 // \author David Knezevic
22 // \date 2012
23 //
24 // In this example we model a homogeneous isotropic cantilever
25 // using the equations of linear elasticity. We set the Poisson ratio to
26 // \nu = 0.3 and clamp the left boundary and apply a vertical load at the
27 // right boundary.
28 
29 
30 // C++ include files that we need
31 #include <iostream>
32 #include <algorithm>
33 #include <math.h>
34 
35 // libMesh includes
36 #include "libmesh/libmesh.h"
37 #include "libmesh/mesh.h"
38 #include "libmesh/mesh_generation.h"
39 #include "libmesh/exodusII_io.h"
40 #include "libmesh/gnuplot_io.h"
41 #include "libmesh/linear_implicit_system.h"
42 #include "libmesh/equation_systems.h"
43 #include "libmesh/fe.h"
44 #include "libmesh/quadrature_gauss.h"
45 #include "libmesh/dof_map.h"
46 #include "libmesh/sparse_matrix.h"
47 #include "libmesh/numeric_vector.h"
48 #include "libmesh/dense_matrix.h"
49 #include "libmesh/dense_submatrix.h"
50 #include "libmesh/dense_vector.h"
51 #include "libmesh/dense_subvector.h"
52 #include "libmesh/perf_log.h"
53 #include "libmesh/elem.h"
54 #include "libmesh/boundary_info.h"
55 #include "libmesh/zero_function.h"
56 #include "libmesh/dirichlet_boundaries.h"
57 #include "libmesh/string_to_enum.h"
58 #include "libmesh/getpot.h"
59 #include "libmesh/enum_solver_package.h"
60 
61 // Bring in everything from the libMesh namespace
62 using namespace libMesh;
63 
64 // Matrix and right-hand side assemble
66  const std::string & system_name);
67 
68 // Define the elasticity tensor, which is a fourth-order tensor
69 // i.e. it has four indices i, j, k, l
70 Real eval_elasticity_tensor(unsigned int i,
71  unsigned int j,
72  unsigned int k,
73  unsigned int l);
74 
75 // Begin the main program.
76 int main (int argc, char ** argv)
77 {
78  // Initialize libMesh and any dependent libraries
79  LibMeshInit init (argc, argv);
80 
81  // This example requires a linear solver package.
82  libmesh_example_requires(libMesh::default_solver_package() != INVALID_SOLVER_PACKAGE,
83  "--enable-petsc, --enable-trilinos, or --enable-eigen");
84 
85  // Initialize the cantilever mesh
86  const unsigned int dim = 2;
87 
88  // Skip this 2D example if libMesh was compiled as 1D-only.
89  libmesh_example_requires(dim <= LIBMESH_DIM, "2D support");
90 
91  // We use Dirichlet boundary conditions here
92 #ifndef LIBMESH_ENABLE_DIRICHLET
93  libmesh_example_requires(false, "--enable-dirichlet");
94 #endif
95 
96  // Create a 2D mesh distributed across the default MPI communicator.
97  Mesh mesh(init.comm(), dim);
99  50, 10,
100  0., 1.,
101  0., 0.2,
102  QUAD9);
103 
104 
105  // Print information about the mesh to the screen.
106  mesh.print_info();
107 
108  // Create an equation systems object.
109  EquationSystems equation_systems (mesh);
110 
111  // Declare the system and its variables.
112  // Create a system named "Elasticity"
113  LinearImplicitSystem & system =
114  equation_systems.add_system<LinearImplicitSystem> ("Elasticity");
115 
117 
118 #ifdef LIBMESH_ENABLE_DIRICHLET
119  // Add two displacement variables, u and v, to the system
120  unsigned int u_var = system.add_variable("u", SECOND, LAGRANGE);
121  unsigned int v_var = system.add_variable("v", SECOND, LAGRANGE);
122 
123  // Construct a Dirichlet boundary condition object
124  // We impose a "clamped" boundary condition on the
125  // "left" boundary, i.e. bc_id = 3
126  std::set<boundary_id_type> boundary_ids;
127  boundary_ids.insert(3);
128 
129  // Create a vector storing the variable numbers which the BC applies to
130  std::vector<unsigned int> variables(2);
131  variables[0] = u_var; variables[1] = v_var;
132 
133  // Create a ZeroFunction to initialize dirichlet_bc
134  ZeroFunction<> zf;
135 
136  // Most DirichletBoundary users will want to supply a "locally
137  // indexed" functor
138  DirichletBoundary dirichlet_bc(boundary_ids, variables, zf,
140 
141  // We must add the Dirichlet boundary condition _before_
142  // we call equation_systems.init()
143  system.get_dof_map().add_dirichlet_boundary(dirichlet_bc);
144 #endif // LIBMESH_ENABLE_DIRICHLET
145 
146  // Initialize the data structures for the equation system.
147  equation_systems.init();
148 
149  // Print information about the system to the screen.
150  equation_systems.print_info();
151 
152  // Solve the system
153  system.solve();
154 
155  // Plot the solution
156 #ifdef LIBMESH_HAVE_EXODUS_API
157  ExodusII_IO (mesh).write_equation_systems("displacement.e", equation_systems);
158 #endif // #ifdef LIBMESH_HAVE_EXODUS_API
159 
160  // All done.
161  return 0;
162 }
163 
164 
166  const std::string & libmesh_dbg_var(system_name))
167 {
168  libmesh_assert_equal_to (system_name, "Elasticity");
169 
170  const MeshBase & mesh = es.get_mesh();
171 
172  const unsigned int dim = mesh.mesh_dimension();
173 
174  LinearImplicitSystem & system = es.get_system<LinearImplicitSystem>("Elasticity");
175 
176  const unsigned int u_var = system.variable_number ("u");
177  const unsigned int v_var = system.variable_number ("v");
178 
179  const DofMap & dof_map = system.get_dof_map();
180  FEType fe_type = dof_map.variable_type(0);
181  std::unique_ptr<FEBase> fe (FEBase::build(dim, fe_type));
182  QGauss qrule (dim, fe_type.default_quadrature_order());
183  fe->attach_quadrature_rule (&qrule);
184 
185  std::unique_ptr<FEBase> fe_face (FEBase::build(dim, fe_type));
186  QGauss qface(dim-1, fe_type.default_quadrature_order());
187  fe_face->attach_quadrature_rule (&qface);
188 
189  const std::vector<Real> & JxW = fe->get_JxW();
190  const std::vector<std::vector<RealGradient>> & dphi = fe->get_dphi();
191 
194 
196  Kuu(Ke), Kuv(Ke),
197  Kvu(Ke), Kvv(Ke);
198 
200  Fu(Fe),
201  Fv(Fe);
202 
203  std::vector<dof_id_type> dof_indices;
204  std::vector<dof_id_type> dof_indices_u;
205  std::vector<dof_id_type> dof_indices_v;
206 
207  for (const auto & elem : mesh.active_local_element_ptr_range())
208  {
209  dof_map.dof_indices (elem, dof_indices);
210  dof_map.dof_indices (elem, dof_indices_u, u_var);
211  dof_map.dof_indices (elem, dof_indices_v, v_var);
212 
213  const unsigned int n_dofs = dof_indices.size();
214  const unsigned int n_u_dofs = dof_indices_u.size();
215  const unsigned int n_v_dofs = dof_indices_v.size();
216 
217  fe->reinit (elem);
218 
219  Ke.resize (n_dofs, n_dofs);
220  Fe.resize (n_dofs);
221 
222  Kuu.reposition (u_var*n_u_dofs, u_var*n_u_dofs, n_u_dofs, n_u_dofs);
223  Kuv.reposition (u_var*n_u_dofs, v_var*n_u_dofs, n_u_dofs, n_v_dofs);
224 
225  Kvu.reposition (v_var*n_v_dofs, u_var*n_v_dofs, n_v_dofs, n_u_dofs);
226  Kvv.reposition (v_var*n_v_dofs, v_var*n_v_dofs, n_v_dofs, n_v_dofs);
227 
228  Fu.reposition (u_var*n_u_dofs, n_u_dofs);
229  Fv.reposition (v_var*n_u_dofs, n_v_dofs);
230 
231  for (unsigned int qp=0; qp<qrule.n_points(); qp++)
232  {
233  for (unsigned int i=0; i<n_u_dofs; i++)
234  for (unsigned int j=0; j<n_u_dofs; j++)
235  {
236  // Tensor indices
237  unsigned int C_i, C_j, C_k, C_l;
238  C_i=0, C_k=0;
239 
240  C_j=0, C_l=0;
241  Kuu(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
242 
243  C_j=1, C_l=0;
244  Kuu(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
245 
246  C_j=0, C_l=1;
247  Kuu(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
248 
249  C_j=1, C_l=1;
250  Kuu(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
251  }
252 
253  for (unsigned int i=0; i<n_u_dofs; i++)
254  for (unsigned int j=0; j<n_v_dofs; j++)
255  {
256  // Tensor indices
257  unsigned int C_i, C_j, C_k, C_l;
258  C_i=0, C_k=1;
259 
260  C_j=0, C_l=0;
261  Kuv(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
262 
263  C_j=1, C_l=0;
264  Kuv(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
265 
266  C_j=0, C_l=1;
267  Kuv(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
268 
269  C_j=1, C_l=1;
270  Kuv(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
271  }
272 
273  for (unsigned int i=0; i<n_v_dofs; i++)
274  for (unsigned int j=0; j<n_u_dofs; j++)
275  {
276  // Tensor indices
277  unsigned int C_i, C_j, C_k, C_l;
278  C_i=1, C_k=0;
279 
280  C_j=0, C_l=0;
281  Kvu(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
282 
283  C_j=1, C_l=0;
284  Kvu(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
285 
286  C_j=0, C_l=1;
287  Kvu(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
288 
289  C_j=1, C_l=1;
290  Kvu(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
291  }
292 
293  for (unsigned int i=0; i<n_v_dofs; i++)
294  for (unsigned int j=0; j<n_v_dofs; j++)
295  {
296  // Tensor indices
297  unsigned int C_i, C_j, C_k, C_l;
298  C_i=1, C_k=1;
299 
300  C_j=0, C_l=0;
301  Kvv(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
302 
303  C_j=1, C_l=0;
304  Kvv(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
305 
306  C_j=0, C_l=1;
307  Kvv(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
308 
309  C_j=1, C_l=1;
310  Kvv(i,j) += JxW[qp]*(eval_elasticity_tensor(C_i, C_j, C_k, C_l) * dphi[i][qp](C_j)*dphi[j][qp](C_l));
311  }
312  }
313 
314  {
315  for (auto side : elem->side_index_range())
316  if (elem->neighbor_ptr(side) == nullptr)
317  {
318  const std::vector<std::vector<Real>> & phi_face = fe_face->get_phi();
319  const std::vector<Real> & JxW_face = fe_face->get_JxW();
320 
321  fe_face->reinit(elem, side);
322 
323  if (mesh.get_boundary_info().has_boundary_id (elem, side, 1)) // Apply a traction on the right side
324  {
325  for (unsigned int qp=0; qp<qface.n_points(); qp++)
326  for (unsigned int i=0; i<n_v_dofs; i++)
327  Fv(i) += JxW_face[qp] * (-1.) * phi_face[i][qp];
328  }
329  }
330  }
331 
332  dof_map.constrain_element_matrix_and_vector (Ke, Fe, dof_indices);
333 
334  system.matrix->add_matrix (Ke, dof_indices);
335  system.rhs->add_vector (Fe, dof_indices);
336  }
337 }
338 
340  unsigned int j,
341  unsigned int k,
342  unsigned int l)
343 {
344  // Define the Poisson ratio
345  const Real nu = 0.3;
346 
347  // Define the Lame constants (lambda_1 and lambda_2) based on Poisson ratio
348  const Real lambda_1 = nu / ((1. + nu) * (1. - 2.*nu));
349  const Real lambda_2 = 0.5 / (1 + nu);
350 
351  // Define the Kronecker delta functions that we need here
352  Real delta_ij = (i == j) ? 1. : 0.;
353  Real delta_il = (i == l) ? 1. : 0.;
354  Real delta_ik = (i == k) ? 1. : 0.;
355  Real delta_jl = (j == l) ? 1. : 0.;
356  Real delta_jk = (j == k) ? 1. : 0.;
357  Real delta_kl = (k == l) ? 1. : 0.;
358 
359  return lambda_1 * delta_ij * delta_kl + lambda_2 * (delta_ik * delta_jl + delta_il * delta_jk);
360 }
libMesh::Mesh
The Mesh class is a thin wrapper, around the ReplicatedMesh class by default.
Definition: mesh.h:50
libMesh::EquationSystems::add_system
virtual System & add_system(const std::string &system_type, const std::string &name)
Add the system of type system_type named name to the systems array.
Definition: equation_systems.C:345
libMesh::EquationSystems::get_mesh
const MeshBase & get_mesh() const
Definition: equation_systems.h:637
libMesh::MeshBase::get_boundary_info
const BoundaryInfo & get_boundary_info() const
The information about boundary ids on the mesh.
Definition: mesh_base.h:132
libMesh::ExplicitSystem::rhs
NumericVector< Number > * rhs
The system matrix.
Definition: explicit_system.h:114
libMesh::QGauss
This class implements specific orders of Gauss quadrature.
Definition: quadrature_gauss.h:39
libMesh::DofMap::dof_indices
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
Fills the vector di with the global degree of freedom indices for the element.
Definition: dof_map.C:1967
libMesh::DofMap::add_dirichlet_boundary
void add_dirichlet_boundary(const DirichletBoundary &dirichlet_boundary)
Adds a copy of the specified Dirichlet boundary to the system.
Definition: dof_map_constraints.C:4390
libMesh::MeshBase::active_local_element_ptr_range
virtual SimpleRange< element_iterator > active_local_element_ptr_range()=0
libMesh::DenseSubMatrix
Defines a dense submatrix for use in Finite Element-type computations.
Definition: dense_submatrix.h:45
main
int main(int argc, char **argv)
Definition: systems_of_equations_ex4.C:76
libMesh
The libMesh namespace provides an interface to certain functionality in the library.
Definition: factoryfunction.C:55
libMesh::EquationSystems::get_system
const T_sys & get_system(const std::string &name) const
Definition: equation_systems.h:757
libMesh::DenseMatrix< Number >
libMesh::LinearImplicitSystem::solve
virtual void solve() override
Assembles & solves the linear system A*x=b.
Definition: linear_implicit_system.C:108
libMesh::default_solver_package
SolverPackage default_solver_package()
Definition: libmesh.C:993
mesh
MeshBase & mesh
Definition: mesh_communication.C:1257
libMesh::MeshBase::mesh_dimension
unsigned int mesh_dimension() const
Definition: mesh_base.C:135
libMesh::ExodusII_IO
The ExodusII_IO class implements reading meshes in the ExodusII file format from Sandia National Labs...
Definition: exodusII_io.h:51
libMesh::SECOND
Definition: enum_order.h:43
dim
unsigned int dim
Definition: adaptivity_ex3.C:113
libMesh::DenseMatrix::resize
void resize(const unsigned int new_m, const unsigned int new_n)
Resize the matrix.
Definition: dense_matrix.h:822
libMesh::TriangleWrapper::init
void init(triangulateio &t)
Initializes the fields of t to nullptr/0 as necessary.
libMesh::LOCAL_VARIABLE_ORDER
Definition: dirichlet_boundaries.h:62
libMesh::MeshTools::Generation::build_square
void build_square(UnstructuredMesh &mesh, const unsigned int nx, const unsigned int ny, const Real xmin=0., const Real xmax=1., const Real ymin=0., const Real ymax=1., const ElemType type=INVALID_ELEM, const bool gauss_lobatto_grid=false)
A specialized build_cube() for 2D meshes.
Definition: mesh_generation.C:1501
libMesh::System::attach_assemble_function
void attach_assemble_function(void fptr(EquationSystems &es, const std::string &name))
Register a user function to use in assembling the system matrix and RHS.
Definition: system.C:1755
libMesh::NumericVector::add_vector
virtual void add_vector(const T *v, const std::vector< numeric_index_type > &dof_indices)
Computes , where v is a pointer and each dof_indices[i] specifies where to add value v[i].
Definition: numeric_vector.C:363
libMesh::MeshBase
This is the MeshBase class.
Definition: mesh_base.h:78
eval_elasticity_tensor
Real eval_elasticity_tensor(unsigned int i, unsigned int j, unsigned int k, unsigned int l)
Definition: systems_of_equations_ex4.C:339
libMesh::INVALID_SOLVER_PACKAGE
Definition: enum_solver_package.h:43
libMesh::FEGenericBase::build
static std::unique_ptr< FEGenericBase > build(const unsigned int dim, const FEType &type)
Builds a specific finite element type.
libMesh::System::add_variable
unsigned int add_variable(const std::string &var, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
Adds the variable var to the list of variables for this system.
Definition: system.C:1069
libMesh::EquationSystems::init
virtual void init()
Initialize all the systems.
Definition: equation_systems.C:96
libMesh::ImplicitSystem::matrix
SparseMatrix< Number > * matrix
The system matrix.
Definition: implicit_system.h:393
libMesh::DofMap::variable_type
const FEType & variable_type(const unsigned int c) const
Definition: dof_map.h:1924
libMesh::LibMeshInit
The LibMeshInit class, when constructed, initializes the dependent libraries (e.g.
Definition: libmesh.h:83
libMesh::ZeroFunction
ConstFunction that simply returns 0.
Definition: zero_function.h:36
libMesh::EquationSystems::print_info
void print_info(std::ostream &os=libMesh::out) const
Prints information about the equation systems, by default to libMesh::out.
Definition: equation_systems.C:1314
libMesh::EquationSystems
This is the EquationSystems class.
Definition: equation_systems.h:74
libMesh::DofMap::constrain_element_matrix_and_vector
void constrain_element_matrix_and_vector(DenseMatrix< Number > &matrix, DenseVector< Number > &rhs, std::vector< dof_id_type > &elem_dofs, bool asymmetric_constraint_rows=true) const
Constrains the element matrix and vector.
Definition: dof_map.h:2034
libMesh::DenseSubVector< Number >
libMesh::MeshOutput::write_equation_systems
virtual void write_equation_systems(const std::string &, const EquationSystems &, const std::set< std::string > *system_names=nullptr)
This method implements writing a mesh with data to a specified file where the data is taken from the ...
Definition: mesh_output.C:31
libMesh::DenseVector::resize
void resize(const unsigned int n)
Resize the vector.
Definition: dense_vector.h:355
libMesh::SparseMatrix::add_matrix
virtual void add_matrix(const DenseMatrix< T > &dm, const std::vector< numeric_index_type > &rows, const std::vector< numeric_index_type > &cols)=0
Add the full matrix dm to the SparseMatrix.
assemble_elasticity
void assemble_elasticity(EquationSystems &es, const std::string &system_name)
libMesh::FEType
class FEType hides (possibly multiple) FEFamily and approximation orders, thereby enabling specialize...
Definition: fe_type.h:178
libMesh::DofMap
This class handles the numbering of degrees of freedom on a mesh.
Definition: dof_map.h:176
libMesh::MeshBase::print_info
void print_info(std::ostream &os=libMesh::out) const
Prints relevant information about the mesh.
Definition: mesh_base.C:585
libMesh::DirichletBoundary
This class allows one to associate Dirichlet boundary values with a given set of mesh boundary ids an...
Definition: dirichlet_boundaries.h:88
libMesh::System::variable_number
unsigned short int variable_number(const std::string &var) const
Definition: system.C:1232
libMesh::DenseSubVector::reposition
void reposition(const unsigned int ioff, const unsigned int n)
Changes the location of the subvector in the parent vector.
Definition: dense_subvector.h:174
libMesh::QUAD9
Definition: enum_elem_type.h:43
libMesh::System::get_dof_map
const DofMap & get_dof_map() const
Definition: system.h:2099
libMesh::LAGRANGE
Definition: enum_fe_family.h:36
libMesh::Real
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
Definition: libmesh_common.h:121
libMesh::FEType::default_quadrature_order
Order default_quadrature_order() const
Definition: fe_type.h:353
libMesh::LinearImplicitSystem
Manages consistently variables, degrees of freedom, coefficient vectors, matrices and linear solvers ...
Definition: linear_implicit_system.h:55
libMesh::BoundaryInfo::has_boundary_id
bool has_boundary_id(const Node *const node, const boundary_id_type id) const
Definition: boundary_info.C:972
libMesh::DenseVector< Number >
libMesh::DenseSubMatrix::reposition
void reposition(const unsigned int ioff, const unsigned int joff, const unsigned int new_m, const unsigned int new_n)
Changes the location of the submatrix in the parent matrix.
Definition: dense_submatrix.h:173