https://mooseframework.inl.gov
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Static Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Member Functions | List of all members
SolidMechanicsPlasticMohrCoulomb Class Reference

Mohr-Coulomb plasticity, nonassociative with hardening/softening. More...

#include <SolidMechanicsPlasticMohrCoulomb.h>

Inheritance diagram for SolidMechanicsPlasticMohrCoulomb:
[legend]

Public Types

typedef DataFileName DataFileParameterType
 

Public Member Functions

 SolidMechanicsPlasticMohrCoulomb (const InputParameters &parameters)
 
virtual std::string modelName () const override
 
void initialize ()
 
void execute ()
 
void finalize ()
 
virtual unsigned int numberSurfaces () const
 The number of yield surfaces for this plasticity model. More...
 
virtual void yieldFunctionV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
 Calculates the yield functions. More...
 
virtual void dyieldFunction_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &df_dstress) const
 The derivative of yield functions with respect to stress. More...
 
virtual void dyieldFunction_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &df_dintnl) const
 The derivative of yield functions with respect to the internal parameter. More...
 
virtual void flowPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &r) const
 The flow potentials. More...
 
virtual void dflowPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankFourTensor > &dr_dstress) const
 The derivative of the flow potential with respect to stress. More...
 
virtual void dflowPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dr_dintnl) const
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual void hardPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &h) const
 The hardening potential. More...
 
virtual void dhardPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dh_dstress) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual void dhardPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &dh_dintnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual void activeConstraints (const std::vector< Real > &f, const RankTwoTensor &stress, Real intnl, const RankFourTensor &Eijkl, std::vector< bool > &act, RankTwoTensor &returned_stress) const
 The active yield surfaces, given a vector of yield functions. More...
 
virtual bool useCustomReturnMap () const
 Returns false. You will want to override this in your derived class if you write a custom returnMap function. More...
 
virtual bool useCustomCTO () const
 Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function. More...
 
virtual bool returnMap (const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const
 Performs a custom return-map. More...
 
virtual RankFourTensor consistentTangentOperator (const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const
 Calculates a custom consistent tangent operator. More...
 
bool KuhnTuckerSingleSurface (Real yf, Real dpm, Real dpm_tol) const
 Returns true if the Kuhn-Tucker conditions for the single surface are satisfied. More...
 
SubProblemgetSubProblem () const
 
bool shouldDuplicateInitialExecution () const
 
virtual Real spatialValue (const Point &) const
 
virtual const std::vector< Point > spatialPoints () const
 
void gatherSum (T &value)
 
void gatherMax (T &value)
 
void gatherMin (T &value)
 
void gatherProxyValueMax (T1 &proxy, T2 &value)
 
void gatherProxyValueMin (T1 &proxy, T2 &value)
 
void setPrimaryThreadCopy (UserObject *primary)
 
UserObjectprimaryThreadCopy ()
 
std::set< UserObjectName > getDependObjects () const
 
virtual bool needThreadedCopy () const
 
const std::set< std::string > & getRequestedItems () override
 
const std::set< std::string > & getSuppliedItems () override
 
unsigned int systemNumber () const
 
virtual bool enabled () const
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
MooseAppgetMooseApp () const
 
const std::string & type () const
 
virtual const std::string & name () const
 
std::string typeAndName () const
 
std::string errorPrefix (const std::string &error_type) const
 
void callMooseError (std::string msg, const bool with_prefix) const
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
const InputParametersparameters () const
 
MooseObjectName uniqueName () const
 
const T & getParam (const std::string &name) const
 
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 
const T * queryParam (const std::string &name) const
 
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 
bool isParamValid (const std::string &name) const
 
bool isParamSetByUser (const std::string &nm) const
 
void paramError (const std::string &param, Args... args) const
 
void paramWarning (const std::string &param, Args... args) const
 
void paramInfo (const std::string &param, Args... args) const
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 
void mooseError (Args &&... args) const
 
void mooseErrorNonPrefixed (Args &&... args) const
 
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
void mooseWarning (Args &&... args) const
 
void mooseWarningNonPrefixed (Args &&... args) const
 
void mooseDeprecated (Args &&... args) const
 
void mooseInfo (Args &&... args) const
 
std::string getDataFileName (const std::string &param) const
 
std::string getDataFileNameByName (const std::string &relative_path) const
 
std::string getDataFilePath (const std::string &relative_path) const
 
virtual void initialSetup ()
 
virtual void timestepSetup ()
 
virtual void jacobianSetup ()
 
virtual void residualSetup ()
 
virtual void customSetup (const ExecFlagType &)
 
const ExecFlagEnumgetExecuteOnEnum () const
 
UserObjectName getUserObjectName (const std::string &param_name) const
 
const T & getUserObject (const std::string &param_name, bool is_dependency=true) const
 
const T & getUserObjectByName (const UserObjectName &object_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBase (const std::string &param_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBaseByName (const UserObjectName &object_name, bool is_dependency=true) const
 
const std::vector< MooseVariableScalar *> & getCoupledMooseScalarVars ()
 
const std::set< TagID > & getScalarVariableCoupleableVectorTags () const
 
const std::set< TagID > & getScalarVariableCoupleableMatrixTags () const
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, MaterialData &material_data, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, MaterialData &material_data, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, const unsigned int state=0)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name, MaterialData &material_data)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data, const unsigned int state)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name)
 
std::pair< const MaterialProperty< T > *, std::set< SubdomainID > > getBlockMaterialProperty (const MaterialPropertyName &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialProperty (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialProperty ()
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialPropertyByName (const std::string &prop_name)
 
const MaterialProperty< T > & getZeroMaterialProperty (Ts... args)
 
std::set< SubdomainIDgetMaterialPropertyBlocks (const std::string &name)
 
std::vector< SubdomainName > getMaterialPropertyBlockNames (const std::string &name)
 
std::set< BoundaryIDgetMaterialPropertyBoundaryIDs (const std::string &name)
 
std::vector< BoundaryName > getMaterialPropertyBoundaryNames (const std::string &name)
 
void checkBlockAndBoundaryCompatibility (std::shared_ptr< MaterialBase > discrete)
 
std::unordered_map< SubdomainID, std::vector< MaterialBase *> > buildRequiredMaterials (bool allow_stateful=true)
 
void statefulPropertiesAllowed (bool)
 
bool getMaterialPropertyCalled () const
 
virtual const std::unordered_set< unsigned int > & getMatPropDependencies () const
 
virtual void resolveOptionalProperties ()
 
const GenericMaterialProperty< T, is_ad > & getPossiblyConstantGenericMaterialPropertyByName (const MaterialPropertyName &prop_name, MaterialData &material_data, const unsigned int state)
 
bool isImplicit ()
 
Moose::StateArg determineState () const
 
virtual void threadJoin (const UserObject &) override
 
virtual void threadJoin (const UserObject &) override
 
virtual void subdomainSetup () override
 
virtual void subdomainSetup () override
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
const GenericOptionalMaterialProperty< T, is_ad > & getGenericOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const GenericOptionalMaterialProperty< T, is_ad > & getGenericOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalMaterialProperty< T > & getOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalMaterialProperty< T > & getOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalADMaterialProperty< T > & getOptionalADMaterialProperty (const std::string &name)
 
const OptionalADMaterialProperty< T > & getOptionalADMaterialProperty (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOld (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOld (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOlder (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOlder (const std::string &name)
 
MaterialBasegetMaterial (const std::string &name)
 
MaterialBasegetMaterial (const std::string &name)
 
MaterialBasegetMaterialByName (const std::string &name, bool no_warn=false)
 
MaterialBasegetMaterialByName (const std::string &name, bool no_warn=false)
 
bool hasMaterialProperty (const std::string &name)
 
bool hasMaterialProperty (const std::string &name)
 
bool hasMaterialPropertyByName (const std::string &name)
 
bool hasMaterialPropertyByName (const std::string &name)
 
bool hasADMaterialProperty (const std::string &name)
 
bool hasADMaterialProperty (const std::string &name)
 
bool hasADMaterialPropertyByName (const std::string &name)
 
bool hasADMaterialPropertyByName (const std::string &name)
 
bool hasGenericMaterialProperty (const std::string &name)
 
bool hasGenericMaterialProperty (const std::string &name)
 
bool hasGenericMaterialPropertyByName (const std::string &name)
 
bool hasGenericMaterialPropertyByName (const std::string &name)
 
const FunctiongetFunction (const std::string &name) const
 
const FunctiongetFunctionByName (const FunctionName &name) const
 
bool hasFunction (const std::string &param_name) const
 
bool hasFunctionByName (const FunctionName &name) const
 
bool isDefaultPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessor (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessorByName (const PostprocessorName &name) const
 
std::size_t coupledPostprocessors (const std::string &param_name) const
 
const PostprocessorName & getPostprocessorName (const std::string &param_name, const unsigned int index=0) const
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name) const
 
const VectorPostprocessorName & getVectorPostprocessorName (const std::string &param_name) const
 
T & getSampler (const std::string &name)
 
SamplergetSampler (const std::string &name)
 
T & getSamplerByName (const SamplerName &name)
 
SamplergetSamplerByName (const SamplerName &name)
 
virtual void meshChanged ()
 
virtual void meshDisplaced ()
 
PerfGraphperfGraph ()
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
const Parallel::Communicator & comm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 

Static Public Member Functions

static InputParameters validParams ()
 
static void sort (typename std::vector< T > &vector)
 
static void sortDFS (typename std::vector< T > &vector)
 
static void cyclicDependencyError (CyclicDependencyException< T2 > &e, const std::string &header)
 

Public Attributes

const Real _f_tol
 Tolerance on yield function. More...
 
const Real _ic_tol
 Tolerance on internal constraint. More...
 
const ConsoleStream _console
 

Static Public Attributes

static constexpr PropertyValue::id_type default_property_id
 
static constexpr PropertyValue::id_type zero_property_id
 
static constexpr auto SYSTEM
 
static constexpr auto NAME
 

Protected Member Functions

Real yieldFunction (const RankTwoTensor &stress, Real intnl) const override
 The following functions are what you should override when building single-plasticity models. More...
 
RankTwoTensor dyieldFunction_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to stress. More...
 
Real dyieldFunction_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to the internal parameter. More...
 
RankTwoTensor flowPotential (const RankTwoTensor &stress, Real intnl) const override
 The flow potential. More...
 
RankFourTensor dflowPotential_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to stress. More...
 
RankTwoTensor dflowPotential_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual Real smooth (const RankTwoTensor &stress) const
 returns the 'a' parameter - see doco for _tip_scheme More...
 
virtual Real dsmooth (const RankTwoTensor &stress) const
 returns the da/dstress_mean - see doco for _tip_scheme More...
 
virtual Real d2smooth (const RankTwoTensor &stress) const
 returns the d^2a/dstress_mean^2 - see doco for _tip_scheme More...
 
virtual Real cohesion (const Real internal_param) const
 cohesion as a function of internal parameter More...
 
virtual Real dcohesion (const Real internal_param) const
 d(cohesion)/d(internal_param); More...
 
virtual Real phi (const Real internal_param) const
 friction angle as a function of internal parameter More...
 
virtual Real dphi (const Real internal_param) const
 d(phi)/d(internal_param); More...
 
virtual Real psi (const Real internal_param) const
 dilation angle as a function of internal parameter More...
 
virtual Real dpsi (const Real internal_param) const
 d(psi)/d(internal_param); More...
 
virtual Real hardPotential (const RankTwoTensor &stress, Real intnl) const
 The hardening potential. More...
 
virtual RankTwoTensor dhardPotential_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual Real dhardPotential_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual void addPostprocessorDependencyHelper (const PostprocessorName &name) const override
 
virtual void addVectorPostprocessorDependencyHelper (const VectorPostprocessorName &name) const override
 
virtual void addUserObjectDependencyHelper (const UserObject &uo) const override
 
void addReporterDependencyHelper (const ReporterName &reporter_name) override
 
const ReporterNamegetReporterName (const std::string &param_name) const
 
T & declareRestartableData (const std::string &data_name, Args &&... args)
 
ManagedValue< T > declareManagedRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 
const T & getRestartableData (const std::string &data_name) const
 
T & declareRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 
T & declareRecoverableData (const std::string &data_name, Args &&... args)
 
T & declareRestartableDataWithObjectName (const std::string &data_name, const std::string &object_name, Args &&... args)
 
T & declareRestartableDataWithObjectNameWithContext (const std::string &data_name, const std::string &object_name, void *context, Args &&... args)
 
std::string restartableName (const std::string &data_name) const
 
const T & getMeshProperty (const std::string &data_name, const std::string &prefix)
 
const T & getMeshProperty (const std::string &data_name)
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name) const
 
bool hasMeshProperty (const std::string &data_name) const
 
std::string meshPropertyName (const std::string &data_name) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 
std::string timedSectionName (const std::string &section_name) const
 
bool isCoupledScalar (const std::string &var_name, unsigned int i=0) const
 
unsigned int coupledScalarComponents (const std::string &var_name) const
 
unsigned int coupledScalar (const std::string &var_name, unsigned int comp=0) const
 
libMesh::Order coupledScalarOrder (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const ADVariableValueadCoupledScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const GenericVariableValue< is_ad > & coupledGenericScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const GenericVariableValue< false > & coupledGenericScalarValue (const std::string &var_name, const unsigned int comp) const
 
const GenericVariableValue< true > & coupledGenericScalarValue (const std::string &var_name, const unsigned int comp) const
 
const VariableValuecoupledVectorTagScalarValue (const std::string &var_name, TagID tag, unsigned int comp=0) const
 
const VariableValuecoupledMatrixTagScalarValue (const std::string &var_name, TagID tag, unsigned int comp=0) const
 
const VariableValuecoupledScalarValueOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarValueOlder (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDot (const std::string &var_name, unsigned int comp=0) const
 
const ADVariableValueadCoupledScalarDot (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDot (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDotOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDu (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDotDu (const std::string &var_name, unsigned int comp=0) const
 
const MooseVariableScalargetScalarVar (const std::string &var_name, unsigned int comp) const
 
virtual void checkMaterialProperty (const std::string &name, const unsigned int state)
 
void markMatPropRequested (const std::string &)
 
MaterialPropertyName getMaterialPropertyName (const std::string &name) const
 
void checkExecutionStage ()
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
const GenericMaterialProperty< T, is_ad > * defaultGenericMaterialProperty (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > * defaultGenericMaterialProperty (const std::string &name)
 
const MaterialProperty< T > * defaultMaterialProperty (const std::string &name)
 
const MaterialProperty< T > * defaultMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > * defaultADMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > * defaultADMaterialProperty (const std::string &name)
 

Static Protected Member Functions

static std::string meshPropertyName (const std::string &data_name, const std::string &prefix)
 

Protected Attributes

const SolidMechanicsHardeningModel_cohesion
 Hardening model for cohesion. More...
 
const SolidMechanicsHardeningModel_phi
 Hardening model for phi. More...
 
const SolidMechanicsHardeningModel_psi
 Hardening model for psi. More...
 
MooseEnum _tip_scheme
 The yield function is modified to f = s_m*sinphi + sqrt(a + s_bar^2 K^2) - C*cosphi where "a" depends on the tip_scheme. More...
 
Real _small_smoother2
 Square of tip smoothing parameter to smooth the cone at mean_stress = T. More...
 
Real _cap_start
 smoothing parameter dictating when the 'cap' will start - see doco for _tip_scheme More...
 
Real _cap_rate
 dictates how quickly the 'cap' degenerates to a hemisphere - see doco for _tip_scheme More...
 
Real _tt
 edge smoothing parameter, in radians More...
 
Real _costt
 cos(_tt) More...
 
Real _sintt
 sin(_tt) More...
 
Real _cos3tt
 cos(3*_tt) More...
 
Real _sin3tt
 sin(3*_tt) - useful for making comparisons with Lode angle More...
 
Real _cos6tt
 cos(6*_tt) More...
 
Real _sin6tt
 sin(6*_tt) More...
 
Real _lode_cutoff
 if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-loss More...
 
SubProblem_subproblem
 
FEProblemBase_fe_problem
 
SystemBase_sys
 
const THREAD_ID _tid
 
Assembly_assembly
 
const Moose::CoordinateSystemType_coord_sys
 
const bool _duplicate_initial_execution
 
std::set< std::string > _depend_uo
 
const bool & _enabled
 
MooseApp_app
 
const std::string _type
 
const std::string _name
 
const InputParameters_pars
 
Factory_factory
 
ActionFactory_action_factory
 
const ExecFlagEnum_execute_enum
 
const ExecFlagType_current_execute_flag
 
MooseApp_restartable_app
 
const std::string _restartable_system_name
 
const THREAD_ID _restartable_tid
 
const bool _restartable_read_only
 
FEProblemBase_mci_feproblem
 
FEProblemBase_mdi_feproblem
 
MooseApp_pg_moose_app
 
const std::string _prefix
 
FEProblemBase_sc_fe_problem
 
const THREAD_ID _sc_tid
 
const Real_real_zero
 
const VariableValue_scalar_zero
 
const Point & _point_zero
 
const InputParameters_mi_params
 
const std::string _mi_name
 
const MooseObjectName _mi_moose_object_name
 
FEProblemBase_mi_feproblem
 
SubProblem_mi_subproblem
 
const THREAD_ID _mi_tid
 
const Moose::MaterialDataType _material_data_type
 
MaterialData_material_data
 
bool _stateful_allowed
 
bool _get_material_property_called
 
std::vector< std::unique_ptr< PropertyValue > > _default_properties
 
std::unordered_set< unsigned int_material_property_dependencies
 
const MaterialPropertyName _get_suffix
 
const bool _use_interpolated_state
 
const InputParameters_ti_params
 
FEProblemBase_ti_feproblem
 
bool _is_implicit
 
Real_t
 
const Real_t_old
 
int_t_step
 
Real_dt
 
Real_dt_old
 
bool _is_transient
 
const Parallel::Communicator & _communicator
 

Static Protected Attributes

static const std::string _interpolated_old
 
static const std::string _interpolated_older
 

Private Member Functions

void abbo (const Real sin3lode, const Real sin_angle, Real &aaa, Real &bbb, Real &ccc) const
 Computes Abbo et al's A, B and C parameters. More...
 
void dabbo (const Real sin3lode, const Real sin_angle, Real &daaa, Real &dbbb, Real &dccc) const
 Computes derivatives of Abbo et al's A, B and C parameters wrt sin_angle. More...
 
RankTwoTensor df_dsig (const RankTwoTensor &stress, const Real sin_angle) const
 d(yieldFunction)/d(stress), but with the ability to put friction or dilation angle into the result More...
 

Detailed Description

Mohr-Coulomb plasticity, nonassociative with hardening/softening.

For 'hyperbolic' smoothing, the smoothing of the tip of the yield-surface cone is described in Zienkiewicz and Prande "Some useful forms of isotropic yield surfaces for soil and rock mechanics" (1977) In G Gudehus (editor) "Finite Elements in Geomechanics" Wile, Chichester, pp 179-190. For 'cap' smoothing, additional smoothing is performed. The smoothing of the edges of the cone is described in AJ Abbo, AV Lyamin, SW Sloan, JP Hambleton "A C2 continuous approximation to the Mohr-Coulomb yield surface" International Journal of Solids and Structures 48 (2011) 3001-3010

Definition at line 28 of file SolidMechanicsPlasticMohrCoulomb.h.

Constructor & Destructor Documentation

◆ SolidMechanicsPlasticMohrCoulomb()

SolidMechanicsPlasticMohrCoulomb::SolidMechanicsPlasticMohrCoulomb ( const InputParameters parameters)

Definition at line 73 of file SolidMechanicsPlasticMohrCoulomb.C.

76  _cohesion(getUserObject<SolidMechanicsHardeningModel>("cohesion")),
77  _phi(getUserObject<SolidMechanicsHardeningModel>("friction_angle")),
78  _psi(getUserObject<SolidMechanicsHardeningModel>("dilation_angle")),
79  _tip_scheme(getParam<MooseEnum>("tip_scheme")),
80  _small_smoother2(Utility::pow<2>(getParam<Real>("mc_tip_smoother"))),
81  _cap_start(getParam<Real>("cap_start")),
82  _cap_rate(getParam<Real>("cap_rate")),
83  _tt(getParam<Real>("mc_edge_smoother") * libMesh::pi / 180.0),
84  _costt(std::cos(_tt)),
85  _sintt(std::sin(_tt)),
86  _cos3tt(std::cos(3 * _tt)),
87  _sin3tt(std::sin(3 * _tt)),
88  _cos6tt(std::cos(6 * _tt)),
89  _sin6tt(std::sin(6 * _tt)),
90  _lode_cutoff(parameters.isParamValid("mc_lode_cutoff") ? getParam<Real>("mc_lode_cutoff")
91  : 1.0E-5 * Utility::pow<2>(_f_tol))
92 
93 {
94  if (_lode_cutoff < 0)
95  mooseError("mc_lode_cutoff must not be negative");
96 
97  // With arbitary UserObjects, it is impossible to check everything, and
98  // I think this is the best I can do
99  if (phi(0) < 0 || psi(0) < 0 || phi(0) > libMesh::pi / 2.0 || psi(0) > libMesh::pi / 2.0)
100  mooseError("Mohr-Coulomb friction and dilation angles must lie in [0, Pi/2]");
101  if (phi(0) < psi(0))
102  mooseError("Mohr-Coulomb friction angle must not be less than Mohr-Coulomb dilation angle");
103  if (cohesion(0) < 0)
104  mooseError("Mohr-Coulomb cohesion must not be negative");
105 
106  // check Abbo et al's convexity constraint (Eqn c.18 in their paper)
107  // With an arbitrary UserObject, it is impossible to check for all angles
108  // I think the following is the best we can do
109  Real sin_angle = std::sin(std::max(phi(0), psi(0)));
110  sin_angle = std::max(sin_angle, std::sin(std::max(phi(1E6), psi(1E6))));
111  Real rhs = std::sqrt(3) * (35 * std::sin(_tt) + 14 * std::sin(5 * _tt) - 5 * std::sin(7 * _tt)) /
112  16 / Utility::pow<5>(std::cos(_tt)) / (11 - 10 * std::cos(2 * _tt));
113  if (rhs <= sin_angle)
114  mooseError("Mohr-Coulomb edge smoothing angle is too small and a non-convex yield surface will "
115  "result. Please choose a larger value");
116 }
Real _lode_cutoff
if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-los...
virtual Real cohesion(const Real internal_param) const
cohesion as a function of internal parameter
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
Real _cap_rate
dictates how quickly the &#39;cap&#39; degenerates to a hemisphere - see doco for _tip_scheme ...
Real _tt
edge smoothing parameter, in radians
MooseEnum _tip_scheme
The yield function is modified to f = s_m*sinphi + sqrt(a + s_bar^2 K^2) - C*cosphi where "a" depends...
virtual Real phi(const Real internal_param) const
friction angle as a function of internal parameter
const SolidMechanicsHardeningModel & _cohesion
Hardening model for cohesion.
SolidMechanicsPlasticModel(const InputParameters &parameters)
virtual Real psi(const Real internal_param) const
dilation angle as a function of internal parameter
const SolidMechanicsHardeningModel & _psi
Hardening model for psi.
const SolidMechanicsHardeningModel & _phi
Hardening model for phi.
const Real _f_tol
Tolerance on yield function.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
Real _cap_start
smoothing parameter dictating when the &#39;cap&#39; will start - see doco for _tip_scheme ...
void mooseError(Args &&... args) const
const InputParameters & parameters() const
Real _small_smoother2
Square of tip smoothing parameter to smooth the cone at mean_stress = T.
const Real pi
bool isParamValid(const std::string &name) const

Member Function Documentation

◆ abbo()

void SolidMechanicsPlasticMohrCoulomb::abbo ( const Real  sin3lode,
const Real  sin_angle,
Real aaa,
Real bbb,
Real ccc 
) const
private

Computes Abbo et al's A, B and C parameters.

Parameters
sin3lodesin(3*(lode angle))
sin_anglesin(friction_angle) (for yield function), or sin(dilation_angle) (for potential function)
[out]aaaAbbo's A
[out]bbbAbbo's B
[out]cccAbbo's C

Definition at line 413 of file SolidMechanicsPlasticMohrCoulomb.C.

Referenced by df_dsig(), dflowPotential_dintnl(), dflowPotential_dstress(), dyieldFunction_dintnl(), and yieldFunction().

415 {
416  Real tmp1 = (sin3lode >= 0 ? _costt - sin_angle * _sintt / std::sqrt(3.0)
417  : _costt + sin_angle * _sintt / std::sqrt(3.0));
418  Real tmp2 = (sin3lode >= 0 ? _sintt + sin_angle * _costt / std::sqrt(3.0)
419  : -_sintt + sin_angle * _costt / std::sqrt(3.0));
420 
421  ccc = -_cos3tt * tmp1;
422  ccc += (sin3lode >= 0 ? -3 * _sin3tt * tmp2 : 3 * _sin3tt * tmp2);
423  ccc /= 18 * Utility::pow<3>(_cos3tt);
424 
425  bbb = (sin3lode >= 0 ? _sin6tt * tmp1 : -_sin6tt * tmp1);
426  bbb -= 6 * _cos6tt * tmp2;
427  bbb /= 18 * Utility::pow<3>(_cos3tt);
428 
429  aaa = (sin3lode >= 0 ? -sin_angle * _sintt / std::sqrt(3.0) - bbb * _sin3tt
430  : sin_angle * _sintt / std::sqrt(3.0) + bbb * _sin3tt);
431  aaa += -ccc * Utility::pow<2>(_sin3tt) + _costt;
432 }
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
CTSub CT_OPERATOR_BINARY CTMul CTCompareLess CTCompareGreater CTCompareEqual _arg template * sqrt(_arg)) *_arg.template D< dtag >()) CT_SIMPLE_UNARY_FUNCTION(tanh

◆ activeConstraints()

void SolidMechanicsPlasticModel::activeConstraints ( const std::vector< Real > &  f,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor Eijkl,
std::vector< bool > &  act,
RankTwoTensor returned_stress 
) const
virtualinherited

The active yield surfaces, given a vector of yield functions.

This is used by FiniteStrainMultiPlasticity to determine the initial set of active constraints at the trial (stress, intnl) configuration. It is up to you (the coder) to determine how accurate you want the returned_stress to be. Currently it is only used by FiniteStrainMultiPlasticity to estimate a good starting value for the Newton-Rahson procedure, so currently it may not need to be super perfect.

Parameters
fvalues of the yield functions
stressstress tensor
intnlinternal parameter
Eijklelasticity tensor (stress = Eijkl*strain)
[out]actact[i] = true if the i_th yield function is active
[out]returned_stressApproximate value of the returned stress

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, SolidMechanicsPlasticTensileMulti, SolidMechanicsPlasticMeanCapTC, SolidMechanicsPlasticWeakPlaneShear, and SolidMechanicsPlasticWeakPlaneTensile.

Definition at line 186 of file SolidMechanicsPlasticModel.C.

192 {
193  mooseAssert(f.size() == numberSurfaces(),
194  "f incorrectly sized at " << f.size() << " in activeConstraints");
195  act.resize(numberSurfaces());
196  for (unsigned surface = 0; surface < numberSurfaces(); ++surface)
197  act[surface] = (f[surface] > _f_tol);
198 }
Real f(Real x)
Test function for Brents method.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
const Real _f_tol
Tolerance on yield function.

◆ cohesion()

Real SolidMechanicsPlasticMohrCoulomb::cohesion ( const Real  internal_param) const
protectedvirtual

cohesion as a function of internal parameter

Definition at line 377 of file SolidMechanicsPlasticMohrCoulomb.C.

Referenced by dyieldFunction_dintnl(), SolidMechanicsPlasticMohrCoulomb(), and yieldFunction().

378 {
379  return _cohesion.value(internal_param);
380 }
virtual Real value(Real intnl) const
const SolidMechanicsHardeningModel & _cohesion
Hardening model for cohesion.

◆ consistentTangentOperator()

RankFourTensor SolidMechanicsPlasticModel::consistentTangentOperator ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor E_ijkl,
const std::vector< Real > &  cumulative_pm 
) const
virtualinherited

Calculates a custom consistent tangent operator.

You may choose to over-ride this in your derived SolidMechanicsPlasticXXXX class.

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
stress_oldtrial stress before returning
intnl_oldinternal parameter before returning
stresscurrent returned stress state
intnlinternal parameter
E_ijklelasticity tensor
cumulative_pmthe cumulative plastic multipliers
Returns
the consistent tangent operator: E_ijkl if not over-ridden

Reimplemented in SolidMechanicsPlasticTensileMulti, SolidMechanicsPlasticDruckerPragerHyperbolic, SolidMechanicsPlasticMeanCapTC, and SolidMechanicsPlasticJ2.

Definition at line 252 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticJ2::consistentTangentOperator(), SolidMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator(), SolidMechanicsPlasticMeanCapTC::consistentTangentOperator(), and SolidMechanicsPlasticTensileMulti::consistentTangentOperator().

259 {
260  return E_ijkl;
261 }

◆ d2smooth()

Real SolidMechanicsPlasticMohrCoulomb::d2smooth ( const RankTwoTensor stress) const
protectedvirtual

returns the d^2a/dstress_mean^2 - see doco for _tip_scheme

Definition at line 489 of file SolidMechanicsPlasticMohrCoulomb.C.

Referenced by dflowPotential_dstress().

490 {
491  Real d2smoother2 = 0;
492  if (_tip_scheme == "cap")
493  {
494  Real x = stress.trace() / 3.0 - _cap_start;
495  Real p = 0;
496  Real dp_dx = 0;
497  Real d2p_dx2 = 0;
498  if (x > 0)
499  {
500  p = x * (1 - std::exp(-_cap_rate * x));
501  dp_dx = (1 - std::exp(-_cap_rate * x)) + x * _cap_rate * std::exp(-_cap_rate * x);
502  d2p_dx2 = 2 * _cap_rate * std::exp(-_cap_rate * x) -
503  x * Utility::pow<2>(_cap_rate) * std::exp(-_cap_rate * x);
504  }
505  d2smoother2 += 2 * Utility::pow<2>(dp_dx) + 2 * p * d2p_dx2;
506  }
507  return d2smoother2;
508 }
Real _cap_rate
dictates how quickly the &#39;cap&#39; degenerates to a hemisphere - see doco for _tip_scheme ...
MooseEnum _tip_scheme
The yield function is modified to f = s_m*sinphi + sqrt(a + s_bar^2 K^2) - C*cosphi where "a" depends...
const std::vector< double > x
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
Real _cap_start
smoothing parameter dictating when the &#39;cap&#39; will start - see doco for _tip_scheme ...

◆ dabbo()

void SolidMechanicsPlasticMohrCoulomb::dabbo ( const Real  sin3lode,
const Real  sin_angle,
Real daaa,
Real dbbb,
Real dccc 
) const
private

Computes derivatives of Abbo et al's A, B and C parameters wrt sin_angle.

Parameters
sin3lodesin(3*(lode angle))
sin_anglesin(friction_angle) (for yield function), or sin(dilation_angle) (for potential function)
[out]daaad(Abbo's A)/d(sin_angle)
[out]dbbbd(Abbo's B)/d(sin_angle)
[out]dcccd(Abbo's C)/d(sin_angle)

Definition at line 435 of file SolidMechanicsPlasticMohrCoulomb.C.

Referenced by dflowPotential_dintnl(), and dyieldFunction_dintnl().

437 {
438  Real dtmp1 = (sin3lode >= 0 ? -_sintt / std::sqrt(3.0) : _sintt / std::sqrt(3.0));
439  Real dtmp2 = _costt / std::sqrt(3.0);
440 
441  dccc = -_cos3tt * dtmp1;
442  dccc += (sin3lode >= 0 ? -3 * _sin3tt * dtmp2 : 3 * _sin3tt * dtmp2);
443  dccc /= 18 * Utility::pow<3>(_cos3tt);
444 
445  dbbb = (sin3lode >= 0 ? _sin6tt * dtmp1 : -_sin6tt * dtmp1);
446  dbbb -= 6 * _cos6tt * dtmp2;
447  dbbb /= 18 * Utility::pow<3>(_cos3tt);
448 
449  daaa = (sin3lode >= 0 ? -_sintt / std::sqrt(3.0) - dbbb * _sin3tt
450  : _sintt / std::sqrt(3.0) + dbbb * _sin3tt);
451  daaa += -dccc * Utility::pow<2>(_sin3tt);
452 }
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
CTSub CT_OPERATOR_BINARY CTMul CTCompareLess CTCompareGreater CTCompareEqual _arg template * sqrt(_arg)) *_arg.template D< dtag >()) CT_SIMPLE_UNARY_FUNCTION(tanh

◆ dcohesion()

Real SolidMechanicsPlasticMohrCoulomb::dcohesion ( const Real  internal_param) const
protectedvirtual

d(cohesion)/d(internal_param);

Definition at line 383 of file SolidMechanicsPlasticMohrCoulomb.C.

Referenced by dyieldFunction_dintnl().

384 {
385  return _cohesion.derivative(internal_param);
386 }
const SolidMechanicsHardeningModel & _cohesion
Hardening model for cohesion.
virtual Real derivative(Real intnl) const

◆ df_dsig()

RankTwoTensor SolidMechanicsPlasticMohrCoulomb::df_dsig ( const RankTwoTensor stress,
const Real  sin_angle 
) const
private

d(yieldFunction)/d(stress), but with the ability to put friction or dilation angle into the result

Parameters
stressthe stress at which to calculate
sin_angleeither sin(friction angle) or sin(dilation angle)

Definition at line 149 of file SolidMechanicsPlasticMohrCoulomb.C.

Referenced by dyieldFunction_dstress(), and flowPotential().

150 {
151  Real mean_stress = stress.trace() / 3.0;
152  RankTwoTensor dmean_stress = stress.dtrace() / 3.0;
153  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
154  if (std::abs(sin3Lode) <= _sin3tt)
155  {
156  // the non-edge-smoothed version
157  std::vector<Real> eigvals;
158  std::vector<RankTwoTensor> deigvals;
159  stress.dsymmetricEigenvalues(eigvals, deigvals);
160  Real tmp = eigvals[2] - eigvals[0] + (eigvals[2] + eigvals[0] - 2.0 * mean_stress) * sin_angle;
161  RankTwoTensor dtmp =
162  deigvals[2] - deigvals[0] + (deigvals[2] + deigvals[0] - 2.0 * dmean_stress) * sin_angle;
163  Real denom = std::sqrt(smooth(stress) + 0.25 * Utility::pow<2>(tmp));
164  return dmean_stress * sin_angle +
165  (0.5 * dsmooth(stress) * dmean_stress + 0.25 * tmp * dtmp) / denom;
166  }
167  else
168  {
169  // the edge-smoothed version
170  Real aaa, bbb, ccc;
171  abbo(sin3Lode, sin_angle, aaa, bbb, ccc);
172  Real kk = aaa + bbb * sin3Lode + ccc * Utility::pow<2>(sin3Lode);
173  RankTwoTensor dkk = (bbb + 2 * ccc * sin3Lode) * stress.dsin3Lode(_lode_cutoff);
174  Real sibar2 = stress.secondInvariant();
175  RankTwoTensor dsibar2 = stress.dsecondInvariant();
176  Real denom = std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk));
177  return dmean_stress * sin_angle + (0.5 * dsmooth(stress) * dmean_stress +
178  0.5 * dsibar2 * Utility::pow<2>(kk) + sibar2 * kk * dkk) /
179  denom;
180  }
181 }
Real _lode_cutoff
if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-los...
RankTwoTensorTempl< Real > dsecondInvariant() const
Real sin3Lode(const Real &r0, const Real &r0_value) const
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
void dsymmetricEigenvalues(std::vector< Real > &eigvals, std::vector< RankTwoTensorTempl< Real >> &deigvals) const
virtual Real dsmooth(const RankTwoTensor &stress) const
returns the da/dstress_mean - see doco for _tip_scheme
RankTwoTensorTempl< Real > dtrace() const
RankTwoTensorTempl< Real > dsin3Lode(const Real &r0) const
void abbo(const Real sin3lode, const Real sin_angle, Real &aaa, Real &bbb, Real &ccc) const
Computes Abbo et al&#39;s A, B and C parameters.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual Real smooth(const RankTwoTensor &stress) const
returns the &#39;a&#39; parameter - see doco for _tip_scheme

◆ dflowPotential_dintnl()

RankTwoTensor SolidMechanicsPlasticMohrCoulomb::dflowPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dintnl(i, j) = dr(i, j)/dintnl

Reimplemented from SolidMechanicsPlasticModel.

Definition at line 320 of file SolidMechanicsPlasticMohrCoulomb.C.

322 {
323  Real sin_angle = std::sin(psi(intnl));
324  Real dsin_angle = std::cos(psi(intnl)) * dpsi(intnl);
325 
326  Real mean_stress = stress.trace() / 3.0;
327  RankTwoTensor dmean_stress = stress.dtrace() / 3.0;
328  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
329 
330  if (std::abs(sin3Lode) <= _sin3tt)
331  {
332  // the non-edge-smoothed version
333  std::vector<Real> eigvals;
334  std::vector<RankTwoTensor> deigvals;
335  stress.dsymmetricEigenvalues(eigvals, deigvals);
336  Real tmp = eigvals[2] - eigvals[0] + (eigvals[2] + eigvals[0] - 2.0 * mean_stress) * sin_angle;
337  Real dtmp_dintnl = (eigvals[2] + eigvals[0] - 2 * mean_stress) * dsin_angle;
338  RankTwoTensor dtmp_dstress =
339  deigvals[2] - deigvals[0] + (deigvals[2] + deigvals[0] - 2.0 * dmean_stress) * sin_angle;
340  RankTwoTensor d2tmp_dstress_dintnl =
341  (deigvals[2] + deigvals[0] - 2.0 * dmean_stress) * dsin_angle;
342  Real denom = std::sqrt(smooth(stress) + 0.25 * Utility::pow<2>(tmp));
343  return dmean_stress * dsin_angle + 0.25 * dtmp_dintnl * dtmp_dstress / denom +
344  0.25 * tmp * d2tmp_dstress_dintnl / denom -
345  0.5 * (dsmooth(stress) * dmean_stress + 0.5 * tmp * dtmp_dstress) * 0.25 * tmp *
346  dtmp_dintnl / Utility::pow<3>(denom);
347  }
348  else
349  {
350  // the edge-smoothed version
351  Real aaa, bbb, ccc;
352  abbo(sin3Lode, sin_angle, aaa, bbb, ccc);
353  Real kk = aaa + bbb * sin3Lode + ccc * Utility::pow<2>(sin3Lode);
354 
355  Real daaa, dbbb, dccc;
356  dabbo(sin3Lode, sin_angle, daaa, dbbb, dccc);
357  Real dkk_dintnl = (daaa + dbbb * sin3Lode + dccc * Utility::pow<2>(sin3Lode)) * dsin_angle;
358  RankTwoTensor dkk_dstress = (bbb + 2 * ccc * sin3Lode) * stress.dsin3Lode(_lode_cutoff);
359  RankTwoTensor d2kk_dstress_dintnl =
360  (dbbb + 2 * dccc * sin3Lode) * stress.dsin3Lode(_lode_cutoff) * dsin_angle;
361 
362  Real sibar2 = stress.secondInvariant();
363  RankTwoTensor dsibar2 = stress.dsecondInvariant();
364  Real denom = std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk));
365 
366  return dmean_stress * dsin_angle +
367  (dsibar2 * kk * dkk_dintnl + sibar2 * dkk_dintnl * dkk_dstress +
368  sibar2 * kk * d2kk_dstress_dintnl) /
369  denom -
370  (0.5 * dsmooth(stress) * dmean_stress + 0.5 * dsibar2 * Utility::pow<2>(kk) +
371  sibar2 * kk * dkk_dstress) *
372  sibar2 * kk * dkk_dintnl / Utility::pow<3>(denom);
373  }
374 }
Real _lode_cutoff
if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-los...
RankTwoTensorTempl< Real > dsecondInvariant() const
Real sin3Lode(const Real &r0, const Real &r0_value) const
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
void dsymmetricEigenvalues(std::vector< Real > &eigvals, std::vector< RankTwoTensorTempl< Real >> &deigvals) const
virtual Real dsmooth(const RankTwoTensor &stress) const
returns the da/dstress_mean - see doco for _tip_scheme
RankTwoTensorTempl< Real > dtrace() const
void dabbo(const Real sin3lode, const Real sin_angle, Real &daaa, Real &dbbb, Real &dccc) const
Computes derivatives of Abbo et al&#39;s A, B and C parameters wrt sin_angle.
RankTwoTensorTempl< Real > dsin3Lode(const Real &r0) const
virtual Real psi(const Real internal_param) const
dilation angle as a function of internal parameter
virtual Real dpsi(const Real internal_param) const
d(psi)/d(internal_param);
void abbo(const Real sin3lode, const Real sin_angle, Real &aaa, Real &bbb, Real &ccc) const
Computes Abbo et al&#39;s A, B and C parameters.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual Real smooth(const RankTwoTensor &stress) const
returns the &#39;a&#39; parameter - see doco for _tip_scheme

◆ dflowPotential_dintnlV()

void SolidMechanicsPlasticModel::dflowPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dr_dintnl 
) const
virtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dintnldr_dintnl[alpha](i, j) = dr[alpha](i, j)/dintnl

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, and SolidMechanicsPlasticTensileMulti.

Definition at line 137 of file SolidMechanicsPlasticModel.C.

140 {
141  return dr_dintnl.assign(1, dflowPotential_dintnl(stress, intnl));
142 }
virtual RankTwoTensor dflowPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to the internal parameter.

◆ dflowPotential_dstress()

RankFourTensor SolidMechanicsPlasticMohrCoulomb::dflowPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dstress(i, j, k, l) = dr(i, j)/dstress(k, l)

Reimplemented from SolidMechanicsPlasticModel.

Definition at line 237 of file SolidMechanicsPlasticMohrCoulomb.C.

239 {
240  RankFourTensor dr_dstress;
241  Real sin_angle = std::sin(psi(intnl));
242  Real mean_stress = stress.trace() / 3.0;
243  RankTwoTensor dmean_stress = stress.dtrace() / 3.0;
244  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
245  if (std::abs(sin3Lode) <= _sin3tt)
246  {
247  // the non-edge-smoothed version
248  std::vector<Real> eigvals;
249  std::vector<RankTwoTensor> deigvals;
250  std::vector<RankFourTensor> d2eigvals;
251  stress.dsymmetricEigenvalues(eigvals, deigvals);
252  stress.d2symmetricEigenvalues(d2eigvals);
253 
254  Real tmp = eigvals[2] - eigvals[0] + (eigvals[2] + eigvals[0] - 2.0 * mean_stress) * sin_angle;
255  RankTwoTensor dtmp =
256  deigvals[2] - deigvals[0] + (deigvals[2] + deigvals[0] - 2.0 * dmean_stress) * sin_angle;
257  Real denom = std::sqrt(smooth(stress) + 0.25 * Utility::pow<2>(tmp));
258  Real denom3 = Utility::pow<3>(denom);
259  Real d2smooth_over_denom = d2smooth(stress) / denom;
260  RankTwoTensor numer = dsmooth(stress) * dmean_stress + 0.5 * tmp * dtmp;
261 
262  dr_dstress = 0.25 * tmp *
263  (d2eigvals[2] - d2eigvals[0] + (d2eigvals[2] + d2eigvals[0]) * sin_angle) / denom;
264 
265  for (unsigned i = 0; i < 3; ++i)
266  for (unsigned j = 0; j < 3; ++j)
267  for (unsigned k = 0; k < 3; ++k)
268  for (unsigned l = 0; l < 3; ++l)
269  {
270  dr_dstress(i, j, k, l) +=
271  0.5 * d2smooth_over_denom * dmean_stress(i, j) * dmean_stress(k, l);
272  dr_dstress(i, j, k, l) += 0.25 * dtmp(i, j) * dtmp(k, l) / denom;
273  dr_dstress(i, j, k, l) -= 0.25 * numer(i, j) * numer(k, l) / denom3;
274  }
275  }
276  else
277  {
278  // the edge-smoothed version
279  Real aaa, bbb, ccc;
280  abbo(sin3Lode, sin_angle, aaa, bbb, ccc);
281  RankTwoTensor dsin3Lode = stress.dsin3Lode(_lode_cutoff);
282  Real kk = aaa + bbb * sin3Lode + ccc * Utility::pow<2>(sin3Lode);
283  RankTwoTensor dkk = (bbb + 2 * ccc * sin3Lode) * dsin3Lode;
284  RankFourTensor d2kk = (bbb + 2 * ccc * sin3Lode) * stress.d2sin3Lode(_lode_cutoff);
285  for (unsigned i = 0; i < 3; ++i)
286  for (unsigned j = 0; j < 3; ++j)
287  for (unsigned k = 0; k < 3; ++k)
288  for (unsigned l = 0; l < 3; ++l)
289  d2kk(i, j, k, l) += 2 * ccc * dsin3Lode(i, j) * dsin3Lode(k, l);
290 
291  Real sibar2 = stress.secondInvariant();
292  RankTwoTensor dsibar2 = stress.dsecondInvariant();
293  RankFourTensor d2sibar2 = stress.d2secondInvariant();
294 
295  Real denom = std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk));
296  Real denom3 = Utility::pow<3>(denom);
297  Real d2smooth_over_denom = d2smooth(stress) / denom;
298  RankTwoTensor numer_full =
299  0.5 * dsmooth(stress) * dmean_stress + 0.5 * dsibar2 * kk * kk + sibar2 * kk * dkk;
300 
301  dr_dstress = (0.5 * d2sibar2 * Utility::pow<2>(kk) + sibar2 * kk * d2kk) / denom;
302  for (unsigned i = 0; i < 3; ++i)
303  for (unsigned j = 0; j < 3; ++j)
304  for (unsigned k = 0; k < 3; ++k)
305  for (unsigned l = 0; l < 3; ++l)
306  {
307  dr_dstress(i, j, k, l) +=
308  0.5 * d2smooth_over_denom * dmean_stress(i, j) * dmean_stress(k, l);
309  dr_dstress(i, j, k, l) +=
310  (dsibar2(i, j) * dkk(k, l) * kk + dkk(i, j) * dsibar2(k, l) * kk +
311  sibar2 * dkk(i, j) * dkk(k, l)) /
312  denom;
313  dr_dstress(i, j, k, l) -= numer_full(i, j) * numer_full(k, l) / denom3;
314  }
315  }
316  return dr_dstress;
317 }
Real _lode_cutoff
if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-los...
RankTwoTensorTempl< Real > dsecondInvariant() const
RankFourTensorTempl< Real > d2secondInvariant() const
Real sin3Lode(const Real &r0, const Real &r0_value) const
virtual Real d2smooth(const RankTwoTensor &stress) const
returns the d^2a/dstress_mean^2 - see doco for _tip_scheme
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
void dsymmetricEigenvalues(std::vector< Real > &eigvals, std::vector< RankTwoTensorTempl< Real >> &deigvals) const
virtual Real dsmooth(const RankTwoTensor &stress) const
returns the da/dstress_mean - see doco for _tip_scheme
RankTwoTensorTempl< Real > dtrace() const
RankTwoTensorTempl< Real > dsin3Lode(const Real &r0) const
void d2symmetricEigenvalues(std::vector< RankFourTensorTempl< Real >> &deriv) const
virtual Real psi(const Real internal_param) const
dilation angle as a function of internal parameter
RankFourTensorTempl< Real > d2sin3Lode(const Real &r0) const
void abbo(const Real sin3lode, const Real sin_angle, Real &aaa, Real &bbb, Real &ccc) const
Computes Abbo et al&#39;s A, B and C parameters.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static const std::complex< double > j(0, 1)
Complex number "j" (also known as "i")
static const std::string k
Definition: NS.h:130
virtual Real smooth(const RankTwoTensor &stress) const
returns the &#39;a&#39; parameter - see doco for _tip_scheme

◆ dflowPotential_dstressV()

void SolidMechanicsPlasticModel::dflowPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankFourTensor > &  dr_dstress 
) const
virtualinherited

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dstressdr_dstress[alpha](i, j, k, l) = dr[alpha](i, j)/dstress(k, l)

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, and SolidMechanicsPlasticTensileMulti.

Definition at line 123 of file SolidMechanicsPlasticModel.C.

126 {
127  return dr_dstress.assign(1, dflowPotential_dstress(stress, intnl));
128 }
virtual RankFourTensor dflowPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to stress.

◆ dhardPotential_dintnl()

Real SolidMechanicsPlasticModel::dhardPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
the derivative

Reimplemented in SolidMechanicsPlasticMeanCapTC.

Definition at line 172 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticModel::dhardPotential_dintnlV().

174 {
175  return 0.0;
176 }

◆ dhardPotential_dintnlV()

void SolidMechanicsPlasticModel::dhardPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  dh_dintnl 
) const
virtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dintnldh_dintnl[alpha] = dh[alpha]/dintnl

Definition at line 178 of file SolidMechanicsPlasticModel.C.

181 {
182  dh_dintnl.resize(numberSurfaces(), dhardPotential_dintnl(stress, intnl));
183 }
virtual Real dhardPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to the internal parameter. ...
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.

◆ dhardPotential_dstress()

RankTwoTensor SolidMechanicsPlasticModel::dhardPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
dh_dstress(i, j) = dh/dstress(i, j)

Reimplemented in SolidMechanicsPlasticMeanCapTC.

Definition at line 158 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticModel::dhardPotential_dstressV().

160 {
161  return RankTwoTensor();
162 }

◆ dhardPotential_dstressV()

void SolidMechanicsPlasticModel::dhardPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dh_dstress 
) const
virtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dstressdh_dstress[alpha](i, j) = dh[alpha]/dstress(i, j)

Definition at line 164 of file SolidMechanicsPlasticModel.C.

167 {
168  dh_dstress.assign(numberSurfaces(), dhardPotential_dstress(stress, intnl));
169 }
virtual RankTwoTensor dhardPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to stress.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.

◆ dphi()

Real SolidMechanicsPlasticMohrCoulomb::dphi ( const Real  internal_param) const
protectedvirtual

d(phi)/d(internal_param);

Definition at line 395 of file SolidMechanicsPlasticMohrCoulomb.C.

Referenced by dyieldFunction_dintnl().

396 {
397  return _phi.derivative(internal_param);
398 }
const SolidMechanicsHardeningModel & _phi
Hardening model for phi.
virtual Real derivative(Real intnl) const

◆ dpsi()

Real SolidMechanicsPlasticMohrCoulomb::dpsi ( const Real  internal_param) const
protectedvirtual

d(psi)/d(internal_param);

Definition at line 407 of file SolidMechanicsPlasticMohrCoulomb.C.

Referenced by dflowPotential_dintnl().

408 {
409  return _psi.derivative(internal_param);
410 }
const SolidMechanicsHardeningModel & _psi
Hardening model for psi.
virtual Real derivative(Real intnl) const

◆ dsmooth()

Real SolidMechanicsPlasticMohrCoulomb::dsmooth ( const RankTwoTensor stress) const
protectedvirtual

returns the da/dstress_mean - see doco for _tip_scheme

Definition at line 470 of file SolidMechanicsPlasticMohrCoulomb.C.

Referenced by df_dsig(), dflowPotential_dintnl(), and dflowPotential_dstress().

471 {
472  Real dsmoother2 = 0;
473  if (_tip_scheme == "cap")
474  {
475  Real x = stress.trace() / 3.0 - _cap_start;
476  Real p = 0;
477  Real dp_dx = 0;
478  if (x > 0)
479  {
480  p = x * (1 - std::exp(-_cap_rate * x));
481  dp_dx = (1 - std::exp(-_cap_rate * x)) + x * _cap_rate * std::exp(-_cap_rate * x);
482  }
483  dsmoother2 += 2 * p * dp_dx;
484  }
485  return dsmoother2;
486 }
Real _cap_rate
dictates how quickly the &#39;cap&#39; degenerates to a hemisphere - see doco for _tip_scheme ...
MooseEnum _tip_scheme
The yield function is modified to f = s_m*sinphi + sqrt(a + s_bar^2 K^2) - C*cosphi where "a" depends...
const std::vector< double > x
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
Real _cap_start
smoothing parameter dictating when the &#39;cap&#39; will start - see doco for _tip_scheme ...

◆ dyieldFunction_dintnl()

Real SolidMechanicsPlasticMohrCoulomb::dyieldFunction_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the derivative

Reimplemented from SolidMechanicsPlasticModel.

Definition at line 192 of file SolidMechanicsPlasticMohrCoulomb.C.

194 {
195  Real sin_angle = std::sin(phi(intnl));
196  Real cos_angle = std::cos(phi(intnl));
197  Real dsin_angle = cos_angle * dphi(intnl);
198  Real dcos_angle = -sin_angle * dphi(intnl);
199 
200  Real mean_stress = stress.trace() / 3.0;
201  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
202  if (std::abs(sin3Lode) <= _sin3tt)
203  {
204  // the non-edge-smoothed version
205  std::vector<Real> eigvals;
206  stress.symmetricEigenvalues(eigvals);
207  Real tmp = eigvals[2] - eigvals[0] + (eigvals[2] + eigvals[0] - 2 * mean_stress) * sin_angle;
208  Real dtmp = (eigvals[2] + eigvals[0] - 2 * mean_stress) * dsin_angle;
209  Real denom = std::sqrt(smooth(stress) + 0.25 * Utility::pow<2>(tmp));
210  return mean_stress * dsin_angle + 0.25 * tmp * dtmp / denom - dcohesion(intnl) * cos_angle -
211  cohesion(intnl) * dcos_angle;
212  }
213  else
214  {
215  // the edge-smoothed version
216  Real aaa, bbb, ccc;
217  abbo(sin3Lode, sin_angle, aaa, bbb, ccc);
218  Real daaa, dbbb, dccc;
219  dabbo(sin3Lode, sin_angle, daaa, dbbb, dccc);
220  Real kk = aaa + bbb * sin3Lode + ccc * Utility::pow<2>(sin3Lode);
221  Real dkk = (daaa + dbbb * sin3Lode + dccc * Utility::pow<2>(sin3Lode)) * dsin_angle;
222  Real sibar2 = stress.secondInvariant();
223  Real denom = std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk));
224  return mean_stress * dsin_angle + sibar2 * kk * dkk / denom - dcohesion(intnl) * cos_angle -
225  cohesion(intnl) * dcos_angle;
226  }
227 }
Real _lode_cutoff
if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-los...
void symmetricEigenvalues(std::vector< Real > &eigvals) const
Real sin3Lode(const Real &r0, const Real &r0_value) const
virtual Real dcohesion(const Real internal_param) const
d(cohesion)/d(internal_param);
virtual Real cohesion(const Real internal_param) const
cohesion as a function of internal parameter
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
virtual Real dphi(const Real internal_param) const
d(phi)/d(internal_param);
virtual Real phi(const Real internal_param) const
friction angle as a function of internal parameter
void dabbo(const Real sin3lode, const Real sin_angle, Real &daaa, Real &dbbb, Real &dccc) const
Computes derivatives of Abbo et al&#39;s A, B and C parameters wrt sin_angle.
void abbo(const Real sin3lode, const Real sin_angle, Real &aaa, Real &bbb, Real &ccc) const
Computes Abbo et al&#39;s A, B and C parameters.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual Real smooth(const RankTwoTensor &stress) const
returns the &#39;a&#39; parameter - see doco for _tip_scheme

◆ dyieldFunction_dintnlV()

void SolidMechanicsPlasticModel::dyieldFunction_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  df_dintnl 
) const
virtualinherited

The derivative of yield functions with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dintnldf_dintnl[alpha] = df[alpha]/dintnl

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, and SolidMechanicsPlasticTensileMulti.

Definition at line 96 of file SolidMechanicsPlasticModel.C.

99 {
100  return df_dintnl.assign(1, dyieldFunction_dintnl(stress, intnl));
101 }
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to the internal parameter.

◆ dyieldFunction_dstress()

RankTwoTensor SolidMechanicsPlasticMohrCoulomb::dyieldFunction_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
df_dstress(i, j) = dyieldFunction/dstress(i, j)

Reimplemented from SolidMechanicsPlasticModel.

Definition at line 184 of file SolidMechanicsPlasticMohrCoulomb.C.

186 {
187  Real sinphi = std::sin(phi(intnl));
188  return df_dsig(stress, sinphi);
189 }
virtual Real phi(const Real internal_param) const
friction angle as a function of internal parameter
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
RankTwoTensor df_dsig(const RankTwoTensor &stress, const Real sin_angle) const
d(yieldFunction)/d(stress), but with the ability to put friction or dilation angle into the result ...

◆ dyieldFunction_dstressV()

void SolidMechanicsPlasticModel::dyieldFunction_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  df_dstress 
) const
virtualinherited

The derivative of yield functions with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dstressdf_dstress[alpha](i, j) = dyieldFunction[alpha]/dstress(i, j)

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, and SolidMechanicsPlasticTensileMulti.

Definition at line 82 of file SolidMechanicsPlasticModel.C.

85 {
86  df_dstress.assign(1, dyieldFunction_dstress(stress, intnl));
87 }
virtual RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to stress.

◆ execute()

void SolidMechanicsPlasticModel::execute ( )
virtualinherited

Implements GeneralUserObject.

Definition at line 45 of file SolidMechanicsPlasticModel.C.

46 {
47 }

◆ finalize()

void SolidMechanicsPlasticModel::finalize ( )
virtualinherited

Implements GeneralUserObject.

Definition at line 50 of file SolidMechanicsPlasticModel.C.

51 {
52 }

◆ flowPotential()

RankTwoTensor SolidMechanicsPlasticMohrCoulomb::flowPotential ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The flow potential.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
the flow potential

Reimplemented from SolidMechanicsPlasticModel.

Definition at line 230 of file SolidMechanicsPlasticMohrCoulomb.C.

231 {
232  Real sinpsi = std::sin(psi(intnl));
233  return df_dsig(stress, sinpsi);
234 }
virtual Real psi(const Real internal_param) const
dilation angle as a function of internal parameter
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
RankTwoTensor df_dsig(const RankTwoTensor &stress, const Real sin_angle) const
d(yieldFunction)/d(stress), but with the ability to put friction or dilation angle into the result ...

◆ flowPotentialV()

void SolidMechanicsPlasticModel::flowPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  r 
) const
virtualinherited

The flow potentials.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]rr[alpha] is the flow potential for the "alpha" yield function

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, and SolidMechanicsPlasticTensileMulti.

Definition at line 109 of file SolidMechanicsPlasticModel.C.

112 {
113  return r.assign(1, flowPotential(stress, intnl));
114 }
virtual RankTwoTensor flowPotential(const RankTwoTensor &stress, Real intnl) const
The flow potential.

◆ hardPotential()

Real SolidMechanicsPlasticModel::hardPotential ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
Returns
the hardening potential

Reimplemented in SolidMechanicsPlasticMeanCapTC.

Definition at line 145 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticModel::hardPotentialV().

146 {
147  return -1.0;
148 }

◆ hardPotentialV()

void SolidMechanicsPlasticModel::hardPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  h 
) const
virtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
[out]hh[alpha] is the hardening potential for the "alpha" yield function

Definition at line 150 of file SolidMechanicsPlasticModel.C.

153 {
154  h.assign(numberSurfaces(), hardPotential(stress, intnl));
155 }
virtual Real hardPotential(const RankTwoTensor &stress, Real intnl) const
The hardening potential.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.

◆ initialize()

void SolidMechanicsPlasticModel::initialize ( )
virtualinherited

Implements GeneralUserObject.

Definition at line 40 of file SolidMechanicsPlasticModel.C.

41 {
42 }

◆ KuhnTuckerSingleSurface()

bool SolidMechanicsPlasticModel::KuhnTuckerSingleSurface ( Real  yf,
Real  dpm,
Real  dpm_tol 
) const
inherited

Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.

Parameters
yfYield function value
dpmplastic multiplier
dpm_toltolerance on plastic multiplier: viz dpm>-dpm_tol means "dpm is non-negative"

Definition at line 246 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticMohrCoulombMulti::KuhnTuckerOK(), SolidMechanicsPlasticTensileMulti::KuhnTuckerOK(), and SolidMechanicsPlasticModel::returnMap().

247 {
248  return (dpm == 0 && yf <= _f_tol) || (dpm > -dpm_tol && yf <= _f_tol && yf >= -_f_tol);
249 }
const Real _f_tol
Tolerance on yield function.

◆ modelName()

std::string SolidMechanicsPlasticMohrCoulomb::modelName ( ) const
overridevirtual

Implements SolidMechanicsPlasticModel.

Definition at line 511 of file SolidMechanicsPlasticMohrCoulomb.C.

512 {
513  return "MohrCoulomb";
514 }

◆ numberSurfaces()

unsigned SolidMechanicsPlasticModel::numberSurfaces ( ) const
virtualinherited

◆ phi()

Real SolidMechanicsPlasticMohrCoulomb::phi ( const Real  internal_param) const
protectedvirtual

friction angle as a function of internal parameter

Definition at line 389 of file SolidMechanicsPlasticMohrCoulomb.C.

Referenced by dyieldFunction_dintnl(), dyieldFunction_dstress(), SolidMechanicsPlasticMohrCoulomb(), and yieldFunction().

390 {
391  return _phi.value(internal_param);
392 }
virtual Real value(Real intnl) const
const SolidMechanicsHardeningModel & _phi
Hardening model for phi.

◆ psi()

Real SolidMechanicsPlasticMohrCoulomb::psi ( const Real  internal_param) const
protectedvirtual

dilation angle as a function of internal parameter

Definition at line 401 of file SolidMechanicsPlasticMohrCoulomb.C.

Referenced by dflowPotential_dintnl(), dflowPotential_dstress(), flowPotential(), and SolidMechanicsPlasticMohrCoulomb().

402 {
403  return _psi.value(internal_param);
404 }
virtual Real value(Real intnl) const
const SolidMechanicsHardeningModel & _psi
Hardening model for psi.

◆ returnMap()

bool SolidMechanicsPlasticModel::returnMap ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankFourTensor E_ijkl,
Real  ep_plastic_tolerance,
RankTwoTensor returned_stress,
Real returned_intnl,
std::vector< Real > &  dpm,
RankTwoTensor delta_dp,
std::vector< Real > &  yf,
bool &  trial_stress_inadmissible 
) const
virtualinherited

Performs a custom return-map.

You may choose to over-ride this in your derived SolidMechanicsPlasticXXXX class, and you may implement the return-map algorithm in any way that suits you. Eg, using a Newton-Raphson approach, or a radial-return, etc. This may also be used as a quick way of ascertaining whether (trial_stress, intnl_old) is in fact admissible.

For over-riding this function, please note the following.

(1) Denoting the return value of the function by "successful_return", the only possible output values should be: (A) trial_stress_inadmissible=false, successful_return=true. That is, (trial_stress, intnl_old) is in fact admissible (in the elastic domain). (B) trial_stress_inadmissible=true, successful_return=false. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), and you didn't return to the yield surface. (C) trial_stress_inadmissible=true, successful_return=true. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), but you did return to the yield surface. The default implementation only handles case (A) and (B): it does not attempt to do a return-map algorithm.

(2) you must correctly signal "successful_return" using the return value of this function. Don't assume the calling function will do Kuhn-Tucker checking and so forth!

(3) In cases (A) and (B) you needn't set returned_stress, returned_intnl, delta_dp, or dpm. This is for computational efficiency.

(4) In cases (A) and (B), you MUST place the yield function values at (trial_stress, intnl_old) into yf so the calling function can use this information optimally. You will have already calculated these yield function values, which can be quite expensive, and it's not very optimal for the calling function to have to re-calculate them.

(5) In case (C), you need to set: returned_stress (the returned value of stress) returned_intnl (the returned value of the internal variable) delta_dp (the change in plastic strain) dpm (the plastic multipliers needed to bring about the return) yf (yield function values at the returned configuration)

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
trial_stressThe trial stress
intnl_oldValue of the internal parameter
E_ijklElasticity tensor
ep_plastic_toleranceTolerance defined by the user for the plastic strain
[out]returned_stressIn case (C): lies on the yield surface after returning and produces the correct plastic strain (normality condition). Otherwise: not defined
[out]returned_intnlIn case (C): the value of the internal parameter after returning. Otherwise: not defined
[out]dpmIn case (C): the plastic multipliers needed to bring about the return. Otherwise: not defined
[out]delta_dpIn case (C): The change in plastic strain induced by the return process. Otherwise: not defined
[out]yfIn case (C): the yield function at (returned_stress, returned_intnl). Otherwise: the yield function at (trial_stress, intnl_old)
[out]trial_stress_inadmissibleShould be set to false if the trial_stress is admissible, and true if the trial_stress is inadmissible. This can be used by the calling prorgram
Returns
true if a successful return (or a return-map not needed), false if the trial_stress is inadmissible but the return process failed

Reimplemented in SolidMechanicsPlasticTensileMulti, SolidMechanicsPlasticMohrCoulombMulti, SolidMechanicsPlasticDruckerPragerHyperbolic, SolidMechanicsPlasticMeanCapTC, and SolidMechanicsPlasticJ2.

Definition at line 219 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticJ2::returnMap(), SolidMechanicsPlasticDruckerPragerHyperbolic::returnMap(), SolidMechanicsPlasticMeanCapTC::returnMap(), SolidMechanicsPlasticMohrCoulombMulti::returnMap(), and SolidMechanicsPlasticTensileMulti::returnMap().

229 {
230  trial_stress_inadmissible = false;
231  yieldFunctionV(trial_stress, intnl_old, yf);
232 
233  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
234  if (yf[sf] > _f_tol)
235  trial_stress_inadmissible = true;
236 
237  // example of checking Kuhn-Tucker
238  std::vector<Real> dpm(numberSurfaces(), 0);
239  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
240  if (!KuhnTuckerSingleSurface(yf[sf], dpm[sf], 0))
241  return false;
242  return true;
243 }
virtual void yieldFunctionV(const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
Calculates the yield functions.
bool KuhnTuckerSingleSurface(Real yf, Real dpm, Real dpm_tol) const
Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
const Real _f_tol
Tolerance on yield function.

◆ smooth()

Real SolidMechanicsPlasticMohrCoulomb::smooth ( const RankTwoTensor stress) const
protectedvirtual

returns the 'a' parameter - see doco for _tip_scheme

Definition at line 455 of file SolidMechanicsPlasticMohrCoulomb.C.

Referenced by df_dsig(), dflowPotential_dintnl(), dflowPotential_dstress(), dyieldFunction_dintnl(), and yieldFunction().

456 {
457  Real smoother2 = _small_smoother2;
458  if (_tip_scheme == "cap")
459  {
460  Real x = stress.trace() / 3.0 - _cap_start;
461  Real p = 0;
462  if (x > 0)
463  p = x * (1 - std::exp(-_cap_rate * x));
464  smoother2 += Utility::pow<2>(p);
465  }
466  return smoother2;
467 }
Real _cap_rate
dictates how quickly the &#39;cap&#39; degenerates to a hemisphere - see doco for _tip_scheme ...
MooseEnum _tip_scheme
The yield function is modified to f = s_m*sinphi + sqrt(a + s_bar^2 K^2) - C*cosphi where "a" depends...
const std::vector< double > x
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
Real _cap_start
smoothing parameter dictating when the &#39;cap&#39; will start - see doco for _tip_scheme ...
Real _small_smoother2
Square of tip smoothing parameter to smooth the cone at mean_stress = T.

◆ useCustomCTO()

bool SolidMechanicsPlasticModel::useCustomCTO ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function.

Reimplemented in SolidMechanicsPlasticTensileMulti, SolidMechanicsPlasticMeanCapTC, SolidMechanicsPlasticDruckerPragerHyperbolic, and SolidMechanicsPlasticJ2.

Definition at line 213 of file SolidMechanicsPlasticModel.C.

214 {
215  return false;
216 }

◆ useCustomReturnMap()

bool SolidMechanicsPlasticModel::useCustomReturnMap ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom returnMap function.

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, SolidMechanicsPlasticTensileMulti, SolidMechanicsPlasticMeanCapTC, SolidMechanicsPlasticDruckerPragerHyperbolic, and SolidMechanicsPlasticJ2.

Definition at line 207 of file SolidMechanicsPlasticModel.C.

208 {
209  return false;
210 }

◆ validParams()

InputParameters SolidMechanicsPlasticMohrCoulomb::validParams ( )
static

Definition at line 21 of file SolidMechanicsPlasticMohrCoulomb.C.

22 {
24  params.addRequiredParam<UserObjectName>(
25  "cohesion",
26  "A SolidMechanicsHardening UserObject that defines hardening of the cohesion. "
27  "Physically the cohesion should not be negative.");
28  params.addRequiredParam<UserObjectName>(
29  "friction_angle",
30  "A SolidMechanicsHardening UserObject that defines hardening of the "
31  "friction angle (in radians). Physically the friction angle should be "
32  "between 0 and 90deg.");
33  params.addRequiredParam<UserObjectName>(
34  "dilation_angle",
35  "A SolidMechanicsHardening UserObject that defines hardening of the "
36  "dilation angle (in radians). Usually the dilation angle is not greater "
37  "than the friction angle, and it is between 0 and 90deg.");
38  params.addRangeCheckedParam<Real>(
39  "mc_edge_smoother",
40  25.0,
41  "mc_edge_smoother>=0 & mc_edge_smoother<=30",
42  "Smoothing parameter: the edges of the cone are smoothed by the given amount.");
43  MooseEnum tip_scheme("hyperbolic cap", "hyperbolic");
44  params.addParam<MooseEnum>(
45  "tip_scheme", tip_scheme, "Scheme by which the pyramid's tip will be smoothed.");
46  params.addRequiredRangeCheckedParam<Real>("mc_tip_smoother",
47  "mc_tip_smoother>=0",
48  "Smoothing parameter: the cone vertex at mean = "
49  "cohesion*cot(friction_angle), will be smoothed by "
50  "the given amount. Typical value is 0.1*cohesion");
51  params.addParam<Real>(
52  "cap_start",
53  0.0,
54  "For the 'cap' tip_scheme, smoothing is performed in the stress_mean > cap_start region");
55  params.addRangeCheckedParam<Real>("cap_rate",
56  0.0,
57  "cap_rate>=0",
58  "For the 'cap' tip_scheme, this controls how quickly the cap "
59  "degenerates to a hemisphere: small values mean a slow "
60  "degeneration to a hemisphere (and zero means the 'cap' will "
61  "be totally inactive). Typical value is 1/tensile_strength");
62  params.addParam<Real>("mc_lode_cutoff",
63  "If the second invariant of stress is less than this "
64  "amount, the Lode angle is assumed to be zero. This is "
65  "to gaurd against precision-loss problems, and this "
66  "parameter should be set small. Default = "
67  "0.00001*((yield_Function_tolerance)^2)");
68  params.addClassDescription("Non-associative Mohr-Coulomb plasticity with hardening/softening");
69 
70  return params;
71 }
void addRequiredRangeCheckedParam(const std::string &name, const std::string &parsed_function, const std::string &doc_string)
void addParam(const std::string &name, const std::initializer_list< typename T::value_type > &value, const std::string &doc_string)
void addRequiredParam(const std::string &name, const std::string &doc_string)
static InputParameters validParams()
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void addClassDescription(const std::string &doc_string)
void addRangeCheckedParam(const std::string &name, const T &value, const std::string &parsed_function, const std::string &doc_string)

◆ yieldFunction()

Real SolidMechanicsPlasticMohrCoulomb::yieldFunction ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The following functions are what you should override when building single-plasticity models.

The yield function

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the yield function

Reimplemented from SolidMechanicsPlasticModel.

Definition at line 119 of file SolidMechanicsPlasticMohrCoulomb.C.

120 {
121  Real mean_stress = stress.trace() / 3.0;
122  Real sinphi = std::sin(phi(intnl));
123  Real cosphi = std::cos(phi(intnl));
124  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
125  if (std::abs(sin3Lode) <= _sin3tt)
126  {
127  // the non-edge-smoothed version
128  std::vector<Real> eigvals;
129  stress.symmetricEigenvalues(eigvals);
130  return mean_stress * sinphi +
131  std::sqrt(smooth(stress) +
132  0.25 * Utility::pow<2>(eigvals[2] - eigvals[0] +
133  (eigvals[2] + eigvals[0] - 2 * mean_stress) * sinphi)) -
134  cohesion(intnl) * cosphi;
135  }
136  else
137  {
138  // the edge-smoothed version
139  Real aaa, bbb, ccc;
140  abbo(sin3Lode, sinphi, aaa, bbb, ccc);
141  Real kk = aaa + bbb * sin3Lode + ccc * Utility::pow<2>(sin3Lode);
142  Real sibar2 = stress.secondInvariant();
143  return mean_stress * sinphi + std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk)) -
144  cohesion(intnl) * cosphi;
145  }
146 }
Real _lode_cutoff
if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-los...
void symmetricEigenvalues(std::vector< Real > &eigvals) const
Real sin3Lode(const Real &r0, const Real &r0_value) const
virtual Real cohesion(const Real internal_param) const
cohesion as a function of internal parameter
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
virtual Real phi(const Real internal_param) const
friction angle as a function of internal parameter
void abbo(const Real sin3lode, const Real sin_angle, Real &aaa, Real &bbb, Real &ccc) const
Computes Abbo et al&#39;s A, B and C parameters.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual Real smooth(const RankTwoTensor &stress) const
returns the &#39;a&#39; parameter - see doco for _tip_scheme

◆ yieldFunctionV()

void SolidMechanicsPlasticModel::yieldFunctionV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  f 
) const
virtualinherited

Calculates the yield functions.

Note that for single-surface plasticity you don't want to override this - override the private yieldFunction below

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]fthe yield functions

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, and SolidMechanicsPlasticTensileMulti.

Definition at line 67 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticModel::returnMap().

70 {
71  f.assign(1, yieldFunction(stress, intnl));
72 }
virtual Real yieldFunction(const RankTwoTensor &stress, Real intnl) const
The following functions are what you should override when building single-plasticity models...
Real f(Real x)
Test function for Brents method.

Member Data Documentation

◆ _cap_rate

Real SolidMechanicsPlasticMohrCoulomb::_cap_rate
protected

dictates how quickly the 'cap' degenerates to a hemisphere - see doco for _tip_scheme

Definition at line 76 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by d2smooth(), dsmooth(), and smooth().

◆ _cap_start

Real SolidMechanicsPlasticMohrCoulomb::_cap_start
protected

smoothing parameter dictating when the 'cap' will start - see doco for _tip_scheme

Definition at line 73 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by d2smooth(), dsmooth(), and smooth().

◆ _cohesion

const SolidMechanicsHardeningModel& SolidMechanicsPlasticMohrCoulomb::_cohesion
protected

Hardening model for cohesion.

Definition at line 51 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by cohesion(), and dcohesion().

◆ _cos3tt

Real SolidMechanicsPlasticMohrCoulomb::_cos3tt
protected

cos(3*_tt)

Definition at line 88 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by abbo(), and dabbo().

◆ _cos6tt

Real SolidMechanicsPlasticMohrCoulomb::_cos6tt
protected

cos(6*_tt)

Definition at line 94 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by abbo(), and dabbo().

◆ _costt

Real SolidMechanicsPlasticMohrCoulomb::_costt
protected

cos(_tt)

Definition at line 82 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by abbo(), and dabbo().

◆ _f_tol

const Real SolidMechanicsPlasticModel::_f_tol
inherited

◆ _ic_tol

const Real SolidMechanicsPlasticModel::_ic_tol
inherited

Tolerance on internal constraint.

Definition at line 173 of file SolidMechanicsPlasticModel.h.

◆ _lode_cutoff

Real SolidMechanicsPlasticMohrCoulomb::_lode_cutoff
protected

if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-loss

Definition at line 100 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by df_dsig(), dflowPotential_dintnl(), dflowPotential_dstress(), dyieldFunction_dintnl(), SolidMechanicsPlasticMohrCoulomb(), and yieldFunction().

◆ _phi

const SolidMechanicsHardeningModel& SolidMechanicsPlasticMohrCoulomb::_phi
protected

Hardening model for phi.

Definition at line 54 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by dphi(), and phi().

◆ _psi

const SolidMechanicsHardeningModel& SolidMechanicsPlasticMohrCoulomb::_psi
protected

Hardening model for psi.

Definition at line 57 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by dpsi(), and psi().

◆ _sin3tt

Real SolidMechanicsPlasticMohrCoulomb::_sin3tt
protected

sin(3*_tt) - useful for making comparisons with Lode angle

Definition at line 91 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by abbo(), dabbo(), df_dsig(), dflowPotential_dintnl(), dflowPotential_dstress(), dyieldFunction_dintnl(), and yieldFunction().

◆ _sin6tt

Real SolidMechanicsPlasticMohrCoulomb::_sin6tt
protected

sin(6*_tt)

Definition at line 97 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by abbo(), and dabbo().

◆ _sintt

Real SolidMechanicsPlasticMohrCoulomb::_sintt
protected

sin(_tt)

Definition at line 85 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by abbo(), and dabbo().

◆ _small_smoother2

Real SolidMechanicsPlasticMohrCoulomb::_small_smoother2
protected

Square of tip smoothing parameter to smooth the cone at mean_stress = T.

Definition at line 70 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by smooth().

◆ _tip_scheme

MooseEnum SolidMechanicsPlasticMohrCoulomb::_tip_scheme
protected

The yield function is modified to f = s_m*sinphi + sqrt(a + s_bar^2 K^2) - C*cosphi where "a" depends on the tip_scheme.

Currently _tip_scheme is 'hyperbolic', where a = _small_smoother2 'cap' where a = _small_smoother2 + (p(stress_mean - _cap_start))^2 with the function p(x)=x(1-exp(-_cap_rate*x)) for x>0, and p=0 otherwise

Definition at line 67 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by d2smooth(), dsmooth(), and smooth().

◆ _tt

Real SolidMechanicsPlasticMohrCoulomb::_tt
protected

edge smoothing parameter, in radians

Definition at line 79 of file SolidMechanicsPlasticMohrCoulomb.h.

Referenced by SolidMechanicsPlasticMohrCoulomb().


The documentation for this class was generated from the following files: