https://mooseframework.inl.gov
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Static Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Member Functions | Private Attributes | List of all members
SolidMechanicsPlasticDruckerPrager Class Reference

Rate-independent non-associative Drucker Prager with hardening/softening. More...

#include <SolidMechanicsPlasticDruckerPrager.h>

Inheritance diagram for SolidMechanicsPlasticDruckerPrager:
[legend]

Public Types

enum  FrictionDilation { friction = 0, dilation = 1 }
 bbb (friction) and bbb_flow (dilation) are computed using the same function, onlyB, and this parameter tells that function whether to compute bbb or bbb_flow More...
 
typedef DataFileName DataFileParameterType
 

Public Member Functions

 SolidMechanicsPlasticDruckerPrager (const InputParameters &parameters)
 
virtual std::string modelName () const override
 
void bothAB (Real intnl, Real &aaa, Real &bbb) const
 Calculates aaa and bbb as a function of the internal parameter intnl. More...
 
void dbothAB (Real intnl, Real &daaa, Real &dbbb) const
 Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl. More...
 
void onlyB (Real intnl, int fd, Real &bbb) const
 Calculate bbb or bbb_flow. More...
 
void donlyB (Real intnl, int fd, Real &dbbb) const
 Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl) More...
 
void initialize ()
 
void execute ()
 
void finalize ()
 
virtual unsigned int numberSurfaces () const
 The number of yield surfaces for this plasticity model. More...
 
virtual void yieldFunctionV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
 Calculates the yield functions. More...
 
virtual void dyieldFunction_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &df_dstress) const
 The derivative of yield functions with respect to stress. More...
 
virtual void dyieldFunction_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &df_dintnl) const
 The derivative of yield functions with respect to the internal parameter. More...
 
virtual void flowPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &r) const
 The flow potentials. More...
 
virtual void dflowPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankFourTensor > &dr_dstress) const
 The derivative of the flow potential with respect to stress. More...
 
virtual void dflowPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dr_dintnl) const
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual void hardPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &h) const
 The hardening potential. More...
 
virtual void dhardPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dh_dstress) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual void dhardPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &dh_dintnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual void activeConstraints (const std::vector< Real > &f, const RankTwoTensor &stress, Real intnl, const RankFourTensor &Eijkl, std::vector< bool > &act, RankTwoTensor &returned_stress) const
 The active yield surfaces, given a vector of yield functions. More...
 
virtual bool useCustomReturnMap () const
 Returns false. You will want to override this in your derived class if you write a custom returnMap function. More...
 
virtual bool useCustomCTO () const
 Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function. More...
 
virtual bool returnMap (const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const
 Performs a custom return-map. More...
 
virtual RankFourTensor consistentTangentOperator (const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const
 Calculates a custom consistent tangent operator. More...
 
bool KuhnTuckerSingleSurface (Real yf, Real dpm, Real dpm_tol) const
 Returns true if the Kuhn-Tucker conditions for the single surface are satisfied. More...
 
SubProblemgetSubProblem () const
 
bool shouldDuplicateInitialExecution () const
 
virtual Real spatialValue (const Point &) const
 
virtual const std::vector< Point > spatialPoints () const
 
void gatherSum (T &value)
 
void gatherMax (T &value)
 
void gatherMin (T &value)
 
void gatherProxyValueMax (T1 &proxy, T2 &value)
 
void gatherProxyValueMin (T1 &proxy, T2 &value)
 
void setPrimaryThreadCopy (UserObject *primary)
 
UserObjectprimaryThreadCopy ()
 
std::set< UserObjectName > getDependObjects () const
 
virtual bool needThreadedCopy () const
 
const std::set< std::string > & getRequestedItems () override
 
const std::set< std::string > & getSuppliedItems () override
 
unsigned int systemNumber () const
 
virtual bool enabled () const
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
MooseAppgetMooseApp () const
 
const std::string & type () const
 
virtual const std::string & name () const
 
std::string typeAndName () const
 
std::string errorPrefix (const std::string &error_type) const
 
void callMooseError (std::string msg, const bool with_prefix) const
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
const InputParametersparameters () const
 
MooseObjectName uniqueName () const
 
const T & getParam (const std::string &name) const
 
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 
const T * queryParam (const std::string &name) const
 
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 
bool isParamValid (const std::string &name) const
 
bool isParamSetByUser (const std::string &nm) const
 
void paramError (const std::string &param, Args... args) const
 
void paramWarning (const std::string &param, Args... args) const
 
void paramInfo (const std::string &param, Args... args) const
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 
void mooseError (Args &&... args) const
 
void mooseErrorNonPrefixed (Args &&... args) const
 
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
void mooseWarning (Args &&... args) const
 
void mooseWarningNonPrefixed (Args &&... args) const
 
void mooseDeprecated (Args &&... args) const
 
void mooseInfo (Args &&... args) const
 
std::string getDataFileName (const std::string &param) const
 
std::string getDataFileNameByName (const std::string &relative_path) const
 
std::string getDataFilePath (const std::string &relative_path) const
 
virtual void initialSetup ()
 
virtual void timestepSetup ()
 
virtual void jacobianSetup ()
 
virtual void residualSetup ()
 
virtual void customSetup (const ExecFlagType &)
 
const ExecFlagEnumgetExecuteOnEnum () const
 
UserObjectName getUserObjectName (const std::string &param_name) const
 
const T & getUserObject (const std::string &param_name, bool is_dependency=true) const
 
const T & getUserObjectByName (const UserObjectName &object_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBase (const std::string &param_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBaseByName (const UserObjectName &object_name, bool is_dependency=true) const
 
const std::vector< MooseVariableScalar *> & getCoupledMooseScalarVars ()
 
const std::set< TagID > & getScalarVariableCoupleableVectorTags () const
 
const std::set< TagID > & getScalarVariableCoupleableMatrixTags () const
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, MaterialData &material_data, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, MaterialData &material_data, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, const unsigned int state=0)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name, MaterialData &material_data)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data, const unsigned int state)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name)
 
std::pair< const MaterialProperty< T > *, std::set< SubdomainID > > getBlockMaterialProperty (const MaterialPropertyName &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialProperty (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialProperty ()
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialPropertyByName (const std::string &prop_name)
 
const MaterialProperty< T > & getZeroMaterialProperty (Ts... args)
 
std::set< SubdomainIDgetMaterialPropertyBlocks (const std::string &name)
 
std::vector< SubdomainName > getMaterialPropertyBlockNames (const std::string &name)
 
std::set< BoundaryIDgetMaterialPropertyBoundaryIDs (const std::string &name)
 
std::vector< BoundaryName > getMaterialPropertyBoundaryNames (const std::string &name)
 
void checkBlockAndBoundaryCompatibility (std::shared_ptr< MaterialBase > discrete)
 
std::unordered_map< SubdomainID, std::vector< MaterialBase *> > buildRequiredMaterials (bool allow_stateful=true)
 
void statefulPropertiesAllowed (bool)
 
bool getMaterialPropertyCalled () const
 
virtual const std::unordered_set< unsigned int > & getMatPropDependencies () const
 
virtual void resolveOptionalProperties ()
 
const GenericMaterialProperty< T, is_ad > & getPossiblyConstantGenericMaterialPropertyByName (const MaterialPropertyName &prop_name, MaterialData &material_data, const unsigned int state)
 
bool isImplicit ()
 
Moose::StateArg determineState () const
 
virtual void threadJoin (const UserObject &) override
 
virtual void threadJoin (const UserObject &) override
 
virtual void subdomainSetup () override
 
virtual void subdomainSetup () override
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
const GenericOptionalMaterialProperty< T, is_ad > & getGenericOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const GenericOptionalMaterialProperty< T, is_ad > & getGenericOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalMaterialProperty< T > & getOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalMaterialProperty< T > & getOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalADMaterialProperty< T > & getOptionalADMaterialProperty (const std::string &name)
 
const OptionalADMaterialProperty< T > & getOptionalADMaterialProperty (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOld (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOld (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOlder (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOlder (const std::string &name)
 
MaterialBasegetMaterial (const std::string &name)
 
MaterialBasegetMaterial (const std::string &name)
 
MaterialBasegetMaterialByName (const std::string &name, bool no_warn=false)
 
MaterialBasegetMaterialByName (const std::string &name, bool no_warn=false)
 
bool hasMaterialProperty (const std::string &name)
 
bool hasMaterialProperty (const std::string &name)
 
bool hasMaterialPropertyByName (const std::string &name)
 
bool hasMaterialPropertyByName (const std::string &name)
 
bool hasADMaterialProperty (const std::string &name)
 
bool hasADMaterialProperty (const std::string &name)
 
bool hasADMaterialPropertyByName (const std::string &name)
 
bool hasADMaterialPropertyByName (const std::string &name)
 
bool hasGenericMaterialProperty (const std::string &name)
 
bool hasGenericMaterialProperty (const std::string &name)
 
bool hasGenericMaterialPropertyByName (const std::string &name)
 
bool hasGenericMaterialPropertyByName (const std::string &name)
 
const FunctiongetFunction (const std::string &name) const
 
const FunctiongetFunctionByName (const FunctionName &name) const
 
bool hasFunction (const std::string &param_name) const
 
bool hasFunctionByName (const FunctionName &name) const
 
bool isDefaultPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessor (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessorByName (const PostprocessorName &name) const
 
std::size_t coupledPostprocessors (const std::string &param_name) const
 
const PostprocessorName & getPostprocessorName (const std::string &param_name, const unsigned int index=0) const
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name) const
 
const VectorPostprocessorName & getVectorPostprocessorName (const std::string &param_name) const
 
T & getSampler (const std::string &name)
 
SamplergetSampler (const std::string &name)
 
T & getSamplerByName (const SamplerName &name)
 
SamplergetSamplerByName (const SamplerName &name)
 
virtual void meshChanged ()
 
virtual void meshDisplaced ()
 
PerfGraphperfGraph ()
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
const Parallel::Communicator & comm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 

Static Public Member Functions

static InputParameters validParams ()
 
static void sort (typename std::vector< T > &vector)
 
static void sortDFS (typename std::vector< T > &vector)
 
static void cyclicDependencyError (CyclicDependencyException< T2 > &e, const std::string &header)
 

Public Attributes

const Real _f_tol
 Tolerance on yield function. More...
 
const Real _ic_tol
 Tolerance on internal constraint. More...
 
const ConsoleStream _console
 

Static Public Attributes

static constexpr PropertyValue::id_type default_property_id
 
static constexpr PropertyValue::id_type zero_property_id
 
static constexpr auto SYSTEM
 
static constexpr auto NAME
 

Protected Member Functions

virtual Real yieldFunction (const RankTwoTensor &stress, Real intnl) const override
 The following functions are what you should override when building single-plasticity models. More...
 
virtual RankTwoTensor dyieldFunction_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to stress. More...
 
virtual Real dyieldFunction_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to the internal parameter. More...
 
virtual RankTwoTensor flowPotential (const RankTwoTensor &stress, Real intnl) const override
 The flow potential. More...
 
virtual RankFourTensor dflowPotential_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to stress. More...
 
virtual RankTwoTensor dflowPotential_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual RankTwoTensor df_dsig (const RankTwoTensor &stress, Real bbb) const
 Function that's used in dyieldFunction_dstress and flowPotential. More...
 
virtual Real hardPotential (const RankTwoTensor &stress, Real intnl) const
 The hardening potential. More...
 
virtual RankTwoTensor dhardPotential_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual Real dhardPotential_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual void addPostprocessorDependencyHelper (const PostprocessorName &name) const override
 
virtual void addVectorPostprocessorDependencyHelper (const VectorPostprocessorName &name) const override
 
virtual void addUserObjectDependencyHelper (const UserObject &uo) const override
 
void addReporterDependencyHelper (const ReporterName &reporter_name) override
 
const ReporterNamegetReporterName (const std::string &param_name) const
 
T & declareRestartableData (const std::string &data_name, Args &&... args)
 
ManagedValue< T > declareManagedRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 
const T & getRestartableData (const std::string &data_name) const
 
T & declareRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 
T & declareRecoverableData (const std::string &data_name, Args &&... args)
 
T & declareRestartableDataWithObjectName (const std::string &data_name, const std::string &object_name, Args &&... args)
 
T & declareRestartableDataWithObjectNameWithContext (const std::string &data_name, const std::string &object_name, void *context, Args &&... args)
 
std::string restartableName (const std::string &data_name) const
 
const T & getMeshProperty (const std::string &data_name, const std::string &prefix)
 
const T & getMeshProperty (const std::string &data_name)
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name) const
 
bool hasMeshProperty (const std::string &data_name) const
 
std::string meshPropertyName (const std::string &data_name) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 
std::string timedSectionName (const std::string &section_name) const
 
bool isCoupledScalar (const std::string &var_name, unsigned int i=0) const
 
unsigned int coupledScalarComponents (const std::string &var_name) const
 
unsigned int coupledScalar (const std::string &var_name, unsigned int comp=0) const
 
libMesh::Order coupledScalarOrder (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const ADVariableValueadCoupledScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const GenericVariableValue< is_ad > & coupledGenericScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const GenericVariableValue< false > & coupledGenericScalarValue (const std::string &var_name, const unsigned int comp) const
 
const GenericVariableValue< true > & coupledGenericScalarValue (const std::string &var_name, const unsigned int comp) const
 
const VariableValuecoupledVectorTagScalarValue (const std::string &var_name, TagID tag, unsigned int comp=0) const
 
const VariableValuecoupledMatrixTagScalarValue (const std::string &var_name, TagID tag, unsigned int comp=0) const
 
const VariableValuecoupledScalarValueOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarValueOlder (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDot (const std::string &var_name, unsigned int comp=0) const
 
const ADVariableValueadCoupledScalarDot (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDot (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDotOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDu (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDotDu (const std::string &var_name, unsigned int comp=0) const
 
const MooseVariableScalargetScalarVar (const std::string &var_name, unsigned int comp) const
 
virtual void checkMaterialProperty (const std::string &name, const unsigned int state)
 
void markMatPropRequested (const std::string &)
 
MaterialPropertyName getMaterialPropertyName (const std::string &name) const
 
void checkExecutionStage ()
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
const GenericMaterialProperty< T, is_ad > * defaultGenericMaterialProperty (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > * defaultGenericMaterialProperty (const std::string &name)
 
const MaterialProperty< T > * defaultMaterialProperty (const std::string &name)
 
const MaterialProperty< T > * defaultMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > * defaultADMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > * defaultADMaterialProperty (const std::string &name)
 

Static Protected Member Functions

static std::string meshPropertyName (const std::string &data_name, const std::string &prefix)
 

Protected Attributes

const SolidMechanicsHardeningModel_mc_cohesion
 Hardening model for cohesion. More...
 
const SolidMechanicsHardeningModel_mc_phi
 Hardening model for tan(phi) More...
 
const SolidMechanicsHardeningModel_mc_psi
 Hardening model for tan(psi) More...
 
const MooseEnum _mc_interpolation_scheme
 The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface. More...
 
const bool _zero_cohesion_hardening
 True if there is no hardening of cohesion. More...
 
const bool _zero_phi_hardening
 True if there is no hardening of friction angle. More...
 
const bool _zero_psi_hardening
 True if there is no hardening of dilation angle. More...
 
SubProblem_subproblem
 
FEProblemBase_fe_problem
 
SystemBase_sys
 
const THREAD_ID _tid
 
Assembly_assembly
 
const Moose::CoordinateSystemType_coord_sys
 
const bool _duplicate_initial_execution
 
std::set< std::string > _depend_uo
 
const bool & _enabled
 
MooseApp_app
 
const std::string _type
 
const std::string _name
 
const InputParameters_pars
 
Factory_factory
 
ActionFactory_action_factory
 
const ExecFlagEnum_execute_enum
 
const ExecFlagType_current_execute_flag
 
MooseApp_restartable_app
 
const std::string _restartable_system_name
 
const THREAD_ID _restartable_tid
 
const bool _restartable_read_only
 
FEProblemBase_mci_feproblem
 
FEProblemBase_mdi_feproblem
 
MooseApp_pg_moose_app
 
const std::string _prefix
 
FEProblemBase_sc_fe_problem
 
const THREAD_ID _sc_tid
 
const Real_real_zero
 
const VariableValue_scalar_zero
 
const Point & _point_zero
 
const InputParameters_mi_params
 
const std::string _mi_name
 
const MooseObjectName _mi_moose_object_name
 
FEProblemBase_mi_feproblem
 
SubProblem_mi_subproblem
 
const THREAD_ID _mi_tid
 
const Moose::MaterialDataType _material_data_type
 
MaterialData_material_data
 
bool _stateful_allowed
 
bool _get_material_property_called
 
std::vector< std::unique_ptr< PropertyValue > > _default_properties
 
std::unordered_set< unsigned int_material_property_dependencies
 
const MaterialPropertyName _get_suffix
 
const bool _use_interpolated_state
 
const InputParameters_ti_params
 
FEProblemBase_ti_feproblem
 
bool _is_implicit
 
Real_t
 
const Real_t_old
 
int_t_step
 
Real_dt
 
Real_dt_old
 
bool _is_transient
 
const Parallel::Communicator & _communicator
 

Static Protected Attributes

static const std::string _interpolated_old
 
static const std::string _interpolated_older
 

Private Member Functions

void initializeAandB (Real intnl, Real &aaa, Real &bbb) const
 Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker-Prager and Mohr-Coulomb is H Jiang and X Yongli, A note on the Mohr-Coulomb and Drucker-Prager strength criteria, Mechanics Research Communications 38 (2011) 309-314. More...
 
void initializeB (Real intnl, int fd, Real &bbb) const
 Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker-Prager and Mohr-Coulomb is H Jiang and X Yongli, A note on the Mohr-Coulomb and Drucker-Prager strength criteria, Mechanics Research Communications 38 (2011) 309-314. More...
 

Private Attributes

Real _aaa
 
Real _bbb
 
Real _bbb_flow
 

Detailed Description

Rate-independent non-associative Drucker Prager with hardening/softening.

The cone's tip is not smoothed. f = sqrt(J2) + bbb*Tr(stress) - aaa with aaa = "cohesion" (a non-negative number) and bbb = tan(friction angle) (a positive number)

Definition at line 22 of file SolidMechanicsPlasticDruckerPrager.h.

Member Enumeration Documentation

◆ FrictionDilation

bbb (friction) and bbb_flow (dilation) are computed using the same function, onlyB, and this parameter tells that function whether to compute bbb or bbb_flow

Enumerator
friction 
dilation 

Definition at line 41 of file SolidMechanicsPlasticDruckerPrager.h.

Constructor & Destructor Documentation

◆ SolidMechanicsPlasticDruckerPrager()

SolidMechanicsPlasticDruckerPrager::SolidMechanicsPlasticDruckerPrager ( const InputParameters parameters)

Definition at line 56 of file SolidMechanicsPlasticDruckerPrager.C.

59  _mc_cohesion(getUserObject<SolidMechanicsHardeningModel>("mc_cohesion")),
60  _mc_phi(getUserObject<SolidMechanicsHardeningModel>("mc_friction_angle")),
61  _mc_psi(getUserObject<SolidMechanicsHardeningModel>("mc_dilation_angle")),
62  _mc_interpolation_scheme(getParam<MooseEnum>("mc_interpolation_scheme")),
63  _zero_cohesion_hardening(_mc_cohesion.modelName().compare("Constant") == 0),
64  _zero_phi_hardening(_mc_phi.modelName().compare("Constant") == 0),
65  _zero_psi_hardening(_mc_psi.modelName().compare("Constant") == 0)
66 {
67  if (_mc_phi.value(0.0) < 0.0 || _mc_psi.value(0.0) < 0.0 ||
68  _mc_phi.value(0.0) > libMesh::pi / 2.0 || _mc_psi.value(0.0) > libMesh::pi / 2.0)
69  mooseError("SolidMechanicsPlasticDruckerPrager: MC friction and dilation angles must lie in "
70  "[0, Pi/2]");
71  if (_mc_phi.value(0) < _mc_psi.value(0.0))
72  mooseError("SolidMechanicsPlasticDruckerPrager: MC friction angle must not be less than MC "
73  "dilation angle");
74  if (_mc_cohesion.value(0.0) < 0)
75  mooseError("SolidMechanicsPlasticDruckerPrager: MC cohesion should not be negative");
76 
77  initializeAandB(0.0, _aaa, _bbb);
79 }
const bool _zero_cohesion_hardening
True if there is no hardening of cohesion.
const SolidMechanicsHardeningModel & _mc_psi
Hardening model for tan(psi)
void initializeB(Real intnl, int fd, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
virtual std::string modelName() const =0
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.
virtual Real value(Real intnl) const
SolidMechanicsPlasticModel(const InputParameters &parameters)
const bool _zero_psi_hardening
True if there is no hardening of dilation angle.
const SolidMechanicsHardeningModel & _mc_cohesion
Hardening model for cohesion.
void mooseError(Args &&... args) const
const InputParameters & parameters() const
const SolidMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
void initializeAandB(Real intnl, Real &aaa, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...
const Real pi

Member Function Documentation

◆ activeConstraints()

void SolidMechanicsPlasticModel::activeConstraints ( const std::vector< Real > &  f,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor Eijkl,
std::vector< bool > &  act,
RankTwoTensor returned_stress 
) const
virtualinherited

The active yield surfaces, given a vector of yield functions.

This is used by FiniteStrainMultiPlasticity to determine the initial set of active constraints at the trial (stress, intnl) configuration. It is up to you (the coder) to determine how accurate you want the returned_stress to be. Currently it is only used by FiniteStrainMultiPlasticity to estimate a good starting value for the Newton-Rahson procedure, so currently it may not need to be super perfect.

Parameters
fvalues of the yield functions
stressstress tensor
intnlinternal parameter
Eijklelasticity tensor (stress = Eijkl*strain)
[out]actact[i] = true if the i_th yield function is active
[out]returned_stressApproximate value of the returned stress

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, SolidMechanicsPlasticTensileMulti, SolidMechanicsPlasticMeanCapTC, SolidMechanicsPlasticWeakPlaneShear, and SolidMechanicsPlasticWeakPlaneTensile.

Definition at line 186 of file SolidMechanicsPlasticModel.C.

192 {
193  mooseAssert(f.size() == numberSurfaces(),
194  "f incorrectly sized at " << f.size() << " in activeConstraints");
195  act.resize(numberSurfaces());
196  for (unsigned surface = 0; surface < numberSurfaces(); ++surface)
197  act[surface] = (f[surface] > _f_tol);
198 }
Real f(Real x)
Test function for Brents method.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
const Real _f_tol
Tolerance on yield function.

◆ bothAB()

void SolidMechanicsPlasticDruckerPrager::bothAB ( Real  intnl,
Real aaa,
Real bbb 
) const

Calculates aaa and bbb as a function of the internal parameter intnl.

Definition at line 151 of file SolidMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), CappedDruckerPragerStressUpdate::initializeVars(), SolidMechanicsPlasticDruckerPragerHyperbolic::returnMap(), SolidMechanicsPlasticDruckerPragerHyperbolic::yieldFunction(), yieldFunction(), and CappedDruckerPragerStressUpdate::yieldFunctionValues().

152 {
154  {
155  aaa = _aaa;
156  bbb = _bbb;
157  return;
158  }
159  initializeAandB(intnl, aaa, bbb);
160 }
const bool _zero_cohesion_hardening
True if there is no hardening of cohesion.
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
void initializeAandB(Real intnl, Real &aaa, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...

◆ consistentTangentOperator()

RankFourTensor SolidMechanicsPlasticModel::consistentTangentOperator ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankTwoTensor stress,
Real  intnl,
const RankFourTensor E_ijkl,
const std::vector< Real > &  cumulative_pm 
) const
virtualinherited

Calculates a custom consistent tangent operator.

You may choose to over-ride this in your derived SolidMechanicsPlasticXXXX class.

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
stress_oldtrial stress before returning
intnl_oldinternal parameter before returning
stresscurrent returned stress state
intnlinternal parameter
E_ijklelasticity tensor
cumulative_pmthe cumulative plastic multipliers
Returns
the consistent tangent operator: E_ijkl if not over-ridden

Reimplemented in SolidMechanicsPlasticTensileMulti, SolidMechanicsPlasticDruckerPragerHyperbolic, SolidMechanicsPlasticMeanCapTC, and SolidMechanicsPlasticJ2.

Definition at line 252 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticJ2::consistentTangentOperator(), SolidMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator(), SolidMechanicsPlasticMeanCapTC::consistentTangentOperator(), and SolidMechanicsPlasticTensileMulti::consistentTangentOperator().

259 {
260  return E_ijkl;
261 }

◆ dbothAB()

void SolidMechanicsPlasticDruckerPrager::dbothAB ( Real  intnl,
Real daaa,
Real dbbb 
) const

Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl.

Definition at line 221 of file SolidMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), dyieldFunction_dintnl(), and SolidMechanicsPlasticDruckerPragerHyperbolic::returnMap().

222 {
224  {
225  daaa = 0;
226  dbbb = 0;
227  return;
228  }
229 
230  const Real C = _mc_cohesion.value(intnl);
231  const Real dC = _mc_cohesion.derivative(intnl);
232  const Real cosphi = std::cos(_mc_phi.value(intnl));
233  const Real dcosphi = -std::sin(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl);
234  const Real sinphi = std::sin(_mc_phi.value(intnl));
235  const Real dsinphi = std::cos(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl);
236  switch (_mc_interpolation_scheme)
237  {
238  case 0: // outer_tip
239  daaa = 2.0 * std::sqrt(3.0) *
240  (dC * cosphi / (3.0 - sinphi) + C * dcosphi / (3.0 - sinphi) +
241  C * cosphi * dsinphi / Utility::pow<2>(3.0 - sinphi));
242  dbbb = 2.0 / std::sqrt(3.0) *
243  (dsinphi / (3.0 - sinphi) + sinphi * dsinphi / Utility::pow<2>(3.0 - sinphi));
244  break;
245  case 1: // inner_tip
246  daaa = 2.0 * std::sqrt(3.0) *
247  (dC * cosphi / (3.0 + sinphi) + C * dcosphi / (3.0 + sinphi) -
248  C * cosphi * dsinphi / Utility::pow<2>(3.0 + sinphi));
249  dbbb = 2.0 / std::sqrt(3.0) *
250  (dsinphi / (3.0 + sinphi) - sinphi * dsinphi / Utility::pow<2>(3.0 + sinphi));
251  break;
252  case 2: // lode_zero
253  daaa = dC * cosphi + C * dcosphi;
254  dbbb = dsinphi / 3.0;
255  break;
256  case 3: // inner_edge
257  daaa = 3.0 * dC * cosphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) +
258  3.0 * C * dcosphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) -
259  3.0 * C * cosphi * 3.0 * sinphi * dsinphi /
260  std::pow(9.0 + 3.0 * Utility::pow<2>(sinphi), 1.5);
261  dbbb = dsinphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) -
262  3.0 * sinphi * sinphi * dsinphi / std::pow(9.0 + 3.0 * Utility::pow<2>(sinphi), 1.5);
263  break;
264  case 4: // native
265  daaa = dC;
266  dbbb = dsinphi / cosphi - sinphi * dcosphi / Utility::pow<2>(cosphi);
267  break;
268  }
269 }
const bool _zero_cohesion_hardening
True if there is no hardening of cohesion.
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.
virtual Real value(Real intnl) const
virtual Real derivative(Real intnl) const
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const SolidMechanicsHardeningModel & _mc_cohesion
Hardening model for cohesion.
const SolidMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
MooseUnits pow(const MooseUnits &, int)
static const std::string C
Definition: NS.h:168

◆ df_dsig()

RankTwoTensor SolidMechanicsPlasticDruckerPrager::df_dsig ( const RankTwoTensor stress,
Real  bbb 
) const
protectedvirtual

Function that's used in dyieldFunction_dstress and flowPotential.

Reimplemented in SolidMechanicsPlasticDruckerPragerHyperbolic.

Definition at line 91 of file SolidMechanicsPlasticDruckerPrager.C.

Referenced by dyieldFunction_dstress(), and flowPotential().

92 {
93  return 0.5 * stress.dsecondInvariant() / std::sqrt(stress.secondInvariant()) +
94  stress.dtrace() * bbb;
95 }
RankTwoTensorTempl< Real > dsecondInvariant() const
RankTwoTensorTempl< Real > dtrace() const

◆ dflowPotential_dintnl()

RankTwoTensor SolidMechanicsPlasticDruckerPrager::dflowPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dintnl(i, j) = dr(i, j)/dintnl

Reimplemented from SolidMechanicsPlasticModel.

Definition at line 136 of file SolidMechanicsPlasticDruckerPrager.C.

138 {
139  Real dbbb;
140  donlyB(intnl, dilation, dbbb);
141  return stress.dtrace() * dbbb;
142 }
void donlyB(Real intnl, int fd, Real &dbbb) const
Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)
RankTwoTensorTempl< Real > dtrace() const
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ dflowPotential_dintnlV()

void SolidMechanicsPlasticModel::dflowPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dr_dintnl 
) const
virtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dintnldr_dintnl[alpha](i, j) = dr[alpha](i, j)/dintnl

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, and SolidMechanicsPlasticTensileMulti.

Definition at line 137 of file SolidMechanicsPlasticModel.C.

140 {
141  return dr_dintnl.assign(1, dflowPotential_dintnl(stress, intnl));
142 }
virtual RankTwoTensor dflowPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to the internal parameter.

◆ dflowPotential_dstress()

RankFourTensor SolidMechanicsPlasticDruckerPrager::dflowPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dstress(i, j, k, l) = dr(i, j)/dstress(k, l)

Reimplemented from SolidMechanicsPlasticModel.

Reimplemented in SolidMechanicsPlasticDruckerPragerHyperbolic.

Definition at line 125 of file SolidMechanicsPlasticDruckerPrager.C.

127 {
128  RankFourTensor dr_dstress;
129  dr_dstress = 0.5 * stress.d2secondInvariant() / std::sqrt(stress.secondInvariant());
130  dr_dstress += -0.5 * 0.5 * stress.dsecondInvariant().outerProduct(stress.dsecondInvariant()) /
131  std::pow(stress.secondInvariant(), 1.5);
132  return dr_dstress;
133 }
RankFourTensorTempl< Real > outerProduct(const RankTwoTensorTempl< Real > &b) const
RankTwoTensorTempl< Real > dsecondInvariant() const
RankFourTensorTempl< Real > d2secondInvariant() const
MooseUnits pow(const MooseUnits &, int)

◆ dflowPotential_dstressV()

void SolidMechanicsPlasticModel::dflowPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankFourTensor > &  dr_dstress 
) const
virtualinherited

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dstressdr_dstress[alpha](i, j, k, l) = dr[alpha](i, j)/dstress(k, l)

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, and SolidMechanicsPlasticTensileMulti.

Definition at line 123 of file SolidMechanicsPlasticModel.C.

126 {
127  return dr_dstress.assign(1, dflowPotential_dstress(stress, intnl));
128 }
virtual RankFourTensor dflowPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to stress.

◆ dhardPotential_dintnl()

Real SolidMechanicsPlasticModel::dhardPotential_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
the derivative

Reimplemented in SolidMechanicsPlasticMeanCapTC.

Definition at line 172 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticModel::dhardPotential_dintnlV().

174 {
175  return 0.0;
176 }

◆ dhardPotential_dintnlV()

void SolidMechanicsPlasticModel::dhardPotential_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  dh_dintnl 
) const
virtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dintnldh_dintnl[alpha] = dh[alpha]/dintnl

Definition at line 178 of file SolidMechanicsPlasticModel.C.

181 {
182  dh_dintnl.resize(numberSurfaces(), dhardPotential_dintnl(stress, intnl));
183 }
virtual Real dhardPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to the internal parameter. ...
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.

◆ dhardPotential_dstress()

RankTwoTensor SolidMechanicsPlasticModel::dhardPotential_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
dh_dstress(i, j) = dh/dstress(i, j)

Reimplemented in SolidMechanicsPlasticMeanCapTC.

Definition at line 158 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticModel::dhardPotential_dstressV().

160 {
161  return RankTwoTensor();
162 }

◆ dhardPotential_dstressV()

void SolidMechanicsPlasticModel::dhardPotential_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  dh_dstress 
) const
virtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dstressdh_dstress[alpha](i, j) = dh[alpha]/dstress(i, j)

Definition at line 164 of file SolidMechanicsPlasticModel.C.

167 {
168  dh_dstress.assign(numberSurfaces(), dhardPotential_dstress(stress, intnl));
169 }
virtual RankTwoTensor dhardPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to stress.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.

◆ donlyB()

void SolidMechanicsPlasticDruckerPrager::donlyB ( Real  intnl,
int  fd,
Real dbbb 
) const

Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)

Parameters
intnlthe internal parameter
fdif fd==friction then bbb is calculated. if fd==dilation then bbb_flow is calculated
bbbeither bbb or bbb_flow, depending on fd

Definition at line 179 of file SolidMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), SolidMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator(), dflowPotential_dintnl(), SolidMechanicsPlasticDruckerPragerHyperbolic::returnMap(), and CappedDruckerPragerStressUpdate::setIntnlDerivatives().

180 {
181  if (_zero_phi_hardening && (fd == friction))
182  {
183  dbbb = 0;
184  return;
185  }
186  if (_zero_psi_hardening && (fd == dilation))
187  {
188  dbbb = 0;
189  return;
190  }
191  const Real s = (fd == friction) ? std::sin(_mc_phi.value(intnl)) : std::sin(_mc_psi.value(intnl));
192  const Real ds = (fd == friction) ? std::cos(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl)
193  : std::cos(_mc_psi.value(intnl)) * _mc_psi.derivative(intnl);
194  switch (_mc_interpolation_scheme)
195  {
196  case 0: // outer_tip
197  dbbb = 2.0 / std::sqrt(3.0) * (ds / (3.0 - s) + s * ds / Utility::pow<2>(3.0 - s));
198  break;
199  case 1: // inner_tip
200  dbbb = 2.0 / std::sqrt(3.0) * (ds / (3.0 + s) - s * ds / Utility::pow<2>(3.0 + s));
201  break;
202  case 2: // lode_zero
203  dbbb = ds / 3.0;
204  break;
205  case 3: // inner_edge
206  dbbb = ds / std::sqrt(9.0 + 3.0 * Utility::pow<2>(s)) -
207  3 * s * s * ds / std::pow(9.0 + 3.0 * Utility::pow<2>(s), 1.5);
208  break;
209  case 4: // native
210  const Real c =
211  (fd == friction) ? std::cos(_mc_phi.value(intnl)) : std::cos(_mc_psi.value(intnl));
212  const Real dc = (fd == friction)
213  ? -std::sin(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl)
214  : -std::sin(_mc_psi.value(intnl)) * _mc_psi.derivative(intnl);
215  dbbb = ds / c - s * dc / Utility::pow<2>(c);
216  break;
217  }
218 }
const SolidMechanicsHardeningModel & _mc_psi
Hardening model for tan(psi)
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.
virtual Real value(Real intnl) const
const bool _zero_psi_hardening
True if there is no hardening of dilation angle.
virtual Real derivative(Real intnl) const
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const SolidMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
MooseUnits pow(const MooseUnits &, int)

◆ dyieldFunction_dintnl()

Real SolidMechanicsPlasticDruckerPrager::dyieldFunction_dintnl ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the derivative

Reimplemented from SolidMechanicsPlasticModel.

Definition at line 107 of file SolidMechanicsPlasticDruckerPrager.C.

Referenced by SolidMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator().

109 {
110  Real daaa;
111  Real dbbb;
112  dbothAB(intnl, daaa, dbbb);
113  return stress.trace() * dbbb - daaa;
114 }
void dbothAB(Real intnl, Real &daaa, Real &dbbb) const
Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl...
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ dyieldFunction_dintnlV()

void SolidMechanicsPlasticModel::dyieldFunction_dintnlV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  df_dintnl 
) const
virtualinherited

The derivative of yield functions with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dintnldf_dintnl[alpha] = df[alpha]/dintnl

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, and SolidMechanicsPlasticTensileMulti.

Definition at line 96 of file SolidMechanicsPlasticModel.C.

99 {
100  return df_dintnl.assign(1, dyieldFunction_dintnl(stress, intnl));
101 }
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to the internal parameter.

◆ dyieldFunction_dstress()

RankTwoTensor SolidMechanicsPlasticDruckerPrager::dyieldFunction_dstress ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
df_dstress(i, j) = dyieldFunction/dstress(i, j)

Reimplemented from SolidMechanicsPlasticModel.

Definition at line 98 of file SolidMechanicsPlasticDruckerPrager.C.

100 {
101  Real bbb;
102  onlyB(intnl, friction, bbb);
103  return df_dsig(stress, bbb);
104 }
virtual RankTwoTensor df_dsig(const RankTwoTensor &stress, Real bbb) const
Function that&#39;s used in dyieldFunction_dstress and flowPotential.
void onlyB(Real intnl, int fd, Real &bbb) const
Calculate bbb or bbb_flow.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ dyieldFunction_dstressV()

void SolidMechanicsPlasticModel::dyieldFunction_dstressV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  df_dstress 
) const
virtualinherited

The derivative of yield functions with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dstressdf_dstress[alpha](i, j) = dyieldFunction[alpha]/dstress(i, j)

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, and SolidMechanicsPlasticTensileMulti.

Definition at line 82 of file SolidMechanicsPlasticModel.C.

85 {
86  df_dstress.assign(1, dyieldFunction_dstress(stress, intnl));
87 }
virtual RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to stress.

◆ execute()

void SolidMechanicsPlasticModel::execute ( )
virtualinherited

Implements GeneralUserObject.

Definition at line 45 of file SolidMechanicsPlasticModel.C.

46 {
47 }

◆ finalize()

void SolidMechanicsPlasticModel::finalize ( )
virtualinherited

Implements GeneralUserObject.

Definition at line 50 of file SolidMechanicsPlasticModel.C.

51 {
52 }

◆ flowPotential()

RankTwoTensor SolidMechanicsPlasticDruckerPrager::flowPotential ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The flow potential.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
the flow potential

Reimplemented from SolidMechanicsPlasticModel.

Definition at line 117 of file SolidMechanicsPlasticDruckerPrager.C.

118 {
119  Real bbb_flow;
120  onlyB(intnl, dilation, bbb_flow);
121  return df_dsig(stress, bbb_flow);
122 }
virtual RankTwoTensor df_dsig(const RankTwoTensor &stress, Real bbb) const
Function that&#39;s used in dyieldFunction_dstress and flowPotential.
void onlyB(Real intnl, int fd, Real &bbb) const
Calculate bbb or bbb_flow.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ flowPotentialV()

void SolidMechanicsPlasticModel::flowPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< RankTwoTensor > &  r 
) const
virtualinherited

The flow potentials.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]rr[alpha] is the flow potential for the "alpha" yield function

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, and SolidMechanicsPlasticTensileMulti.

Definition at line 109 of file SolidMechanicsPlasticModel.C.

112 {
113  return r.assign(1, flowPotential(stress, intnl));
114 }
virtual RankTwoTensor flowPotential(const RankTwoTensor &stress, Real intnl) const
The flow potential.

◆ hardPotential()

Real SolidMechanicsPlasticModel::hardPotential ( const RankTwoTensor stress,
Real  intnl 
) const
protectedvirtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
Returns
the hardening potential

Reimplemented in SolidMechanicsPlasticMeanCapTC.

Definition at line 145 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticModel::hardPotentialV().

146 {
147  return -1.0;
148 }

◆ hardPotentialV()

void SolidMechanicsPlasticModel::hardPotentialV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  h 
) const
virtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
[out]hh[alpha] is the hardening potential for the "alpha" yield function

Definition at line 150 of file SolidMechanicsPlasticModel.C.

153 {
154  h.assign(numberSurfaces(), hardPotential(stress, intnl));
155 }
virtual Real hardPotential(const RankTwoTensor &stress, Real intnl) const
The hardening potential.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.

◆ initialize()

void SolidMechanicsPlasticModel::initialize ( )
virtualinherited

Implements GeneralUserObject.

Definition at line 40 of file SolidMechanicsPlasticModel.C.

41 {
42 }

◆ initializeAandB()

void SolidMechanicsPlasticDruckerPrager::initializeAandB ( Real  intnl,
Real aaa,
Real bbb 
) const
private

Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker-Prager and Mohr-Coulomb is H Jiang and X Yongli, A note on the Mohr-Coulomb and Drucker-Prager strength criteria, Mechanics Research Communications 38 (2011) 309-314.

This function uses Table1 in that reference, with the following translations aaa = k bbb = -alpha/3

Parameters
intnlThe internal parameter
[out]aaaThe Drucker-Prager aaa quantity
[out]bbbThe Drucker-Prager bbb quantity

Definition at line 272 of file SolidMechanicsPlasticDruckerPrager.C.

Referenced by bothAB(), and SolidMechanicsPlasticDruckerPrager().

273 {
274  const Real C = _mc_cohesion.value(intnl);
275  const Real cosphi = std::cos(_mc_phi.value(intnl));
276  const Real sinphi = std::sin(_mc_phi.value(intnl));
277  switch (_mc_interpolation_scheme)
278  {
279  case 0: // outer_tip
280  aaa = 2.0 * std::sqrt(3.0) * C * cosphi / (3.0 - sinphi);
281  bbb = 2.0 * sinphi / std::sqrt(3.0) / (3.0 - sinphi);
282  break;
283  case 1: // inner_tip
284  aaa = 2.0 * std::sqrt(3.0) * C * cosphi / (3.0 + sinphi);
285  bbb = 2.0 * sinphi / std::sqrt(3.0) / (3.0 + sinphi);
286  break;
287  case 2: // lode_zero
288  aaa = C * cosphi;
289  bbb = sinphi / 3.0;
290  break;
291  case 3: // inner_edge
292  aaa = 3.0 * C * cosphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi));
293  bbb = sinphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi));
294  break;
295  case 4: // native
296  aaa = C;
297  bbb = sinphi / cosphi;
298  break;
299  }
300 }
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.
virtual Real value(Real intnl) const
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const SolidMechanicsHardeningModel & _mc_cohesion
Hardening model for cohesion.
const SolidMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
static const std::string C
Definition: NS.h:168

◆ initializeB()

void SolidMechanicsPlasticDruckerPrager::initializeB ( Real  intnl,
int  fd,
Real bbb 
) const
private

Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker-Prager and Mohr-Coulomb is H Jiang and X Yongli, A note on the Mohr-Coulomb and Drucker-Prager strength criteria, Mechanics Research Communications 38 (2011) 309-314.

This function uses Table1 in that reference, with the following translations aaa = k bbb = -alpha/3

Parameters
intnlThe internal parameter
fdIf fd == frction then the friction angle is used to set bbb, otherwise the dilation angle is used
[out]bbbThe Drucker-Prager bbb quantity

Definition at line 303 of file SolidMechanicsPlasticDruckerPrager.C.

Referenced by onlyB(), and SolidMechanicsPlasticDruckerPrager().

304 {
305  const Real s = (fd == friction) ? std::sin(_mc_phi.value(intnl)) : std::sin(_mc_psi.value(intnl));
306  switch (_mc_interpolation_scheme)
307  {
308  case 0: // outer_tip
309  bbb = 2.0 * s / std::sqrt(3.0) / (3.0 - s);
310  break;
311  case 1: // inner_tip
312  bbb = 2.0 * s / std::sqrt(3.0) / (3.0 + s);
313  break;
314  case 2: // lode_zero
315  bbb = s / 3.0;
316  break;
317  case 3: // inner_edge
318  bbb = s / std::sqrt(9.0 + 3.0 * Utility::pow<2>(s));
319  break;
320  case 4: // native
321  const Real c =
322  (fd == friction) ? std::cos(_mc_phi.value(intnl)) : std::cos(_mc_psi.value(intnl));
323  bbb = s / c;
324  break;
325  }
326 }
const SolidMechanicsHardeningModel & _mc_psi
Hardening model for tan(psi)
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.
virtual Real value(Real intnl) const
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const SolidMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)

◆ KuhnTuckerSingleSurface()

bool SolidMechanicsPlasticModel::KuhnTuckerSingleSurface ( Real  yf,
Real  dpm,
Real  dpm_tol 
) const
inherited

Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.

Parameters
yfYield function value
dpmplastic multiplier
dpm_toltolerance on plastic multiplier: viz dpm>-dpm_tol means "dpm is non-negative"

Definition at line 246 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticMohrCoulombMulti::KuhnTuckerOK(), SolidMechanicsPlasticTensileMulti::KuhnTuckerOK(), and SolidMechanicsPlasticModel::returnMap().

247 {
248  return (dpm == 0 && yf <= _f_tol) || (dpm > -dpm_tol && yf <= _f_tol && yf >= -_f_tol);
249 }
const Real _f_tol
Tolerance on yield function.

◆ modelName()

std::string SolidMechanicsPlasticDruckerPrager::modelName ( ) const
overridevirtual

Implements SolidMechanicsPlasticModel.

Reimplemented in SolidMechanicsPlasticDruckerPragerHyperbolic.

Definition at line 145 of file SolidMechanicsPlasticDruckerPrager.C.

146 {
147  return "DruckerPrager";
148 }

◆ numberSurfaces()

unsigned SolidMechanicsPlasticModel::numberSurfaces ( ) const
virtualinherited

◆ onlyB()

void SolidMechanicsPlasticDruckerPrager::onlyB ( Real  intnl,
int  fd,
Real bbb 
) const

Calculate bbb or bbb_flow.

Parameters
intnlthe internal parameter
fdif fd==friction then bbb is calculated. if fd==dilation then bbb_flow is calculated
bbbeither bbb or bbb_flow, depending on fd

Definition at line 163 of file SolidMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), SolidMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator(), dyieldFunction_dstress(), flowPotential(), CappedDruckerPragerStressUpdate::initializeVars(), SolidMechanicsPlasticDruckerPragerHyperbolic::returnMap(), CappedDruckerPragerStressUpdate::setIntnlDerivatives(), and CappedDruckerPragerStressUpdate::setIntnlValues().

164 {
165  if (_zero_phi_hardening && (fd == friction))
166  {
167  bbb = _bbb;
168  return;
169  }
170  if (_zero_psi_hardening && (fd == dilation))
171  {
172  bbb = _bbb_flow;
173  return;
174  }
175  initializeB(intnl, fd, bbb);
176 }
void initializeB(Real intnl, int fd, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
const bool _zero_psi_hardening
True if there is no hardening of dilation angle.

◆ returnMap()

bool SolidMechanicsPlasticModel::returnMap ( const RankTwoTensor trial_stress,
Real  intnl_old,
const RankFourTensor E_ijkl,
Real  ep_plastic_tolerance,
RankTwoTensor returned_stress,
Real returned_intnl,
std::vector< Real > &  dpm,
RankTwoTensor delta_dp,
std::vector< Real > &  yf,
bool &  trial_stress_inadmissible 
) const
virtualinherited

Performs a custom return-map.

You may choose to over-ride this in your derived SolidMechanicsPlasticXXXX class, and you may implement the return-map algorithm in any way that suits you. Eg, using a Newton-Raphson approach, or a radial-return, etc. This may also be used as a quick way of ascertaining whether (trial_stress, intnl_old) is in fact admissible.

For over-riding this function, please note the following.

(1) Denoting the return value of the function by "successful_return", the only possible output values should be: (A) trial_stress_inadmissible=false, successful_return=true. That is, (trial_stress, intnl_old) is in fact admissible (in the elastic domain). (B) trial_stress_inadmissible=true, successful_return=false. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), and you didn't return to the yield surface. (C) trial_stress_inadmissible=true, successful_return=true. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), but you did return to the yield surface. The default implementation only handles case (A) and (B): it does not attempt to do a return-map algorithm.

(2) you must correctly signal "successful_return" using the return value of this function. Don't assume the calling function will do Kuhn-Tucker checking and so forth!

(3) In cases (A) and (B) you needn't set returned_stress, returned_intnl, delta_dp, or dpm. This is for computational efficiency.

(4) In cases (A) and (B), you MUST place the yield function values at (trial_stress, intnl_old) into yf so the calling function can use this information optimally. You will have already calculated these yield function values, which can be quite expensive, and it's not very optimal for the calling function to have to re-calculate them.

(5) In case (C), you need to set: returned_stress (the returned value of stress) returned_intnl (the returned value of the internal variable) delta_dp (the change in plastic strain) dpm (the plastic multipliers needed to bring about the return) yf (yield function values at the returned configuration)

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
trial_stressThe trial stress
intnl_oldValue of the internal parameter
E_ijklElasticity tensor
ep_plastic_toleranceTolerance defined by the user for the plastic strain
[out]returned_stressIn case (C): lies on the yield surface after returning and produces the correct plastic strain (normality condition). Otherwise: not defined
[out]returned_intnlIn case (C): the value of the internal parameter after returning. Otherwise: not defined
[out]dpmIn case (C): the plastic multipliers needed to bring about the return. Otherwise: not defined
[out]delta_dpIn case (C): The change in plastic strain induced by the return process. Otherwise: not defined
[out]yfIn case (C): the yield function at (returned_stress, returned_intnl). Otherwise: the yield function at (trial_stress, intnl_old)
[out]trial_stress_inadmissibleShould be set to false if the trial_stress is admissible, and true if the trial_stress is inadmissible. This can be used by the calling prorgram
Returns
true if a successful return (or a return-map not needed), false if the trial_stress is inadmissible but the return process failed

Reimplemented in SolidMechanicsPlasticTensileMulti, SolidMechanicsPlasticMohrCoulombMulti, SolidMechanicsPlasticDruckerPragerHyperbolic, SolidMechanicsPlasticMeanCapTC, and SolidMechanicsPlasticJ2.

Definition at line 219 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticJ2::returnMap(), SolidMechanicsPlasticDruckerPragerHyperbolic::returnMap(), SolidMechanicsPlasticMeanCapTC::returnMap(), SolidMechanicsPlasticMohrCoulombMulti::returnMap(), and SolidMechanicsPlasticTensileMulti::returnMap().

229 {
230  trial_stress_inadmissible = false;
231  yieldFunctionV(trial_stress, intnl_old, yf);
232 
233  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
234  if (yf[sf] > _f_tol)
235  trial_stress_inadmissible = true;
236 
237  // example of checking Kuhn-Tucker
238  std::vector<Real> dpm(numberSurfaces(), 0);
239  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
240  if (!KuhnTuckerSingleSurface(yf[sf], dpm[sf], 0))
241  return false;
242  return true;
243 }
virtual void yieldFunctionV(const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
Calculates the yield functions.
bool KuhnTuckerSingleSurface(Real yf, Real dpm, Real dpm_tol) const
Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
const Real _f_tol
Tolerance on yield function.

◆ useCustomCTO()

bool SolidMechanicsPlasticModel::useCustomCTO ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function.

Reimplemented in SolidMechanicsPlasticTensileMulti, SolidMechanicsPlasticMeanCapTC, SolidMechanicsPlasticDruckerPragerHyperbolic, and SolidMechanicsPlasticJ2.

Definition at line 213 of file SolidMechanicsPlasticModel.C.

214 {
215  return false;
216 }

◆ useCustomReturnMap()

bool SolidMechanicsPlasticModel::useCustomReturnMap ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom returnMap function.

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, SolidMechanicsPlasticTensileMulti, SolidMechanicsPlasticMeanCapTC, SolidMechanicsPlasticDruckerPragerHyperbolic, and SolidMechanicsPlasticJ2.

Definition at line 207 of file SolidMechanicsPlasticModel.C.

208 {
209  return false;
210 }

◆ validParams()

InputParameters SolidMechanicsPlasticDruckerPrager::validParams ( )
static

Definition at line 21 of file SolidMechanicsPlasticDruckerPrager.C.

Referenced by SolidMechanicsPlasticDruckerPragerHyperbolic::validParams().

22 {
24  MooseEnum mc_interpolation_scheme("outer_tip=0 inner_tip=1 lode_zero=2 inner_edge=3 native=4",
25  "lode_zero");
26  params.addParam<MooseEnum>(
27  "mc_interpolation_scheme",
28  mc_interpolation_scheme,
29  "Scheme by which the Drucker-Prager cohesion, friction angle and dilation angle are set from "
30  "the Mohr-Coulomb parameters mc_cohesion, mc_friction_angle and mc_dilation_angle. Consider "
31  "the DP and MC yield surfaces on the deviatoric (octahedral) plane. Outer_tip: the DP "
32  "circle touches the outer tips of the MC hex. Inner_tip: the DP circle touches the inner "
33  "tips of the MC hex. Lode_zero: the DP circle intersects the MC hex at lode angle=0. "
34  "Inner_edge: the DP circle is the largest circle that wholly fits inside the MC hex. "
35  "Native: The DP cohesion, friction angle and dilation angle are set equal to the mc_ "
36  "parameters entered.");
37  params.addRequiredParam<UserObjectName>(
38  "mc_cohesion",
39  "A SolidMechanicsHardening UserObject that defines hardening of the "
40  "Mohr-Coulomb cohesion. Physically this should not be negative.");
41  params.addRequiredParam<UserObjectName>(
42  "mc_friction_angle",
43  "A SolidMechanicsHardening UserObject that defines hardening of the "
44  "Mohr-Coulomb friction angle (in radians). Physically this should be "
45  "between 0 and Pi/2.");
46  params.addRequiredParam<UserObjectName>(
47  "mc_dilation_angle",
48  "A SolidMechanicsHardening UserObject that defines hardening of the "
49  "Mohr-Coulomb dilation angle (in radians). Usually the dilation angle "
50  "is not greater than the friction angle, and it is between 0 and Pi/2.");
51  params.addClassDescription(
52  "Non-associative Drucker Prager plasticity with no smoothing of the cone tip.");
53  return params;
54 }
void addParam(const std::string &name, const std::initializer_list< typename T::value_type > &value, const std::string &doc_string)
void addRequiredParam(const std::string &name, const std::string &doc_string)
static InputParameters validParams()
void addClassDescription(const std::string &doc_string)

◆ yieldFunction()

Real SolidMechanicsPlasticDruckerPrager::yieldFunction ( const RankTwoTensor stress,
Real  intnl 
) const
overrideprotectedvirtual

The following functions are what you should override when building single-plasticity models.

The yield function

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the yield function

Reimplemented from SolidMechanicsPlasticModel.

Reimplemented in SolidMechanicsPlasticDruckerPragerHyperbolic.

Definition at line 82 of file SolidMechanicsPlasticDruckerPrager.C.

83 {
84  Real aaa;
85  Real bbb;
86  bothAB(intnl, aaa, bbb);
87  return std::sqrt(stress.secondInvariant()) + stress.trace() * bbb - aaa;
88 }
void bothAB(Real intnl, Real &aaa, Real &bbb) const
Calculates aaa and bbb as a function of the internal parameter intnl.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ yieldFunctionV()

void SolidMechanicsPlasticModel::yieldFunctionV ( const RankTwoTensor stress,
Real  intnl,
std::vector< Real > &  f 
) const
virtualinherited

Calculates the yield functions.

Note that for single-surface plasticity you don't want to override this - override the private yieldFunction below

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]fthe yield functions

Reimplemented in SolidMechanicsPlasticMohrCoulombMulti, and SolidMechanicsPlasticTensileMulti.

Definition at line 67 of file SolidMechanicsPlasticModel.C.

Referenced by SolidMechanicsPlasticModel::returnMap().

70 {
71  f.assign(1, yieldFunction(stress, intnl));
72 }
virtual Real yieldFunction(const RankTwoTensor &stress, Real intnl) const
The following functions are what you should override when building single-plasticity models...
Real f(Real x)
Test function for Brents method.

Member Data Documentation

◆ _aaa

Real SolidMechanicsPlasticDruckerPrager::_aaa
private

◆ _bbb

Real SolidMechanicsPlasticDruckerPrager::_bbb
private

◆ _bbb_flow

Real SolidMechanicsPlasticDruckerPrager::_bbb_flow
private

◆ _f_tol

const Real SolidMechanicsPlasticModel::_f_tol
inherited

◆ _ic_tol

const Real SolidMechanicsPlasticModel::_ic_tol
inherited

Tolerance on internal constraint.

Definition at line 173 of file SolidMechanicsPlasticModel.h.

◆ _mc_cohesion

const SolidMechanicsHardeningModel& SolidMechanicsPlasticDruckerPrager::_mc_cohesion
protected

Hardening model for cohesion.

Definition at line 65 of file SolidMechanicsPlasticDruckerPrager.h.

Referenced by dbothAB(), initializeAandB(), and SolidMechanicsPlasticDruckerPrager().

◆ _mc_interpolation_scheme

const MooseEnum SolidMechanicsPlasticDruckerPrager::_mc_interpolation_scheme
protected

The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.

Various matching schemes may be used and this parameter holds the user's choice.

Definition at line 93 of file SolidMechanicsPlasticDruckerPrager.h.

Referenced by dbothAB(), donlyB(), initializeAandB(), and initializeB().

◆ _mc_phi

const SolidMechanicsHardeningModel& SolidMechanicsPlasticDruckerPrager::_mc_phi
protected

Hardening model for tan(phi)

Definition at line 68 of file SolidMechanicsPlasticDruckerPrager.h.

Referenced by dbothAB(), donlyB(), initializeAandB(), initializeB(), and SolidMechanicsPlasticDruckerPrager().

◆ _mc_psi

const SolidMechanicsHardeningModel& SolidMechanicsPlasticDruckerPrager::_mc_psi
protected

Hardening model for tan(psi)

Definition at line 71 of file SolidMechanicsPlasticDruckerPrager.h.

Referenced by donlyB(), initializeB(), and SolidMechanicsPlasticDruckerPrager().

◆ _zero_cohesion_hardening

const bool SolidMechanicsPlasticDruckerPrager::_zero_cohesion_hardening
protected

True if there is no hardening of cohesion.

Definition at line 96 of file SolidMechanicsPlasticDruckerPrager.h.

Referenced by bothAB(), and dbothAB().

◆ _zero_phi_hardening

const bool SolidMechanicsPlasticDruckerPrager::_zero_phi_hardening
protected

True if there is no hardening of friction angle.

Definition at line 99 of file SolidMechanicsPlasticDruckerPrager.h.

Referenced by bothAB(), dbothAB(), donlyB(), and onlyB().

◆ _zero_psi_hardening

const bool SolidMechanicsPlasticDruckerPrager::_zero_psi_hardening
protected

True if there is no hardening of dilation angle.

Definition at line 102 of file SolidMechanicsPlasticDruckerPrager.h.

Referenced by donlyB(), and onlyB().


The documentation for this class was generated from the following files: