https://mooseframework.inl.gov
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Static Protected Member Functions | Protected Attributes | Static Protected Attributes | List of all members
ActiveLearningGPDecision Class Reference

#include <ActiveLearningGPDecision.h>

Inheritance diagram for ActiveLearningGPDecision:
[legend]

Public Types

typedef DataFileName DataFileParameterType
 

Public Member Functions

 ActiveLearningGPDecision (const InputParameters &parameters)
 
const intgetTrainingSamples () const
 Access the number of training samples. More...
 
virtual void execute () override
 Here we loop through the samples and call the needSample function to determine if the sample needs to be run and define a value in its place. More...
 
virtual void initialize () override
 
virtual void finalize () override
 
void threadJoin (const UserObject &) final
 
bool shouldStore () const override final
 
SubProblemgetSubProblem () const
 
bool shouldDuplicateInitialExecution () const
 
virtual Real spatialValue (const Point &) const
 
virtual const std::vector< Point > spatialPoints () const
 
void gatherSum (T &value)
 
void gatherMax (T &value)
 
void gatherMin (T &value)
 
void gatherProxyValueMax (T1 &proxy, T2 &value)
 
void gatherProxyValueMin (T1 &proxy, T2 &value)
 
void setPrimaryThreadCopy (UserObject *primary)
 
UserObjectprimaryThreadCopy ()
 
std::set< UserObjectName > getDependObjects () const
 
virtual bool needThreadedCopy () const
 
const std::set< std::string > & getRequestedItems () override
 
const std::set< std::string > & getSuppliedItems () override
 
unsigned int systemNumber () const
 
virtual bool enabled () const
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
MooseAppgetMooseApp () const
 
const std::string & type () const
 
virtual const std::string & name () const
 
std::string typeAndName () const
 
std::string errorPrefix (const std::string &error_type) const
 
void callMooseError (std::string msg, const bool with_prefix) const
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
const InputParametersparameters () const
 
MooseObjectName uniqueName () const
 
const T & getParam (const std::string &name) const
 
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 
const T * queryParam (const std::string &name) const
 
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 
bool isParamValid (const std::string &name) const
 
bool isParamSetByUser (const std::string &nm) const
 
void paramError (const std::string &param, Args... args) const
 
void paramWarning (const std::string &param, Args... args) const
 
void paramInfo (const std::string &param, Args... args) const
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 
void mooseError (Args &&... args) const
 
void mooseErrorNonPrefixed (Args &&... args) const
 
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
void mooseWarning (Args &&... args) const
 
void mooseWarningNonPrefixed (Args &&... args) const
 
void mooseDeprecated (Args &&... args) const
 
void mooseInfo (Args &&... args) const
 
std::string getDataFileName (const std::string &param) const
 
std::string getDataFileNameByName (const std::string &relative_path) const
 
std::string getDataFilePath (const std::string &relative_path) const
 
virtual void initialSetup ()
 
virtual void timestepSetup ()
 
virtual void jacobianSetup ()
 
virtual void residualSetup ()
 
virtual void customSetup (const ExecFlagType &)
 
const ExecFlagEnumgetExecuteOnEnum () const
 
UserObjectName getUserObjectName (const std::string &param_name) const
 
const T & getUserObject (const std::string &param_name, bool is_dependency=true) const
 
const T & getUserObjectByName (const UserObjectName &object_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBase (const std::string &param_name, bool is_dependency=true) const
 
const UserObjectgetUserObjectBaseByName (const UserObjectName &object_name, bool is_dependency=true) const
 
const std::vector< MooseVariableScalar *> & getCoupledMooseScalarVars ()
 
const std::set< TagID > & getScalarVariableCoupleableVectorTags () const
 
const std::set< TagID > & getScalarVariableCoupleableMatrixTags () const
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, MaterialData &material_data, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialProperty (const std::string &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, MaterialData &material_data, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialProperty (const std::string &name, const unsigned int state=0)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name, MaterialData &material_data)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > & getADMaterialProperty (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOld (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name)
 
const MaterialProperty< T > & getMaterialPropertyOlder (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data, const unsigned int state)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const GenericMaterialProperty< T, is_ad > & getGenericMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const MaterialProperty< T > & getMaterialPropertyByName (const MaterialPropertyName &name, const unsigned int state=0)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name)
 
const ADMaterialProperty< T > & getADMaterialPropertyByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOldByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name, MaterialData &material_data)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name)
 
const MaterialProperty< T > & getMaterialPropertyOlderByName (const MaterialPropertyName &name)
 
std::pair< const MaterialProperty< T > *, std::set< SubdomainID > > getBlockMaterialProperty (const MaterialPropertyName &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialProperty (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialProperty ()
 
const GenericMaterialProperty< T, is_ad > & getGenericZeroMaterialPropertyByName (const std::string &prop_name)
 
const MaterialProperty< T > & getZeroMaterialProperty (Ts... args)
 
std::set< SubdomainIDgetMaterialPropertyBlocks (const std::string &name)
 
std::vector< SubdomainName > getMaterialPropertyBlockNames (const std::string &name)
 
std::set< BoundaryIDgetMaterialPropertyBoundaryIDs (const std::string &name)
 
std::vector< BoundaryName > getMaterialPropertyBoundaryNames (const std::string &name)
 
void checkBlockAndBoundaryCompatibility (std::shared_ptr< MaterialBase > discrete)
 
std::unordered_map< SubdomainID, std::vector< MaterialBase *> > buildRequiredMaterials (bool allow_stateful=true)
 
void statefulPropertiesAllowed (bool)
 
bool getMaterialPropertyCalled () const
 
virtual const std::unordered_set< unsigned int > & getMatPropDependencies () const
 
virtual void resolveOptionalProperties ()
 
const GenericMaterialProperty< T, is_ad > & getPossiblyConstantGenericMaterialPropertyByName (const MaterialPropertyName &prop_name, MaterialData &material_data, const unsigned int state)
 
bool isImplicit ()
 
Moose::StateArg determineState () const
 
virtual void store (nlohmann::json &json) const
 
virtual void declareLateValues ()
 
void buildOutputHideVariableList (std::set< std::string > variable_names)
 
const std::set< OutputName > & getOutputs ()
 
virtual void subdomainSetup () override
 
virtual void subdomainSetup () override
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObject (const std::string &param_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
bool hasUserObjectByName (const UserObjectName &object_name) const
 
const GenericOptionalMaterialProperty< T, is_ad > & getGenericOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const GenericOptionalMaterialProperty< T, is_ad > & getGenericOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalMaterialProperty< T > & getOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalMaterialProperty< T > & getOptionalMaterialProperty (const std::string &name, const unsigned int state=0)
 
const OptionalADMaterialProperty< T > & getOptionalADMaterialProperty (const std::string &name)
 
const OptionalADMaterialProperty< T > & getOptionalADMaterialProperty (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOld (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOld (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOlder (const std::string &name)
 
const OptionalMaterialProperty< T > & getOptionalMaterialPropertyOlder (const std::string &name)
 
MaterialBasegetMaterial (const std::string &name)
 
MaterialBasegetMaterial (const std::string &name)
 
MaterialBasegetMaterialByName (const std::string &name, bool no_warn=false)
 
MaterialBasegetMaterialByName (const std::string &name, bool no_warn=false)
 
bool hasMaterialProperty (const std::string &name)
 
bool hasMaterialProperty (const std::string &name)
 
bool hasMaterialPropertyByName (const std::string &name)
 
bool hasMaterialPropertyByName (const std::string &name)
 
bool hasADMaterialProperty (const std::string &name)
 
bool hasADMaterialProperty (const std::string &name)
 
bool hasADMaterialPropertyByName (const std::string &name)
 
bool hasADMaterialPropertyByName (const std::string &name)
 
bool hasGenericMaterialProperty (const std::string &name)
 
bool hasGenericMaterialProperty (const std::string &name)
 
bool hasGenericMaterialPropertyByName (const std::string &name)
 
bool hasGenericMaterialPropertyByName (const std::string &name)
 
const FunctiongetFunction (const std::string &name) const
 
const FunctiongetFunctionByName (const FunctionName &name) const
 
bool hasFunction (const std::string &param_name) const
 
bool hasFunctionByName (const FunctionName &name) const
 
bool isDefaultPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessor (const std::string &param_name, const unsigned int index=0) const
 
bool hasPostprocessorByName (const PostprocessorName &name) const
 
std::size_t coupledPostprocessors (const std::string &param_name) const
 
const PostprocessorName & getPostprocessorName (const std::string &param_name, const unsigned int index=0) const
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name) const
 
const VectorPostprocessorName & getVectorPostprocessorName (const std::string &param_name) const
 
T & getSampler (const std::string &name)
 
SamplergetSampler (const std::string &name)
 
T & getSamplerByName (const SamplerName &name)
 
SamplergetSamplerByName (const SamplerName &name)
 
virtual void meshChanged ()
 
virtual void meshDisplaced ()
 
PerfGraphperfGraph ()
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValue (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOld (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
const PostprocessorValuegetPostprocessorValueOlder (const std::string &param_name, const unsigned int index=0) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
virtual const PostprocessorValuegetPostprocessorValueByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOldByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
const PostprocessorValuegetPostprocessorValueOlderByName (const PostprocessorName &name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
const Parallel::Communicator & comm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
template<>
SurrogateModelgetSurrogateModel (const std::string &name) const
 
template<>
SurrogateTrainerBasegetSurrogateTrainer (const std::string &name) const
 
template<>
SurrogateModelgetSurrogateModelByName (const UserObjectName &name) const
 
template<>
SurrogateTrainerBasegetSurrogateTrainerByName (const UserObjectName &name) const
 
template<typename T = SurrogateModel>
T & getSurrogateModel (const std::string &name) const
 Get a SurrogateModel/Trainer with a given name. More...
 
template<typename T = SurrogateTrainerBase>
T & getSurrogateTrainer (const std::string &name) const
 
template<typename T = SurrogateModel>
T & getSurrogateModelByName (const UserObjectName &name) const
 Get a sampler with a given name. More...
 
template<typename T = SurrogateTrainerBase>
T & getSurrogateTrainerByName (const UserObjectName &name) const
 

Static Public Member Functions

static InputParameters validParams ()
 
static void sort (typename std::vector< T > &vector)
 
static void sortDFS (typename std::vector< T > &vector)
 
static void cyclicDependencyError (CyclicDependencyException< T2 > &e, const std::string &header)
 

Public Attributes

const ConsoleStream _console
 

Static Public Attributes

static constexpr PropertyValue::id_type default_property_id
 
static constexpr PropertyValue::id_type zero_property_id
 
static constexpr auto SYSTEM
 
static constexpr auto NAME
 

Protected Member Functions

virtual void preNeedSample () override
 This is where most of the computations happen: More...
 
virtual bool needSample (const std::vector< Real > &row, dof_id_type local_ind, dof_id_type global_ind, Real &val) override
 Based on the computations in preNeedSample, the decision to get more data is passed and results from the GP fills. More...
 
virtual bool facilitateDecision ()
 Make decisions whether to call the full model or not based on GP prediction and uncertainty. More...
 
virtual void setupData (const std::vector< std::vector< Real >> &inputs, const std::vector< Real > &outputs)
 This sets up data for re-training the GP. More...
 
bool learningFunction (const Real &gp_mean, const Real &gp_std) const
 This method evaluates the active learning acquisition function and returns bool that indicates whether the GP model failed. More...
 
virtual ReporterName declareStochasticReporterClone (const Sampler &sampler, const ReporterData &from_data, const ReporterName &from_reporter, std::string prefix="") override
 This is overriden for the following reasons: 1) Only one vector can be declared and must match the type of this class. More...
 
const Samplersampler () const
 Get a const reference to the sampler from the parameters. More...
 
const std::vector< std::vector< Real > > & getGlobalInputData () const
 
const std::vector< Real > & getGlobalOutputData () const
 Get a const reference to the output data. More...
 
template<typename T >
std::vector< T > & declareStochasticReporter (std::string value_name, const Sampler &sampler)
 
virtual void addPostprocessorDependencyHelper (const PostprocessorName &name) const override
 
virtual void addVectorPostprocessorDependencyHelper (const VectorPostprocessorName &name) const override
 
virtual void addUserObjectDependencyHelper (const UserObject &uo) const override
 
void addReporterDependencyHelper (const ReporterName &reporter_name) override
 
const ReporterNamegetReporterName (const std::string &param_name) const
 
T & declareRestartableData (const std::string &data_name, Args &&... args)
 
ManagedValue< T > declareManagedRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 
const T & getRestartableData (const std::string &data_name) const
 
T & declareRestartableDataWithContext (const std::string &data_name, void *context, Args &&... args)
 
T & declareRecoverableData (const std::string &data_name, Args &&... args)
 
T & declareRestartableDataWithObjectName (const std::string &data_name, const std::string &object_name, Args &&... args)
 
T & declareRestartableDataWithObjectNameWithContext (const std::string &data_name, const std::string &object_name, void *context, Args &&... args)
 
std::string restartableName (const std::string &data_name) const
 
const T & getMeshProperty (const std::string &data_name, const std::string &prefix)
 
const T & getMeshProperty (const std::string &data_name)
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name, const std::string &prefix) const
 
bool hasMeshProperty (const std::string &data_name) const
 
bool hasMeshProperty (const std::string &data_name) const
 
std::string meshPropertyName (const std::string &data_name) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 
std::string timedSectionName (const std::string &section_name) const
 
bool isCoupledScalar (const std::string &var_name, unsigned int i=0) const
 
unsigned int coupledScalarComponents (const std::string &var_name) const
 
unsigned int coupledScalar (const std::string &var_name, unsigned int comp=0) const
 
libMesh::Order coupledScalarOrder (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const ADVariableValueadCoupledScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const GenericVariableValue< is_ad > & coupledGenericScalarValue (const std::string &var_name, unsigned int comp=0) const
 
const GenericVariableValue< false > & coupledGenericScalarValue (const std::string &var_name, const unsigned int comp) const
 
const GenericVariableValue< true > & coupledGenericScalarValue (const std::string &var_name, const unsigned int comp) const
 
const VariableValuecoupledVectorTagScalarValue (const std::string &var_name, TagID tag, unsigned int comp=0) const
 
const VariableValuecoupledMatrixTagScalarValue (const std::string &var_name, TagID tag, unsigned int comp=0) const
 
const VariableValuecoupledScalarValueOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarValueOlder (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDot (const std::string &var_name, unsigned int comp=0) const
 
const ADVariableValueadCoupledScalarDot (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDot (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDotOld (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDu (const std::string &var_name, unsigned int comp=0) const
 
const VariableValuecoupledScalarDotDotDu (const std::string &var_name, unsigned int comp=0) const
 
const MooseVariableScalargetScalarVar (const std::string &var_name, unsigned int comp) const
 
virtual void checkMaterialProperty (const std::string &name, const unsigned int state)
 
void markMatPropRequested (const std::string &)
 
MaterialPropertyName getMaterialPropertyName (const std::string &name) const
 
void checkExecutionStage ()
 
T & declareUnusedValue (Args &&... args)
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
const GenericMaterialProperty< T, is_ad > * defaultGenericMaterialProperty (const std::string &name)
 
const GenericMaterialProperty< T, is_ad > * defaultGenericMaterialProperty (const std::string &name)
 
const MaterialProperty< T > * defaultMaterialProperty (const std::string &name)
 
const MaterialProperty< T > * defaultMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > * defaultADMaterialProperty (const std::string &name)
 
const ADMaterialProperty< T > * defaultADMaterialProperty (const std::string &name)
 
T & declareValue (const std::string &param_name, Args &&... args)
 
T & declareValue (const std::string &param_name, ReporterMode mode, Args &&... args)
 
T & declareValue (const std::string &param_name, Args &&... args)
 
T & declareValue (const std::string &param_name, ReporterMode mode, Args &&... args)
 
T & declareValue (const std::string &param_name, Args &&... args)
 
T & declareValue (const std::string &param_name, ReporterMode mode, Args &&... args)
 
T & declareValue (const std::string &param_name, Args &&... args)
 
T & declareValue (const std::string &param_name, ReporterMode mode, Args &&... args)
 
T & declareValueByName (const ReporterValueName &value_name, Args &&... args)
 
T & declareValueByName (const ReporterValueName &value_name, ReporterMode mode, Args &&... args)
 
T & declareValueByName (const ReporterValueName &value_name, Args &&... args)
 
T & declareValueByName (const ReporterValueName &value_name, ReporterMode mode, Args &&... args)
 
T & declareValueByName (const ReporterValueName &value_name, Args &&... args)
 
T & declareValueByName (const ReporterValueName &value_name, ReporterMode mode, Args &&... args)
 
T & declareValueByName (const ReporterValueName &value_name, Args &&... args)
 
T & declareValueByName (const ReporterValueName &value_name, ReporterMode mode, Args &&... args)
 

Static Protected Member Functions

static std::string meshPropertyName (const std::string &data_name, const std::string &prefix)
 

Protected Attributes

const MooseEnum_learning_function
 The learning function for active learning. More...
 
const Real_learning_function_threshold
 The learning function threshold. More...
 
const Real_learning_function_parameter
 The learning function parameter. More...
 
std::vector< std::vector< Real > > _inputs_batch
 Store all the input vectors used for training. More...
 
std::vector< Real_outputs_batch
 Store all the outputs used for training. More...
 
const ActiveLearningGaussianProcess_al_gp
 The active learning GP trainer that permits re-training. More...
 
const SurrogateModel_gp_eval
 The GP evaluator object that permits re-evaluations. More...
 
std::vector< bool > & _flag_sample
 Flag samples when the GP fails. More...
 
const int _n_train
 Number of initial training points for GP. More...
 
std::vector< std::vector< Real > > & _inputs
 Storage for the input vectors to be transferred to the output file. More...
 
std::vector< Real > & _gp_mean
 Broadcast the GP mean prediciton to JSON. More...
 
std::vector< Real > & _gp_std
 Broadcast the GP standard deviation to JSON. More...
 
bool _decision
 GP pass/fail decision. More...
 
const std::vector< std::vector< Real > > & _inputs_global
 Reference to global input data requested from base class. More...
 
const std::vector< Real > & _outputs_global
 Reference to global output data requested from base class. More...
 
Sampler_sampler
 Sampler given in the parameters, must match the one used to declare the transferred values. More...
 
SubProblem_subproblem
 
FEProblemBase_fe_problem
 
SystemBase_sys
 
const THREAD_ID _tid
 
Assembly_assembly
 
const Moose::CoordinateSystemType_coord_sys
 
const bool _duplicate_initial_execution
 
std::set< std::string > _depend_uo
 
const bool & _enabled
 
MooseApp_app
 
const std::string _type
 
const std::string _name
 
const InputParameters_pars
 
Factory_factory
 
ActionFactory_action_factory
 
const ExecFlagEnum_execute_enum
 
const ExecFlagType_current_execute_flag
 
MooseApp_restartable_app
 
const std::string _restartable_system_name
 
const THREAD_ID _restartable_tid
 
const bool _restartable_read_only
 
FEProblemBase_mci_feproblem
 
FEProblemBase_mdi_feproblem
 
MooseApp_pg_moose_app
 
const std::string _prefix
 
FEProblemBase_sc_fe_problem
 
const THREAD_ID _sc_tid
 
const Real_real_zero
 
const VariableValue_scalar_zero
 
const Point & _point_zero
 
const InputParameters_mi_params
 
const std::string _mi_name
 
const MooseObjectName _mi_moose_object_name
 
FEProblemBase_mi_feproblem
 
SubProblem_mi_subproblem
 
const THREAD_ID _mi_tid
 
const Moose::MaterialDataType _material_data_type
 
MaterialData_material_data
 
bool _stateful_allowed
 
bool _get_material_property_called
 
std::vector< std::unique_ptr< PropertyValue > > _default_properties
 
std::unordered_set< unsigned int_material_property_dependencies
 
const MaterialPropertyName _get_suffix
 
const bool _use_interpolated_state
 
const InputParameters_ti_params
 
FEProblemBase_ti_feproblem
 
bool _is_implicit
 
Real_t
 
const Real_t_old
 
int_t_step
 
Real_dt
 
Real_dt_old
 
bool _is_transient
 
const Parallel::Communicator & _communicator
 

Static Protected Attributes

static const std::string _interpolated_old
 
static const std::string _interpolated_older
 

Detailed Description

Definition at line 17 of file ActiveLearningGPDecision.h.

Constructor & Destructor Documentation

◆ ActiveLearningGPDecision()

ActiveLearningGPDecision::ActiveLearningGPDecision ( const InputParameters parameters)

Definition at line 43 of file ActiveLearningGPDecision.C.

46  _learning_function(getParam<MooseEnum>("learning_function")),
47  _learning_function_threshold(getParam<Real>("learning_function_threshold")),
48  _learning_function_parameter(getParam<Real>("learning_function_parameter")),
49  _al_gp(getUserObject<ActiveLearningGaussianProcess>("al_gp")),
50  _gp_eval(getSurrogateModel<GaussianProcessSurrogate>("gp_evaluator")),
51  _flag_sample(declareValue<std::vector<bool>>(
52  "flag_sample", std::vector<bool>(sampler().getNumberOfRows(), false))),
53  _n_train(getParam<int>("n_train")),
54  _inputs(declareValue<std::vector<std::vector<Real>>>(
55  "inputs",
56  std::vector<std::vector<Real>>(sampler().getNumberOfRows(),
57  std::vector<Real>(sampler().getNumberOfCols())))),
58  _gp_mean(
59  declareValue<std::vector<Real>>("gp_mean", std::vector<Real>(sampler().getNumberOfRows()))),
60  _gp_std(
61  declareValue<std::vector<Real>>("gp_std", std::vector<Real>(sampler().getNumberOfRows()))),
62  _decision(true),
65 {
66  if (_learning_function == "Ufunction" &&
67  !parameters.isParamSetByUser("learning_function_parameter"))
68  paramError("learning_function",
69  "The Ufunction requires the model failure threshold ('learning_function_parameter') "
70  "to be specified.");
71 }
const Sampler & sampler() const
Get a const reference to the sampler from the parameters.
const std::vector< Real > & getGlobalOutputData() const
Get a const reference to the output data.
const int _n_train
Number of initial training points for GP.
bool _decision
GP pass/fail decision.
const Real & _learning_function_threshold
The learning function threshold.
const std::vector< Real > & _outputs_global
Reference to global output data requested from base class.
const MooseEnum & _learning_function
The learning function for active learning.
const std::vector< std::vector< Real > > & getGlobalInputData() const
void paramError(const std::string &param, Args... args) const
T & declareValue(const std::string &param_name, Args &&... args)
const Real & _learning_function_parameter
The learning function parameter.
bool isParamSetByUser(const std::string &name) const
const ActiveLearningGaussianProcess & _al_gp
The active learning GP trainer that permits re-training.
const InputParameters & parameters() const
std::vector< Real > & _gp_mean
Broadcast the GP mean prediciton to JSON.
const SurrogateModel & _gp_eval
The GP evaluator object that permits re-evaluations.
std::vector< std::vector< Real > > & _inputs
Storage for the input vectors to be transferred to the output file.
std::vector< Real > & _gp_std
Broadcast the GP standard deviation to JSON.
SurrogateModelInterface(const MooseObject *moose_object)
const std::vector< std::vector< Real > > & _inputs_global
Reference to global input data requested from base class.
std::vector< bool > & _flag_sample
Flag samples when the GP fails.

Member Function Documentation

◆ declareStochasticReporter()

template<typename T >
std::vector< T > & StochasticReporter::declareStochasticReporter ( std::string  value_name,
const Sampler sampler 
)
protectedinherited

Definition at line 131 of file StochasticReporter.h.

Referenced by StochasticReporter::declareStochasticReporterClone(), and SamplerReporterTransfer::intitializeStochasticReporters().

132 {
133  const ReporterMode mode =
135  return this->template declareValueByName<std::vector<T>, StochasticReporterContext<T>>(
136  value_name, mode, sampler);
137 }
const ReporterMode REPORTER_MODE_ROOT
const unsigned int _parallel_type
const ReporterMode REPORTER_MODE_DISTRIBUTED

◆ declareStochasticReporterClone()

ReporterName ActiveLearningReporterTempl< Real >::declareStochasticReporterClone ( const Sampler sampler,
const ReporterData from_data,
const ReporterName from_reporter,
std::string  prefix = "" 
)
overrideprotectedvirtualinherited

This is overriden for the following reasons: 1) Only one vector can be declared and must match the type of this class.

2) Check that the inputted sampler matches the one given in the parameters. 3) We actually get a pointer to the declared value so we can replace it (if necessary) in the needSample routine. 4) Declare the "need_sample" value which can be used to evaluate the sample or not.

Reimplemented from StochasticReporter.

Definition at line 176 of file ActiveLearningReporterBase.h.

180 {
181  // Only one value is allowed to be declared
182  if (_data)
183  this->mooseError(type(), " can only declare a single reporter value.");
184  // Make sure the inputted sampler is the same one in the parameters
185  else if (sampler.name() != _sampler.name())
186  this->paramError("sampler",
187  "Inputted sampler, ",
188  _sampler.name(),
189  ", is not the same as the one producing data, ",
190  sampler.name(),
191  ".");
192  // Make sure reporter value exists
193  else if (!from_data.hasReporterValue(from_reporter))
194  this->mooseError("Reporter value ", from_reporter, " has not been declared.");
195  // Make sure the reporter value is the right type
196  else if (!from_data.hasReporterValue<T>(from_reporter))
197  this->mooseError(
198  type(), " can only use reporter values of type ", MooseUtils::prettyCppType<T>(), ".");
199 
200  std::string value_name = (prefix.empty() ? "" : prefix + ":") + from_reporter.getObjectName() +
201  ":" + from_reporter.getValueName();
202  _data = &this->declareStochasticReporter<T>(value_name, sampler);
203  return {name(), value_name};
204 }
const Sampler & sampler() const
Get a const reference to the sampler from the parameters.
virtual const std::string & name() const
std::vector< Real > * _data
Reporter value declared with the transfer.
const std::string & type() const
void paramError(const std::string &param, Args... args) const
const std::string & getObjectName() const
void mooseError(Args &&... args) const
bool hasReporterValue(const ReporterName &reporter_name) const
const std::string & getValueName() const
Sampler & _sampler
Sampler given in the parameters, must match the one used to declare the transferred values...

◆ execute()

void ActiveLearningReporterTempl< Real >::execute ( )
overridevirtualinherited

Here we loop through the samples and call the needSample function to determine if the sample needs to be run and define a value in its place.

Reimplemented from StochasticReporter.

Definition at line 138 of file ActiveLearningReporterBase.h.

139 {
140  // If requesting global data, fill it in
142  {
143  // Gather inputs for the current step
145  std::vector<Real>(_sampler.getNumberOfCols(), 0.0));
148  for (auto & inp : _input_data)
149  gatherSum(inp);
150  }
152  {
153  if (!_data)
154  mooseError("Output data has been requested, but none was declared in this object.");
155  _output_data = *_data;
157  }
158 
159  // Optional call for before sampler loop
160  preNeedSample();
161 
162  // Dummy value in case _data has not been declared yet
163  T dummy;
164  // Loop over samples to determine if sample is needed. Replace value in _data
165  // (typically only if a sample is not needed). We insert a dummy value in case
166  // _data has not been declared.
167  for (const auto & i : make_range(_sampler.getNumberOfLocalRows()))
169  i,
171  (_data ? (*_data)[i] : dummy));
172 }
void allgather(const T &send_data, std::vector< T, A > &recv_data) const
std::vector< Real > getNextLocalRow()
dof_id_type getLocalRowBegin() const
virtual void preNeedSample()
Optional virtual function that is called before the sampler loop calling needSample.
const Parallel::Communicator & _communicator
dof_id_type getNumberOfLocalRows() const
virtual bool needSample(const std::vector< Real > &, dof_id_type, dof_id_type, Real &)
This routine is called during the sampler loop in execute() and is meant to fill in the "need_sample"...
std::vector< Real > * _data
Reporter value declared with the transfer.
bool _output_data_requested
Whether or not to gather global output data.
void gatherSum(T &value)
std::vector< Real > _output_data
Global output data from sampler.
std::vector< bool > & _need_sample
Reporter value determining whether we need to evaluate the sample through a multiapp or other means...
bool _input_data_requested
Whether or not to gather global input data.
dof_id_type getLocalRowEnd() const
dof_id_type getNumberOfRows() const
std::vector< std::vector< Real > > _input_data
Global input data from sampler.
IntRange< T > make_range(T beg, T end)
void mooseError(Args &&... args) const
Sampler & _sampler
Sampler given in the parameters, must match the one used to declare the transferred values...
dof_id_type getNumberOfCols() const
uint8_t dof_id_type

◆ facilitateDecision()

bool ActiveLearningGPDecision::facilitateDecision ( )
protectedvirtual

Make decisions whether to call the full model or not based on GP prediction and uncertainty.

Returns
bool Whether a full order model evaluation is required

Reimplemented in BiFidelityActiveLearningGPDecision.

Definition at line 95 of file ActiveLearningGPDecision.C.

Referenced by preNeedSample().

96 {
97  for (dof_id_type i = 0; i < _inputs.size(); ++i)
98  {
101  }
102 
103  for (const auto & fs : _flag_sample)
104  if (!fs)
105  return false;
106  return true;
107 }
virtual Real evaluate(const std::vector< Real > &x) const
Evaluate surrogate model given a row of parameters.
bool learningFunction(const Real &gp_mean, const Real &gp_std) const
This method evaluates the active learning acquisition function and returns bool that indicates whethe...
std::vector< Real > & _gp_mean
Broadcast the GP mean prediciton to JSON.
const SurrogateModel & _gp_eval
The GP evaluator object that permits re-evaluations.
std::vector< std::vector< Real > > & _inputs
Storage for the input vectors to be transferred to the output file.
std::vector< Real > & _gp_std
Broadcast the GP standard deviation to JSON.
uint8_t dof_id_type
std::vector< bool > & _flag_sample
Flag samples when the GP fails.

◆ finalize()

virtual void StochasticReporter::finalize ( )
inlineoverridevirtualinherited

Implements GeneralReporter.

Reimplemented in MappingReporter, and EvaluateSurrogate.

Definition at line 114 of file StochasticReporter.h.

114 {}

◆ getGlobalInputData()

const std::vector<std::vector<Real> >& ActiveLearningReporterTempl< Real >::getGlobalInputData ( ) const
inlineprotectedinherited

Definition at line 59 of file ActiveLearningReporterBase.h.

60  {
61  _input_data_requested = true;
62  return _input_data;
63  }
bool _input_data_requested
Whether or not to gather global input data.
std::vector< std::vector< Real > > _input_data
Global input data from sampler.

◆ getGlobalOutputData()

const std::vector<Real >& ActiveLearningReporterTempl< Real >::getGlobalOutputData ( ) const
inlineprotectedinherited

Get a const reference to the output data.

Definition at line 68 of file ActiveLearningReporterBase.h.

69  {
71  return _output_data;
72  }
bool _output_data_requested
Whether or not to gather global output data.
std::vector< Real > _output_data
Global output data from sampler.

◆ getSurrogateModel() [1/2]

template<>
SurrogateModel& SurrogateModelInterface::getSurrogateModel ( const std::string &  name) const
inherited

Definition at line 46 of file SurrogateModelInterface.C.

47 {
48  return getSurrogateModelByName<SurrogateModel>(_smi_params.get<UserObjectName>(name));
49 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateModel() [2/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateModel ( const std::string &  name) const
inherited

Get a SurrogateModel/Trainer with a given name.

Parameters
nameThe name of the parameter key of the sampler to retrieve
Returns
The sampler with name associated with the parameter 'name'

Definition at line 81 of file SurrogateModelInterface.h.

Referenced by SurrogateTrainer::initialize().

82 {
83  return getSurrogateModelByName<T>(_smi_params.get<UserObjectName>(name));
84 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateModelByName() [1/2]

template<>
SurrogateModel& SurrogateModelInterface::getSurrogateModelByName ( const UserObjectName &  name) const
inherited

Definition at line 31 of file SurrogateModelInterface.C.

32 {
33  std::vector<SurrogateModel *> models;
35  .query()
36  .condition<AttribName>(name)
37  .condition<AttribSystem>("SurrogateModel")
38  .queryInto(models);
39  if (models.empty())
40  mooseError("Unable to find a SurrogateModel object with the name '" + name + "'");
41  return *(models[0]);
42 }
void mooseError(Args &&... args)
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
TheWarehouse & theWarehouse() const
const std::string name
Definition: Setup.h:20
Query query()

◆ getSurrogateModelByName() [2/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateModelByName ( const UserObjectName &  name) const
inherited

Get a sampler with a given name.

Parameters
nameThe name of the sampler to retrieve
Returns
The sampler with name 'name'

Definition at line 88 of file SurrogateModelInterface.h.

Referenced by CrossValidationScores::CrossValidationScores(), EvaluateSurrogate::EvaluateSurrogate(), and InverseMapping::initialSetup().

89 {
90  std::vector<T *> models;
92  .query()
93  .condition<AttribName>(name)
94  .condition<AttribSystem>("SurrogateModel")
95  .queryInto(models);
96  if (models.empty())
97  mooseError("Unable to find a SurrogateModel object of type " + std::string(typeid(T).name()) +
98  " with the name '" + name + "'");
99  return *(models[0]);
100 }
void mooseError(Args &&... args)
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
TheWarehouse & theWarehouse() const
const std::string name
Definition: Setup.h:20
Query query()

◆ getSurrogateTrainer() [1/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateTrainer ( const std::string &  name) const
inherited

Definition at line 104 of file SurrogateModelInterface.h.

105 {
106  return getSurrogateTrainerByName<T>(_smi_params.get<UserObjectName>(name));
107 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateTrainer() [2/2]

template<>
SurrogateTrainerBase& SurrogateModelInterface::getSurrogateTrainer ( const std::string &  name) const
inherited

Definition at line 60 of file SurrogateModelInterface.C.

61 {
62  return getSurrogateTrainerByName<SurrogateTrainerBase>(_smi_params.get<UserObjectName>(name));
63 }
const InputParameters & _smi_params
Parameters of the object with this interface.
std::vector< std::pair< R1, R2 > > get(const std::string &param1, const std::string &param2) const
const std::string name
Definition: Setup.h:20

◆ getSurrogateTrainerByName() [1/2]

template<>
SurrogateTrainerBase& SurrogateModelInterface::getSurrogateTrainerByName ( const UserObjectName &  name) const
inherited

Definition at line 53 of file SurrogateModelInterface.C.

54 {
56 }
T & getUserObject(const std::string &name, unsigned int tid=0) const
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
const std::string name
Definition: Setup.h:20
This is the base trainer class whose main functionality is the API for declaring model data...

◆ getSurrogateTrainerByName() [2/2]

template<typename T >
T & SurrogateModelInterface::getSurrogateTrainerByName ( const UserObjectName &  name) const
inherited

Definition at line 111 of file SurrogateModelInterface.h.

Referenced by SurrogateTrainerOutput::output().

112 {
113  SurrogateTrainerBase * base_ptr =
115  T * obj_ptr = dynamic_cast<T *>(base_ptr);
116  if (!obj_ptr)
117  mooseError("Failed to find a SurrogateTrainer object of type " + std::string(typeid(T).name()) +
118  " with the name '",
119  name,
120  "' for the desired type.");
121  return *obj_ptr;
122 }
T & getUserObject(const std::string &name, unsigned int tid=0) const
void mooseError(Args &&... args)
FEProblemBase & _smi_feproblem
Reference to FEProblemBase instance.
const std::string name
Definition: Setup.h:20
const THREAD_ID _smi_tid
Thread ID.
This is the base trainer class whose main functionality is the API for declaring model data...

◆ getTrainingSamples()

const int& ActiveLearningGPDecision::getTrainingSamples ( ) const
inline

Access the number of training samples.

Definition at line 25 of file ActiveLearningGPDecision.h.

25 { return _n_train; }
const int _n_train
Number of initial training points for GP.

◆ initialize()

virtual void StochasticReporter::initialize ( )
inlineoverridevirtualinherited

Implements GeneralReporter.

Reimplemented in MappingReporter, and EvaluateSurrogate.

Definition at line 112 of file StochasticReporter.h.

112 {}

◆ learningFunction()

bool ActiveLearningGPDecision::learningFunction ( const Real gp_mean,
const Real gp_std 
) const
protected

This method evaluates the active learning acquisition function and returns bool that indicates whether the GP model failed.

Parameters
gp_meanMean of the gaussian process model
gp_meanStandard deviation of the gaussian process model
Returns
bool If the GP model failed

Definition at line 74 of file ActiveLearningGPDecision.C.

Referenced by BiFidelityActiveLearningGPDecision::facilitateDecision(), and facilitateDecision().

75 {
76  if (_learning_function == "Ufunction")
77  return (std::abs(gp_mean - _learning_function_parameter) / gp_std) >
79  else if (_learning_function == "COV")
80  return (gp_std / std::abs(gp_mean)) < _learning_function_threshold;
81  else
82  mooseError("Invalid learning function ", std::string(_learning_function));
83  return false;
84 }
const Real & _learning_function_threshold
The learning function threshold.
const MooseEnum & _learning_function
The learning function for active learning.
const Real & _learning_function_parameter
The learning function parameter.
void mooseError(Args &&... args) const

◆ needSample()

bool ActiveLearningGPDecision::needSample ( const std::vector< Real > &  row,
dof_id_type  local_ind,
dof_id_type  global_ind,
Real val 
)
overrideprotectedvirtual

Based on the computations in preNeedSample, the decision to get more data is passed and results from the GP fills.

Parameters
val
rowInput parameters to the model
local_indCurrent processor row index
global_indAll processors row index
valOutput predicted by either the LF model + GP correction or the HF model
Returns
bool Whether a full order model evaluation is required

Reimplemented from ActiveLearningReporterTempl< Real >.

Reimplemented in BiFidelityActiveLearningGPDecision.

Definition at line 132 of file ActiveLearningGPDecision.C.

136 {
137  if (!_decision)
138  val = _gp_mean[global_ind];
139  return _decision;
140 }
bool _decision
GP pass/fail decision.
std::vector< Real > & _gp_mean
Broadcast the GP mean prediciton to JSON.

◆ preNeedSample()

void ActiveLearningGPDecision::preNeedSample ( )
overrideprotectedvirtual

This is where most of the computations happen:

  • Data is accumulated for training
  • GP models are trained
  • Decision is made whether more data is needed for GP training

Reimplemented from ActiveLearningReporterTempl< Real >.

Reimplemented in BiFidelityActiveLearningGPDecision.

Definition at line 110 of file ActiveLearningGPDecision.C.

111 {
112  // Accumulate inputs and outputs if we previously decided we needed a sample
113  if (_t_step > 1 && _decision)
114  {
115  // Accumulate data into _batch members
117 
118  // Retrain if we are outside the training phase
119  if (_t_step > _n_train)
121  }
122 
123  // Gather inputs for the current step
125 
126  // Evaluate GP and decide if we need more data if outside training phase
127  if (_t_step > _n_train)
129 }
virtual void setupData(const std::vector< std::vector< Real >> &inputs, const std::vector< Real > &outputs)
This sets up data for re-training the GP.
std::vector< Real > _outputs_batch
Store all the outputs used for training.
const int _n_train
Number of initial training points for GP.
bool _decision
GP pass/fail decision.
virtual void reTrain(const std::vector< std::vector< Real >> &inputs, const std::vector< Real > &outputs) const final
const std::vector< Real > & _outputs_global
Reference to global output data requested from base class.
std::vector< std::vector< Real > > _inputs_batch
Store all the input vectors used for training.
const ActiveLearningGaussianProcess & _al_gp
The active learning GP trainer that permits re-training.
virtual bool facilitateDecision()
Make decisions whether to call the full model or not based on GP prediction and uncertainty.
std::vector< std::vector< Real > > & _inputs
Storage for the input vectors to be transferred to the output file.
const std::vector< std::vector< Real > > & _inputs_global
Reference to global input data requested from base class.

◆ sampler()

const Sampler& ActiveLearningReporterTempl< Real >::sampler ( ) const
inlineprotectedinherited

Get a const reference to the sampler from the parameters.

This is preferred over having _sampler being a protected member since we don't want derived classes changing the state of the sampler during the loop in execute.

Definition at line 57 of file ActiveLearningReporterBase.h.

57 { return _sampler; }
Sampler & _sampler
Sampler given in the parameters, must match the one used to declare the transferred values...

◆ setupData()

void ActiveLearningGPDecision::setupData ( const std::vector< std::vector< Real >> &  inputs,
const std::vector< Real > &  outputs 
)
protectedvirtual

This sets up data for re-training the GP.

Parameters
inputsMatrix of inputs for the current step
outputsVector of outputs for the current step

Definition at line 87 of file ActiveLearningGPDecision.C.

Referenced by BiFidelityActiveLearningGPDecision::preNeedSample(), and preNeedSample().

89 {
90  _inputs_batch.insert(_inputs_batch.end(), inputs.begin(), inputs.end());
91  _outputs_batch.insert(_outputs_batch.end(), outputs.begin(), outputs.end());
92 }
std::vector< Real > _outputs_batch
Store all the outputs used for training.
std::vector< std::vector< Real > > _inputs_batch
Store all the input vectors used for training.

◆ validParams()

InputParameters ActiveLearningGPDecision::validParams ( )
static

Definition at line 19 of file ActiveLearningGPDecision.C.

Referenced by BiFidelityActiveLearningGPDecision::validParams().

20 {
22  params.addClassDescription(
23  "Evaluates a GP surrogate model, determines its prediction quality, "
24  "launches full model if GP prediction is inadequate, and retrains GP.");
25  MooseEnum learning_function("Ufunction COV");
27  "learning_function", learning_function, "The learning function for active learning.");
28  params.addRequiredParam<Real>("learning_function_threshold", "The learning function threshold.");
29  params.addParam<Real>("learning_function_parameter",
30  std::numeric_limits<Real>::max(),
31  "The learning function parameter.");
32  params.addRequiredParam<UserObjectName>("al_gp", "Active learning GP trainer.");
33  params.addRequiredParam<UserObjectName>("gp_evaluator", "Evaluate the trained GP.");
34  params.addRequiredParam<SamplerName>("sampler", "The sampler object.");
35  params.addParam<ReporterValueName>("flag_sample", "flag_sample", "Flag samples.");
36  params.addRequiredParam<int>("n_train", "Number of training steps.");
37  params.addParam<ReporterValueName>("inputs", "inputs", "The inputs.");
38  params.addParam<ReporterValueName>("gp_mean", "gp_mean", "The GP mean prediction.");
39  params.addParam<ReporterValueName>("gp_std", "gp_std", "The GP standard deviation.");
40  return params;
41 }
void addParam(const std::string &name, const std::initializer_list< typename T::value_type > &value, const std::string &doc_string)
void addRequiredParam(const std::string &name, const std::string &doc_string)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static InputParameters validParams()
void addClassDescription(const std::string &doc_string)

Member Data Documentation

◆ _al_gp

const ActiveLearningGaussianProcess& ActiveLearningGPDecision::_al_gp
protected

The active learning GP trainer that permits re-training.

Definition at line 91 of file ActiveLearningGPDecision.h.

Referenced by BiFidelityActiveLearningGPDecision::preNeedSample(), and preNeedSample().

◆ _decision

bool ActiveLearningGPDecision::_decision
protected

◆ _flag_sample

std::vector<bool>& ActiveLearningGPDecision::_flag_sample
protected

Flag samples when the GP fails.

Definition at line 96 of file ActiveLearningGPDecision.h.

Referenced by BiFidelityActiveLearningGPDecision::facilitateDecision(), and facilitateDecision().

◆ _gp_eval

const SurrogateModel& ActiveLearningGPDecision::_gp_eval
protected

The GP evaluator object that permits re-evaluations.

Definition at line 93 of file ActiveLearningGPDecision.h.

Referenced by BiFidelityActiveLearningGPDecision::facilitateDecision(), and facilitateDecision().

◆ _gp_mean

std::vector<Real>& ActiveLearningGPDecision::_gp_mean
protected

◆ _gp_std

std::vector<Real>& ActiveLearningGPDecision::_gp_std
protected

Broadcast the GP standard deviation to JSON.

Definition at line 107 of file ActiveLearningGPDecision.h.

Referenced by BiFidelityActiveLearningGPDecision::facilitateDecision(), and facilitateDecision().

◆ _inputs

std::vector<std::vector<Real> >& ActiveLearningGPDecision::_inputs
protected

Storage for the input vectors to be transferred to the output file.

Definition at line 102 of file ActiveLearningGPDecision.h.

Referenced by BiFidelityActiveLearningGPDecision::facilitateDecision(), facilitateDecision(), BiFidelityActiveLearningGPDecision::preNeedSample(), and preNeedSample().

◆ _inputs_batch

std::vector<std::vector<Real> > ActiveLearningGPDecision::_inputs_batch
protected

Store all the input vectors used for training.

Definition at line 86 of file ActiveLearningGPDecision.h.

Referenced by BiFidelityActiveLearningGPDecision::preNeedSample(), preNeedSample(), and setupData().

◆ _inputs_global

const std::vector<std::vector<Real> >& ActiveLearningGPDecision::_inputs_global
protected

Reference to global input data requested from base class.

Definition at line 113 of file ActiveLearningGPDecision.h.

Referenced by BiFidelityActiveLearningGPDecision::preNeedSample(), and preNeedSample().

◆ _learning_function

const MooseEnum& ActiveLearningGPDecision::_learning_function
protected

The learning function for active learning.

Definition at line 79 of file ActiveLearningGPDecision.h.

Referenced by ActiveLearningGPDecision(), and learningFunction().

◆ _learning_function_parameter

const Real& ActiveLearningGPDecision::_learning_function_parameter
protected

The learning function parameter.

Definition at line 83 of file ActiveLearningGPDecision.h.

Referenced by learningFunction().

◆ _learning_function_threshold

const Real& ActiveLearningGPDecision::_learning_function_threshold
protected

The learning function threshold.

Definition at line 81 of file ActiveLearningGPDecision.h.

Referenced by learningFunction().

◆ _n_train

const int ActiveLearningGPDecision::_n_train
protected

Number of initial training points for GP.

Definition at line 99 of file ActiveLearningGPDecision.h.

Referenced by getTrainingSamples(), BiFidelityActiveLearningGPDecision::preNeedSample(), and preNeedSample().

◆ _outputs_batch

std::vector<Real> ActiveLearningGPDecision::_outputs_batch
protected

Store all the outputs used for training.

Definition at line 88 of file ActiveLearningGPDecision.h.

Referenced by BiFidelityActiveLearningGPDecision::preNeedSample(), preNeedSample(), and setupData().

◆ _outputs_global

const std::vector<Real>& ActiveLearningGPDecision::_outputs_global
protected

Reference to global output data requested from base class.

Definition at line 115 of file ActiveLearningGPDecision.h.

Referenced by BiFidelityActiveLearningGPDecision::preNeedSample(), and preNeedSample().

◆ _sampler

Sampler& ActiveLearningReporterTempl< Real >::_sampler
protectedinherited

Sampler given in the parameters, must match the one used to declare the transferred values.

Definition at line 100 of file ActiveLearningReporterBase.h.


The documentation for this class was generated from the following files: