Loading [MathJax]/extensions/tex2jax.js
https://mooseframework.inl.gov
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Protected Types | Protected Member Functions | Protected Attributes | List of all members
AISActiveLearning Class Reference

A class used to perform Adaptive Importance Sampling using a Markov Chain Monte Carlo algorithm and Gaussian Process active learning. More...

#include <AISActiveLearning.h>

Inheritance diagram for AISActiveLearning:
[legend]

Public Types

enum  SampleMode { SampleMode::GLOBAL, SampleMode::LOCAL }
 
typedef DataFileName DataFileParameterType
 

Public Member Functions

 AISActiveLearning (const InputParameters &parameters)
 
const std::vector< Real > & getInitialValues () const
 
const intgetNumSamplesTrain () const
 
const bool & getUseAbsoluteValue () const
 
const RealgetOutputLimit () const
 
const std::vector< Real > & getImportanceVectorMean () const
 
const std::vector< Real > & getImportanceVectorStd () const
 
const std::vector< const Distribution * > & getDistributionNames () const
 
const RealgetStdFactor () const
 
virtual bool isAdaptiveSamplingCompleted () const override
 Returns true if the adaptive sampling is completed. More...
 
std::vector< RealgetNextLocalRow ()
 
dof_id_type getNumberOfRows () const
 
dof_id_type getNumberOfCols () const
 
dof_id_type getNumberOfLocalRows () const
 
const LocalRankConfiggetRankConfig (bool batch_mode) const
 
libMesh::Parallel::CommunicatorgetLocalComm ()
 
virtual bool enabled () const
 
std::shared_ptr< MooseObjectgetSharedPtr ()
 
std::shared_ptr< const MooseObjectgetSharedPtr () const
 
MooseAppgetMooseApp () const
 
const std::string & type () const
 
virtual const std::string & name () const
 
std::string typeAndName () const
 
std::string errorPrefix (const std::string &error_type) const
 
void callMooseError (std::string msg, const bool with_prefix) const
 
MooseObjectParameterName uniqueParameterName (const std::string &parameter_name) const
 
const InputParametersparameters () const
 
MooseObjectName uniqueName () const
 
const T & getParam (const std::string &name) const
 
std::vector< std::pair< T1, T2 > > getParam (const std::string &param1, const std::string &param2) const
 
const T & getRenamedParam (const std::string &old_name, const std::string &new_name) const
 
getCheckedPointerParam (const std::string &name, const std::string &error_string="") const
 
bool isParamValid (const std::string &name) const
 
bool isParamSetByUser (const std::string &nm) const
 
void paramError (const std::string &param, Args... args) const
 
void paramWarning (const std::string &param, Args... args) const
 
void paramInfo (const std::string &param, Args... args) const
 
void connectControllableParams (const std::string &parameter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const
 
void mooseError (Args &&... args) const
 
void mooseErrorNonPrefixed (Args &&... args) const
 
void mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const
 
void mooseWarning (Args &&... args) const
 
void mooseWarningNonPrefixed (Args &&... args) const
 
void mooseDeprecated (Args &&... args) const
 
void mooseInfo (Args &&... args) const
 
std::string getDataFileName (const std::string &param) const
 
std::string getDataFileNameByName (const std::string &relative_path) const
 
std::string getDataFilePath (const std::string &relative_path) const
 
virtual void initialSetup ()
 
virtual void timestepSetup ()
 
virtual void jacobianSetup ()
 
virtual void residualSetup ()
 
virtual void subdomainSetup ()
 
virtual void customSetup (const ExecFlagType &)
 
const ExecFlagEnumgetExecuteOnEnum () const
 
PerfGraphperfGraph ()
 
T & getSampler (const std::string &name)
 
SamplergetSampler (const std::string &name)
 
T & getSamplerByName (const SamplerName &name)
 
SamplergetSamplerByName (const SamplerName &name)
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name, bool needs_broadcast) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const VectorPostprocessorValuegetVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValue (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOld (const std::string &param_name, const std::string &vector_name) const
 
const ScatterVectorPostprocessorValuegetScatterVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name, const std::string &vector_name) const
 
bool hasVectorPostprocessor (const std::string &param_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name, const std::string &vector_name) const
 
bool hasVectorPostprocessorByName (const VectorPostprocessorName &name) const
 
const VectorPostprocessorName & getVectorPostprocessorName (const std::string &param_name) const
 
DenseMatrix< RealgetGlobalSamples ()
 
DenseMatrix< RealgetGlobalSamples ()
 
DenseMatrix< RealgetLocalSamples ()
 
DenseMatrix< RealgetLocalSamples ()
 
dof_id_type getLocalRowBegin () const
 
dof_id_type getLocalRowBegin () const
 
dof_id_type getLocalRowEnd () const
 
dof_id_type getLocalRowEnd () const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistribution (const std::string &name) const
 
const T & getDistribution (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
const DistributiongetDistributionByName (const DistributionName &name) const
 
const T & getDistributionByName (const std::string &name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributed (const std::string &param_name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
bool isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const
 
const Parallel::Communicator & comm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 
bool isImplicit ()
 
Moose::StateArg determineState () const
 

Static Public Member Functions

static InputParameters validParams ()
 

Public Attributes

const ConsoleStream _console
 

Protected Types

enum  CommMethod
 

Protected Member Functions

virtual Real computeSample (dof_id_type row_index, dof_id_type col_index) override
 Return the sample for the given row (the sample index) and column (the parameter index) More...
 
void setNumberOfRandomSeeds (std::size_t number)
 
Real getRand (unsigned int index=0)
 
uint32_t getRandl (unsigned int index, uint32_t lower, uint32_t upper)
 
virtual LocalRankConfig constructRankConfig (bool batch_mode) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level) const
 
PerfID registerTimedSection (const std::string &section_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const
 
std::string timedSectionName (const std::string &section_name) const
 
virtual void addVectorPostprocessorDependencyHelper (const VectorPostprocessorName &) const
 
const ReporterNamegetReporterName (const std::string &param_name) const
 
virtual void addReporterDependencyHelper (const ReporterName &)
 
void setNumberOfRows (dof_id_type n_rows)
 
void setNumberOfRows (dof_id_type n_rows)
 
void setNumberOfCols (dof_id_type n_cols)
 
void setNumberOfCols (dof_id_type n_cols)
 
virtual void sampleSetUp (const SampleMode)
 
virtual void sampleSetUp (const SampleMode)
 
virtual void sampleTearDown (const SampleMode)
 
virtual void sampleTearDown (const SampleMode)
 
virtual void computeSampleMatrix (DenseMatrix< Real > &matrix)
 
virtual void computeSampleMatrix (DenseMatrix< Real > &matrix)
 
virtual void computeLocalSampleMatrix (DenseMatrix< Real > &matrix)
 
virtual void computeLocalSampleMatrix (DenseMatrix< Real > &matrix)
 
virtual void computeSampleRow (dof_id_type i, std::vector< Real > &data)
 
virtual void computeSampleRow (dof_id_type i, std::vector< Real > &data)
 
virtual void advanceGenerators (const dof_id_type count)
 
virtual void advanceGenerators (const dof_id_type count)
 
virtual void advanceGenerator (const unsigned int seed_index, const dof_id_type count)
 
virtual void advanceGenerator (const unsigned int seed_index, const dof_id_type count)
 
void setAutoAdvanceGenerators (const bool state)
 
void setAutoAdvanceGenerators (const bool state)
 
void shuffle (std::vector< T > &data, const std::size_t seed_index=0, const CommMethod method=CommMethod::LOCAL)
 
void shuffle (std::vector< T > &data, const std::size_t seed_index=0, const CommMethod method=CommMethod::LOCAL)
 
virtual void executeSetUp ()
 
virtual void executeSetUp ()
 
virtual void executeTearDown ()
 
virtual void executeTearDown ()
 
void saveGeneratorState ()
 
void saveGeneratorState ()
 
void restoreGeneratorState ()
 
void restoreGeneratorState ()
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, const std::size_t time_index=0)
 
const T & getReporterValue (const std::string &param_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0)
 
const T & getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0)
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValue (const std::string &param_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 
bool hasReporterValueByName (const ReporterName &reporter_name) const
 

Protected Attributes

std::vector< const Distribution * > _distributions
 Storage for distribution objects to be utilized. More...
 
const std::vector< Real > & _proposal_std
 The proposal distribution standard deviations. More...
 
const std::vector< Real > & _initial_values
 Initial values values vector to start the importance sampler. More...
 
const Real_output_limit
 The output limit, exceedance of which indicates failure. More...
 
const int_num_samples_train
 Number of samples to train the importance sampler. More...
 
const int_num_importance_sampling_steps
 Number of importance sampling steps (after the importance distribution has been trained) More...
 
const Real_std_factor
 Factor to be multiplied to the standard deviation of the proposal distribution. More...
 
const bool & _use_absolute_value
 Absolute value of the model result. Use this when failure is defined as a non-exceedance rather than an exceedance. More...
 
const unsigned int_num_random_seeds
 Initialize a certain number of random seeds. Change from the default only if you have to. More...
 
bool _is_sampling_completed
 True if the sampling is completed. More...
 
 NONE
 
 LOCAL
 
 SEMI_LOCAL
 
const dof_id_type _min_procs_per_row
 
const dof_id_type _max_procs_per_row
 
libMesh::Parallel::Communicator _local_comm
 
const bool & _enabled
 
MooseApp_app
 
const std::string _type
 
const std::string _name
 
const InputParameters_pars
 
Factory_factory
 
ActionFactory_action_factory
 
const ExecFlagEnum_execute_enum
 
const ExecFlagType_current_execute_flag
 
MooseApp_pg_moose_app
 
const std::string _prefix
 
const Parallel::Communicator & _communicator
 
const InputParameters_ti_params
 
FEProblemBase_ti_feproblem
 
bool _is_implicit
 
Real_t
 
const Real_t_old
 
int_t_step
 
Real_dt
 
Real_dt_old
 
bool _is_transient
 

Detailed Description

A class used to perform Adaptive Importance Sampling using a Markov Chain Monte Carlo algorithm and Gaussian Process active learning.

Definition at line 19 of file AISActiveLearning.h.

Constructor & Destructor Documentation

◆ AISActiveLearning()

AISActiveLearning::AISActiveLearning ( const InputParameters parameters)

Definition at line 22 of file AISActiveLearning.C.

24 {
25 }
AdaptiveImportanceSampler(const InputParameters &parameters)
const InputParameters & parameters() const

Member Function Documentation

◆ computeSample()

Real AdaptiveImportanceSampler::computeSample ( dof_id_type  row_index,
dof_id_type  col_index 
)
overrideprotectedvirtualinherited

Return the sample for the given row (the sample index) and column (the parameter index)

Implements Sampler.

Definition at line 111 of file AdaptiveImportanceSampler.C.

112 {
113  const bool sample = _t_step > 1 && col_index == 0 && _check_step != _t_step;
114  const bool gp_flag = _gp_flag ? (*_gp_flag)[0] : false;
115 
116  if (sample && _is_sampling_completed)
117  mooseError("Internal bug: the adaptive sampling is supposed to be completed but another sample "
118  "has been requested.");
119 
121  {
122  /* This is the importance distribution training step. Markov Chains are set up
123  to sample from the importance region or the failure region using the Metropolis
124  algorithm. Given that the previous sample resulted in a model failure, the next
125  sample is proposed such that it is very likely to result in a model failure as well.
126  The `initial_values` and `proposal_std` parameters provided by the user affects the
127  formation of the importance distribution. */
128  if (sample && !gp_flag)
129  {
130  for (dof_id_type j = 0; j < _distributions.size(); ++j)
131  _prev_value[j] = Normal::quantile(_distributions[j]->cdf(_inputs[j][0]), 0.0, 1.0);
132  Real acceptance_ratio = 0.0;
133  for (dof_id_type i = 0; i < _distributions.size(); ++i)
134  acceptance_ratio += std::log(Normal::pdf(_prev_value[i], 0.0, 1.0)) -
135  std::log(Normal::pdf(_inputs_sto[i].back(), 0.0, 1.0));
136  if (acceptance_ratio > std::log(getRand(_t_step)))
137  {
138  for (dof_id_type i = 0; i < _distributions.size(); ++i)
139  _inputs_sto[i].push_back(_prev_value[i]);
140  }
141  else
142  {
143  for (dof_id_type i = 0; i < _distributions.size(); ++i)
144  _inputs_sto[i].push_back(_inputs_sto[i].back());
145  }
146  for (dof_id_type i = 0; i < _distributions.size(); ++i)
147  _prev_value[i] =
149  }
150  }
151  else if (sample && !gp_flag)
152  {
153  /* This is the importance sampling step using the importance distribution created
154  in the previous step. Once the importance distribution is known, sampling from
155  it is similar to a regular Monte Carlo sampling. */
156  for (dof_id_type i = 0; i < _distributions.size(); ++i)
157  {
158  if (_t_step == _num_samples_train + 1)
159  {
162  }
163  _prev_value[i] =
165  }
166 
167  // check if we have performed all the importance sampling steps
169  _is_sampling_completed = true;
170  }
171 
172  // When the GP fails, the current time step is 'wasted' and the retraining step doesn't
173  // happen until the next time step. Therefore, keep track of the number of retraining steps
174  // to increase the total number of steps taken.
175  if (sample && gp_flag && _t_step > _num_samples_train)
177 
179  return _distributions[col_index]->quantile(Normal::cdf(_prev_value[col_index], 0.0, 1.0));
180 }
int _retraining_steps
Number of retraining performed.
int _check_step
Ensure that the MCMC algorithm proceeds in a sequential fashion.
virtual Real cdf(const Real &x) const override
Definition: Normal.C:74
bool _is_sampling_completed
True if the sampling is completed.
std::vector< const Distribution * > _distributions
Storage for distribution objects to be utilized.
std::vector< std::vector< Real > > _inputs_sto
Storage for previously accepted samples by the decision reporter system.
Real computeMean(const std::vector< Real > &data, const unsigned int &start_index)
compute the mean of a data vector by only considering values from a specific index.
Real getRand(unsigned int index=0)
const std::vector< std::vector< Real > > & _inputs
Storage for the inputs vector obtained from the reporter.
virtual Real pdf(const Real &x) const override
Definition: Normal.C:68
std::vector< Real > _std_sto
Storage for standard deviations of input values for proposing the next sample.
const int & _num_samples_train
Number of samples to train the importance sampler.
const int & _num_importance_sampling_steps
Number of importance sampling steps (after the importance distribution has been trained) ...
Real computeSTD(const std::vector< Real > &data, const unsigned int &start_index)
compute the standard deviation of a data vector by only considering values from a specific index...
const Real & _std_factor
Factor to be multiplied to the standard deviation of the proposal distribution.
std::vector< Real > _mean_sto
Storage for means of input values for proposing the next sample.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const std::vector< bool > *const _gp_flag
Indicate whether GP prediction is good or bad to influence next proposed sample.
void mooseError(Args &&... args) const
static const std::complex< double > j(0, 1)
Complex number "j" (also known as "i")
const std::vector< Real > & _proposal_std
The proposal distribution standard deviations.
virtual Real quantile(const Real &p) const override
Definition: Normal.C:80
uint8_t dof_id_type
std::vector< Real > _prev_value
For proposing the next sample in the MCMC algorithm.

◆ getDistributionNames()

const std::vector<const Distribution *>& AdaptiveImportanceSampler::getDistributionNames ( ) const
inlineinherited

Definition at line 44 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceStats::AdaptiveImportanceStats().

44 { return _distributions; }
std::vector< const Distribution * > _distributions
Storage for distribution objects to be utilized.

◆ getImportanceVectorMean()

const std::vector<Real>& AdaptiveImportanceSampler::getImportanceVectorMean ( ) const
inlineinherited

Definition at line 38 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceStats::execute().

38 { return _mean_sto; }
std::vector< Real > _mean_sto
Storage for means of input values for proposing the next sample.

◆ getImportanceVectorStd()

const std::vector<Real>& AdaptiveImportanceSampler::getImportanceVectorStd ( ) const
inlineinherited

Definition at line 41 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceStats::execute().

41 { return _std_sto; }
std::vector< Real > _std_sto
Storage for standard deviations of input values for proposing the next sample.

◆ getInitialValues()

const std::vector<Real>& AdaptiveImportanceSampler::getInitialValues ( ) const
inlineinherited

Definition at line 26 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveMonteCarloDecision::AdaptiveMonteCarloDecision(), and AdaptiveMonteCarloDecision::reinitChain().

26 { return _initial_values; }
const std::vector< Real > & _initial_values
Initial values values vector to start the importance sampler.

◆ getNumSamplesTrain()

const int& AdaptiveImportanceSampler::getNumSamplesTrain ( ) const
inlineinherited

Definition at line 29 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceStats::execute(), and AdaptiveMonteCarloDecision::execute().

29 { return _num_samples_train; }
const int & _num_samples_train
Number of samples to train the importance sampler.

◆ getOutputLimit()

const Real& AdaptiveImportanceSampler::getOutputLimit ( ) const
inlineinherited

Definition at line 35 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveMonteCarloDecision::AdaptiveMonteCarloDecision(), and AdaptiveImportanceStats::execute().

35 { return _output_limit; }
const Real & _output_limit
The output limit, exceedance of which indicates failure.

◆ getStdFactor()

const Real& AdaptiveImportanceSampler::getStdFactor ( ) const
inlineinherited

Definition at line 47 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceStats::AdaptiveImportanceStats().

47 { return _std_factor; }
const Real & _std_factor
Factor to be multiplied to the standard deviation of the proposal distribution.

◆ getUseAbsoluteValue()

const bool& AdaptiveImportanceSampler::getUseAbsoluteValue ( ) const
inlineinherited

Definition at line 32 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceStats::execute(), and AdaptiveMonteCarloDecision::execute().

32 { return _use_absolute_value; }
const bool & _use_absolute_value
Absolute value of the model result. Use this when failure is defined as a non-exceedance rather than ...

◆ isAdaptiveSamplingCompleted()

virtual bool AdaptiveImportanceSampler::isAdaptiveSamplingCompleted ( ) const
inlineoverridevirtualinherited

Returns true if the adaptive sampling is completed.

Reimplemented from Sampler.

Definition at line 52 of file AdaptiveImportanceSampler.h.

52 { return _is_sampling_completed; }
bool _is_sampling_completed
True if the sampling is completed.

◆ validParams()

InputParameters AISActiveLearning::validParams ( )
static

Definition at line 15 of file AISActiveLearning.C.

16 {
18  params.addClassDescription("Adaptive Importance Sampler with Gaussian Process Active Learning.");
19  return params;
20 }
void addClassDescription(const std::string &doc_string)
static InputParameters validParams()

Member Data Documentation

◆ _distributions

std::vector<const Distribution *> AdaptiveImportanceSampler::_distributions
protectedinherited

◆ _initial_values

const std::vector<Real>& AdaptiveImportanceSampler::_initial_values
protectedinherited

Initial values values vector to start the importance sampler.

Definition at line 65 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceSampler::AdaptiveImportanceSampler(), and AdaptiveImportanceSampler::getInitialValues().

◆ _is_sampling_completed

bool AdaptiveImportanceSampler::_is_sampling_completed
protectedinherited

True if the sampling is completed.

Definition at line 86 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceSampler::computeSample(), and AdaptiveImportanceSampler::isAdaptiveSamplingCompleted().

◆ _num_importance_sampling_steps

const int& AdaptiveImportanceSampler::_num_importance_sampling_steps
protectedinherited

Number of importance sampling steps (after the importance distribution has been trained)

Definition at line 74 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceSampler::computeSample().

◆ _num_random_seeds

const unsigned int& AdaptiveImportanceSampler::_num_random_seeds
protectedinherited

Initialize a certain number of random seeds. Change from the default only if you have to.

Definition at line 83 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceSampler::AdaptiveImportanceSampler().

◆ _num_samples_train

const int& AdaptiveImportanceSampler::_num_samples_train
protectedinherited

Number of samples to train the importance sampler.

Definition at line 71 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceSampler::computeSample(), and AdaptiveImportanceSampler::getNumSamplesTrain().

◆ _output_limit

const Real& AdaptiveImportanceSampler::_output_limit
protectedinherited

The output limit, exceedance of which indicates failure.

Definition at line 68 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceSampler::getOutputLimit().

◆ _proposal_std

const std::vector<Real>& AdaptiveImportanceSampler::_proposal_std
protectedinherited

The proposal distribution standard deviations.

Definition at line 62 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceSampler::computeSample().

◆ _std_factor

const Real& AdaptiveImportanceSampler::_std_factor
protectedinherited

Factor to be multiplied to the standard deviation of the proposal distribution.

Definition at line 77 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceSampler::computeSample(), and AdaptiveImportanceSampler::getStdFactor().

◆ _use_absolute_value

const bool& AdaptiveImportanceSampler::_use_absolute_value
protectedinherited

Absolute value of the model result. Use this when failure is defined as a non-exceedance rather than an exceedance.

Definition at line 80 of file AdaptiveImportanceSampler.h.

Referenced by AdaptiveImportanceSampler::getUseAbsoluteValue().


The documentation for this class was generated from the following files: