A class used to perform Adaptive Importance Sampling using a Markov Chain Monte Carlo algorithm and Gaussian Process active learning. More...
#include <AISActiveLearning.h>
Public Types | |
enum | SampleMode { SampleMode::GLOBAL, SampleMode::LOCAL } |
typedef DataFileName | DataFileParameterType |
Public Member Functions | |
AISActiveLearning (const InputParameters ¶meters) | |
const std::vector< Real > & | getInitialValues () const |
const int & | getNumSamplesTrain () const |
const bool & | getUseAbsoluteValue () const |
const Real & | getOutputLimit () const |
const std::vector< Real > & | getImportanceVectorMean () const |
const std::vector< Real > & | getImportanceVectorStd () const |
const std::vector< const Distribution * > & | getDistributionNames () const |
const Real & | getStdFactor () const |
virtual bool | isAdaptiveSamplingCompleted () const override |
Returns true if the adaptive sampling is completed. More... | |
std::vector< Real > | getNextLocalRow () |
dof_id_type | getNumberOfRows () const |
dof_id_type | getNumberOfCols () const |
dof_id_type | getNumberOfLocalRows () const |
const LocalRankConfig & | getRankConfig (bool batch_mode) const |
libMesh::Parallel::Communicator & | getLocalComm () |
virtual bool | enabled () const |
std::shared_ptr< MooseObject > | getSharedPtr () |
std::shared_ptr< const MooseObject > | getSharedPtr () const |
MooseApp & | getMooseApp () const |
const std::string & | type () const |
virtual const std::string & | name () const |
std::string | typeAndName () const |
std::string | errorPrefix (const std::string &error_type) const |
void | callMooseError (std::string msg, const bool with_prefix) const |
MooseObjectParameterName | uniqueParameterName (const std::string ¶meter_name) const |
const InputParameters & | parameters () const |
MooseObjectName | uniqueName () const |
const T & | getParam (const std::string &name) const |
std::vector< std::pair< T1, T2 > > | getParam (const std::string ¶m1, const std::string ¶m2) const |
const T & | getRenamedParam (const std::string &old_name, const std::string &new_name) const |
T | getCheckedPointerParam (const std::string &name, const std::string &error_string="") const |
bool | isParamValid (const std::string &name) const |
bool | isParamSetByUser (const std::string &nm) const |
void | paramError (const std::string ¶m, Args... args) const |
void | paramWarning (const std::string ¶m, Args... args) const |
void | paramInfo (const std::string ¶m, Args... args) const |
void | connectControllableParams (const std::string ¶meter, const std::string &object_type, const std::string &object_name, const std::string &object_parameter) const |
void | mooseError (Args &&... args) const |
void | mooseErrorNonPrefixed (Args &&... args) const |
void | mooseDocumentedError (const std::string &repo_name, const unsigned int issue_num, Args &&... args) const |
void | mooseWarning (Args &&... args) const |
void | mooseWarningNonPrefixed (Args &&... args) const |
void | mooseDeprecated (Args &&... args) const |
void | mooseInfo (Args &&... args) const |
std::string | getDataFileName (const std::string ¶m) const |
std::string | getDataFileNameByName (const std::string &relative_path) const |
std::string | getDataFilePath (const std::string &relative_path) const |
virtual void | initialSetup () |
virtual void | timestepSetup () |
virtual void | jacobianSetup () |
virtual void | residualSetup () |
virtual void | subdomainSetup () |
virtual void | customSetup (const ExecFlagType &) |
const ExecFlagEnum & | getExecuteOnEnum () const |
PerfGraph & | perfGraph () |
T & | getSampler (const std::string &name) |
Sampler & | getSampler (const std::string &name) |
T & | getSamplerByName (const SamplerName &name) |
Sampler & | getSamplerByName (const SamplerName &name) |
const VectorPostprocessorValue & | getVectorPostprocessorValue (const std::string ¶m_name, const std::string &vector_name) const |
const VectorPostprocessorValue & | getVectorPostprocessorValue (const std::string ¶m_name, const std::string &vector_name, bool needs_broadcast) const |
const VectorPostprocessorValue & | getVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const |
const VectorPostprocessorValue & | getVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const |
const VectorPostprocessorValue & | getVectorPostprocessorValueOld (const std::string ¶m_name, const std::string &vector_name) const |
const VectorPostprocessorValue & | getVectorPostprocessorValueOld (const std::string ¶m_name, const std::string &vector_name, bool needs_broadcast) const |
const VectorPostprocessorValue & | getVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const |
const VectorPostprocessorValue & | getVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name, bool needs_broadcast) const |
const ScatterVectorPostprocessorValue & | getScatterVectorPostprocessorValue (const std::string ¶m_name, const std::string &vector_name) const |
const ScatterVectorPostprocessorValue & | getScatterVectorPostprocessorValueByName (const VectorPostprocessorName &name, const std::string &vector_name) const |
const ScatterVectorPostprocessorValue & | getScatterVectorPostprocessorValueOld (const std::string ¶m_name, const std::string &vector_name) const |
const ScatterVectorPostprocessorValue & | getScatterVectorPostprocessorValueOldByName (const VectorPostprocessorName &name, const std::string &vector_name) const |
bool | hasVectorPostprocessor (const std::string ¶m_name, const std::string &vector_name) const |
bool | hasVectorPostprocessor (const std::string ¶m_name) const |
bool | hasVectorPostprocessorByName (const VectorPostprocessorName &name, const std::string &vector_name) const |
bool | hasVectorPostprocessorByName (const VectorPostprocessorName &name) const |
const VectorPostprocessorName & | getVectorPostprocessorName (const std::string ¶m_name) const |
DenseMatrix< Real > | getGlobalSamples () |
DenseMatrix< Real > | getGlobalSamples () |
DenseMatrix< Real > | getLocalSamples () |
DenseMatrix< Real > | getLocalSamples () |
dof_id_type | getLocalRowBegin () const |
dof_id_type | getLocalRowBegin () const |
dof_id_type | getLocalRowEnd () const |
dof_id_type | getLocalRowEnd () const |
const Distribution & | getDistribution (const std::string &name) const |
const T & | getDistribution (const std::string &name) const |
const Distribution & | getDistribution (const std::string &name) const |
const T & | getDistribution (const std::string &name) const |
const Distribution & | getDistributionByName (const DistributionName &name) const |
const T & | getDistributionByName (const std::string &name) const |
const Distribution & | getDistributionByName (const DistributionName &name) const |
const T & | getDistributionByName (const std::string &name) const |
bool | isVectorPostprocessorDistributed (const std::string ¶m_name) const |
bool | isVectorPostprocessorDistributed (const std::string ¶m_name) const |
bool | isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const |
bool | isVectorPostprocessorDistributedByName (const VectorPostprocessorName &name) const |
const Parallel::Communicator & | comm () const |
processor_id_type | n_processors () const |
processor_id_type | processor_id () const |
bool | isImplicit () |
Moose::StateArg | determineState () const |
Static Public Member Functions | |
static InputParameters | validParams () |
Public Attributes | |
const ConsoleStream | _console |
Protected Types | |
enum | CommMethod |
Protected Member Functions | |
virtual Real | computeSample (dof_id_type row_index, dof_id_type col_index) override |
Return the sample for the given row (the sample index) and column (the parameter index) More... | |
void | setNumberOfRandomSeeds (std::size_t number) |
Real | getRand (unsigned int index=0) |
uint32_t | getRandl (unsigned int index, uint32_t lower, uint32_t upper) |
virtual LocalRankConfig | constructRankConfig (bool batch_mode) const |
PerfID | registerTimedSection (const std::string §ion_name, const unsigned int level) const |
PerfID | registerTimedSection (const std::string §ion_name, const unsigned int level, const std::string &live_message, const bool print_dots=true) const |
std::string | timedSectionName (const std::string §ion_name) const |
virtual void | addVectorPostprocessorDependencyHelper (const VectorPostprocessorName &) const |
const ReporterName & | getReporterName (const std::string ¶m_name) const |
virtual void | addReporterDependencyHelper (const ReporterName &) |
void | setNumberOfRows (dof_id_type n_rows) |
void | setNumberOfRows (dof_id_type n_rows) |
void | setNumberOfCols (dof_id_type n_cols) |
void | setNumberOfCols (dof_id_type n_cols) |
virtual void | sampleSetUp (const SampleMode) |
virtual void | sampleSetUp (const SampleMode) |
virtual void | sampleTearDown (const SampleMode) |
virtual void | sampleTearDown (const SampleMode) |
virtual void | computeSampleMatrix (DenseMatrix< Real > &matrix) |
virtual void | computeSampleMatrix (DenseMatrix< Real > &matrix) |
virtual void | computeLocalSampleMatrix (DenseMatrix< Real > &matrix) |
virtual void | computeLocalSampleMatrix (DenseMatrix< Real > &matrix) |
virtual void | computeSampleRow (dof_id_type i, std::vector< Real > &data) |
virtual void | computeSampleRow (dof_id_type i, std::vector< Real > &data) |
virtual void | advanceGenerators (const dof_id_type count) |
virtual void | advanceGenerators (const dof_id_type count) |
virtual void | advanceGenerator (const unsigned int seed_index, const dof_id_type count) |
virtual void | advanceGenerator (const unsigned int seed_index, const dof_id_type count) |
void | setAutoAdvanceGenerators (const bool state) |
void | setAutoAdvanceGenerators (const bool state) |
void | shuffle (std::vector< T > &data, const std::size_t seed_index=0, const CommMethod method=CommMethod::LOCAL) |
void | shuffle (std::vector< T > &data, const std::size_t seed_index=0, const CommMethod method=CommMethod::LOCAL) |
virtual void | executeSetUp () |
virtual void | executeSetUp () |
virtual void | executeTearDown () |
virtual void | executeTearDown () |
void | saveGeneratorState () |
void | saveGeneratorState () |
void | restoreGeneratorState () |
void | restoreGeneratorState () |
const T & | getReporterValue (const std::string ¶m_name, const std::size_t time_index=0) |
const T & | getReporterValue (const std::string ¶m_name, ReporterMode mode, const std::size_t time_index=0) |
const T & | getReporterValue (const std::string ¶m_name, const std::size_t time_index=0) |
const T & | getReporterValue (const std::string ¶m_name, ReporterMode mode, const std::size_t time_index=0) |
const T & | getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0) |
const T & | getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0) |
const T & | getReporterValueByName (const ReporterName &reporter_name, const std::size_t time_index=0) |
const T & | getReporterValueByName (const ReporterName &reporter_name, ReporterMode mode, const std::size_t time_index=0) |
bool | hasReporterValue (const std::string ¶m_name) const |
bool | hasReporterValue (const std::string ¶m_name) const |
bool | hasReporterValue (const std::string ¶m_name) const |
bool | hasReporterValue (const std::string ¶m_name) const |
bool | hasReporterValueByName (const ReporterName &reporter_name) const |
bool | hasReporterValueByName (const ReporterName &reporter_name) const |
bool | hasReporterValueByName (const ReporterName &reporter_name) const |
bool | hasReporterValueByName (const ReporterName &reporter_name) const |
Protected Attributes | |
std::vector< const Distribution * > | _distributions |
Storage for distribution objects to be utilized. More... | |
const std::vector< Real > & | _proposal_std |
The proposal distribution standard deviations. More... | |
const std::vector< Real > & | _initial_values |
Initial values values vector to start the importance sampler. More... | |
const Real & | _output_limit |
The output limit, exceedance of which indicates failure. More... | |
const int & | _num_samples_train |
Number of samples to train the importance sampler. More... | |
const int & | _num_importance_sampling_steps |
Number of importance sampling steps (after the importance distribution has been trained) More... | |
const Real & | _std_factor |
Factor to be multiplied to the standard deviation of the proposal distribution. More... | |
const bool & | _use_absolute_value |
Absolute value of the model result. Use this when failure is defined as a non-exceedance rather than an exceedance. More... | |
const unsigned int & | _num_random_seeds |
Initialize a certain number of random seeds. Change from the default only if you have to. More... | |
bool | _is_sampling_completed |
True if the sampling is completed. More... | |
NONE | |
LOCAL | |
SEMI_LOCAL | |
const dof_id_type | _min_procs_per_row |
const dof_id_type | _max_procs_per_row |
libMesh::Parallel::Communicator | _local_comm |
const bool & | _enabled |
MooseApp & | _app |
const std::string | _type |
const std::string | _name |
const InputParameters & | _pars |
Factory & | _factory |
ActionFactory & | _action_factory |
const ExecFlagEnum & | _execute_enum |
const ExecFlagType & | _current_execute_flag |
MooseApp & | _pg_moose_app |
const std::string | _prefix |
const Parallel::Communicator & | _communicator |
const InputParameters & | _ti_params |
FEProblemBase & | _ti_feproblem |
bool | _is_implicit |
Real & | _t |
const Real & | _t_old |
int & | _t_step |
Real & | _dt |
Real & | _dt_old |
bool | _is_transient |
A class used to perform Adaptive Importance Sampling using a Markov Chain Monte Carlo algorithm and Gaussian Process active learning.
Definition at line 19 of file AISActiveLearning.h.
AISActiveLearning::AISActiveLearning | ( | const InputParameters & | parameters | ) |
Definition at line 22 of file AISActiveLearning.C.
|
overrideprotectedvirtualinherited |
Return the sample for the given row (the sample index) and column (the parameter index)
Implements Sampler.
Definition at line 111 of file AdaptiveImportanceSampler.C.
|
inlineinherited |
Definition at line 44 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceStats::AdaptiveImportanceStats().
|
inlineinherited |
Definition at line 38 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceStats::execute().
|
inlineinherited |
Definition at line 41 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceStats::execute().
|
inlineinherited |
Definition at line 26 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveMonteCarloDecision::AdaptiveMonteCarloDecision(), and AdaptiveMonteCarloDecision::reinitChain().
|
inlineinherited |
Definition at line 29 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceStats::execute(), and AdaptiveMonteCarloDecision::execute().
|
inlineinherited |
Definition at line 35 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveMonteCarloDecision::AdaptiveMonteCarloDecision(), and AdaptiveImportanceStats::execute().
|
inlineinherited |
Definition at line 47 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceStats::AdaptiveImportanceStats().
|
inlineinherited |
Definition at line 32 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceStats::execute(), and AdaptiveMonteCarloDecision::execute().
|
inlineoverridevirtualinherited |
Returns true if the adaptive sampling is completed.
Reimplemented from Sampler.
Definition at line 52 of file AdaptiveImportanceSampler.h.
|
static |
Definition at line 15 of file AISActiveLearning.C.
|
protectedinherited |
Storage for distribution objects to be utilized.
Definition at line 59 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceSampler::AdaptiveImportanceSampler(), AdaptiveImportanceSampler::computeSample(), and AdaptiveImportanceSampler::getDistributionNames().
|
protectedinherited |
Initial values values vector to start the importance sampler.
Definition at line 65 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceSampler::AdaptiveImportanceSampler(), and AdaptiveImportanceSampler::getInitialValues().
|
protectedinherited |
True if the sampling is completed.
Definition at line 86 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceSampler::computeSample(), and AdaptiveImportanceSampler::isAdaptiveSamplingCompleted().
|
protectedinherited |
Number of importance sampling steps (after the importance distribution has been trained)
Definition at line 74 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceSampler::computeSample().
|
protectedinherited |
Initialize a certain number of random seeds. Change from the default only if you have to.
Definition at line 83 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceSampler::AdaptiveImportanceSampler().
|
protectedinherited |
Number of samples to train the importance sampler.
Definition at line 71 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceSampler::computeSample(), and AdaptiveImportanceSampler::getNumSamplesTrain().
|
protectedinherited |
The output limit, exceedance of which indicates failure.
Definition at line 68 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceSampler::getOutputLimit().
|
protectedinherited |
The proposal distribution standard deviations.
Definition at line 62 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceSampler::computeSample().
|
protectedinherited |
Factor to be multiplied to the standard deviation of the proposal distribution.
Definition at line 77 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceSampler::computeSample(), and AdaptiveImportanceSampler::getStdFactor().
|
protectedinherited |
Absolute value of the model result. Use this when failure is defined as a non-exceedance rather than an exceedance.
Definition at line 80 of file AdaptiveImportanceSampler.h.
Referenced by AdaptiveImportanceSampler::getUseAbsoluteValue().