90 const std::vector<std::vector<Real>> &
_inputs;
virtual bool isAdaptiveSamplingCompleted() const override
Returns true if the adaptive sampling is completed.
int _retraining_steps
Number of retraining performed.
int _check_step
Ensure that the MCMC algorithm proceeds in a sequential fashion.
const Real & getOutputLimit() const
A class used to perform Adaptive Importance Sampling using a Markov Chain Monte Carlo algorithm...
bool _is_sampling_completed
True if the sampling is completed.
std::vector< const Distribution * > _distributions
Storage for distribution objects to be utilized.
virtual Real computeSample(dof_id_type row_index, dof_id_type col_index) override
Return the sample for the given row (the sample index) and column (the parameter index) ...
std::vector< std::vector< Real > > _inputs_sto
Storage for previously accepted samples by the decision reporter system.
const std::vector< const Distribution * > & getDistributionNames() const
const std::vector< Real > & getImportanceVectorMean() const
const std::vector< std::vector< Real > > & _inputs
Storage for the inputs vector obtained from the reporter.
const std::vector< Real > & getImportanceVectorStd() const
std::vector< Real > _std_sto
Storage for standard deviations of input values for proposing the next sample.
AdaptiveImportanceSampler(const InputParameters ¶meters)
const Real & _output_limit
The output limit, exceedance of which indicates failure.
const int & _num_samples_train
Number of samples to train the importance sampler.
const unsigned int & _num_random_seeds
Initialize a certain number of random seeds. Change from the default only if you have to...
const bool & _use_absolute_value
Absolute value of the model result. Use this when failure is defined as a non-exceedance rather than ...
const int & _num_importance_sampling_steps
Number of importance sampling steps (after the importance distribution has been trained) ...
const Real & _std_factor
Factor to be multiplied to the standard deviation of the proposal distribution.
const int & getNumSamplesTrain() const
const bool & getUseAbsoluteValue() const
std::vector< Real > _mean_sto
Storage for means of input values for proposing the next sample.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const std::vector< bool > *const _gp_flag
Indicate whether GP prediction is good or bad to influence next proposed sample.
const Real & getStdFactor() const
const InputParameters & parameters() const
const std::vector< Real > & _initial_values
Initial values values vector to start the importance sampler.
const std::vector< Real > & _proposal_std
The proposal distribution standard deviations.
static InputParameters validParams()
const std::vector< Real > & getInitialValues() const
std::vector< Real > _prev_value
For proposing the next sample in the MCMC algorithm.