https://mooseframework.inl.gov
CrackMeshCut3DUserObject.C
Go to the documentation of this file.
1 //* This file is part of the MOOSE framework
2 //* https://mooseframework.inl.gov
3 //*
4 //* All rights reserved, see COPYRIGHT for full restrictions
5 //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
6 //*
7 //* Licensed under LGPL 2.1, please see LICENSE for details
8 //* https://www.gnu.org/licenses/lgpl-2.1.html
9 
11 
12 #include "XFEMFuncs.h"
13 #include "MooseError.h"
14 #include "libmesh/string_to_enum.h"
15 #include "MooseMesh.h"
16 #include "MooseEnum.h"
17 #include "libmesh/face_tri3.h"
18 #include "libmesh/edge_edge2.h"
19 #include "libmesh/serial_mesh.h"
20 #include "libmesh/plane.h"
21 #include "libmesh/mesh_tools.h"
22 #include "Function.h"
23 
25 
28 {
30  params.addRequiredParam<MeshFileName>(
31  "mesh_file",
32  "Mesh file for the XFEM geometric cut; currently only the xda type is supported");
33  MooseEnum growthDirection("MAX_HOOP_STRESS FUNCTION", "FUNCTION");
34  params.addParam<MooseEnum>(
35  "growth_dir_method", growthDirection, "choose from FUNCTION, MAX_HOOP_STRESS");
36  MooseEnum growthRate("FATIGUE FUNCTION", "FUNCTION");
37  params.addParam<MooseEnum>("growth_rate_method", growthRate, "choose from FUNCTION, FATIGUE");
38  params.addParam<FunctionName>("growth_direction_x",
39  "Function defining x-component of crack growth direction");
40  params.addParam<FunctionName>("growth_direction_y",
41  "Function defining y-component of crack growth direction");
42  params.addParam<FunctionName>("growth_direction_z",
43  "Function defining z-component of crack growth direction");
44 
45  params.addParam<FunctionName>("growth_rate", "Function defining crack growth rate");
46  params.addParam<Real>(
47  "size_control", 0, "Criterion for refining elements while growing the crack");
48  params.addParam<unsigned int>("n_step_growth", 0, "Number of steps for crack growth");
49  params.addParam<std::vector<dof_id_type>>("crack_front_nodes",
50  "Set of nodes to define crack front");
51  params.addClassDescription("Creates a UserObject for a mesh cutter in 3D problems");
52  return params;
53 }
54 
55 // This code does not allow predefined crack growth as a function of time
56 // all inital cracks are defined at t_start = t_end = 0
58  : GeometricCutUserObject(parameters, true),
59  _mesh(_subproblem.mesh()),
60  _growth_dir_method(getParam<MooseEnum>("growth_dir_method").getEnum<GrowthDirectionEnum>()),
61  _growth_rate_method(getParam<MooseEnum>("growth_rate_method").getEnum<GrowthRateEnum>()),
62  _n_step_growth(getParam<unsigned int>("n_step_growth")),
63  _is_mesh_modified(false),
64  _func_x(parameters.isParamValid("growth_direction_x") ? &getFunction("growth_direction_x")
65  : nullptr),
66  _func_y(parameters.isParamValid("growth_direction_y") ? &getFunction("growth_direction_y")
67  : nullptr),
68  _func_z(parameters.isParamValid("growth_direction_z") ? &getFunction("growth_direction_z")
69  : nullptr),
70  _func_v(parameters.isParamValid("growth_rate") ? &getFunction("growth_rate") : nullptr)
71 {
72  _grow = (_n_step_growth == 0 ? 0 : 1);
73 
74  if (_grow)
75  {
76  if (!isParamValid("size_control"))
77  mooseError("Crack growth needs size control");
78 
79  _size_control = getParam<Real>("size_control");
80 
82  (_func_x == nullptr || _func_y == nullptr || _func_z == nullptr))
83  mooseError("function is not specified for the function method that defines growth direction");
84 
86  mooseError("function is not specified for the function method that defines growth rate");
87 
89  mooseError("function with a variable is not specified for the fatigue method that defines "
90  "growth rate");
91 
92  if (isParamValid("crack_front_nodes"))
93  {
94  _tracked_crack_front_points = getParam<std::vector<dof_id_type>>("crack_front_nodes");
96  _cfd = true;
97  }
98  else
99  _cfd = false;
100  }
101 
104  !_cfd)
105  mooseError("'crack_front_nodes' is not specified to use crack growth criteria!");
106 
107  // only the xda type is currently supported
108  MeshFileName xfem_cut_mesh_file = getParam<MeshFileName>("mesh_file");
109  _cut_mesh = std::make_unique<ReplicatedMesh>(_communicator);
110  _cut_mesh->read(xfem_cut_mesh_file);
111 
112  // test element type; only tri3 elements are allowed
113  for (const auto & cut_elem : _cut_mesh->element_ptr_range())
114  {
115  if (cut_elem->n_nodes() != _cut_elem_nnode)
116  mooseError("The input cut mesh should include tri elements only!");
117  if (cut_elem->dim() != _cut_elem_dim)
118  mooseError("The input cut mesh should have 2D elements only!");
119  }
120 }
121 
122 void
124 {
125  if (_cfd)
126  {
128  &_fe_problem.getUserObject<CrackFrontDefinition>("crackFrontDefinition");
130  }
131 
132  if (_grow)
133  {
137  }
138 
140  {
141  _dn.clear();
142  _n.clear();
143  }
144 }
145 
146 void
148 {
149  _is_mesh_modified = false;
150 
151  if (_grow)
152  {
153  if (_t_step == 1)
155 
156  _stop = 0;
157 
158  if (_t_step > 1 && _t_step != _last_step_initialized)
159  {
161 
162  for (unsigned int i = 0; i < _n_step_growth; ++i)
163  {
164  if (_stop != 1)
165  {
168  _is_mesh_modified = true;
169  growFront();
170  sortFrontNodes();
171  if (_inactive_boundary_pos.size() != 0)
173  refineFront();
174  triangulation();
175  joinBoundary();
176  }
177  }
178  }
179  }
180  if (_cfd)
182 }
183 
184 bool
186  std::vector<Xfem::CutEdge> & /*cut_edges*/,
187  std::vector<Xfem::CutNode> & /*cut_nodes*/) const
188 {
189  mooseError("invalid method for 3D mesh cutting");
190  return false;
191 }
192 
193 bool
195  std::vector<Xfem::CutFace> & cut_faces) const
196 // With the crack defined by a planar mesh, this method cuts a solid element by all elements in the
197 // planar mesh
198 // TODO: Time evolving cuts not yet supported in 3D (hence the lack of use of the time variable)
199 {
200  bool elem_cut = false;
201 
202  if (elem->dim() != _elem_dim)
203  mooseError("The structural mesh to be cut by a surface mesh must be 3D!");
204 
205  for (unsigned int i = 0; i < elem->n_sides(); ++i)
206  {
207  // This returns the lowest-order type of side.
208  std::unique_ptr<const Elem> curr_side = elem->side_ptr(i);
209  if (curr_side->dim() != 2)
210  mooseError("In cutElementByGeometry dimension of side must be 2, but it is ",
211  curr_side->dim());
212  unsigned int n_edges = curr_side->n_sides();
213 
214  std::vector<unsigned int> cut_edges;
215  std::vector<Real> cut_pos;
216 
217  for (unsigned int j = 0; j < n_edges; j++)
218  {
219  // This returns the lowest-order type of side.
220  std::unique_ptr<const Elem> curr_edge = curr_side->side_ptr(j);
221  if (curr_edge->type() != EDGE2)
222  mooseError("In cutElementByGeometry face edge must be EDGE2, but type is: ",
223  libMesh::Utility::enum_to_string(curr_edge->type()),
224  " base element type is: ",
225  libMesh::Utility::enum_to_string(elem->type()));
226  const Node * node1 = curr_edge->node_ptr(0);
227  const Node * node2 = curr_edge->node_ptr(1);
228 
229  for (const auto & cut_elem : _cut_mesh->element_ptr_range())
230  {
231  std::vector<Point> vertices;
232 
233  for (auto & node : cut_elem->node_ref_range())
234  {
235  Point & this_point = node;
236  vertices.push_back(this_point);
237  }
238 
239  Point intersection;
240  if (intersectWithEdge(*node1, *node2, vertices, intersection))
241  {
242  cut_edges.push_back(j);
243  cut_pos.emplace_back(getRelativePosition(*node1, *node2, intersection));
244  }
245  }
246  }
247 
248  // if two edges of an element are cut, it is considered as an element being cut
249  if (cut_edges.size() == 2)
250  {
251  elem_cut = true;
252  Xfem::CutFace mycut;
253  mycut._face_id = i;
254  mycut._face_edge.push_back(cut_edges[0]);
255  mycut._face_edge.push_back(cut_edges[1]);
256  mycut._position.push_back(cut_pos[0]);
257  mycut._position.push_back(cut_pos[1]);
258  cut_faces.push_back(mycut);
259  }
260  }
261  return elem_cut;
262 }
263 
264 bool
265 CrackMeshCut3DUserObject::cutFragmentByGeometry(std::vector<std::vector<Point>> & /*frag_edges*/,
266  std::vector<Xfem::CutEdge> & /*cut_edges*/) const
267 {
268  mooseError("invalid method for 3D mesh cutting");
269  return false;
270 }
271 
272 bool
273 CrackMeshCut3DUserObject::cutFragmentByGeometry(std::vector<std::vector<Point>> & /*frag_faces*/,
274  std::vector<Xfem::CutFace> & /*cut_faces*/) const
275 {
276  // TODO: Need this for branching in 3D
277  mooseError("cutFragmentByGeometry not yet implemented for 3D mesh cutting");
278  return false;
279 }
280 
281 bool
283  const Point & p2,
284  const std::vector<Point> & vertices,
285  Point & pint) const
286 {
287  bool has_intersection = false;
288 
289  Plane elem_plane(vertices[0], vertices[1], vertices[2]);
290  Point point = vertices[0];
291  Point normal = elem_plane.unit_normal(point);
292 
293  std::array<Real, 3> plane_point = {{point(0), point(1), point(2)}};
294  std::array<Real, 3> planenormal = {{normal(0), normal(1), normal(2)}};
295  std::array<Real, 3> edge_point1 = {{p1(0), p1(1), p1(2)}};
296  std::array<Real, 3> edge_point2 = {{p2(0), p2(1), p2(2)}};
297  std::array<Real, 3> cut_point = {{0.0, 0.0, 0.0}};
298 
300  &plane_point[0], &planenormal[0], &edge_point1[0], &edge_point2[0], &cut_point[0]) == 1)
301  {
302  Point temp_p(cut_point[0], cut_point[1], cut_point[2]);
303  if (isInsideCutPlane(vertices, temp_p) && isInsideEdge(p1, p2, temp_p))
304  {
305  pint = temp_p;
306  has_intersection = true;
307  }
308  }
309  return has_intersection;
310 }
311 
312 bool
314  const Point & p2,
315  const std::vector<Point> & vertices,
316  Point & pint) const
317 {
318  bool has_intersection = false;
319 
320  Plane elem_plane(vertices[0], vertices[1], vertices[2]);
321  Point point = vertices[0];
322  Point normal = elem_plane.unit_normal(point);
323 
324  std::array<Real, 3> plane_point = {{point(0), point(1), point(2)}};
325  std::array<Real, 3> planenormal = {{normal(0), normal(1), normal(2)}};
326  std::array<Real, 3> p_begin = {{p1(0), p1(1), p1(2)}};
327  std::array<Real, 3> p_end = {{p2(0), p2(1), p2(2)}};
328  std::array<Real, 3> cut_point = {{0.0, 0.0, 0.0}};
329 
331  &plane_point[0], &planenormal[0], &p_begin[0], &p_end[0], &cut_point[0]) == 1)
332  {
333  Point p(cut_point[0], cut_point[1], cut_point[2]);
334  Real dotp = ((p - p1) * (p2 - p1)) / ((p2 - p1) * (p2 - p1));
335  if (isInsideCutPlane(vertices, p) && dotp > 1)
336  {
337  pint = p;
338  has_intersection = true;
339  }
340  }
341  return has_intersection;
342 }
343 
344 bool
345 CrackMeshCut3DUserObject::isInsideEdge(const Point & p1, const Point & p2, const Point & p) const
346 {
347  Real dotp1 = (p1 - p) * (p2 - p1);
348  Real dotp2 = (p2 - p) * (p2 - p1);
349  return (dotp1 * dotp2 <= 0.0);
350 }
351 
352 Real
354  const Point & p2,
355  const Point & p) const
356 {
357  Real full_len = (p2 - p1).norm();
358  Real len_p1_p = (p - p1).norm();
359  return len_p1_p / full_len;
360 }
361 
362 bool
363 CrackMeshCut3DUserObject::isInsideCutPlane(const std::vector<Point> & vertices,
364  const Point & p) const
365 {
366  unsigned int n_node = vertices.size();
367 
368  Plane elem_plane(vertices[0], vertices[1], vertices[2]);
369  Point normal = elem_plane.unit_normal(vertices[0]);
370 
371  bool inside = false;
372  unsigned int counter = 0;
373 
374  for (unsigned int i = 0; i < n_node; ++i)
375  {
376  unsigned int iplus1 = (i < n_node - 1 ? i + 1 : 0);
377  Point middle2p = p - 0.5 * (vertices[i] + vertices[iplus1]);
378  const Point side_tang = vertices[iplus1] - vertices[i];
379  Point side_norm = side_tang.cross(normal);
380  Xfem::normalizePoint(middle2p);
381  Xfem::normalizePoint(side_norm);
382  if (middle2p * side_norm <= 0.0)
383  counter += 1;
384  }
385  if (counter == n_node)
386  inside = true;
387  return inside;
388 }
389 
390 void
392 {
393  auto boundary_node_ids = MeshTools::find_boundary_nodes(*_cut_mesh);
394  for (auto it = boundary_node_ids.cbegin(); it != boundary_node_ids.cend(); it++)
395  {
396  dof_id_type id = *it;
397  std::vector<dof_id_type> neighbors;
398  _boundary_map[id] = neighbors;
399  }
400 }
401 
402 void
404 {
405  _boundary_edges.clear();
406 
407  std::vector<dof_id_type> corner_elem_id;
408  unsigned int counter = 0;
409 
410  std::vector<dof_id_type> node_id(_cut_elem_nnode);
411  std::vector<bool> is_node_on_boundary(_cut_elem_nnode);
412 
413  for (const auto & cut_elem : _cut_mesh->element_ptr_range())
414  {
415  for (unsigned int i = 0; i < _cut_elem_nnode; ++i)
416  {
417  node_id[i] = cut_elem->node_ptr(i)->id();
418  is_node_on_boundary[i] = (_boundary_map.find(node_id[i]) != _boundary_map.end());
419  }
420 
421  if (is_node_on_boundary[0] && is_node_on_boundary[1] && is_node_on_boundary[2])
422  {
423  // this is an element at the corner; all nodes are on the boundary but not all edges are on
424  // the boundary
425  corner_elem_id.push_back(counter);
426  }
427  else
428  {
429  // for other elements, find and store boundary edges
430  for (unsigned int i = 0; i < _cut_elem_nnode; ++i)
431  {
432  // if both nodes on an edge are on the boundary, it is a boundary edge.
433  if (is_node_on_boundary[i] && is_node_on_boundary[(i + 1 <= 2) ? i + 1 : 0])
434  {
435  dof_id_type node1 = node_id[i];
436  dof_id_type node2 = node_id[(i + 1 <= 2) ? i + 1 : 0];
437  if (node1 > node2)
438  std::swap(node1, node2);
439 
440  Xfem::CutEdge ce;
441 
442  if (node1 > node2)
443  std::swap(node1, node2);
444  ce._id1 = node1;
445  ce._id2 = node2;
446 
447  _boundary_edges.insert(ce);
448  }
449  }
450  }
451  ++counter;
452  }
453 
454  // loop over edges in corner elements
455  // if an edge is shared by two elements, it is not an boundary edge (is_edge_inside = 1)
456  for (unsigned int i = 0; i < corner_elem_id.size(); ++i)
457  {
458  auto elem_it = _cut_mesh->elements_begin();
459 
460  for (dof_id_type j = 0; j < corner_elem_id[i]; ++j)
461  ++elem_it;
462  Elem * cut_elem = *elem_it;
463 
464  for (unsigned int j = 0; j < _cut_elem_nnode; ++j)
465  {
466  bool is_edge_inside = 0;
467 
468  dof_id_type node1 = cut_elem->node_ptr(j)->id();
469  dof_id_type node2 = cut_elem->node_ptr((j + 1 <= 2) ? j + 1 : 0)->id();
470  if (node1 > node2)
471  std::swap(node1, node2);
472 
473  unsigned int counter = 0;
474  for (const auto & cut_elem2 : _cut_mesh->element_ptr_range())
475  {
476  if (counter != corner_elem_id[i])
477  {
478  for (unsigned int k = 0; k < _cut_elem_nnode; ++k)
479  {
480  dof_id_type node3 = cut_elem2->node_ptr(k)->id();
481  dof_id_type node4 = cut_elem2->node_ptr((k + 1 <= 2) ? k + 1 : 0)->id();
482  if (node3 > node4)
483  std::swap(node3, node4);
484 
485  if (node1 == node3 && node2 == node4)
486  {
487  is_edge_inside = 1;
488  goto endloop;
489  }
490  }
491  }
492  ++counter;
493  }
494  endloop:
495  if (is_edge_inside == 0)
496  {
497  // store boundary edges
498  Xfem::CutEdge ce;
499 
500  if (node1 > node2)
501  std::swap(node1, node2);
502  ce._id1 = node1;
503  ce._id2 = node2;
504 
505  _boundary_edges.insert(ce);
506  }
507  else
508  {
509  // this is not a boundary edge; remove it from existing edge list
510  for (auto it = _boundary_edges.begin(); it != _boundary_edges.end();)
511  {
512  if ((*it)._id1 == node1 && (*it)._id2 == node2)
513  it = _boundary_edges.erase(it);
514  else
515  ++it;
516  }
517  }
518  }
519  }
520 }
521 
522 void
524 {
525  _boundary.clear();
526 
527  for (auto it = _boundary_edges.begin(); it != _boundary_edges.end(); ++it)
528  {
529  dof_id_type node1 = (*it)._id1;
530  dof_id_type node2 = (*it)._id2;
531 
532  mooseAssert(_boundary_map.find(node1) != _boundary_map.end(),
533  "_boundary_map does not have this key");
534  mooseAssert(_boundary_map.find(node2) != _boundary_map.end(),
535  "_boundary_map does not have this key");
536 
537  _boundary_map.find(node1)->second.push_back(node2);
538  _boundary_map.find(node2)->second.push_back(node1);
539  }
540 
541  auto it = _boundary_map.begin();
542  while (it != _boundary_map.end())
543  {
544  if (it->second.size() != 2)
545  mooseError(
546  "Boundary nodes in the cutter mesh must have exactly two neighbors; this one has: ",
547  it->second.size());
548  ++it;
549  }
550 
551  auto it2 = _boundary_edges.begin();
552  dof_id_type node1 = (*it2)._id1;
553  dof_id_type node2 = (*it2)._id2;
554  _boundary.push_back(node1);
555  _boundary.push_back(node2);
556 
557  for (unsigned int i = 0; i < _boundary_edges.size() - 1; ++i)
558  {
559  mooseAssert(_boundary_map.find(node2) != _boundary_map.end(),
560  "_boundary_map does not have this key");
561 
562  dof_id_type node3 = _boundary_map.find(node2)->second[0];
563  dof_id_type node4 = _boundary_map.find(node2)->second[1];
564 
565  if (node3 == node1)
566  {
567  _boundary.push_back(node4);
568  node1 = node2;
569  node2 = node4;
570  }
571  else if (node4 == node1)
572  {
573  _boundary.push_back(node3);
574  node1 = node2;
575  node2 = node3;
576  }
577  else
578  mooseError("Discontinuity in cutter boundary");
579  }
580 }
581 
582 Real
584 {
585  Node * n1 = _cut_mesh->node_ptr(node1);
586  mooseAssert(n1 != nullptr, "Node is NULL");
587  Node * n2 = _cut_mesh->node_ptr(node2);
588  mooseAssert(n2 != nullptr, "Node is NULL");
589  Real distance = (*n1 - *n2).norm();
590  return distance;
591 }
592 
593 void
595 {
596  std::vector<dof_id_type> new_boundary_order(_boundary.begin(), _boundary.end());
597 
598  mooseAssert(_boundary.size() >= 2, "Boundary should have at least two nodes");
599 
600  for (unsigned int i = _boundary.size() - 1; i >= 1; --i)
601  {
602  dof_id_type node1 = _boundary[i - 1];
603  dof_id_type node2 = _boundary[i];
604 
605  Real distance = findDistance(node1, node2);
606 
607  if (distance > _size_control)
608  {
609  unsigned int n = static_cast<unsigned int>(distance / _size_control);
610  std::array<Real, 3> x1;
611  std::array<Real, 3> x2;
612 
613  Node * n1 = _cut_mesh->node_ptr(node1);
614  mooseAssert(n1 != nullptr, "Node is NULL");
615  Point & p1 = *n1;
616  Node * n2 = _cut_mesh->node_ptr(node2);
617  mooseAssert(n2 != nullptr, "Node is NULL");
618  Point & p2 = *n2;
619 
620  for (unsigned int j = 0; j < 3; ++j)
621  {
622  x1[j] = p1(j);
623  x2[j] = p2(j);
624  }
625 
626  for (unsigned int j = 0; j < n; ++j)
627  {
628  Point x;
629  for (unsigned int k = 0; k < 3; ++k)
630  x(k) = x2[k] - (x2[k] - x1[k]) * (j + 1) / (n + 1);
631 
632  Node * this_node = Node::build(x, _cut_mesh->n_nodes()).release();
633  _cut_mesh->add_node(this_node);
634 
635  dof_id_type id = _cut_mesh->n_nodes() - 1;
636  auto it = new_boundary_order.begin();
637  new_boundary_order.insert(it + i, id);
638  }
639  }
640  }
641 
642  _boundary = new_boundary_order;
643  mooseAssert(_boundary.size() > 0, "Boundary should not have zero size");
644  _boundary.pop_back();
645 }
646 
647 void
649 {
650  _active_boundary.clear();
651  _inactive_boundary_pos.clear();
652 
653  std::unique_ptr<PointLocatorBase> pl = _mesh.getPointLocator();
654  pl->enable_out_of_mesh_mode();
655 
656  unsigned int n_boundary = _boundary.size();
657 
658  // if the node is outside of the structural model, store its position in _boundary to
659  // _inactive_boundary_pos
660  for (unsigned int j = 0; j < n_boundary; ++j)
661  {
662  Node * this_node = _cut_mesh->node_ptr(_boundary[j]);
663  mooseAssert(this_node, "Node is NULL");
664  Point & this_point = *this_node;
665 
666  const Elem * elem = (*pl)(this_point);
667  if (elem == nullptr)
668  _inactive_boundary_pos.push_back(j);
669  }
670 
671  unsigned int n_inactive_boundary = _inactive_boundary_pos.size();
672 
673  // all nodes are inactive, stop
674  if (n_inactive_boundary == n_boundary)
675  _stop = 1;
676 
677  // find and store active boundary segments in "_active_boundary"
678  if (n_inactive_boundary == 0)
679  _active_boundary.push_back(_boundary);
680  else
681  {
682  for (unsigned int i = 0; i < n_inactive_boundary - 1; ++i)
683  {
684  if (_inactive_boundary_pos[i + 1] - _inactive_boundary_pos[i] != 1)
685  {
686  std::vector<dof_id_type> temp;
687  for (unsigned int j = _inactive_boundary_pos[i]; j <= _inactive_boundary_pos[i + 1]; ++j)
688  {
689  temp.push_back(_boundary[j]);
690  }
691  _active_boundary.push_back(temp);
692  }
693  }
694  if (_inactive_boundary_pos[n_inactive_boundary - 1] - _inactive_boundary_pos[0] <
695  n_boundary - 1)
696  {
697  std::vector<dof_id_type> temp;
698  for (unsigned int j = _inactive_boundary_pos[n_inactive_boundary - 1]; j < n_boundary; ++j)
699  temp.push_back(_boundary[j]);
700  for (unsigned int j = 0; j <= _inactive_boundary_pos[0]; ++j)
701  temp.push_back(_boundary[j]);
702  _active_boundary.push_back(temp);
703  }
704  }
705 }
706 
707 void
709 {
710  mooseAssert(!(_cfd && _active_boundary.size() != 1),
711  "crack-front-definition using the cutter mesh only supports one active crack front "
712  "segment for now");
713 
714  _active_direction.clear();
715 
716  for (unsigned int i = 0; i < _active_boundary.size(); ++i)
717  {
718  std::vector<Point> temp;
719  Point dir;
720 
721  if (_inactive_boundary_pos.size() != 0)
722  {
723  for (unsigned int j = 0; j < 3; ++j)
724  dir(j) = 0;
725  temp.push_back(dir);
726  }
727 
728  unsigned int i1 = 1;
729  unsigned int i2 = _active_boundary[i].size() - 1;
730  if (_inactive_boundary_pos.size() == 0)
731  {
732  i1 = 0;
733  i2 = _active_boundary[i].size();
734  }
735 
737  // loop over active front points
738  for (unsigned int j = i1; j < i2; ++j)
739  {
740  Node * this_node = _cut_mesh->node_ptr(_active_boundary[i][j]);
741  mooseAssert(this_node, "Node is NULL");
742  Point & this_point = *this_node;
743  dir(0) = _func_x->value(0, this_point);
744  dir(1) = _func_y->value(0, this_point);
745  dir(2) = _func_z->value(0, this_point);
746 
747  temp.push_back(dir);
748  }
749  // determine growth direction based on KI and KII at the crack front
751  {
752  const VectorPostprocessorValue & k1 = getVectorPostprocessorValueByName("II_KI_1", "II_KI_1");
753  const VectorPostprocessorValue & k2 =
754  getVectorPostprocessorValueByName("II_KII_1", "II_KII_1");
755  mooseAssert(k1.size() == k2.size(), "KI and KII VPPs should have the same size");
756  mooseAssert(k1.size() == _active_boundary[0].size(),
757  "the number of crack front nodes in the self-similar method should equal to the "
758  "size of VPP defined at the crack front");
759  mooseAssert(_crack_front_points.size() == _active_boundary[0].size(),
760  "the number of crack front nodes should be the same in _crack_front_points and "
761  "_active_boundary[0]");
762 
763  // the node order in _active_boundary[0] and _crack_front_points may be the same or opposite,
764  // their correspondence is needed
765  std::vector<int> index = getFrontPointsIndex();
766 
767  for (unsigned int j = i1; j < i2; ++j)
768  {
769  int ind = index[j];
770  Real theta = 2 * std::atan((k1[ind] - std::sqrt(k1[ind] * k1[ind] + k2[ind] * k2[ind])) /
771  (4 * k2[ind]));
772  RealVectorValue dir_cfc; // growth direction in crack front coord (cfc) system based on the
773  // max hoop stress criterion
775  dir; // growth direction in global coord system based on the max hoop stress criterion
776  dir_cfc(0) = std::cos(theta);
777  dir_cfc(1) = std::sin(theta);
778  dir_cfc(2) = 0;
780 
781  temp.push_back(dir);
782  }
783  }
784  else
785  mooseError("This growth_dir_method is not pre-defined!");
786 
787  if (_inactive_boundary_pos.size() != 0)
788  {
789  for (unsigned int j = 0; j < 3; ++j)
790  dir(j) = 0;
791  temp.push_back(dir);
792  }
793 
794  _active_direction.push_back(temp);
795  }
796 
797  // normalize the directional vector
798  Real maxl = 0;
799 
800  for (unsigned int i = 0; i < _active_direction.size(); ++i)
801  for (unsigned int j = 0; j < _active_direction[i].size(); ++j)
802  {
803  Point pt = _active_direction[i][j];
804  Real length = std::sqrt(pt * pt);
805  if (length > maxl)
806  maxl = length;
807  }
808 
809  for (unsigned int i = 0; i < _active_direction.size(); ++i)
810  for (unsigned int j = 0; j < _active_direction[i].size(); ++j)
811  _active_direction[i][j] /= maxl;
812 }
813 
814 void
816 {
817  _front.clear();
818 
819  for (unsigned int i = 0; i < _active_boundary.size(); ++i)
820  {
821  std::vector<dof_id_type> temp;
822 
823  unsigned int i1 = 1;
824  unsigned int i2 = _active_boundary[i].size() - 1;
825  if (_inactive_boundary_pos.size() == 0)
826  {
827  i1 = 0;
828  i2 = _active_boundary[i].size();
829  }
830 
831  for (unsigned int j = i1; j < i2; ++j)
832  {
833  Node * this_node = _cut_mesh->node_ptr(_active_boundary[i][j]);
834  mooseAssert(this_node, "Node is NULL");
835  Point & this_point = *this_node;
836  Point dir = _active_direction[i][j];
837 
838  Point x;
839 
841  for (unsigned int k = 0; k < 3; ++k)
842  {
843  Real velo = _func_v->value(0, Point(0, 0, 0));
844  x(k) = this_point(k) + dir(k) * velo;
845  }
847  {
848  // get the number of loading cycles for this growth increament
849  if (j == i1)
850  {
851  unsigned long int dn = (unsigned long int)_func_v->value(0, Point(0, 0, 0));
852  _dn.push_back(dn);
853  _n.push_back(_n.size() == 0 ? dn : dn + _n[_n.size() - 1]);
854  }
855 
856  Real growth_size = _growth_size[j];
857  for (unsigned int k = 0; k < 3; ++k)
858  x(k) = this_point(k) + dir(k) * growth_size;
859  }
860  else
861  mooseError("This growth_rate_method is not pre-defined!");
862 
863  this_node = Node::build(x, _cut_mesh->n_nodes()).release();
864  _cut_mesh->add_node(this_node);
865 
866  dof_id_type id = _cut_mesh->n_nodes() - 1;
867  temp.push_back(id);
868 
869  if (_cfd)
870  {
871  auto it = std::find(_tracked_crack_front_points.begin(),
873  _active_boundary[0][j]);
874  if (it != _tracked_crack_front_points.end())
875  {
876  unsigned int pos = std::distance(_tracked_crack_front_points.begin(), it);
877  _tracked_crack_front_points[pos] = id;
878  }
879  }
880  }
881 
882  _front.push_back(temp);
883  }
884 }
885 
886 void
888 // TBD; it is not needed for current problems but will be useful for fracture growth
889 {
890 }
891 
892 void
894 {
896 
897  for (unsigned int i = 0; i < _front.size(); ++i)
898  {
899  if (_front[i].size() >= 2)
900  {
901  std::vector<Point> pint1;
902  std::vector<Point> pint2;
903  std::vector<Real> length1;
904  std::vector<Real> length2;
905 
906  Real node_id = _front[i][0];
907  Node * this_node = _cut_mesh->node_ptr(node_id);
908  mooseAssert(this_node, "Node is NULL");
909  Point & p2 = *this_node;
910 
911  if (_front[i].size() >= 4)
912  node_id = _front[i][2];
913  else
914  node_id = _front[i][1];
915 
916  this_node = _cut_mesh->node_ptr(node_id);
917  mooseAssert(this_node, "Node is NULL");
918  Point & p1 = *this_node;
919 
920  node_id = _front[i].back();
921  this_node = _cut_mesh->node_ptr(node_id);
922  mooseAssert(this_node, "Node is NULL");
923  Point & p4 = *this_node;
924 
925  if (_front[i].size() >= 4)
926  node_id = _front[i][_front[i].size() - 3];
927  else
928  node_id = _front[i][_front[i].size() - 2];
929 
930  this_node = _cut_mesh->node_ptr(node_id);
931  mooseAssert(this_node, "Node is NULL");
932  Point & p3 = *this_node;
933 
934  bool do_inter1 = 1;
935  bool do_inter2 = 1;
936 
937  std::unique_ptr<PointLocatorBase> pl = _mesh.getPointLocator();
938  pl->enable_out_of_mesh_mode();
939  const Elem * elem = (*pl)(p1);
940  if (elem == nullptr)
941  do_inter1 = 0;
942  elem = (*pl)(p4);
943  if (elem == nullptr)
944  do_inter2 = 0;
945 
946  for (const auto & belem : range)
947  {
948  Point pt;
949  std::vector<Point> vertices;
950 
951  elem = belem->_elem;
952  std::unique_ptr<const Elem> curr_side = elem->side_ptr(belem->_side);
953  for (unsigned int j = 0; j < curr_side->n_nodes(); ++j)
954  {
955  const Node * node = curr_side->node_ptr(j);
956  const Point & this_point = *node;
957  vertices.push_back(this_point);
958  }
959 
960  if (findIntersection(p1, p2, vertices, pt))
961  {
962  pint1.push_back(pt);
963  length1.push_back((pt - p1) * (pt - p1));
964  }
965  if (findIntersection(p3, p4, vertices, pt))
966  {
967  pint2.push_back(pt);
968  length2.push_back((pt - p3) * (pt - p3));
969  }
970  }
971 
972  if (length1.size() != 0 && do_inter1)
973  {
974  auto it1 = std::min_element(length1.begin(), length1.end());
975  Point inter1 = pint1[std::distance(length1.begin(), it1)];
976  inter1 += (inter1 - p1) * _const_intersection;
977 
978  Node * this_node = Node::build(inter1, _cut_mesh->n_nodes()).release();
979  _cut_mesh->add_node(this_node);
980 
981  mooseAssert(_cut_mesh->n_nodes() - 1 > 0, "The cut mesh should have at least one element.");
982  unsigned int n = _cut_mesh->n_nodes() - 1;
983 
984  auto it = _front[i].begin();
985  _front[i].insert(it, n);
986 
987  if (_cfd)
989  }
990 
991  if (length2.size() != 0 && do_inter2)
992  {
993  auto it2 = std::min_element(length2.begin(), length2.end());
994  Point inter2 = pint2[std::distance(length2.begin(), it2)];
995  inter2 += (inter2 - p2) * _const_intersection;
996 
997  Node * this_node = Node::build(inter2, _cut_mesh->n_nodes()).release();
998  _cut_mesh->add_node(this_node);
999 
1000  dof_id_type n = _cut_mesh->n_nodes() - 1;
1001 
1002  auto it = _front[i].begin();
1003  unsigned int m = _front[i].size();
1004  _front[i].insert(it + m, n);
1005 
1006  if (_cfd)
1008  }
1009  }
1010  }
1011 }
1012 
1013 void
1015 {
1016  std::vector<std::vector<dof_id_type>> new_front(_front.begin(), _front.end());
1017 
1018  for (unsigned int ifront = 0; ifront < _front.size(); ++ifront)
1019  {
1020  unsigned int i1 = _front[ifront].size() - 1;
1021  if (_inactive_boundary_pos.size() == 0)
1022  i1 = _front[ifront].size();
1023 
1024  for (unsigned int i = i1; i >= 1; --i)
1025  {
1026  unsigned int i2 = i;
1027  if (_inactive_boundary_pos.size() == 0)
1028  i2 = (i <= _front[ifront].size() - 1 ? i : 0);
1029 
1030  dof_id_type node1 = _front[ifront][i - 1];
1031  dof_id_type node2 = _front[ifront][i2];
1032  Real distance = findDistance(node1, node2);
1033 
1034  if (distance > _size_control)
1035  {
1036  unsigned int n = static_cast<int>(distance / _size_control);
1037  std::array<Real, 3> x1;
1038  std::array<Real, 3> x2;
1039 
1040  Node * this_node = _cut_mesh->node_ptr(node1);
1041  mooseAssert(this_node, "Node is NULL");
1042  Point & p1 = *this_node;
1043  this_node = _cut_mesh->node_ptr(node2);
1044  mooseAssert(this_node, "Node is NULL");
1045  Point & p2 = *this_node;
1046 
1047  for (unsigned int j = 0; j < 3; ++j)
1048  {
1049  x1[j] = p1(j);
1050  x2[j] = p2(j);
1051  }
1052 
1053  for (unsigned int j = 0; j < n; ++j)
1054  {
1055  Point x;
1056  for (unsigned int k = 0; k < 3; ++k)
1057  x(k) = x2[k] - (x2[k] - x1[k]) * (j + 1) / (n + 1);
1058 
1059  Node * this_node = Node::build(x, _cut_mesh->n_nodes()).release();
1060  _cut_mesh->add_node(this_node);
1061 
1062  dof_id_type id = _cut_mesh->n_nodes() - 1;
1063 
1064  auto it = new_front[ifront].begin();
1065  new_front[ifront].insert(it + i, id);
1066  }
1067  }
1068  }
1069  }
1070 
1071  _front = new_front;
1072 
1073  if (_cfd)
1074  {
1075  if (_front[0][0] == _tracked_crack_front_points[0] &&
1076  _front[0].back() == _tracked_crack_front_points.back())
1078  else if (_front[0][0] == _tracked_crack_front_points.back() &&
1079  _front[0].back() == _tracked_crack_front_points[0])
1080  {
1082  std::reverse(_crack_front_points.begin(), _crack_front_points.end());
1083  }
1084  else
1085  mooseError("the crack front and the tracked crack front definition must match in terms of "
1086  "their end nodes");
1087 
1090  }
1091 }
1092 
1093 void
1095 {
1096 
1097  mooseAssert(_active_boundary.size() == _front.size(),
1098  "_active_boundary and _front should have the same size!");
1099 
1100  if (_inactive_boundary_pos.size() == 0)
1101  {
1102  _active_boundary[0].push_back(_active_boundary[0][0]);
1103  _front[0].push_back(_front[0][0]);
1104  }
1105 
1106  // loop over active segments
1107  for (unsigned int k = 0; k < _front.size(); ++k)
1108  {
1109  unsigned int n1 = _active_boundary[k].size();
1110  unsigned int n2 = _front[k].size();
1111 
1112  unsigned int i1 = 0;
1113  unsigned int i2 = 0;
1114 
1115  // stop when all nodes are associated with an element
1116  while (!(i1 == n1 - 1 && i2 == n2 - 1))
1117  {
1118  std::vector<dof_id_type> elem;
1119 
1120  dof_id_type p1 = _active_boundary[k][i1]; // node in the old front
1121  dof_id_type p2 = _front[k][i2]; // node in the new front
1122 
1123  if (i1 != n1 - 1 && i2 != n2 - 1)
1124  {
1125  dof_id_type p3 = _active_boundary[k][i1 + 1]; // next node in the old front
1126  dof_id_type p4 = _front[k][i2 + 1]; // next node in the new front
1127 
1128  elem.push_back(p1);
1129  elem.push_back(p2);
1130 
1131  Real d1 = findDistance(p1, p4);
1132  Real d2 = findDistance(p3, p2);
1133 
1134  if (d1 < d2)
1135  {
1136  elem.push_back(p4);
1137  i2++;
1138  }
1139 
1140  else
1141  {
1142  elem.push_back(p3);
1143  i1++;
1144  }
1145  }
1146 
1147  else if (i1 == n1 - 1)
1148  {
1149  dof_id_type p4 = _front[k][i2 + 1]; // next node in the new front
1150 
1151  elem.push_back(p1);
1152  elem.push_back(p2);
1153  elem.push_back(p4);
1154  i2++;
1155  }
1156 
1157  else if (i2 == n2 - 1)
1158  {
1159  dof_id_type p3 = _active_boundary[k][i1 + 1]; // next node in the old front
1160 
1161  elem.push_back(p1);
1162  elem.push_back(p2);
1163  elem.push_back(p3);
1164  i1++;
1165  }
1166 
1167  Elem * new_elem = Elem::build(TRI3).release();
1168 
1169  for (unsigned int i = 0; i < _cut_elem_nnode; ++i)
1170  {
1171  mooseAssert(_cut_mesh->node_ptr(elem[i]) != nullptr, "Node is NULL");
1172  new_elem->set_node(i, _cut_mesh->node_ptr(elem[i]));
1173  }
1174 
1175  _cut_mesh->add_elem(new_elem);
1176  }
1177  }
1178 }
1179 
1180 void
1182 {
1183  if (_inactive_boundary_pos.size() == 0)
1184  {
1185  _boundary = _front[0];
1186  _boundary.pop_back();
1187  return;
1188  }
1189 
1190  std::vector<dof_id_type> full_front;
1191 
1192  unsigned int size1 = _active_boundary.size();
1193 
1194  for (unsigned int i = 0; i < size1; ++i)
1195  {
1196  unsigned int size2 = _active_boundary[i].size();
1197 
1198  dof_id_type bd1 = _active_boundary[i][size2 - 1];
1199  dof_id_type bd2 = _active_boundary[i + 1 < size1 ? i + 1 : 0][0];
1200 
1201  full_front.insert(full_front.end(), _front[i].begin(), _front[i].end());
1202 
1203  auto it1 = std::find(_boundary.begin(), _boundary.end(), bd1);
1204  unsigned int pos1 = std::distance(_boundary.begin(), it1);
1205  auto it2 = std::find(_boundary.begin(), _boundary.end(), bd2);
1206  unsigned int pos2 = std::distance(_boundary.begin(), it2);
1207 
1208  if (pos1 <= pos2)
1209  full_front.insert(full_front.end(), _boundary.begin() + pos1, _boundary.begin() + pos2 + 1);
1210  else
1211  {
1212  full_front.insert(full_front.end(), _boundary.begin() + pos1, _boundary.end());
1213  full_front.insert(full_front.end(), _boundary.begin(), _boundary.begin() + pos2 + 1);
1214  }
1215  }
1216 
1217  _boundary = full_front;
1218 }
1219 
1220 const std::vector<Point>
1221 CrackMeshCut3DUserObject::getCrackFrontPoints(unsigned int number_crack_front_points) const
1222 {
1223  std::vector<Point> crack_front_points(number_crack_front_points);
1224  // number_crack_front_points is updated via
1225  // _crack_front_definition->updateNumberOfCrackFrontPoints(_crack_front_points.size())
1226  if (number_crack_front_points != _crack_front_points.size())
1227  mooseError("number_points_from_provider does not match the number of nodes given in "
1228  "crack_front_nodes");
1229  for (unsigned int i = 0; i < number_crack_front_points; ++i)
1230  {
1232  Node * this_node = _cut_mesh->node_ptr(id);
1233  mooseAssert(this_node, "Node is NULL");
1234  Point & this_point = *this_node;
1235  crack_front_points[i] = this_point;
1236  }
1237  return crack_front_points;
1238 }
1239 
1240 const std::vector<RealVectorValue>
1241 CrackMeshCut3DUserObject::getCrackPlaneNormals(unsigned int number_crack_front_points) const
1242 {
1243  std::vector<RealVectorValue> crack_plane_normals(number_crack_front_points);
1244 
1245  // build the node-to-elems map
1246  std::unordered_map<dof_id_type, std::vector<dof_id_type>> node_to_elems_map;
1247  node_to_elems_map.clear();
1248  for (const auto & elem : _cut_mesh->element_ptr_range())
1249  for (auto & node : elem->node_ref_range())
1250  node_to_elems_map[node.id()].push_back(elem->id());
1251 
1252  // build the elem-to-normal map
1253  std::unordered_map<dof_id_type, RealVectorValue> elem_to_normal_map;
1254  elem_to_normal_map.clear();
1255  for (const auto & elem : _cut_mesh->element_ptr_range())
1256  {
1257  Point & p1 = *elem->node_ptr(0);
1258  Point & p2 = *elem->node_ptr(1);
1259  Point & p3 = *elem->node_ptr(2);
1260  Plane elem_plane(p3, p2, p1); // to match the current normal of 0,0,-1;
1261  RealVectorValue normal = elem_plane.unit_normal(p1);
1262  elem_to_normal_map[elem->id()] = normal;
1263  }
1264 
1265  // for any front node, the normal is averaged based on the normals of all elements sharing this
1266  // node this code may fail when the front node has no element connected to it, e.g. refinement at
1267  // step 1 has to be disabled
1268  for (unsigned int i = 0; i < number_crack_front_points; ++i)
1269  {
1271  std::vector<dof_id_type> elems = node_to_elems_map[id];
1272  unsigned int n_elem = elems.size();
1273 
1274  RealVectorValue normal_avr = 0;
1275  for (unsigned int j = 0; j < n_elem; ++j)
1276  normal_avr += elem_to_normal_map[elems[j]];
1277  normal_avr = normal_avr / n_elem;
1278  crack_plane_normals[i] = normal_avr;
1279  }
1280  return crack_plane_normals;
1281 }
1282 
1283 std::vector<int>
1285 {
1286  // Crack front definition using the cutter mesh currently only supports one active crack front
1287  // segment
1288  unsigned int ibnd = 0;
1289  unsigned int size_this_segment = _active_boundary[ibnd].size();
1290  unsigned int n_inactive_nodes = _inactive_boundary_pos.size();
1291 
1292  std::vector<int> index(size_this_segment, -1);
1293 
1294  unsigned int i1 = n_inactive_nodes == 0 ? 0 : 1;
1295  unsigned int i2 = n_inactive_nodes == 0 ? size_this_segment : size_this_segment - 1;
1296 
1297  // loop over active front points
1298  for (unsigned int j = i1; j < i2; ++j)
1299  {
1300  dof_id_type id = _active_boundary[ibnd][j];
1301  auto it = std::find(_crack_front_points.begin(), _crack_front_points.end(), id);
1302  index[j] = std::distance(_crack_front_points.begin(), it);
1303  }
1304 
1305  return index;
1306 }
1307 
1308 void
1310 {
1311  _growth_size = growth_size;
1312 }
1313 
1314 unsigned int
1316 {
1317  return _num_crack_front_points;
1318 }
void isCutterModified(const bool is_cutter_modified)
Set the value of _is_cutter_modified.
int _last_step_initialized
Time step information needed to advance a 3D crack only at the real beginning of a time step...
GrowthDirectionEnum
Enum to for crack growth direction.
CrackMeshCut3DUserObject: (1) reads in a mesh describing the crack surface, (2) uses the mesh to do i...
std::vector< unsigned long int > _dn
Fatigue life.
Real _size_control
Used for cutter mesh refinement and front advancement.
static InputParameters validParams()
Factory constructor, takes parameters so that all derived classes can be built using the same constru...
T & getUserObject(const std::string &name, unsigned int tid=0) const
void findBoundaryNodes()
Find boundary nodes of the cutter mesh This is a simple algorithm simply based on the added angle = 3...
void addParam(const std::string &name, const std::initializer_list< typename T::value_type > &value, const std::string &doc_string)
std::vector< int > getFrontPointsIndex()
Get crack front points in the active segment -1 means inactive; positive is the point&#39;s index in the ...
void mooseError(Args &&... args)
const unsigned int _cut_elem_nnode
The cutter mesh has triangluar elements only.
dof_id_type n_elem(const MeshBase::const_element_iterator &begin, const MeshBase::const_element_iterator &end)
void findActiveBoundaryNodes()
Find all active boundary nodes in the cutter mesh Find boundary nodes that will grow; nodes outside o...
unsigned int _n_step_growth
Number of steps to grow the mesh.
std::vector< unsigned long int > _n
bool findIntersection(const Point &p1, const Point &p2, const std::vector< Point > &vertices, Point &point) const
Find directional intersection along the positive extension of the vector from p1 to p2...
const GrowthDirectionEnum _growth_dir_method
The direction method for growing mesh at the front.
MeshBase & mesh
virtual bool cutFragmentByGeometry(std::vector< std::vector< Point >> &frag_edges, std::vector< Xfem::CutEdge > &cut_edges) const override
void setSubCriticalGrowthSize(std::vector< Real > &growth_size)
Return growth size at the active boundary to the mesh cutter.
const Parallel::Communicator & _communicator
Real getRelativePosition(const Point &p1, const Point &p2, const Point &p) const
Get the relative position of p from p1.
std::vector< Real > _position
Fractional distance along the cut edges where the cut is located.
Real findDistance(dof_id_type node1, dof_id_type node2)
Find distance between two nodes.
std::map< dof_id_type, std::vector< dof_id_type > > _boundary_map
A map of boundary nodes and their neighbors.
Real distance(const Point &p)
void growFront()
Grow the cutter mesh.
void addRequiredParam(const std::string &name, const std::string &doc_string)
void updateNumberOfCrackFrontPoints(const std::size_t num_points)
Change the number of crack front nodes.
Data structure defining a cut through a face.
const Real _const_intersection
Used to define intersection points.
TRI3
void findBoundaryEdges()
Find boundary edges of the cutter mesh.
void triangulation()
Create tri3 elements between the new front and the old front.
bool isParamValid(const std::string &name) const
void refineFront()
Refine the mesh at the front.
Data structure defining a cut on an element edge.
std::vector< dof_id_type > _tracked_crack_front_points
Front nodes that are grown from the crack front definition defined in the input therefore, they are (1) in the same order as defined in the input and (2) the number of nodes does not change.
RealVectorValue rotateFromCrackFrontCoordsToGlobal(const RealVectorValue vector, const std::size_t point_index) const
Rotate a vector from crack front cartesian coordinate to global cartesian coordinate.
int plane_normal_line_exp_int_3d(double pp[3], double normal[3], double p1[3], double p2[3], double pint[3])
Definition: XFEMFuncs.C:403
void sortFrontNodes()
Sort the front nodes.
Class used in fracture integrals to define geometric characteristics of the crack front...
std::vector< dof_id_type > _crack_front_points
updated crack front definition they are in the same order as defined in the input but the number of n...
Real getRelativePosition(const Point &p1, const Point &p2, const Point &p)
Get the relative position of p from p1 respect to the total length of the line segment.
Definition: XFEMFuncs.C:991
void findFrontIntersection()
Find front-structure intersections.
const Function * _func_x
Parsed functions of front growth.
std::vector< std::vector< dof_id_type > > _front
New boundary after growth.
virtual void initialSetup() override
unsigned int _id1
ID of the first node on the edge.
const std::vector< double > x
registerMooseObject("XFEMApp", CrackMeshCut3DUserObject)
virtual const std::vector< Point > getCrackFrontPoints(unsigned int num_crack_front_points) const override
get a set of points along a crack front from a XFEM GeometricCutUserObject
bool intersectWithEdge(const Point &p1, const Point &p2, const std::vector< Point > &vertices, Point &pint)
check if a line intersects with an element defined by vertices calculate the distance from a point to...
Definition: XFEMFuncs.C:948
unsigned int _num_crack_front_points
Total number of crack front points in the mesh cutter.
virtual bool cutElementByGeometry(const Elem *elem, std::vector< Xfem::CutEdge > &cut_edges, std::vector< Xfem::CutNode > &cut_nodes) const override
bool _is_mesh_modified
Indicator that shows if the cutting mesh is modified or not in this calculation step.
CrackMeshCut3DUserObject(const InputParameters &parameters)
bool _stop
Variables to help control the work flow.
auto norm(const T &a) -> decltype(std::abs(a))
std::vector< unsigned int > _inactive_boundary_pos
Inactive boundary.
std::string enum_to_string(const T e)
void joinBoundary()
Join active boundaries and inactive boundaries to be the new boundary.
virtual const std::vector< RealVectorValue > getCrackPlaneNormals(unsigned int num_crack_front_points) const override
get a set of normal vectors along a crack front from a XFEM GeometricCutUserObject ...
std::vector< Real > VectorPostprocessorValue
virtual bool intersectWithEdge(const Point &p1, const Point &p2, const std::vector< Point > &_vertices, Point &point) const
Check if a line intersects with an element.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
EDGE2
void sortBoundaryNodes()
Sort boundary nodes to be in the right order along the boundary.
unsigned int _id2
ID of the second node on the edge.
FEProblemBase & _fe_problem
std::vector< std::vector< dof_id_type > > _active_boundary
Active boundary nodes where growth is allowed.
void mooseError(Args &&... args) const
unsigned int getNumberOfCrackFrontPoints() const
Return the total number of crack front points.
MooseMesh & _mesh
The structural mesh.
void addClassDescription(const std::string &doc_string)
CrackFrontDefinition * _crack_front_definition
The crack front definition.
static InputParameters validParams()
static const std::complex< double > j(0, 1)
Complex number "j" (also known as "i")
void normalizePoint(Point &p)
Definition: XFEMFuncs.C:621
virtual std::unique_ptr< libMesh::PointLocatorBase > getPointLocator() const
libMesh::StoredRange< MooseMesh::const_bnd_elem_iterator, const BndElement *> * getBoundaryElementRange()
virtual void initialize() override
GrowthRateEnum
Enum to for crack growth rate.
virtual Real value(Real t, const Point &p) const
const GrowthRateEnum _growth_rate_method
The rate method for growing mesh at the front.
bool isInsideEdge(const Point &p1, const Point &p2, const Point &p) const
Check if point p is inside the edge p1-p2.
std::set< Xfem::CutEdge > _boundary_edges
Edges at the boundary.
std::vector< Real > _growth_size
Growth size for the active boundary in a subcritical simulation.
const VectorPostprocessorValue & getVectorPostprocessorValueByName(const VectorPostprocessorName &name, const std::string &vector_name) const
void refineBoundary()
If boundary nodes are too sparse, add nodes in between.
std::vector< std::vector< Point > > _active_direction
Growth direction for active boundaries.
static const std::string k
Definition: NS.h:130
void ErrorVector unsigned int
void findActiveBoundaryDirection()
Find growth direction at each active node.
std::unique_ptr< MeshBase > _cut_mesh
The cutter mesh.
std::vector< unsigned int > _face_edge
IDs of all cut faces.
unsigned int _face_id
ID of the cut face.
bool isInsideCutPlane(const std::vector< Point > &_vertices, const Point &p) const
Check if point p is inside a plane.
std::vector< dof_id_type > _boundary
Boundary nodes of the cutter mesh.
uint8_t dof_id_type