libMesh
miscellaneous_ex9.C
Go to the documentation of this file.
1 // The libMesh Finite Element Library.
2 // Copyright (C) 2002-2025 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
3 
4 // This library is free software; you can redistribute it and/or
5 // modify it under the terms of the GNU Lesser General Public
6 // License as published by the Free Software Foundation; either
7 // version 2.1 of the License, or (at your option) any later version.
8 
9 // This library is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 // Lesser General Public License for more details.
13 
14 // You should have received a copy of the GNU Lesser General Public
15 // License along with this library; if not, write to the Free Software
16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 
18 
19 
20 // <h1>Miscellaneous Example 9 - Implement an interface term to model
21 // a thermal "film resistance"</h1>
22 // \author David Knezevic
23 // \date 2013
24 //
25 // In this example we solve a Poisson problem, -\Laplacian u = f, with
26 // a non-standard interface condition on the domain interior which
27 // models a thermal "film resistance". The interface condition
28 // requires continuity of flux, and a jump in temperature proportional
29 // to the flux:
30 // \nabla u_1 \cdot n = \nabla u_2 \cdot n,
31 // u_1 - u_2 = R * \nabla u \cdot n
32 //
33 // To implement this PDE, we use two mesh subdomains, \Omega_1 and
34 // \Omega_2, with coincident boundaries, but which are not connected
35 // in the FE sense. Let \Gamma denote the coincident boundary. The
36 // term on \Gamma takes the form:
37 //
38 // 1/R * \int_\Gamma (u_1 - u_2) (v_1 - v_2) ds,
39 //
40 // where u_1, u_2 (resp. v_1, v_2) are the trial (resp. test)
41 // functions on either side of \Gamma. We implement this condition
42 // using C0 basis functions, but the "crack" in the mesh at \Gamma
43 // permits a discontinuity in the solution. We also impose a heat flux
44 // on the bottom surface of the mesh, and a zero Dirichlet condition
45 // on the top surface.
46 //
47 // In order to implement the interface condition, we need to augment
48 // the matrix sparsity pattern, which is handled by the class
49 // AugmentSparsityPatternOnInterface.
50 
51 
52 // C++ include files that we need
53 #include <iostream>
54 #include <limits>
55 
56 // libMesh includes
57 #include "libmesh/libmesh.h"
58 #include "libmesh/mesh.h"
59 #include "libmesh/mesh_generation.h"
60 #include "libmesh/mesh_refinement.h"
61 #include "libmesh/exodusII_io.h"
62 #include "libmesh/equation_systems.h"
63 #include "libmesh/fe.h"
64 #include "libmesh/quadrature_gauss.h"
65 #include "libmesh/dof_map.h"
66 #include "libmesh/sparse_matrix.h"
67 #include "libmesh/numeric_vector.h"
68 #include "libmesh/dense_matrix.h"
69 #include "libmesh/dense_vector.h"
70 #include "libmesh/getpot.h"
71 #include "libmesh/elem.h"
72 #include "libmesh/fe_interface.h"
73 #include "libmesh/boundary_info.h"
74 #include "libmesh/linear_implicit_system.h"
75 #include "libmesh/zero_function.h"
76 #include "libmesh/dirichlet_boundaries.h"
77 #include "libmesh/enum_solver_package.h"
78 
79 // example includes
81 
82 // define the boundary IDs in the mesh
83 #define MIN_Z_BOUNDARY 1
84 #define MAX_Z_BOUNDARY 2
85 #define CRACK_BOUNDARY_LOWER 3
86 #define CRACK_BOUNDARY_UPPER 4
87 
88 // Bring in everything from the libMesh namespace
89 using namespace libMesh;
90 
95  const ElementSideMap & lower_to_upper);
96 
97 // The main program.
98 int main (int argc, char ** argv)
99 {
100  // Initialize libMesh.
101  LibMeshInit init (argc, argv);
102 
103  // This example uses an ExodusII input file
104 #ifndef LIBMESH_HAVE_EXODUS_API
105  libmesh_example_requires(false, "--enable-exodus");
106 #endif
107 
108  // Skip this 3D example if libMesh was compiled as 1D or 2D-only.
109  libmesh_example_requires(3 <= LIBMESH_DIM, "3D support");
110 
111  // We use Dirichlet boundary conditions here
112 #ifndef LIBMESH_ENABLE_DIRICHLET
113  libmesh_example_requires(false, "--enable-dirichlet");
114 #endif
115 
116  const Real R = libMesh::command_line_next("-R", 2.);
117 
118  Mesh mesh(init.comm());
119 
120  EquationSystems equation_systems (mesh);
121 
122  LinearImplicitSystem & system =
123  equation_systems.add_system<LinearImplicitSystem> ("Poisson");
124  system.add_variable("u", FIRST, LAGRANGE);
125 
126  // We want to call assemble_poisson "manually" so that we can pass in
127  // lower_to_upper, hence set assemble_before_solve = false
128  system.assemble_before_solve = false;
129 
130 #ifdef LIBMESH_ENABLE_DIRICHLET
131  // Impose zero Dirichlet boundary condition on MAX_Z_BOUNDARY
132  ZeroFunction<> zf;
133 
134  // Most DirichletBoundary users will want to supply a "locally
135  // indexed" functor
136  DirichletBoundary dirichlet_bc({MAX_Z_BOUNDARY}, {0}, zf,
138  system.get_dof_map().add_dirichlet_boundary(dirichlet_bc);
139 #endif // LIBMESH_ENABLE_DIRICHLET
140 
141  // Attach an object to the DofMap that will augment the sparsity pattern
142  // due to the degrees-of-freedom on the "crack"
143  //
144  // By attaching this object *before* reading our mesh, we also
145  // ensure that the connected elements will not be deleted on a
146  // distributed mesh.
147  AugmentSparsityOnInterface augment_sparsity
148  (mesh, CRACK_BOUNDARY_LOWER, CRACK_BOUNDARY_UPPER);
149  system.get_dof_map().add_coupling_functor(augment_sparsity);
150 
151  mesh.read("miscellaneous_ex9.exo");
152 
153  equation_systems.init();
154  equation_systems.print_info();
155 
156  // Set the jump term coefficient, it will be used in assemble_poisson
157  equation_systems.parameters.set<Real>("R") = R;
158 
159  // Assemble and then solve
160  assemble_poisson(equation_systems,
161  augment_sparsity.get_lower_to_upper());
162  system.solve();
163 
164 #ifdef LIBMESH_HAVE_EXODUS_API
165  // Plot the solution
166  ExodusII_IO (mesh).write_equation_systems ("solution.exo",
167  equation_systems);
168 #endif
169 
170 #ifdef LIBMESH_ENABLE_AMR
171  // Possibly solve on a refined mesh next.
172  MeshRefinement mesh_refinement (mesh);
173  unsigned int n_refinements =
174  libMesh::command_line_next("-n_refinements", 0);
175 
176  for (unsigned int r = 0; r != n_refinements; ++r)
177  {
178  std::cout << "Refining the mesh" << std::endl;
179 
180  mesh_refinement.uniformly_refine ();
181  equation_systems.reinit();
182 
183  assemble_poisson(equation_systems,
184  augment_sparsity.get_lower_to_upper());
185  system.solve();
186 
187 #ifdef LIBMESH_HAVE_EXODUS_API
188  // Plot the refined solution
189  std::ostringstream out;
190  out << "solution_" << r << ".exo";
192  equation_systems);
193 #endif
194 
195  }
196 
197 #endif
198 
199  return 0;
200 }
201 
203  const ElementSideMap & lower_to_upper)
204 {
205  const MeshBase & mesh = es.get_mesh();
206  const unsigned int dim = mesh.mesh_dimension();
207 
208  Real R = es.parameters.get<Real>("R");
209 
210  LinearImplicitSystem & system = es.get_system<LinearImplicitSystem>("Poisson");
211 
212  const DofMap & dof_map = system.get_dof_map();
213 
214  FEType fe_type = dof_map.variable_type(0);
215 
216  std::unique_ptr<FEBase> fe (FEBase::build(dim, fe_type));
217  std::unique_ptr<FEBase> fe_elem_face (FEBase::build(dim, fe_type));
218  std::unique_ptr<FEBase> fe_neighbor_face (FEBase::build(dim, fe_type));
219 
220  QGauss qrule (dim, fe_type.default_quadrature_order());
221  QGauss qface(dim-1, fe_type.default_quadrature_order());
222 
223  fe->attach_quadrature_rule (&qrule);
224  fe_elem_face->attach_quadrature_rule (&qface);
225  fe_neighbor_face->attach_quadrature_rule (&qface);
226 
227  const std::vector<Real> & JxW = fe->get_JxW();
228  const std::vector<std::vector<Real>> & phi = fe->get_phi();
229  const std::vector<std::vector<RealGradient>> & dphi = fe->get_dphi();
230 
231  const std::vector<Real> & JxW_face = fe_elem_face->get_JxW();
232 
233  const std::vector<Point> & qface_points = fe_elem_face->get_xyz();
234 
235  const std::vector<std::vector<Real>> & phi_face = fe_elem_face->get_phi();
236  const std::vector<std::vector<Real>> & phi_neighbor_face = fe_neighbor_face->get_phi();
237 
240 
245 
246  std::vector<dof_id_type> dof_indices;
247  SparseMatrix<Number> & matrix = system.get_system_matrix();
248 
249  for (const auto & elem : mesh.active_local_element_ptr_range())
250  {
251  dof_map.dof_indices (elem, dof_indices);
252  const unsigned int n_dofs = dof_indices.size();
253 
254  fe->reinit (elem);
255 
256  Ke.resize (n_dofs, n_dofs);
257  Fe.resize (n_dofs);
258 
259  // Assemble element interior terms for the matrix
260  for (unsigned int qp=0; qp<qrule.n_points(); qp++)
261  for (unsigned int i=0; i<n_dofs; i++)
262  for (unsigned int j=0; j<n_dofs; j++)
263  Ke(i,j) += JxW[qp]*(dphi[i][qp]*dphi[j][qp]);
264 
265  // Boundary flux provides forcing in this example
266  {
267  for (auto side : elem->side_index_range())
268  if (elem->neighbor_ptr(side) == nullptr)
269  {
270  if (mesh.get_boundary_info().has_boundary_id (elem, side, MIN_Z_BOUNDARY))
271  {
272  fe_elem_face->reinit(elem, side);
273 
274  for (unsigned int qp=0; qp<qface.n_points(); qp++)
275  for (std::size_t i=0; i<phi.size(); i++)
276  Fe(i) += JxW_face[qp] * phi_face[i][qp];
277  }
278 
279  }
280  }
281 
282  // Add boundary terms on the crack
283  {
284  for (auto side : elem->side_index_range())
285  if (elem->neighbor_ptr(side) == nullptr)
286  {
287  // Found the lower side of the crack. Assemble terms due to lower and upper in here.
288  if (mesh.get_boundary_info().has_boundary_id (elem, side, CRACK_BOUNDARY_LOWER))
289  {
290  fe_elem_face->reinit(elem, side);
291 
292  ElementSideMap::const_iterator ltu_it =
293  lower_to_upper.find(std::make_pair(elem, side));
294  libmesh_assert(ltu_it != lower_to_upper.end());
295 
296  const Elem * neighbor = ltu_it->second;
297 
298  std::vector<Point> qface_neighbor_points;
299  FEMap::inverse_map (elem->dim(), neighbor,
300  qface_points,
301  qface_neighbor_points);
302  fe_neighbor_face->reinit(neighbor, &qface_neighbor_points);
303 
304  std::vector<dof_id_type> neighbor_dof_indices;
305  dof_map.dof_indices (neighbor, neighbor_dof_indices);
306  const unsigned int n_neighbor_dofs = neighbor_dof_indices.size();
307 
308  Kne.resize (n_neighbor_dofs, n_dofs);
309  Ken.resize (n_dofs, n_neighbor_dofs);
310  Kee.resize (n_dofs, n_dofs);
311  Knn.resize (n_neighbor_dofs, n_neighbor_dofs);
312 
313  // Lower-to-lower coupling term
314  for (unsigned int qp=0; qp<qface.n_points(); qp++)
315  for (unsigned int i=0; i<n_dofs; i++)
316  for (unsigned int j=0; j<n_dofs; j++)
317  Kee(i,j) -= JxW_face[qp] * (1./R)*(phi_face[i][qp] * phi_face[j][qp]);
318 
319  // Lower-to-upper coupling term
320  for (unsigned int qp=0; qp<qface.n_points(); qp++)
321  for (unsigned int i=0; i<n_dofs; i++)
322  for (unsigned int j=0; j<n_neighbor_dofs; j++)
323  Ken(i,j) += JxW_face[qp] * (1./R)*(phi_face[i][qp] * phi_neighbor_face[j][qp]);
324 
325  // Upper-to-upper coupling term
326  for (unsigned int qp=0; qp<qface.n_points(); qp++)
327  for (unsigned int i=0; i<n_neighbor_dofs; i++)
328  for (unsigned int j=0; j<n_neighbor_dofs; j++)
329  Knn(i,j) -= JxW_face[qp] * (1./R)*(phi_neighbor_face[i][qp] * phi_neighbor_face[j][qp]);
330 
331  // Upper-to-lower coupling term
332  for (unsigned int qp=0; qp<qface.n_points(); qp++)
333  for (unsigned int i=0; i<n_neighbor_dofs; i++)
334  for (unsigned int j=0; j<n_dofs; j++)
335  Kne(i,j) += JxW_face[qp] * (1./R)*(phi_neighbor_face[i][qp] * phi_face[j][qp]);
336 
337  matrix.add_matrix(Kne, neighbor_dof_indices, dof_indices);
338  matrix.add_matrix(Ken, dof_indices, neighbor_dof_indices);
339  matrix.add_matrix(Kee, dof_indices);
340  matrix.add_matrix(Knn, neighbor_dof_indices);
341  }
342  }
343  }
344 
345  dof_map.constrain_element_matrix_and_vector (Ke, Fe, dof_indices);
346 
347  matrix.add_matrix (Ke, dof_indices);
348  system.rhs->add_vector (Fe, dof_indices);
349  }
350 }
class FEType hides (possibly multiple) FEFamily and approximation orders, thereby enabling specialize...
Definition: fe_type.h:196
T command_line_next(std::string name, T default_value)
Use GetPot&#39;s search()/next() functions to get following arguments from the command line...
Definition: libmesh.C:1078
This is the EquationSystems class.
virtual void read(const std::string &name, void *mesh_data=nullptr, bool skip_renumber_nodes_and_elements=false, bool skip_find_neighbors=false)=0
Interfaces for reading/writing a mesh to/from a file.
bool has_boundary_id(const Node *const node, const boundary_id_type id) const
ConstFunction that simply returns 0.
Definition: zero_function.h:38
unsigned int dim
static Point inverse_map(const unsigned int dim, const Elem *elem, const Point &p, const Real tolerance=TOLERANCE, const bool secure=true, const bool extra_checks=true)
Definition: fe_map.C:1628
The ExodusII_IO class implements reading meshes in the ExodusII file format from Sandia National Labs...
Definition: exodusII_io.h:52
Manages consistently variables, degrees of freedom, coefficient vectors, matrices and linear solvers ...
void resize(const unsigned int n)
Resize the vector.
Definition: dense_vector.h:396
void assemble_poisson(EquationSystems &es, const ElementSideMap &lower_to_upper)
Assemble the system matrix and rhs vector.
This is the base class from which all geometric element types are derived.
Definition: elem.h:94
MeshBase & mesh
This class allows one to associate Dirichlet boundary values with a given set of mesh boundary ids an...
Order default_quadrature_order() const
Definition: fe_type.h:371
The LibMeshInit class, when constructed, initializes the dependent libraries (e.g.
Definition: libmesh.h:90
The libMesh namespace provides an interface to certain functionality in the library.
const BoundaryInfo & get_boundary_info() const
The information about boundary ids on the mesh.
Definition: mesh_base.h:165
virtual void solve() override
Assembles & solves the linear system A*x=b.
const T_sys & get_system(std::string_view name) const
void add_coupling_functor(GhostingFunctor &coupling_functor, bool to_mesh=true)
Adds a functor which can specify coupling requirements for creation of sparse matrices.
Definition: dof_map.C:2033
This is the MeshBase class.
Definition: mesh_base.h:75
This class handles the numbering of degrees of freedom on a mesh.
Definition: dof_map.h:179
int main(int argc, char **argv)
virtual void add_matrix(const DenseMatrix< T > &dm, const std::vector< numeric_index_type > &rows, const std::vector< numeric_index_type > &cols)=0
Add the full matrix dm to the SparseMatrix.
const T & get(std::string_view) const
Definition: parameters.h:426
Implements (adaptive) mesh refinement algorithms for a MeshBase.
virtual void write_equation_systems(const std::string &fname, const EquationSystems &es, const std::set< std::string > *system_names=nullptr) override
Writes out the solution for no specific time or timestep.
Definition: exodusII_io.C:2033
void init(triangulateio &t)
Initializes the fields of t to nullptr/0 as necessary.
static std::unique_ptr< FEGenericBase > build(const unsigned int dim, const FEType &type)
Builds a specific finite element type.
libmesh_assert(ctx)
unsigned int add_variable(std::string_view var, const FEType &type, const std::set< subdomain_id_type > *const active_subdomains=nullptr)
Adds the variable var to the list of variables for this system.
Definition: system.C:1357
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
OStreamProxy out
const MeshBase & get_mesh() const
void resize(const unsigned int new_m, const unsigned int new_n)
Resizes the matrix to the specified size and calls zero().
Definition: dense_matrix.h:895
This class implements specific orders of Gauss quadrature.
unsigned int mesh_dimension() const
Definition: mesh_base.C:372
Parameters parameters
Data structure holding arbitrary parameters.
void add_dirichlet_boundary(const DirichletBoundary &dirichlet_boundary)
Adds a copy of the specified Dirichlet boundary to the system.
bool assemble_before_solve
Flag which tells the system to whether or not to call the user assembly function during each call to ...
Definition: system.h:1547
The Mesh class is a thin wrapper, around the ReplicatedMesh class by default.
Definition: mesh.h:50
std::map< std::pair< const Elem *, unsigned char >, const Elem * > ElementSideMap
const DofMap & get_dof_map() const
Definition: system.h:2374
void uniformly_refine(unsigned int n=1)
Uniformly refines the mesh n times.
const ElementSideMap & get_lower_to_upper() const