libMesh
Functions
miscellaneous_ex1.C File Reference

Go to the source code of this file.

Functions

void assemble_wave (EquationSystems &es, const std::string &system_name)
 
int main (int argc, char **argv)
 
void assemble_wave (EquationSystems &es, const std::string &libmesh_dbg_var(system_name))
 

Function Documentation

◆ assemble_wave() [1/2]

void assemble_wave ( EquationSystems es,
const std::string &  system_name 
)

Definition at line 318 of file transient_ex2.C.

References libMesh::SparseMatrix< T >::add_matrix(), libMesh::NumericVector< T >::add_vector(), libMesh::FEGenericBase< OutputType >::build(), dim, libMesh::DofMap::dof_indices(), libMesh::Parameters::get(), libMesh::EquationSystems::get_mesh(), libMesh::EquationSystems::get_system(), mesh, libMesh::MeshBase::mesh_dimension(), libMesh::QBase::n_points(), libMesh::EquationSystems::parameters, libMesh::Real, libMesh::DenseVector< T >::resize(), libMesh::DenseMatrix< T >::resize(), and libMesh::SECOND.

Referenced by main().

320 {
321  // It is a good idea to make sure we are assembling
322  // the proper system.
323  libmesh_assert_equal_to (system_name, "Wave");
324 
325  // Get a constant reference to the mesh object.
326  const MeshBase & mesh = es.get_mesh();
327 
328  // The dimension that we are running.
329  const unsigned int dim = mesh.mesh_dimension();
330 
331  // Copy the speed of sound to a local variable.
332  const Real speed = es.parameters.get<Real>("speed");
333 
334  // If we added Neumann conditions we would need density too
335  // const Real rho = es.parameters.get<Real>("fluid density");
336 
337  // Get a reference to our system, as before.
338  NewmarkSystem & t_system = es.get_system<NewmarkSystem> (system_name);
339 
340  // Get a constant reference to the Finite Element type
341  // for the first (and only) variable in the system.
342  FEType fe_type = t_system.get_dof_map().variable_type(0);
343 
344  // In here, we will add the element matrices to the
345  // @e additional matrices "stiffness_mass" and "damping"
346  // and the additional vector "force", not to the members
347  // "matrix" and "rhs". Therefore, get writable
348  // references to them.
349  SparseMatrix<Number> & stiffness = t_system.get_matrix("stiffness");
350  SparseMatrix<Number> & damping = t_system.get_matrix("damping");
351  SparseMatrix<Number> & mass = t_system.get_matrix("mass");
352  NumericVector<Number> & force = t_system.get_vector("force");
353 
354  // Some solver packages (PETSc) are especially picky about
355  // allocating sparsity structure and truly assigning values
356  // to this structure. Namely, matrix additions, as performed
357  // later, exhibit acceptable performance only for identical
358  // sparsity structures. Therefore, explicitly zero the
359  // values in the collective matrix, so that matrix additions
360  // encounter identical sparsity structures.
361  SparseMatrix<Number> & matrix = *t_system.matrix;
362  DenseMatrix<Number> zero_matrix;
363 
364  // Build a Finite Element object of the specified type. Since the
365  // FEBase::build() member dynamically creates memory we will
366  // store the object as a std::unique_ptr<FEBase>. This can be thought
367  // of as a pointer that will clean up after itself.
368  std::unique_ptr<FEBase> fe (FEBase::build(dim, fe_type));
369 
370  // A 2nd order Gauss quadrature rule for numerical integration.
371  QGauss qrule (dim, SECOND);
372 
373  // Tell the finite element object to use our quadrature rule.
374  fe->attach_quadrature_rule (&qrule);
375 
376  // The element Jacobian * quadrature weight at each integration point.
377  const std::vector<Real> & JxW = fe->get_JxW();
378 
379  // The element shape functions evaluated at the quadrature points.
380  const std::vector<std::vector<Real>> & phi = fe->get_phi();
381 
382  // The element shape function gradients evaluated at the quadrature
383  // points.
384  const std::vector<std::vector<RealGradient>> & dphi = fe->get_dphi();
385 
386  // A reference to the DofMap object for this system. The DofMap
387  // object handles the index translation from node and element numbers
388  // to degree of freedom numbers.
389  const DofMap & dof_map = t_system.get_dof_map();
390 
391  // The element mass, damping and stiffness matrices
392  // and the element contribution to the rhs.
393  DenseMatrix<Number> Ke, Ce, Me;
395 
396  // This vector will hold the degree of freedom indices for
397  // the element. These define where in the global system
398  // the element degrees of freedom get mapped.
399  std::vector<dof_id_type> dof_indices;
400 
401  // Now we will loop over all the elements in the mesh.
402  // We will compute the element matrix and right-hand-side
403  // contribution.
404  for (const auto & elem : mesh.active_local_element_ptr_range())
405  {
406  // Get the degree of freedom indices for the
407  // current element. These define where in the global
408  // matrix and right-hand-side this element will
409  // contribute to.
410  dof_map.dof_indices (elem, dof_indices);
411 
412  // Compute the element-specific data for the current
413  // element. This involves computing the location of the
414  // quadrature points (q_point) and the shape functions
415  // (phi, dphi) for the current element.
416  fe->reinit (elem);
417 
418  // Zero the element matrices and rhs before
419  // summing them. We use the resize member here because
420  // the number of degrees of freedom might have changed from
421  // the last element. Note that this will be the case if the
422  // element type is different (i.e. the last element was HEX8
423  // and now have a PRISM6).
424  {
425  const unsigned int n_dof_indices = dof_indices.size();
426 
427  Ke.resize (n_dof_indices, n_dof_indices);
428  Ce.resize (n_dof_indices, n_dof_indices);
429  Me.resize (n_dof_indices, n_dof_indices);
430  zero_matrix.resize (n_dof_indices, n_dof_indices);
431  Fe.resize (n_dof_indices);
432  }
433 
434  // Now loop over the quadrature points. This handles
435  // the numeric integration.
436  for (unsigned int qp=0; qp<qrule.n_points(); qp++)
437  {
438  // Now we will build the element matrix. This involves
439  // a double loop to integrate the test functions (i) against
440  // the trial functions (j).
441  for (std::size_t i=0; i<phi.size(); i++)
442  for (std::size_t j=0; j<phi.size(); j++)
443  {
444  Ke(i,j) += JxW[qp]*(dphi[i][qp]*dphi[j][qp]);
445  Me(i,j) += JxW[qp]*phi[i][qp]*phi[j][qp]
446  *1./(speed*speed);
447  } // end of the matrix summation loop
448  } // end of quadrature point loop
449 
450  // Now compute the contribution to the element matrix and the
451  // right-hand-side vector if the current element lies on the
452  // boundary.
453  {
454  // In this example no natural boundary conditions will
455  // be considered. The code is left here so it can easily
456  // be extended.
457  //
458  // don't do this for any side
459 #if 0
460  for (auto side : elem->side_index_range())
461  if (elem->neighbor_ptr(side) == nullptr)
462  {
463  // Declare a special finite element object for
464  // boundary integration.
465  std::unique_ptr<FEBase> fe_face (FEBase::build(dim, fe_type));
466 
467  // Boundary integration requires one quadrature rule,
468  // with dimensionality one less than the dimensionality
469  // of the element.
470  QGauss qface(dim-1, SECOND);
471 
472  // Tell the finite element object to use our
473  // quadrature rule.
474  fe_face->attach_quadrature_rule (&qface);
475 
476  // The value of the shape functions at the quadrature
477  // points.
478  const std::vector<std::vector<Real>> & phi_face = fe_face->get_phi();
479 
480  // The Jacobian * Quadrature Weight at the quadrature
481  // points on the face.
482  const std::vector<Real> & JxW_face = fe_face->get_JxW();
483 
484  // Compute the shape function values on the element
485  // face.
486  fe_face->reinit(elem, side);
487 
488  // Here we consider a normal acceleration acc_n=1 applied to
489  // the whole boundary of our mesh.
490  const Real acc_n_value = 1.0;
491 
492  // Loop over the face quadrature points for integration.
493  for (unsigned int qp=0; qp<qface.n_points(); qp++)
494  {
495  // Right-hand-side contribution due to prescribed
496  // normal acceleration.
497  for (std::size_t i=0; i<phi_face.size(); i++)
498  {
499  Fe(i) += acc_n_value*rho
500  *phi_face[i][qp]*JxW_face[qp];
501  }
502  } // end face quadrature point loop
503  } // end if (elem->neighbor_ptr(side) == nullptr)
504 #endif // 0
505 
506  // In this example the Dirichlet boundary conditions will be
507  // imposed via penalty method after the
508  // system is assembled.
509 
510  } // end boundary condition section
511 
512  // If this assembly program were to be used on an adaptive mesh,
513  // we would have to apply any hanging node constraint equations
514  // by uncommenting the following lines:
515  // std::vector<unsigned int> dof_indicesC = dof_indices;
516  // std::vector<unsigned int> dof_indicesM = dof_indices;
517  // dof_map.constrain_element_matrix_and_vector (Ke, Fe, dof_indices);
518  // dof_map.constrain_element_matrix (Ce, dof_indicesC);
519  // dof_map.constrain_element_matrix (Me, dof_indicesM);
520 
521  // Finally, simply add the contributions to the additional
522  // matrices and vector.
523  stiffness.add_matrix (Ke, dof_indices);
524  damping.add_matrix (Ce, dof_indices);
525  mass.add_matrix (Me, dof_indices);
526 
527  force.add_vector (Fe, dof_indices);
528 
529  // For the overall matrix, explicitly zero the entries where
530  // we added values in the other ones, so that we have
531  // identical sparsity footprints.
532  matrix.add_matrix(zero_matrix, dof_indices);
533 
534  } // end of element loop
535 }
class FEType hides (possibly multiple) FEFamily and approximation orders, thereby enabling specialize...
Definition: fe_type.h:196
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
Definition: dof_map.C:2164
unsigned int dim
void resize(const unsigned int n)
Resize the vector.
Definition: dense_vector.h:396
virtual void add_vector(const T *v, const std::vector< numeric_index_type > &dof_indices)
Computes , where v is a pointer and each dof_indices[i] specifies where to add value v[i]...
MeshBase & mesh
const T_sys & get_system(std::string_view name) const
This is the MeshBase class.
Definition: mesh_base.h:75
This class handles the numbering of degrees of freedom on a mesh.
Definition: dof_map.h:179
virtual void add_matrix(const DenseMatrix< T > &dm, const std::vector< numeric_index_type > &rows, const std::vector< numeric_index_type > &cols)=0
Add the full matrix dm to the SparseMatrix.
const T & get(std::string_view) const
Definition: parameters.h:426
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const MeshBase & get_mesh() const
void resize(const unsigned int new_m, const unsigned int new_n)
Resizes the matrix to the specified size and calls zero().
Definition: dense_matrix.h:895
This class contains a specific system class.
This class implements specific orders of Gauss quadrature.
unsigned int mesh_dimension() const
Definition: mesh_base.C:372
Parameters parameters
Data structure holding arbitrary parameters.

◆ assemble_wave() [2/2]

void assemble_wave ( EquationSystems es,
const std::string &  libmesh_dbg_varsystem_name 
)

Definition at line 239 of file miscellaneous_ex1.C.

References libMesh::DenseMatrix< T >::add(), libMesh::NumericVector< T >::add(), libMesh::SparseMatrix< T >::add_matrix(), libMesh::NumericVector< T >::add_vector(), libMesh::FEGenericBase< OutputType >::build(), libMesh::FEGenericBase< OutputType >::build_InfFE(), dim, libMesh::Parameters::get(), libMesh::System::get_dof_map(), libMesh::EquationSystems::get_mesh(), libMesh::EquationSystems::get_system(), libMesh::ImplicitSystem::get_system_matrix(), libMesh::libmesh_ignore(), mesh, libMesh::MeshBase::mesh_dimension(), libMesh::FEInterface::n_dofs(), libMesh::EquationSystems::parameters, libMesh::Real, libMesh::DenseVector< T >::resize(), libMesh::DenseMatrix< T >::resize(), libMesh::ExplicitSystem::rhs, libMesh::SECOND, libMesh::TOLERANCE, and libMesh::MeshTools::weight().

241 {
242  // It is a good idea to make sure we are assembling
243  // the proper system.
244  libmesh_assert_equal_to (system_name, "Wave");
245 
246  // Avoid unused variable warnings when compiling without infinite
247  // elements enabled.
248  libmesh_ignore(es);
249 
250 #ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
251 
252  // Get a constant reference to the mesh object.
253  const MeshBase & mesh = es.get_mesh();
254 
255  // Get a reference to the system we are solving.
257 
258  // A reference to the DofMap object for this system. The DofMap
259  // object handles the index translation from node and element numbers
260  // to degree of freedom numbers.
261  const DofMap & dof_map = system.get_dof_map();
262 
263  // The dimension that we are running.
264  const unsigned int dim = mesh.mesh_dimension();
265 
266  // Copy the speed of sound to a local variable.
267  const Real speed = es.parameters.get<Real>("speed");
268 
269  // Get a constant reference to the Finite Element type
270  // for the first (and only) variable in the system.
271  const FEType & fe_type = dof_map.variable_type(0);
272 
273  // Build a Finite Element object of the specified type. Since the
274  // FEBase::build() member dynamically creates memory we will
275  // store the object as a std::unique_ptr<FEBase>.
276  std::unique_ptr<FEBase> fe (FEBase::build(dim, fe_type));
277 
278  // Do the same for an infinite element.
279  std::unique_ptr<FEBase> inf_fe (FEBase::build_InfFE(dim, fe_type));
280 
281  // A 2nd order Gauss quadrature rule for numerical integration.
282  QGauss qrule (dim, SECOND);
283 
284  // Tell the finite element object to use our quadrature rule.
285  fe->attach_quadrature_rule (&qrule);
286 
287  // Due to its internal structure, the infinite element handles
288  // quadrature rules differently. It takes the quadrature
289  // rule which has been initialized for the FE object, but
290  // creates suitable quadrature rules by @e itself. The user
291  // need not worry about this.
292  inf_fe->attach_quadrature_rule (&qrule);
293 
294  // Define data structures to contain the element matrix
295  // and right-hand-side vector contribution. Following
296  // basic finite element terminology we will denote these
297  // "Ke", "Ce", "Me", and "Fe" for the stiffness, damping
298  // and mass matrices, and the load vector. Note that in
299  // Acoustics, these descriptors though do @e not match the
300  // true physical meaning of the projectors. The final
301  // overall system, however, resembles the conventional
302  // notation again.
307 
308  // This vector will hold the degree of freedom indices for
309  // the element. These define where in the global system
310  // the element degrees of freedom get mapped.
311  std::vector<dof_id_type> dof_indices;
312 
313  // The global system matrix
314  SparseMatrix<Number> & matrix = system.get_system_matrix();
315 
316  // Now we will loop over all the elements in the mesh.
317  // We will compute the element matrix and right-hand-side
318  // contribution.
319  for (const auto & elem : mesh.active_local_element_ptr_range())
320  {
321  // Get the degree of freedom indices for the
322  // current element. These define where in the global
323  // matrix and right-hand-side this element will
324  // contribute to.
325  dof_map.dof_indices (elem, dof_indices);
326 
327  const unsigned int n_dofs =
328  cast_int<unsigned int>(dof_indices.size());
329 
330  // The mesh contains both finite and infinite elements. These
331  // elements are handled through different classes, namely
332  // FE and InfFE, respectively. However, since both
333  // are derived from FEBase, they share the same interface,
334  // and overall burden of coding is @e greatly reduced through
335  // using a pointer, which is adjusted appropriately to the
336  // current element type.
337  FEBase * cfe = nullptr;
338 
339  // This here is almost the only place where we need to
340  // distinguish between finite and infinite elements.
341  // For faster computation, however, different approaches
342  // may be feasible.
343  //
344  // Up to now, we do not know what kind of element we
345  // have. Aske the element of what type it is:
346  if (elem->infinite())
347  {
348  // We have an infinite element. Let cfe point
349  // to our InfFE object. This is handled through
350  // a std::unique_ptr. Through the std::unique_ptr::get() we "borrow"
351  // the pointer, while the std::unique_ptr inf_fe is
352  // still in charge of memory management.
353  cfe = inf_fe.get();
354  }
355  else
356  {
357  // This is a conventional finite element. Let fe handle it.
358  cfe = fe.get();
359 
360  // Boundary conditions.
361  // Here we just zero the rhs-vector. For natural boundary
362  // conditions check e.g. previous examples.
363  {
364  // Zero the RHS for this element.
365  Fe.resize (n_dofs);
366 
367  system.rhs->add_vector (Fe, dof_indices);
368  } // end boundary condition section
369  } // else if (elem->infinite())
370 
371  // This is slightly different from the Poisson solver:
372  // Since the finite element object may change, we have to
373  // initialize the constant references to the data fields
374  // each time again, when a new element is processed.
375  //
376  // Due to infinite extent of the element, the 'pure' Jacobian is divergent
377  // and we must use a re-scaled one. As re-scaling, a 'decay'-function
378  // is used (in 3D this is \f$ r^{-2} \f$).
379  //
380  // To account for this extra weight, \p phi, \p dphi and \p weight are
381  // re-scaled as well:
382  // * J --> J x decay^2
383  // * phi --> phi/decay x r
384  // * dphi --> dphi/decay x r
385  // * weight --> weight / r^2
386  // With this, the product of Jacobian, test and trial functions (and their derivatives)
387  // can be used as normal since the extra weights cancel.
388  //
389  // The element Jacobian * quadrature weight at each integration point.
390  const std::vector<Real> & JxW = cfe->get_JxWxdecay_sq();
391 
392  // The element shape functions evaluated at the quadrature points.
393  const std::vector<std::vector<Real>> & phi = cfe->get_phi_over_decayxR();
394  //const std::vector<std::vector<Real>> & phi = cfe->get_phi();
395 
396  // The element shape function gradients evaluated at the quadrature
397  // points, divided by weight x rad
398  const std::vector<std::vector<RealGradient>> & dphi = cfe->get_dphi_over_decayxR();
399  //const std::vector<std::vector<RealGradient>> & dphi = cfe->get_dphi();
400 
401  // The infinite elements need more data fields than conventional FE.
402  // These are the gradients of the phase term dphase, an additional
403  // radial weight for the test functions Sobolev_weight, and its
404  // gradient.
405  //
406  // Note that these data fields are also initialized appropriately by
407  // the FE method, so that the weak form (below) is valid for @e both
408  // finite and infinite elements.
409  const std::vector<RealGradient> & dphase = cfe->get_dphase();
410  const std::vector<Real> & weight = cfe->get_Sobolev_weightxR_sq();
411  const std::vector<RealGradient> & dweight = cfe->get_Sobolev_dweightxR_sq();
412 
413  // Now this is all independent of whether we use an FE
414  // or an InfFE. Nice, hm? ;-)
415  //
416  // Compute the element-specific data, as described
417  // in previous examples.
418  cfe->reinit (elem);
419 
420  // Zero the element matrices. Boundary conditions were already
421  // processed in the FE-only section, see above.
422  Ke.resize (n_dofs, n_dofs);
423  Ce.resize (n_dofs, n_dofs);
424  Me.resize (n_dofs, n_dofs);
425 
426  // The total number of quadrature points for infinite elements
427  // @e has to be determined in a different way, compared to
428  // conventional finite elements. This type of access is also
429  // valid for finite elements, so this can safely be used
430  // anytime, instead of asking the quadrature rule, as
431  // seen in previous examples.
432  unsigned int max_qp = cfe->n_quadrature_points();
433 
434  // Loop over the quadrature points.
435  for (unsigned int qp=0; qp<max_qp; qp++)
436  {
437  // Similar to the modified access to the number of quadrature
438  // points, the number of shape functions may also be obtained
439  // in a different manner. This offers the great advantage
440  // of being valid for both finite and infinite elements.
441  const unsigned int n_sf =
442  FEInterface::n_dofs(cfe->get_fe_type(), elem);
443 
444  // Now we will build the element matrices. Since the infinite
445  // elements are based on a Petrov-Galerkin scheme, the
446  // resulting system matrices are non-symmetric. The additional
447  // weight, described before, is part of the trial space.
448  //
449  // For the finite elements, though, these matrices are symmetric
450  // just as we know them, since the additional fields dphase,
451  // weight, and dweight are initialized appropriately.
452  //
453  // test functions: weight[qp]*phi[i][qp]
454  // trial functions: phi[j][qp]
455  // phase term: phase[qp]
456  //
457  // derivatives are similar, but note that these are of type
458  // Point, not of type Real.
459  for (unsigned int i=0; i<n_sf; i++)
460  for (unsigned int j=0; j<n_sf; j++)
461  {
462  // (ndt*Ht + nHt*d) * nH
463  Ke(i,j) +=
464  (
465  (dweight[qp] * phi[i][qp] // Point * Real = Point
466  + // +
467  dphi[i][qp] * weight[qp] // Point * Real = Point
468  ) * dphi[j][qp]
469  ) * JxW[qp];
470 
471  // (d*Ht*nmut*nH - ndt*nmu*Ht*H - d*nHt*nmu*H)
472  Ce(i,j) +=
473  (
474  (dphase[qp] * dphi[j][qp]) // (Point * Point) = Real
475  * weight[qp] * phi[i][qp] // * Real * Real = Real
476  - // -
477  (dweight[qp] * dphase[qp]) // (Point * Point) = Real
478  * phi[i][qp] * phi[j][qp] // * Real * Real = Real
479  - // -
480  (dphi[i][qp] * dphase[qp]) // (Point * Point) = Real
481  * weight[qp] * phi[j][qp] // * Real * Real = Real
482  ) * JxW[qp];
483 
484  // (d*Ht*H * (1 - nmut*nmu))
485  Me(i,j) +=
486  (
487  (1. - (dphase[qp] * dphase[qp])) // (Real - (Point * Point)) = Real
488  * phi[i][qp] * phi[j][qp] * weight[qp] // * Real * Real * Real = Real
489  ) * JxW[qp];
490 
491  } // end of the matrix summation loop
492  } // end of quadrature point loop
493 
494  // The element matrices are now built for this element.
495  // Collect them in Ke, and then add them to the global matrix.
496  // The SparseMatrix::add_matrix() member does this for us.
497  Ke.add(1./speed , Ce);
498  Ke.add(1./(speed*speed), Me);
499 
500  // If this assembly program were to be used on an adaptive mesh,
501  // we would have to apply any hanging node constraint equations
502  dof_map.constrain_element_matrix(Ke, dof_indices);
503 
504  matrix.add_matrix (Ke, dof_indices);
505  } // end of element loop
506 
507  // Note that we have not applied any boundary conditions so far.
508  // Here we apply a unit load at the node located at (0,0,0).
509  for (const auto & node : mesh.local_node_ptr_range())
510  if (std::abs((*node)(0)) < TOLERANCE &&
511  std::abs((*node)(1)) < TOLERANCE &&
512  std::abs((*node)(2)) < TOLERANCE)
513  {
514  // The global number of the respective degree of freedom.
515  unsigned int dn = node->dof_number(0,0,0);
516 
517  system.rhs->add (dn, 1.);
518  }
519 
520 #else
521 
522  // dummy assert
523  libmesh_assert_not_equal_to (es.get_mesh().mesh_dimension(), 1);
524 
525 #endif //ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
526 }
class FEType hides (possibly multiple) FEFamily and approximation orders, thereby enabling specialize...
Definition: fe_type.h:196
static constexpr Real TOLERANCE
unsigned int dim
Manages consistently variables, degrees of freedom, coefficient vectors, matrices and linear solvers ...
void resize(const unsigned int n)
Resize the vector.
Definition: dense_vector.h:396
virtual void add_vector(const T *v, const std::vector< numeric_index_type > &dof_indices)
Computes , where v is a pointer and each dof_indices[i] specifies where to add value v[i]...
MeshBase & mesh
NumericVector< Number > * rhs
The system matrix.
const T_sys & get_system(std::string_view name) const
This is the MeshBase class.
Definition: mesh_base.h:75
This class handles the numbering of degrees of freedom on a mesh.
Definition: dof_map.h:179
void libmesh_ignore(const Args &...)
virtual void add_matrix(const DenseMatrix< T > &dm, const std::vector< numeric_index_type > &rows, const std::vector< numeric_index_type > &cols)=0
Add the full matrix dm to the SparseMatrix.
const T & get(std::string_view) const
Definition: parameters.h:426
dof_id_type weight(const MeshBase &mesh, const processor_id_type pid)
Definition: mesh_tools.C:437
boostcopy::enable_if_c< ScalarTraits< T2 >::value, void >::type add(const T2 factor, const DenseMatrix< T3 > &mat)
Adds factor times mat to this matrix.
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const MeshBase & get_mesh() const
void resize(const unsigned int new_m, const unsigned int new_n)
Resizes the matrix to the specified size and calls zero().
Definition: dense_matrix.h:895
This class implements specific orders of Gauss quadrature.
unsigned int mesh_dimension() const
Definition: mesh_base.C:372
Parameters parameters
Data structure holding arbitrary parameters.
virtual void add(const numeric_index_type i, const T value)=0
Adds value to the vector entry specified by i.
const DofMap & get_dof_map() const
Definition: system.h:2374
const SparseMatrix< Number > & get_system_matrix() const
This class forms the foundation from which generic finite elements may be derived.

◆ main()

int main ( int  argc,
char **  argv 
)

Definition at line 86 of file miscellaneous_ex1.C.

References libMesh::EquationSystems::add_system(), assemble_wave(), libMesh::MeshTools::Generation::build_cube(), libMesh::InfElemBuilder::build_inf_elem(), libMesh::MeshBase::find_neighbors(), libMesh::FIRST, libMesh::EquationSystems::get_system(), libMesh::HEX8, libMesh::TriangleWrapper::init(), libMesh::EquationSystems::init(), mesh, libMesh::out, libMesh::EquationSystems::parameters, libMesh::EquationSystems::print_info(), libMesh::MeshBase::print_info(), libMesh::Real, libMesh::EquationSystems::reinit(), libMesh::Parameters::set(), libMesh::MeshRefinement::uniformly_refine(), libMesh::WRITE, libMesh::ExodusII_IO::write(), and libMesh::EquationSystems::write().

87 {
88  // Initialize libMesh, like in example 2.
89  LibMeshInit init (argc, argv);
90 
91  // This example requires Infinite Elements
92 #ifndef LIBMESH_ENABLE_INFINITE_ELEMENTS
93  libmesh_example_requires(false, "--enable-ifem");
94 #else
95 
96  // Skip this 3D example if libMesh was compiled as 1D/2D-only.
97  libmesh_example_requires(3 <= LIBMESH_DIM, "3D support");
98 
99  // Create a serialized mesh, distributed across the default MPI
100  // communicator.
101  Mesh mesh(init.comm());
102 
103  // Get command line arguments for mesh size
104  GetPot input(argc, argv);
105 
106  const unsigned int nx = input("nx", 4),
107  ny = input("ny", 4),
108  nz = input("nz", 4);
109 
110  // Use the internal mesh generator to create elements
111  // on the square [-1,1]^3, of type Hex8.
113  nx, ny, nz,
114  -1., 1.,
115  -1., 1.,
116  -1., 1.,
117  HEX8);
118 
119  // Print information about the mesh to the screen.
120  mesh.print_info();
121 
122  // Write the mesh before the infinite elements are added
123 #ifdef LIBMESH_HAVE_EXODUS_API
124  ExodusII_IO(mesh).write ("orig_mesh.e");
125 #endif
126 
127  // Normally, when a mesh is imported or created in
128  // libMesh, only conventional elements exist. The infinite
129  // elements used here, however, require prescribed
130  // nodal locations (with specified distances from an imaginary
131  // origin) and configurations that a conventional mesh creator
132  // in general does not offer. Therefore, an efficient method
133  // for building infinite elements is offered. It can account
134  // for symmetry planes and creates infinite elements in a fully
135  // automatic way.
136  //
137  // Right now, the simplified interface is used, automatically
138  // determining the origin. Check MeshBase for a generalized
139  // method that can even return the element faces of interior
140  // vibrating surfaces. The bool determines whether to be
141  // verbose.
142  InfElemBuilder builder(mesh);
143  builder.build_inf_elem(true);
144 
145  // Reassign subdomain_id() of all infinite elements.
146  // Otherwise, the exodus-api will fail on the mesh.
147  for (auto & elem : mesh.element_ptr_range())
148  if (elem->infinite())
149  elem->subdomain_id() = 1;
150 
151  // Print information about the mesh to the screen.
152  mesh.print_info();
153 
154  // Write the mesh with the infinite elements added.
155  // Compare this to the original mesh.
156 #ifdef LIBMESH_HAVE_EXODUS_API
157  ExodusII_IO(mesh).write ("ifems_added.e");
158 #endif
159 
160  // After building infinite elements, we have to let
161  // the elements find their neighbors again.
163 
164  // Create an equation systems object, where ThinSystem
165  // offers only the crucial functionality for solving a
166  // system. Use ThinSystem when you want the sleekest
167  // system possible.
168  EquationSystems equation_systems (mesh);
169 
170  // Declare the system and its variables.
171  // Create a system named "Wave". This can
172  // be a simple, steady system
173  equation_systems.add_system<LinearImplicitSystem> ("Wave");
174 
175  // Create an FEType describing the approximation
176  // characteristics of the InfFE object. Note that
177  // the constructor automatically defaults to some
178  // sensible values. But use FIRST order
179  // approximation.
180  FEType fe_type(FIRST);
181 
182  // Add the variable "p" to "Wave". Note that there exist
183  // various approaches in adding variables. In example 3,
184  // add_variable took the order of approximation and used
185  // default values for the FEFamily, while here the FEType
186  // is used.
187  equation_systems.get_system("Wave").add_variable("p", fe_type);
188 
189  // Give the system a pointer to the matrix assembly
190  // function.
191  equation_systems.get_system("Wave").attach_assemble_function (assemble_wave);
192 
193  // Set the speed of sound and fluid density
194  // as EquationSystems parameter,
195  // so that assemble_wave() can access it.
196  equation_systems.parameters.set<Real>("speed") = 1.;
197  equation_systems.parameters.set<Real>("fluid density") = 1.;
198 
199  // Initialize the data structures for the equation system.
200  equation_systems.init();
201 
202 #ifdef LIBMESH_ENABLE_AMR
203  // Do uniform refinement if requested
204  const unsigned int nr = input("nr", 0);
205  if (nr)
206  {
207  MeshRefinement mesh_refinement(mesh);
208  mesh_refinement.uniformly_refine(nr);
209  equation_systems.reinit();
210  equation_systems.print_info();
211  }
212 #endif
213 
214  // Print and solve the refined sysem
215  equation_systems.get_system("Wave").solve();
216 
217  libMesh::out << "Wave system solved" << std::endl;
218 
219  // Write the whole EquationSystems object to file.
220  // For infinite elements, the concept of nodal_soln()
221  // is not applicable. Therefore, writing the mesh in
222  // some format @e always gives all-zero results at
223  // the nodes of the infinite elements. Instead,
224  // use the FEInterface::compute_data() methods to
225  // determine physically correct results within an
226  // infinite element.
227  equation_systems.write ("eqn_sys.dat", WRITE);
228 
229  libMesh::out << "eqn_sys.dat written" << std::endl;
230 
231  // All done.
232  return 0;
233 
234 #endif // else part of ifndef LIBMESH_ENABLE_INFINITE_ELEMENTS
235 }
class FEType hides (possibly multiple) FEFamily and approximation orders, thereby enabling specialize...
Definition: fe_type.h:196
This is the EquationSystems class.
The ExodusII_IO class implements reading meshes in the ExodusII file format from Sandia National Labs...
Definition: exodusII_io.h:52
Manages consistently variables, degrees of freedom, coefficient vectors, matrices and linear solvers ...
MeshBase & mesh
The LibMeshInit class, when constructed, initializes the dependent libraries (e.g.
Definition: libmesh.h:90
virtual void find_neighbors(const bool reset_remote_elements=false, const bool reset_current_list=true)=0
Locate element face (edge in 2D) neighbors.
Implements (adaptive) mesh refinement algorithms for a MeshBase.
void print_info(std::ostream &os=libMesh::out, const unsigned int verbosity=0, const bool global=true) const
Prints relevant information about the mesh.
Definition: mesh_base.C:1562
void init(triangulateio &t)
Initializes the fields of t to nullptr/0 as necessary.
This class is used to build infinite elements on top of an existing mesh.
void assemble_wave(EquationSystems &es, const std::string &system_name)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
virtual void write(const std::string &fname) override
This method implements writing a mesh to a specified file.
Definition: exodusII_io.C:2180
OStreamProxy out
The Mesh class is a thin wrapper, around the ReplicatedMesh class by default.
Definition: mesh.h:50
void build_cube(UnstructuredMesh &mesh, const unsigned int nx=0, const unsigned int ny=0, const unsigned int nz=0, const Real xmin=0., const Real xmax=1., const Real ymin=0., const Real ymax=1., const Real zmin=0., const Real zmax=1., const ElemType type=INVALID_ELEM, const bool gauss_lobatto_grid=false)
Builds a (elements) cube.