330 #if defined(LIBMESH_HAVE_EIGEN) && defined(LIBMESH_ENABLE_SECOND_DERIVATIVES)   333   libmesh_assert_equal_to (system_name, 
"Shell");
   347   const bool distributed_load  = es.
parameters.
get<
bool> (
"distributed load");
   354     0., 0., 0.5 * (1-nu);
   355   Hm *= h * E/(1-nu*nu);
   362     0., 0., 0.5 * (1-nu);
   363   Hf *= h*h*h/12 * E/(1-nu*nu);
   367   Hc0 *= h * 5./6*E/(2*(1+nu));
   370   Hc1 *= h*h*h/12 * 5./6*E/(2*(1+nu));
   376   std::unique_ptr<FEBase> fe (FEBase::build(
dim, fe_type));
   378   fe->attach_quadrature_rule (&qrule);
   381   const std::vector<Real> & JxW = fe->get_JxW();
   385   const std::vector<RealGradient> & dxyzdxi = fe->get_dxyzdxi();
   386   const std::vector<RealGradient> & dxyzdeta = fe->get_dxyzdeta();
   387   const std::vector<RealGradient> & d2xyzdxi2 = fe->get_d2xyzdxi2();
   388   const std::vector<RealGradient> & d2xyzdeta2 = fe->get_d2xyzdeta2();
   389   const std::vector<RealGradient> & d2xyzdxideta = fe->get_d2xyzdxideta();
   390   const std::vector<std::vector<Real>> & dphidxi = fe->get_dphidxi();
   391   const std::vector<std::vector<Real>> & dphideta = fe->get_dphideta();
   392   const std::vector<std::vector<Real>> & phi = fe->get_phi();
   424   std::vector<dof_id_type> dof_indices;
   425   std::vector<std::vector<dof_id_type>> dof_indices_var(6);
   429   for (
const auto & elem : 
mesh.active_local_element_ptr_range())
   432       for (
unsigned int var=0; var<6; var++)
   433         dof_map.
dof_indices (elem, dof_indices_var[var], var);
   435       const unsigned int n_dofs   = dof_indices.size();
   436       const unsigned int n_var_dofs = dof_indices_var[0].size();
   439       std::vector<Point> nodes;
   440       for (
unsigned int i=0; i<elem->n_nodes(); ++i)
   441         nodes.push_back(elem->reference_elem()->node_ref(i));
   442       fe->reinit (elem, &nodes);
   445       std::vector<MyMatrix3d> Qnode;
   446       for (
unsigned int i=0; i<elem->n_nodes(); ++i)
   449           a1 << dxyzdxi[i](0), dxyzdxi[i](1), dxyzdxi[i](2);
   451           a2 << dxyzdeta[i](0), dxyzdeta[i](1), dxyzdeta[i](2);
   459           if (std::abs(1.+C)<1e-6)
   472                 C+1./(1+C)*ny*ny, -1./(1+C)*nx*ny, nx,
   473                 -1./(1+C)*nx*ny, C+1./(1+C)*nx*nx, ny,
   479       Ke.
resize (n_dofs, n_dofs);
   480       for (
unsigned int var_i=0; var_i<6; var_i++)
   481         for (
unsigned int var_j=0; var_j<6; var_j++)
   482           Ke_var[var_i][var_j].reposition (var_i*n_var_dofs, var_j*n_var_dofs, n_var_dofs, n_var_dofs);
   485       Fe_w.reposition(2*n_var_dofs,n_var_dofs);
   491       for (
unsigned int qp=0; qp<qrule.n_points(); ++qp)
   496           a1 << dxyzdxi[qp](0), dxyzdxi[qp](1), dxyzdxi[qp](2);
   498           a2 << dxyzdeta[qp](0), dxyzdeta[qp](1), dxyzdeta[qp](2);
   510           F0it = 
F0.inverse().transpose();
   517           if (std::abs(1.+C) < 1e-6)
   527                 C+1./(1+C)*ny*ny, -1./(1+C)*nx*ny, nx,
   528                 -1./(1+C)*nx*ny, C+1./(1+C)*nx*nx, ny,
   533           C0 = F0it.block<3,2>(0,0).transpose()*Q.block<3,2>(0,0);
   536           MyVector3d d2Xdxi2(d2xyzdxi2[qp](0), d2xyzdxi2[qp](1), d2xyzdxi2[qp](2));
   537           MyVector3d d2Xdeta2(d2xyzdeta2[qp](0), d2xyzdeta2[qp](1), d2xyzdeta2[qp](2));
   538           MyVector3d d2Xdxideta(d2xyzdxideta[qp](0), d2xyzdxideta[qp](1), d2xyzdxideta[qp](2));
   542             n.dot(d2Xdxi2), n.dot(d2Xdxideta),
   543             n.dot(d2Xdxideta), n.dot(d2Xdeta2);
   545           MyVector3d dndxi = -b(0,0)*F0it.col(0) - b(0,1)*F0it.col(1);
   546           MyVector3d dndeta = -b(1,0)*F0it.col(0) - b(1,1)*F0it.col(1);
   550             F0it.col(1).dot(dndeta), -F0it.col(0).dot(dndeta),
   551             -F0it.col(1).dot(dndxi), F0it.col(0).dot(dndxi);
   557           Real H = 0.5*(dndxi.dot(F0it.col(0))+dndeta.dot(F0it.col(1)));
   560           for (
unsigned int i=0; i<n_var_dofs; ++i)
   563               Real C1i = dphidxi[i][qp]*C0(0,0) + dphideta[i][qp]*C0(1,0);
   564               Real C2i = dphidxi[i][qp]*C0(0,1) + dphideta[i][qp]*C0(1,1);
   567               B0I = MyMatrixXd::Zero(3, 5);
   568               B0I.block<1,3>(0,0) = C1i*Q.col(0).transpose();
   569               B0I.block<1,3>(1,0) = C2i*Q.col(1).transpose();
   570               B0I.block<1,3>(2,0) = C2i*Q.col(0).transpose()+C1i*Q.col(1).transpose();
   573               Real bc1i = dphidxi[i][qp]*bc(0,0) + dphideta[i][qp]*bc(1,0);
   574               Real bc2i = dphidxi[i][qp]*bc(0,1) + dphideta[i][qp]*bc(1,1);
   576               MyVector2d V1i(-Q.col(0).dot(Qnode[i].col(1)),
   577                                   Q.col(0).dot(Qnode[i].col(0)));
   579               MyVector2d V2i(-Q.col(1).dot(Qnode[i].col(1)),
   580                                   Q.col(1).dot(Qnode[i].col(0)));
   583               B1I = MyMatrixXd::Zero(3,5);
   584               B1I.block<1,3>(0,0) = bc1i*Q.col(0).transpose();
   585               B1I.block<1,3>(1,0) = bc2i*Q.col(1).transpose();
   586               B1I.block<1,3>(2,0) = bc2i*Q.col(0).transpose()+bc1i*Q.col(1).transpose();
   588               B1I.block<1,2>(0,3) = C1i*V1i.transpose();
   589               B1I.block<1,2>(1,3) = C2i*V2i.transpose();
   590               B1I.block<1,2>(2,3) = C2i*V1i.transpose()+C1i*V2i.transpose();
   594               B2I = MyMatrixXd::Zero(3,5);
   596               B2I.block<1,2>(0,3) = bc1i*V1i.transpose();
   597               B2I.block<1,2>(1,3) = bc2i*V2i.transpose();
   598               B2I.block<1,2>(2,3) = bc2i*V1i.transpose()+bc1i*V2i.transpose();
   602               Bc0I = MyMatrixXd::Zero(2,5);
   603               Bc0I.block<1,3>(0,0) = C1i*Q.col(2).transpose();
   604               Bc0I.block<1,3>(1,0) = C2i*Q.col(2).transpose();
   605               Bc0I.block<1,2>(0,3) = phi[i][qp]*V1i.transpose();
   606               Bc0I.block<1,2>(1,3) = phi[i][qp]*V2i.transpose();
   610               Bc1I = MyMatrixXd::Zero(2,5);
   611               Bc1I.block<1,3>(0,0) = bc1i*Q.col(2).transpose();
   612               Bc1I.block<1,3>(1,0) = bc2i*Q.col(2).transpose();
   615               MyVector2d BdxiI(dphidxi[i][qp],dphideta[i][qp]);
   618               for (
unsigned int j=0; j<n_var_dofs; ++j)
   622                   Real C1j = dphidxi[j][qp]*C0(0,0) + dphideta[j][qp]*C0(1,0);
   623                   Real C2j = dphidxi[j][qp]*C0(0,1) + dphideta[j][qp]*C0(1,1);
   626                   B0J = MyMatrixXd::Zero(3,5);
   627                   B0J.block<1,3>(0,0) = C1j*Q.col(0).transpose();
   628                   B0J.block<1,3>(1,0) = C2j*Q.col(1).transpose();
   629                   B0J.block<1,3>(2,0) = C2j*Q.col(0).transpose()+C1j*Q.col(1).transpose();
   632                   Real bc1j = dphidxi[j][qp]*bc(0,0) + dphideta[j][qp]*bc(1,0);
   633                   Real bc2j = dphidxi[j][qp]*bc(0,1) + dphideta[j][qp]*bc(1,1);
   635                   MyVector2d V1j(-Q.col(0).dot(Qnode[j].col(1)),
   636                                       Q.col(0).dot(Qnode[j].col(0)));
   638                   MyVector2d V2j(-Q.col(1).dot(Qnode[j].col(1)),
   639                                       Q.col(1).dot(Qnode[j].col(0)));
   642                   B1J = MyMatrixXd::Zero(3,5);
   643                   B1J.block<1,3>(0,0) = bc1j*Q.col(0).transpose();
   644                   B1J.block<1,3>(1,0) = bc2j*Q.col(1).transpose();
   645                   B1J.block<1,3>(2,0) = bc2j*Q.col(0).transpose()+bc1j*Q.col(1).transpose();
   647                   B1J.block<1,2>(0,3) = C1j*V1j.transpose();
   648                   B1J.block<1,2>(1,3) = C2j*V2j.transpose();
   649                   B1J.block<1,2>(2,3) = C2j*V1j.transpose()+C1j*V2j.transpose();
   653                   B2J = MyMatrixXd::Zero(3,5);
   655                   B2J.block<1,2>(0,3) = bc1j*V1j.transpose();
   656                   B2J.block<1,2>(1,3) = bc2j*V2j.transpose();
   657                   B2J.block<1,2>(2,3) = bc2j*V1j.transpose()+bc1j*V2j.transpose();
   661                   Bc0J = MyMatrixXd::Zero(2,5);
   662                   Bc0J.block<1,3>(0,0) = C1j*Q.col(2).transpose();
   663                   Bc0J.block<1,3>(1,0) = C2j*Q.col(2).transpose();
   664                   Bc0J.block<1,2>(0,3) = phi[j][qp]*V1j.transpose();
   665                   Bc0J.block<1,2>(1,3) = phi[j][qp]*V2j.transpose();
   669                   Bc1J = MyMatrixXd::Zero(2,5);
   670                   Bc1J.block<1,3>(0,0) = bc1j*Q.col(2).transpose();
   671                   Bc1J.block<1,3>(1,0) = bc2j*Q.col(2).transpose();
   674                   MyVector2d BdxiJ(dphidxi[j][qp], dphideta[j][qp]);
   680                   local_KIJ = JxW[qp] * (
   681                                          B0I.transpose() * Hm * B0J
   682                                          +  B2I.transpose() * Hf * B0J
   683                                          +  B0I.transpose() * Hf * B2J
   684                                          +  B1I.transpose() * Hf * B1J
   685                                          +  2*H * B0I.transpose() * Hf * B1J
   686                                          +  2*H * B1I.transpose() * Hf * B0J
   687                                          +  Bc0I.transpose() * Hc0 * Bc0J
   688                                          +  Bc1I.transpose() * Hc1 * Bc1J
   689                                          +  2*H * Bc0I.transpose() * Hc1 * Bc1J
   690                                          +  2*H * Bc1I.transpose() * Hc1 * Bc0J
   695                   full_local_KIJ = MyMatrixXd::Zero(6, 6);
   696                   full_local_KIJ.block<5,5>(0,0)=local_KIJ;
   702                   full_local_KIJ(5,5) = 
Real(Hf(0,0)*JxW[qp]*BdI.transpose()*BdJ);
   707                   TI = MyMatrixXd::Identity(6,6);
   708                   TI.block<3,3>(3,3) = Qnode[i].transpose();
   710                   TJ = MyMatrixXd::Identity(6,6);
   711                   TJ.block<3,3>(3,3) = Qnode[j].transpose();
   712                   global_KIJ = TI.transpose()*full_local_KIJ*TJ;
   717                   for (
unsigned int k=0;k<6;k++)
   718                     for (
unsigned int l=0;l<6;l++)
   719                       Ke_var[k][l](i,j) += global_KIJ(k,l);
   725       if (distributed_load)
   728           for (
unsigned int shellface=0; shellface<2; shellface++)
   730               std::vector<boundary_id_type> bids;
   733               for (std::size_t k=0; k<bids.size(); k++)
   735                   for (
unsigned int qp=0; qp<qrule.n_points(); ++qp)
   736                     for (
unsigned int i=0; i<n_var_dofs; ++i)
   737                       Fe_w(i) -= JxW[qp] * phi[i][qp];
   751   if (!distributed_load)
   761       for (
const auto & node : 
mesh.node_ptr_range())
   762         if (((*node) - C).norm() < 1e-3)
   763           system.
rhs->
set(node->dof_number(0, 2, 0), -q/4);
   769 #endif // defined(LIBMESH_HAVE_EIGEN) && defined(LIBMESH_ENABLE_SECOND_DERIVATIVES) class FEType hides (possibly multiple) FEFamily and approximation orders, thereby enabling specialize...
void constrain_element_matrix_and_vector(DenseMatrix< Number > &matrix, DenseVector< Number > &rhs, std::vector< dof_id_type > &elem_dofs, bool asymmetric_constraint_rows=true) const
Constrains the element matrix and vector. 
void dof_indices(const Elem *const elem, std::vector< dof_id_type > &di) const
Manages consistently variables, degrees of freedom, coefficient vectors, matrices and linear solvers ...
void resize(const unsigned int n)
Resize the vector. 
virtual void add_vector(const T *v, const std::vector< numeric_index_type > &dof_indices)
Computes , where v is a pointer and each dof_indices[i] specifies where to add value v[i]...
Eigen::Matrix< libMesh::Real, Eigen::Dynamic, Eigen::Dynamic > MyMatrixXd
NumericVector< Number > * rhs
The system matrix. 
void shellface_boundary_ids(const Elem *const elem, const unsigned short int shellface, std::vector< boundary_id_type > &vec_to_fill) const
const BoundaryInfo & get_boundary_info() const
The information about boundary ids on the mesh. 
const T_sys & get_system(std::string_view name) const
Eigen::Matrix< libMesh::Real, 3, 3 > MyMatrix3d
This is the MeshBase class. 
Defines a dense subvector for use in finite element computations. 
This class handles the numbering of degrees of freedom on a mesh. 
void libmesh_ignore(const Args &...)
virtual void add_matrix(const DenseMatrix< T > &dm, const std::vector< numeric_index_type > &rows, const std::vector< numeric_index_type > &cols)=0
Add the full matrix dm to the SparseMatrix. 
const T & get(std::string_view) const
Defines a dense submatrix for use in Finite Element-type computations. 
Eigen::Matrix< libMesh::Real, 2, 2 > MyMatrix2d
virtual void close()=0
Calls the NumericVector's internal assembly routines, ensuring that the values are consistent across ...
const FEType & variable_type(const unsigned int i) const
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const MeshBase & get_mesh() const
void resize(const unsigned int new_m, const unsigned int new_n)
Resizes the matrix to the specified size and calls zero(). 
This class implements specific orders of Gauss quadrature. 
unsigned int mesh_dimension() const
Parameters parameters
Data structure holding arbitrary parameters. 
virtual void set(const numeric_index_type i, const T value)=0
Sets v(i) = value. 
Eigen::Matrix< libMesh::Real, 2, 1 > MyVector2d
const DofMap & get_dof_map() const
A Point defines a location in LIBMESH_DIM dimensional Real space. 
const SparseMatrix< Number > & get_system_matrix() const
Eigen::Matrix< libMesh::Real, 3, 1 > MyVector3d