- PorousFlowDictatorThe UserObject that holds the list of PorousFlow variable names
C++ Type:UserObjectName
Controllable:No
Description:The UserObject that holds the list of PorousFlow variable names
- SumQuantityUOUser Object of type=PorousFlowSumQuantity in which to place the total outflow from the line sink for each time step.
C++ Type:UserObjectName
Controllable:No
Description:User Object of type=PorousFlowSumQuantity in which to place the total outflow from the line sink for each time step.
- bottom_p_or_tFor function_of=pressure, this function is the pressure at the bottom of the borehole, otherwise it is the temperature at the bottom of the borehole.
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:For function_of=pressure, this function is the pressure at the bottom of the borehole, otherwise it is the temperature at the bottom of the borehole.
- characterIf zero then borehole does nothing. If positive the borehole acts as a sink (production well) for porepressure > borehole pressure, and does nothing otherwise. If negative the borehole acts as a source (injection well) for porepressure < borehole pressure, and does nothing otherwise. The flow rate to/from the borehole is multiplied by |character|, so usually character = +/- 1, but you can specify other quantities to provide an overall scaling to the flow if you like.
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:If zero then borehole does nothing. If positive the borehole acts as a sink (production well) for porepressure > borehole pressure, and does nothing otherwise. If negative the borehole acts as a source (injection well) for porepressure < borehole pressure, and does nothing otherwise. The flow rate to/from the borehole is multiplied by |character|, so usually character = +/- 1, but you can specify other quantities to provide an overall scaling to the flow if you like.
- unit_weight(fluid_density*gravitational_acceleration) as a vector pointing downwards. Note that the borehole pressure at a given z position is bottom_p_or_t + unit_weight*(q - q_bottom), where q=(x,y,z) and q_bottom=(x,y,z) of the bottom point of the borehole. The analogous formula holds for function_of=temperature. If you don't want bottomhole pressure (or temperature) to vary in the borehole just set unit_weight=0. Typical value is = (0,0,-1E4), for water
C++ Type:libMesh::VectorValue<double>
Unit:(no unit assumed)
Controllable:No
Description:(fluid_density*gravitational_acceleration) as a vector pointing downwards. Note that the borehole pressure at a given z position is bottom_p_or_t + unit_weight*(q - q_bottom), where q=(x,y,z) and q_bottom=(x,y,z) of the bottom point of the borehole. The analogous formula holds for function_of=temperature. If you don't want bottomhole pressure (or temperature) to vary in the borehole just set unit_weight=0. Typical value is = (0,0,-1E4), for water
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
PorousFlowPeacemanBorehole
A PorousFlowPeacemanBorehole
is a special case of the general line sink in which a polyline (represented by a sequence of points) acts as a sink or source in the model. Please see sinks for an extended discussion and examples.
The function given by "bottom_p_or_t" is evaluated at the well bottom. If a file is read in using "point_file" to define the coordinates and weights of the PorousFlowPeacemanBorehole, the well bottom is assumed to be the last entry in this file and "bottom_p_or_t" will be evaluated at the z-coordinate of the last entry in "point_file". It is an error if the first entry in the "point_file" has a smaller z-coordinate than the last entry.
Input Parameters
- allow_moving_sourcesFalseIf true, allow Dirac sources to move, even if the mesh does not move, during the simulation.
Default:False
C++ Type:bool
Controllable:No
Description:If true, allow Dirac sources to move, even if the mesh does not move, during the simulation.
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- fluid_phase0The fluid phase whose pressure (and potentially mobility, enthalpy, etc) controls the flux to the line sink. For p_or_t=temperature, and without any use_*, this parameter is irrelevant
Default:0
C++ Type:unsigned int
Controllable:No
Description:The fluid phase whose pressure (and potentially mobility, enthalpy, etc) controls the flux to the line sink. For p_or_t=temperature, and without any use_*, this parameter is irrelevant
- function_ofpressureModifying functions will be a function of either pressure and permeability (eg, for boreholes that pump fluids) or temperature and thermal conductivity (eg, for boreholes that pump pure heat with no fluid flow)
Default:pressure
C++ Type:MooseEnum
Options:pressure, temperature
Controllable:No
Description:Modifying functions will be a function of either pressure and permeability (eg, for boreholes that pump fluids) or temperature and thermal conductivity (eg, for boreholes that pump pure heat with no fluid flow)
- line_baseLine base point x,y,z coordinates. This is the same format as a single-line point_file. Note this is only used if there is no point file specified.
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:Line base point x,y,z coordinates. This is the same format as a single-line point_file. Note this is only used if there is no point file specified.
- line_direction0 0 1Line direction. Note this is only used if there is only one point in the point_file.
Default:0 0 1
C++ Type:libMesh::VectorValue<double>
Unit:(no unit assumed)
Controllable:No
Description:Line direction. Note this is only used if there is only one point in the point_file.
- line_length0Line length. Note this is only used if there is only one point in the point_file.
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Line length. Note this is only used if there is only one point in the point_file.
- mass_fraction_componentThe index corresponding to a fluid component. If supplied, the flux will be multiplied by the nodal mass fraction for the component
C++ Type:unsigned int
Controllable:No
Description:The index corresponding to a fluid component. If supplied, the flux will be multiplied by the nodal mass fraction for the component
- matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)
Default:False
C++ Type:bool
Controllable:No
Description:Whether this object is only doing assembly to matrices (no vectors)
- multiplying_var1.0Fluxes will be moultiplied by this variable
Default:1.0
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Fluxes will be moultiplied by this variable
- point_fileThe file containing the coordinates of the points and their weightings that approximate the line sink. The physical meaning of the weightings depend on the scenario, eg, they may be borehole radii. Each line in the file must contain a space-separated weight and coordinate, viz r x y z. For boreholes, the last point in the file is defined as the borehole bottom, where the borehole pressure is bottom_pressure. If your file contains just one point, you must also specify the line_length and line_direction parameters. Note that you will get segementation faults if your points do not lie within your mesh!
C++ Type:std::string
Controllable:No
Description:The file containing the coordinates of the points and their weightings that approximate the line sink. The physical meaning of the weightings depend on the scenario, eg, they may be borehole radii. Each line in the file must contain a space-separated weight and coordinate, viz r x y z. For boreholes, the last point in the file is defined as the borehole bottom, where the borehole pressure is bottom_pressure. If your file contains just one point, you must also specify the line_length and line_direction parameters. Note that you will get segementation faults if your points do not lie within your mesh!
- point_not_found_behaviorIGNOREBy default (IGNORE), it is ignored if an added point cannot be located in the specified subdomains. If this option is set to ERROR, this situation will result in an error. If this option is set to WARNING, then a warning will be issued.
Default:IGNORE
C++ Type:MooseEnum
Options:ERROR, WARNING, IGNORE
Controllable:No
Description:By default (IGNORE), it is ignored if an added point cannot be located in the specified subdomains. If this option is set to ERROR, this situation will result in an error. If this option is set to WARNING, then a warning will be issued.
- re_constant0.28The dimensionless constant used in evaluating the borehole effective radius. This depends on the meshing scheme. Peacemann finite-difference calculations give 0.28, while for rectangular finite elements the result is closer to 0.1594. (See Eqn(4.13) of Z Chen, Y Zhang, Well flow models for various numerical methods, Int J Num Analysis and Modeling, 3 (2008) 375-388.)
Default:0.28
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The dimensionless constant used in evaluating the borehole effective radius. This depends on the meshing scheme. Peacemann finite-difference calculations give 0.28, while for rectangular finite elements the result is closer to 0.1594. (See Eqn(4.13) of Z Chen, Y Zhang, Well flow models for various numerical methods, Int J Num Analysis and Modeling, 3 (2008) 375-388.)
- use_enthalpyFalseMultiply the flux by the fluid enthalpy
Default:False
C++ Type:bool
Controllable:No
Description:Multiply the flux by the fluid enthalpy
- use_internal_energyFalseMultiply the flux by the fluid internal energy
Default:False
C++ Type:bool
Controllable:No
Description:Multiply the flux by the fluid internal energy
- use_mobilityFalseMultiply the flux by the fluid mobility
Default:False
C++ Type:bool
Controllable:No
Description:Multiply the flux by the fluid mobility
- use_relative_permeabilityFalseMultiply the flux by the fluid relative permeability
Default:False
C++ Type:bool
Controllable:No
Description:Multiply the flux by the fluid relative permeability
- weight_reporterreporter weight name of line sink. This uses the reporter syntax
/ . Each point must adhere to the same requirements as those that would be given if using point_file C++ Type:ReporterName
Controllable:No
Description:reporter weight name of line sink. This uses the reporter syntax
/ . Each point must adhere to the same requirements as those that would be given if using point_file - well_constant-1Usually this is calculated internally from the element geometry, the local borehole direction and segment length, and the permeability. However, if this parameter is given as a positive number then this number is used instead of the internal calculation. This speeds up computation marginally. re_constant becomes irrelevant
Default:-1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Usually this is calculated internally from the element geometry, the local borehole direction and segment length, and the permeability. However, if this parameter is given as a positive number then this number is used instead of the internal calculation. This speeds up computation marginally. re_constant becomes irrelevant
- x_coord_reporterreporter x-coordinate name of line sink. This uses the reporter syntax
/ . Each point must adhere to the same requirements as those that would be given if using point_file C++ Type:ReporterName
Controllable:No
Description:reporter x-coordinate name of line sink. This uses the reporter syntax
/ . Each point must adhere to the same requirements as those that would be given if using point_file - y_coord_reporterreporter y-coordinate name of line sink. This uses the reporter syntax
/ . Each point must adhere to the same requirements as those that would be given if using point_file C++ Type:ReporterName
Controllable:No
Description:reporter y-coordinate name of line sink. This uses the reporter syntax
/ . Each point must adhere to the same requirements as those that would be given if using point_file - z_coord_reporterreporter z-coordinate name of line sink. This uses the reporter syntax
/ . Each point must adhere to the same requirements as those that would be given if using point_file C++ Type:ReporterName
Controllable:No
Description:reporter z-coordinate name of line sink. This uses the reporter syntax
/ . Each point must adhere to the same requirements as those that would be given if using point_file
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Contribution To Tagged Field Data Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- drop_duplicate_pointsTrueBy default points added to a DiracKernel are dropped if a point at the same locationhas been added before. If this option is set to false duplicate points are retainedand contribute to residual and Jacobian.
Default:True
C++ Type:bool
Controllable:No
Description:By default points added to a DiracKernel are dropped if a point at the same locationhas been added before. If this option is set to false duplicate points are retainedand contribute to residual and Jacobian.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
Input Files
- (modules/porous_flow/test/tests/dirackernels/bh_except02.i)
- (modules/porous_flow/test/tests/dirackernels/bh07.i)
- (modules/porous_flow/test/tests/dirackernels/bh05.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except10.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except06.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except05.i)
- (modules/porous_flow/test/tests/dirackernels/bh02reporter.i)
- (modules/porous_flow/examples/groundwater/ex02_abstraction.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except03.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except13.i)
- (modules/porous_flow/test/tests/dirackernels/bh03.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except08.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except01.i)
- (modules/porous_flow/test/tests/dirackernels/injection_production.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except11.i)
- (modules/combined/examples/geochem-porous_flow/forge/porous_flow.i)
- (modules/porous_flow/test/tests/jacobian/line_sink03.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except16.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except14.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except04.i)
- (modules/porous_flow/test/tests/dirackernels/bh02.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except15.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except09.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except07.i)
- (modules/porous_flow/test/tests/dirackernels/bh_except12.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/3dFracture/fracture_only_aperture_changing.i)
- (modules/porous_flow/test/tests/actions/basicthm_borehole.i)
- (modules/porous_flow/test/tests/dirackernels/bh04.i)
- (modules/porous_flow/test/tests/actions/fullsat_borehole.i)
- (modules/porous_flow/test/tests/jacobian/line_sink01.i)
bottom_p_or_t
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:For function_of=pressure, this function is the pressure at the bottom of the borehole, otherwise it is the temperature at the bottom of the borehole.
point_file
C++ Type:std::string
Controllable:No
Description:The file containing the coordinates of the points and their weightings that approximate the line sink. The physical meaning of the weightings depend on the scenario, eg, they may be borehole radii. Each line in the file must contain a space-separated weight and coordinate, viz r x y z. For boreholes, the last point in the file is defined as the borehole bottom, where the borehole pressure is bottom_pressure. If your file contains just one point, you must also specify the line_length and line_direction parameters. Note that you will get segementation faults if your points do not lie within your mesh!
bottom_p_or_t
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:For function_of=pressure, this function is the pressure at the bottom of the borehole, otherwise it is the temperature at the bottom of the borehole.
point_file
C++ Type:std::string
Controllable:No
Description:The file containing the coordinates of the points and their weightings that approximate the line sink. The physical meaning of the weightings depend on the scenario, eg, they may be borehole radii. Each line in the file must contain a space-separated weight and coordinate, viz r x y z. For boreholes, the last point in the file is defined as the borehole bottom, where the borehole pressure is bottom_pressure. If your file contains just one point, you must also specify the line_length and line_direction parameters. Note that you will get segementation faults if your points do not lie within your mesh!
point_file
C++ Type:std::string
Controllable:No
Description:The file containing the coordinates of the points and their weightings that approximate the line sink. The physical meaning of the weightings depend on the scenario, eg, they may be borehole radii. Each line in the file must contain a space-separated weight and coordinate, viz r x y z. For boreholes, the last point in the file is defined as the borehole bottom, where the borehole pressure is bottom_pressure. If your file contains just one point, you must also specify the line_length and line_direction parameters. Note that you will get segementation faults if your points do not lie within your mesh!
(modules/porous_flow/test/tests/dirackernels/bh_except02.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
mass_fraction_component = 1
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/bh07.i)
# Comparison with analytical solution for cylindrically-symmetric situation
[Mesh]
type = FileMesh
file = bh07_input.e
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Functions]
[dts]
type = PiecewiseLinear
y = '1000 10000'
x = '100 1000'
[]
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[fflux]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
gravity = '0 0 0'
[]
[]
[BCs]
[fix_outer]
type = DirichletBC
boundary = perimeter
variable = pp
value = 1E7
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
[]
[relperm]
type = PorousFlowRelativePermeabilityFLAC
m = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
variable = pp
SumQuantityUO = borehole_total_outflow_mass
point_file = bh07.bh
fluid_phase = 0
bottom_p_or_t = 0
unit_weight = '0 0 0'
use_mobility = true
re_constant = 0.1594 # use Chen and Zhang version
character = 2 # double the strength because bh07.bh only fills half the mesh
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
execute_on = 'initial timestep_end'
[]
[fluid_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[]
[]
[VectorPostprocessors]
[pp]
type = LineValueSampler
variable = pp
start_point = '0 0 0'
end_point = '300 0 0'
sort_by = x
num_points = 300
execute_on = timestep_end
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 1E3
solve_type = NEWTON
[TimeStepper]
# get only marginally better results for smaller time steps
type = FunctionDT
function = dts
[]
[]
[Outputs]
file_base = bh07
[along_line]
type = CSV
execute_on = final
[]
[exodus]
type = Exodus
execute_on = 'initial final'
[]
[]
(modules/porous_flow/test/tests/dirackernels/bh05.i)
# unsaturated
# injection
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Functions]
[dts]
type = PiecewiseLinear
y = '500 500 1E1'
x = '4000 5000 6500'
[]
[]
[Variables]
[pp]
initial_condition = -2E5
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityFLAC
m = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
variable = pp
SumQuantityUO = borehole_total_outflow_mass
point_file = bh03.bh
fluid_phase = 0
bottom_p_or_t = 0
unit_weight = '0 0 0'
use_mobility = true
character = -1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
indirect_dependencies = 'fluid_mass1 fluid_mass0 bh_report'
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 6500
solve_type = NEWTON
[TimeStepper]
type = FunctionDT
function = dts
[]
[]
[Outputs]
file_base = bh05
exodus = false
csv = true
execute_on = timestep_end
[]
(modules/porous_flow/test/tests/dirackernels/bh_except10.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
compute_internal_energy = false
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
use_mobility = true
use_internal_energy = true
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/bh_except06.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
use_mobility = true
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/bh_except05.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
mass_fraction_component = 0
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/bh02reporter.i)
# fully-saturated
# production
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
# Because the Variable for this Sink is pp, and pp is associated
# with the fluid-mass conservation equation, this sink is extracting
# fluid mass (and not heat energy or something else)
variable = pp
# The following specfies that the total fluid mass coming out of
# the porespace via this sink in this timestep should be recorded
# in the pls_total_outflow_mass UserObject
SumQuantityUO = borehole_total_outflow_mass
# The following file defines the polyline geometry
# which is just two points in this particular example
weight_reporter='bh02file/column_0'
x_coord_reporter='bh02file/column_1'
y_coord_reporter='bh02file/column_2'
z_coord_reporter='bh02file/column_3'
# First, we want Peacemans f to be a function of porepressure (and not
# temperature or something else). So bottom_p_or_t is actually porepressure
function_of = pressure
fluid_phase = 0
# The bottomhole pressure
bottom_p_or_t = 0
# In this example there is no increase of the wellbore pressure
# due to gravity:
unit_weight = '0 0 0'
# PeacemanBoreholes should almost always have use_mobility = true
use_mobility = true
# This is a production wellbore (a sink of fluid that removes fluid from porespace)
character = 1
[]
[]
[VectorPostprocessors]
[bh02file]
type = CSVReader
csv_file = bh02.bh
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
indirect_dependencies = 'fluid_mass1 fluid_mass0 bh_report'
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
[Outputs]
exodus = false
csv = true
execute_on = timestep_end
[]
(modules/porous_flow/examples/groundwater/ex02_abstraction.i)
# Abstraction groundwater model. See groundwater_models.md for a detailed description
[Mesh]
[from_steady_state]
type = FileMeshGenerator
file = gold/ex02_steady_state_ex.e
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[]
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = steady_state_pp
[]
[]
[BCs]
[rainfall_recharge]
type = PorousFlowSink
boundary = zmax
variable = pp
flux_function = -1E-6 # recharge of 0.1mm/day = 1E-4m3/m2/day = 0.1kg/m2/day ~ 1E-6kg/m2/s
[]
[evapotranspiration]
type = PorousFlowHalfCubicSink
boundary = zmax
variable = pp
center = 0.0
cutoff = -5E4 # roots of depth 5m. 5m of water = 5E4 Pa
use_mobility = true
fluid_phase = 0
# Assume pan evaporation of 4mm/day = 4E-3m3/m2/day = 4kg/m2/day ~ 4E-5kg/m2/s
# Assume that if permeability was 1E-10m^2 and water table at topography then ET acts as pan strength
# Because use_mobility = true, then 4E-5 = maximum_flux = max * perm * density / visc = max * 1E-4, so max = 40
max = 40
[]
[]
[DiracKernels]
inactive = polyline_sink_borehole
[river]
type = PorousFlowPolyLineSink
SumQuantityUO = baseflow
point_file = ex02_river.bh
# Assume a perennial river.
# Assume the river has an incision depth of 1m and a stage height of 1.5m, and these are constant in time and uniform over the whole model. Hence, if groundwater head is 0.5m (5000Pa) there will be no baseflow and leakage.
p_or_t_vals = '-999995000 5000 1000005000'
# Assume the riverbed conductance, k_zz*density*river_segment_length*river_width/riverbed_thickness/viscosity = 1E-6*river_segment_length kg/Pa/s
fluxes = '-1E3 0 1E3'
variable = pp
[]
[horizontal_borehole]
type = PorousFlowPeacemanBorehole
SumQuantityUO = abstraction
bottom_p_or_t = -1E5
unit_weight = '0 0 -1E4'
character = 1.0
point_file = ex02.bh
variable = pp
[]
[polyline_sink_borehole]
type = PorousFlowPolyLineSink
SumQuantityUO = abstraction
fluxes = '-0.4 0 0.4'
p_or_t_vals = '-1E8 0 1E8'
point_file = ex02.bh
variable = pp
[]
[]
[Functions]
[steady_state_pp]
type = SolutionFunction
from_variable = pp
solution = steady_state_solution
[]
[baseflow_rate]
type = ParsedFunction
symbol_names = 'baseflow_kg dt'
symbol_values = 'baseflow_kg dt'
expression = 'baseflow_kg / dt * 24.0 * 3600.0 / 400.0'
[]
[abstraction_rate]
type = ParsedFunction
symbol_names = 'abstraction_kg dt'
symbol_values = 'abstraction_kg dt'
expression = 'abstraction_kg / dt * 24.0 * 3600.0'
[]
[]
[AuxVariables]
[ini_pp]
[]
[pp_change]
[]
[]
[AuxKernels]
[ini_pp]
type = FunctionAux
variable = ini_pp
function = steady_state_pp
execute_on = INITIAL
[]
[pp_change]
type = ParsedAux
variable = pp_change
coupled_variables = 'pp ini_pp'
expression = 'pp - ini_pp'
[]
[]
[PorousFlowUnsaturated]
fp = simple_fluid
porepressure = pp
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[Materials]
[porosity_everywhere]
type = PorousFlowPorosityConst
porosity = 0.05
[]
[permeability_aquifers]
type = PorousFlowPermeabilityConst
block = 'top_aquifer bot_aquifer'
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-13'
[]
[permeability_aquitard]
type = PorousFlowPermeabilityConst
block = aquitard
permeability = '1E-16 0 0 0 1E-16 0 0 0 1E-17'
[]
[]
[UserObjects]
[steady_state_solution]
type = SolutionUserObject
execute_on = INITIAL
mesh = gold/ex02_steady_state_ex.e
timestep = LATEST
system_variables = pp
[]
[baseflow]
type = PorousFlowSumQuantity
[]
[abstraction]
type = PorousFlowSumQuantity
[]
[]
[Postprocessors]
[baseflow_kg]
type = PorousFlowPlotQuantity
uo = baseflow
outputs = 'none'
[]
[dt]
type = TimestepSize
outputs = 'none'
[]
[baseflow_l_per_m_per_day]
type = FunctionValuePostprocessor
function = baseflow_rate
indirect_dependencies = 'baseflow_kg dt'
[]
[abstraction_kg]
type = PorousFlowPlotQuantity
uo = abstraction
outputs = 'none'
[]
[abstraction_kg_per_day]
type = FunctionValuePostprocessor
function = abstraction_rate
indirect_dependencies = 'abstraction_kg dt'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
# following 2 lines are not mandatory, but illustrate a popular preconditioner choice in groundwater models
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = ' asm ilu 2 '
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 100
[TimeStepper]
type = FunctionDT
function = 'max(100, t)'
[]
end_time = 8.64E5 # 10 days
nl_abs_tol = 1E-11
[]
[Outputs]
print_linear_residuals = false
[ex]
type = Exodus
execute_on = final
[]
[csv]
type = CSV
[]
[]
(modules/porous_flow/test/tests/dirackernels/bh_except03.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
at_nodes = true # Needed to force expected error
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/bh_except13.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = coincident_points.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/bh03.i)
# fully-saturated
# injection
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
variable = pp
SumQuantityUO = borehole_total_outflow_mass
point_file = bh03.bh
function_of = pressure
fluid_phase = 0
bottom_p_or_t = 'insitu_pp'
unit_weight = '0 0 0'
use_mobility = true
character = -1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
indirect_dependencies = 'fluid_mass1 fluid_mass0 bh_report'
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[insitu_pp]
type = ParsedFunction
expression = '-2e7*z' #bh_bottom is located at z=-0.5
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
[Outputs]
file_base = bh03
exodus = false
csv = true
execute_on = timestep_end
[]
(modules/porous_flow/test/tests/dirackernels/bh_except08.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
at_nodes = false # Needed to force expected error
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
use_mobility = true
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/bh_except01.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 1
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/injection_production.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 1
xmin = -50
xmax = 50
ymin = -50
ymax = 50
zmin = 0
zmax = 10
[]
[central_nodes]
input = gen
type = ExtraNodesetGenerator
new_boundary = central_nodes
coord = '0 0 0; 0 0 10'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
initial_condition = 20E6
[]
[temperature]
initial_condition = 400
scaling = 1E-6 # fluid enthalpy is roughly 1E6
[]
[]
[BCs]
[injection_temperature]
type = DirichletBC
variable = temperature
value = 300
boundary = central_nodes
[]
[]
[DiracKernels]
[fluid_injection]
type = PorousFlowPeacemanBorehole
variable = porepressure
SumQuantityUO = injected_mass
point_file = injection.bh
function_of = pressure
fluid_phase = 0
bottom_p_or_t = 21E6
unit_weight = '0 0 0'
use_mobility = true
character = -1
[]
[fluid_production]
type = PorousFlowPeacemanBorehole
variable = porepressure
SumQuantityUO = produced_mass
point_file = production.bh
function_of = pressure
fluid_phase = 0
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[remove_heat_at_production_well]
type = PorousFlowPeacemanBorehole
variable = temperature
SumQuantityUO = produced_heat
point_file = production.bh
function_of = pressure
fluid_phase = 0
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
use_enthalpy = true
character = 1
[]
[]
[UserObjects]
[injected_mass]
type = PorousFlowSumQuantity
[]
[produced_mass]
type = PorousFlowSumQuantity
[]
[produced_heat]
type = PorousFlowSumQuantity
[]
[]
[Postprocessors]
[heat_joules_extracted_this_timestep]
type = PorousFlowPlotQuantity
uo = produced_heat
[]
[]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 2E-4
bulk_modulus = 2E9
viscosity = 1E-3
density0 = 1000
cv = 4000.0
cp = 4000.0
[]
[]
[PorousFlowUnsaturated]
porepressure = porepressure
temperature = temperature
coupling_type = ThermoHydro
gravity = '0 0 0'
fp = the_simple_fluid
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 1E-10
fluid_bulk_modulus = 2E9
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
fluid_coefficient = 5E-6
drained_coefficient = 2E-4
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '1 0 0 0 1 0 0 0 1'
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
density = 2500.0
specific_heat_capacity = 1200.0
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 2E6
dt = 2E5
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/dirackernels/bh_except11.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
use_relative_permeability = true
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/combined/examples/geochem-porous_flow/forge/porous_flow.i)
# Input file modified from RobPodgorney version
# - 2D instead of 3D with different resolution. Effectively this means a 1m height of RobPodgorney aquifer is simulated. RobPodgorney total mass flux is 2.5kg/s meaning 0.25kg/s is appropriate here
# - Celsius instead of Kelvin
# - no use of PorousFlowPointEnthalpySourceFromPostprocessor since that is not yet merged into MOOSE: a DirichletBC is used instead
# - Use of PorousFlowFullySaturated instead of PorousFlowUnsaturated, and the save_component_rate_in feature to record the change in kg of each species at each node for passing to the Geochem simulation
# - MultiApps and Transfers to transfer information between this simulation and the aquifer_geochemistry.i simulation
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 225
ny = 200
xmin = -400
xmax = 500
ymin = -400
ymax = 400
[]
[injection_node]
input = gen
type = ExtraNodesetGenerator
new_boundary = injection_node
coord = '0 0 0'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[f_H]
initial_condition = 8.201229858451E-07
[]
[f_Na]
initial_condition = 2.281094143525E-03
[]
[f_K]
initial_condition = 2.305489507836E-04
[]
[f_Ca]
initial_condition = 5.818776782059E-04
[]
[f_Mg]
initial_condition = 1.539513498238E-07
[]
[f_SiO2]
initial_condition = 2.691822196469E-04
[]
[f_Al]
initial_condition = 4.457519474122E-08
[]
[f_Cl]
initial_condition = 4.744309776594E-03
[]
[f_SO4]
initial_condition = 9.516650880811E-06
[]
[f_HCO3]
initial_condition = 5.906126982324E-05
[]
[porepressure]
initial_condition = 20E6
[]
[temperature]
initial_condition = 220 # degC
scaling = 1E-6 # fluid enthalpy is roughly 1E6
[]
[]
[BCs]
[source_temperature]
type = DirichletBC
boundary = injection_node
variable = temperature
value = 70 # degC
[]
[]
[DiracKernels]
[inject_H]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 4.790385871045E-08
variable = f_H
[]
[inject_Na]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 7.586252963780E-07
variable = f_Na
[]
[inject_K]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 2.746517625125E-07
variable = f_K
[]
[inject_Ca]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 7.775129478597E-07
variable = f_Ca
[]
[inject_Mg]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 1.749872109005E-07
variable = f_Mg
[]
[inject_SiO2]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 4.100547515915E-06
variable = f_SiO2
[]
[inject_Al]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 2.502408592080E-08
variable = f_Al
[]
[inject_Cl]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 1.997260386272E-06
variable = f_Cl
[]
[inject_SO4]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 2.497372164191E-07
variable = f_SO4
[]
[inject_HCO3]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 5.003150992902E-06
variable = f_HCO3
[]
[inject_H2O]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 2.499865905987E-01
variable = porepressure
[]
[produce_H]
type = PorousFlowPeacemanBorehole
variable = f_H
SumQuantityUO = produced_mass_H
mass_fraction_component = 0
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_Na]
type = PorousFlowPeacemanBorehole
variable = f_Na
SumQuantityUO = produced_mass_Na
mass_fraction_component = 1
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_K]
type = PorousFlowPeacemanBorehole
variable = f_K
SumQuantityUO = produced_mass_K
mass_fraction_component = 2
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_Ca]
type = PorousFlowPeacemanBorehole
variable = f_Ca
SumQuantityUO = produced_mass_Ca
mass_fraction_component = 3
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_Mg]
type = PorousFlowPeacemanBorehole
variable = f_Mg
SumQuantityUO = produced_mass_Mg
mass_fraction_component = 4
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_SiO2]
type = PorousFlowPeacemanBorehole
variable = f_SiO2
SumQuantityUO = produced_mass_SiO2
mass_fraction_component = 5
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_Al]
type = PorousFlowPeacemanBorehole
variable = f_Al
SumQuantityUO = produced_mass_Al
mass_fraction_component = 6
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_Cl]
type = PorousFlowPeacemanBorehole
variable = f_Cl
SumQuantityUO = produced_mass_Cl
mass_fraction_component = 7
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_SO4]
type = PorousFlowPeacemanBorehole
variable = f_SO4
SumQuantityUO = produced_mass_SO4
mass_fraction_component = 8
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_HCO3]
type = PorousFlowPeacemanBorehole
variable = f_HCO3
SumQuantityUO = produced_mass_HCO3
mass_fraction_component = 9
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_H2O]
type = PorousFlowPeacemanBorehole
variable = porepressure
SumQuantityUO = produced_mass_H2O
mass_fraction_component = 10
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[remove_heat_at_production_well]
type = PorousFlowPeacemanBorehole
variable = temperature
SumQuantityUO = produced_heat
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
use_enthalpy = true
character = 1
[]
[]
[UserObjects]
[produced_mass_H]
type = PorousFlowSumQuantity
[]
[produced_mass_Na]
type = PorousFlowSumQuantity
[]
[produced_mass_K]
type = PorousFlowSumQuantity
[]
[produced_mass_Ca]
type = PorousFlowSumQuantity
[]
[produced_mass_Mg]
type = PorousFlowSumQuantity
[]
[produced_mass_SiO2]
type = PorousFlowSumQuantity
[]
[produced_mass_Al]
type = PorousFlowSumQuantity
[]
[produced_mass_Cl]
type = PorousFlowSumQuantity
[]
[produced_mass_SO4]
type = PorousFlowSumQuantity
[]
[produced_mass_HCO3]
type = PorousFlowSumQuantity
[]
[produced_mass_H2O]
type = PorousFlowSumQuantity
[]
[produced_heat]
type = PorousFlowSumQuantity
[]
[]
[Postprocessors]
[heat_extracted]
type = PorousFlowPlotQuantity
uo = produced_heat
[]
[approx_production_temperature]
type = PointValue
point = '100 0 0'
variable = temperature
[]
[mass_extracted_H]
type = PorousFlowPlotQuantity
uo = produced_mass_H
execute_on = 'initial timestep_end'
[]
[mass_extracted_Na]
type = PorousFlowPlotQuantity
uo = produced_mass_Na
execute_on = 'initial timestep_end'
[]
[mass_extracted_K]
type = PorousFlowPlotQuantity
uo = produced_mass_K
execute_on = 'initial timestep_end'
[]
[mass_extracted_Ca]
type = PorousFlowPlotQuantity
uo = produced_mass_Ca
execute_on = 'initial timestep_end'
[]
[mass_extracted_Mg]
type = PorousFlowPlotQuantity
uo = produced_mass_Mg
execute_on = 'initial timestep_end'
[]
[mass_extracted_SiO2]
type = PorousFlowPlotQuantity
uo = produced_mass_SiO2
execute_on = 'initial timestep_end'
[]
[mass_extracted_Al]
type = PorousFlowPlotQuantity
uo = produced_mass_Al
execute_on = 'initial timestep_end'
[]
[mass_extracted_Cl]
type = PorousFlowPlotQuantity
uo = produced_mass_Cl
execute_on = 'initial timestep_end'
[]
[mass_extracted_SO4]
type = PorousFlowPlotQuantity
uo = produced_mass_SO4
execute_on = 'initial timestep_end'
[]
[mass_extracted_HCO3]
type = PorousFlowPlotQuantity
uo = produced_mass_HCO3
execute_on = 'initial timestep_end'
[]
[mass_extracted_H2O]
type = PorousFlowPlotQuantity
uo = produced_mass_H2O
execute_on = 'initial timestep_end'
[]
[mass_extracted]
type = LinearCombinationPostprocessor
pp_names = 'mass_extracted_H mass_extracted_Na mass_extracted_K mass_extracted_Ca mass_extracted_Mg mass_extracted_SiO2 mass_extracted_Al mass_extracted_Cl mass_extracted_SO4 mass_extracted_HCO3 mass_extracted_H2O'
pp_coefs = '1 1 1 1 1 1 1 1 1 1 1'
execute_on = 'initial timestep_end'
[]
[dt]
type = TimestepSize
execute_on = 'timestep_begin'
[]
[]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 2E-4
bulk_modulus = 2E9
viscosity = 1E-3
density0 = 980
cv = 4000.0
cp = 4000.0
porepressure_coefficient = 0
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
mass_fraction_vars = 'f_H f_Na f_K f_Ca f_Mg f_SiO2 f_Al f_Cl f_SO4 f_HCO3'
save_component_rate_in = 'rate_H rate_Na rate_K rate_Ca rate_Mg rate_SiO2 rate_Al rate_Cl rate_SO4 rate_HCO3 rate_H2O' # change in kg at every node / dt
fp = the_simple_fluid
temperature_unit = Celsius
[]
[AuxVariables]
[rate_H]
[]
[rate_Na]
[]
[rate_K]
[]
[rate_Ca]
[]
[rate_Mg]
[]
[rate_SiO2]
[]
[rate_Al]
[]
[rate_Cl]
[]
[rate_SO4]
[]
[rate_HCO3]
[]
[rate_H2O]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.01
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2.5 0 0 0 2.5 0 0 0 2.5'
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
density = 2750.0
specific_heat_capacity = 900.0
[]
[]
[Preconditioning]
active = typically_efficient
[typically_efficient]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = ' hypre boomeramg'
[]
[strong]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm ilu NONZERO 2'
[]
[probably_too_strong]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 31536000 #1 year
[TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 500
[]
[]
[Outputs]
exodus = true
csv = true
[]
[MultiApps]
[react]
type = TransientMultiApp
input_files = aquifer_geochemistry.i
clone_master_mesh = true
execute_on = 'timestep_end'
[]
[]
[Transfers]
[changes_due_to_flow]
type = MultiAppCopyTransfer
source_variable = 'rate_H rate_Na rate_K rate_Ca rate_Mg rate_SiO2 rate_Al rate_Cl rate_SO4 rate_HCO3 rate_H2O temperature'
variable = 'pf_rate_H pf_rate_Na pf_rate_K pf_rate_Ca pf_rate_Mg pf_rate_SiO2 pf_rate_Al pf_rate_Cl pf_rate_SO4 pf_rate_HCO3 pf_rate_H2O temperature'
to_multi_app = react
[]
[massfrac_from_geochem]
type = MultiAppCopyTransfer
source_variable = 'massfrac_H massfrac_Na massfrac_K massfrac_Ca massfrac_Mg massfrac_SiO2 massfrac_Al massfrac_Cl massfrac_SO4 massfrac_HCO3'
variable = 'f_H f_Na f_K f_Ca f_Mg f_SiO2 f_Al f_Cl f_SO4 f_HCO3'
from_multi_app = react
[]
[]
(modules/porous_flow/test/tests/jacobian/line_sink03.i)
# PorousFlowPeacemanBorehole with 2-phase, 3-components, with enthalpy, internal_energy, and thermal_conductivity
# NOTE: this test has suffered from repeated failures since its inception. The problem always appears to be caused by having too many Dirac points in an element: see #10471. As of Nov2020, the dirac7 DiracKernel uses only one Dirac point, not ten_points.bh. One day it would be good to be able to use point_file = ten_points.bh
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[ppwater]
[]
[ppgas]
[]
[massfrac_ph0_sp0]
[]
[massfrac_ph0_sp1]
[]
[massfrac_ph1_sp0]
[]
[massfrac_ph1_sp1]
[]
[temp]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp ppwater ppgas massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[dummy_outflow0]
type = PorousFlowSumQuantity
[]
[dummy_outflow1]
type = PorousFlowSumQuantity
[]
[dummy_outflow2]
type = PorousFlowSumQuantity
[]
[dummy_outflow3]
type = PorousFlowSumQuantity
[]
[dummy_outflow4]
type = PorousFlowSumQuantity
[]
[dummy_outflow5]
type = PorousFlowSumQuantity
[]
[dummy_outflow6]
type = PorousFlowSumQuantity
[]
[dummy_outflow7]
type = PorousFlowSumQuantity
[]
[]
[ICs]
[temp]
type = RandomIC
variable = temp
min = 1
max = 2
[]
[ppwater]
type = RandomIC
variable = ppwater
min = -1
max = 0
[]
[ppgas]
type = RandomIC
variable = ppgas
min = 0
max = 1
[]
[massfrac_ph0_sp0]
type = RandomIC
variable = massfrac_ph0_sp0
min = 0
max = 1
[]
[massfrac_ph0_sp1]
type = RandomIC
variable = massfrac_ph0_sp1
min = 0
max = 1
[]
[massfrac_ph1_sp0]
type = RandomIC
variable = massfrac_ph1_sp0
min = 0
max = 1
[]
[massfrac_ph1_sp1]
type = RandomIC
variable = massfrac_ph1_sp1
min = 0
max = 1
[]
[]
[Kernels]
[dummy_temp]
type = TimeDerivative
variable = temp
[]
[dummy_ppwater]
type = TimeDerivative
variable = ppwater
[]
[dummy_ppgas]
type = TimeDerivative
variable = ppgas
[]
[dummy_m00]
type = TimeDerivative
variable = massfrac_ph0_sp0
[]
[dummy_m01]
type = TimeDerivative
variable = massfrac_ph0_sp1
[]
[dummy_m10]
type = TimeDerivative
variable = massfrac_ph1_sp0
[]
[dummy_m11]
type = TimeDerivative
variable = massfrac_ph1_sp1
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
cv = 1.1
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
viscosity = 1.4
cv = 1.8
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0.1 0.02 0.03 0.02 0.0 0.01 0.03 0.01 0.3'
[]
[]
[DiracKernels]
#active = 'dirac6 dirac2' # incorrect jacobian for ny=2
#active = 'dirac0 dirac1 dirac2 dirac3 dirac4 dirac5' # correct jacobian for ny=2
#active = 'dirac0 dirac1 dirac2 dirac3 dirac4 dirac5 dirac6' # incorrect jacobian for ny=2
#active = 'dirac0 dirac1 dirac2 dirac3 dirac4 dirac5 dirac7' # correct jacobian in dbg, but not in opt, for ny=2
#active = 'dirac0 dirac1 dirac2 dirac3 dirac4 dirac5 dirac6' # incorrect jacobian in dbg, but correct for opt, for ny=1
#active = 'dirac0 dirac1 dirac2 dirac3 dirac4 dirac5' # correct jacobian, for ny=1
#active = 'dirac0 dirac1 dirac2 dirac3 dirac4 dirac5 dirac6' # incorrect jacobian in dbg, but correct for opt, for ny=1. row24, col 21 and 22 are wrong. row24=node3, 21=ppwater, 22=ppgas, 24=massfrac_ph0_sp1 (all at node3)
[dirac0]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = ppwater
point_file = one_point.bh
line_length = 1
SumQuantityUO = dummy_outflow0
character = 1
bottom_p_or_t = -10
unit_weight = '1 2 3'
re_constant = 0.123
[]
[dirac1]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = ppgas
line_length = 1
line_direction = '-1 -1 -1'
use_relative_permeability = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow1
character = -0.5
bottom_p_or_t = 10
unit_weight = '1 2 -3'
re_constant = 0.3
[]
[dirac2]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = massfrac_ph0_sp0
line_length = 1.3
line_direction = '1 0 1'
use_mobility = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow2
character = 0.6
bottom_p_or_t = -4
unit_weight = '-1 -2 -3'
re_constant = 0.4
[]
[dirac3]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = massfrac_ph0_sp1
line_length = 1.3
line_direction = '1 1 1'
use_enthalpy = true
mass_fraction_component = 0
point_file = one_point.bh
SumQuantityUO = dummy_outflow3
character = -1
bottom_p_or_t = 3
unit_weight = '0.1 0.2 0.3'
re_constant = 0.5
[]
[dirac4]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = massfrac_ph1_sp0
function_of = temperature
line_length = 0.9
line_direction = '1 1 1'
mass_fraction_component = 1
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow4
character = 1.1
bottom_p_or_t = -7
unit_weight = '-1 2 3'
re_constant = 0.6
[]
[dirac5]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = temp
line_length = 0.9
function_of = temperature
line_direction = '1 2 3'
mass_fraction_component = 2
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow5
character = 0.9
bottom_p_or_t = -8
unit_weight = '1 2 1'
re_constant = 0.7
[]
[dirac6]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = ppwater
point_file = nine_points.bh
SumQuantityUO = dummy_outflow6
character = 0
bottom_p_or_t = 10
unit_weight = '0.0 0.0 0.0'
[]
[dirac7]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = massfrac_ph0_sp0
use_mobility = true
mass_fraction_component = 1
use_relative_permeability = true
use_internal_energy = true
point_file = one_point.bh
#NOTE this commented-out line: point_file = ten_points.bh
SumQuantityUO = dummy_outflow7
character = -1
bottom_p_or_t = 10
unit_weight = '0.1 0.2 0.3'
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
file_base = line_sink03
[]
(modules/porous_flow/test/tests/dirackernels/bh_except16.i)
# fully-saturated
# production
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
function_of = temperature
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/bh_except14.i)
# fully-saturated
# production
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02_huge.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/bh_except04.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
at_nodes = true # Needed to force exepected error
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
function_of = temperature
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/bh02.i)
# fully-saturated
# production
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
# Because the Variable for this Sink is pp, and pp is associated
# with the fluid-mass conservation equation, this sink is extracting
# fluid mass (and not heat energy or something else)
variable = pp
# The following specfies that the total fluid mass coming out of
# the porespace via this sink in this timestep should be recorded
# in the pls_total_outflow_mass UserObject
SumQuantityUO = borehole_total_outflow_mass
# The following file defines the polyline geometry
# which is just two points in this particular example
point_file = bh02.bh
# First, we want Peacemans f to be a function of porepressure (and not
# temperature or something else). So bottom_p_or_t is actually porepressure
function_of = pressure
fluid_phase = 0
# The bottomhole pressure
bottom_p_or_t = 0
# In this example there is no increase of the wellbore pressure
# due to gravity:
unit_weight = '0 0 0'
# PeacemanBoreholes should almost always have use_mobility = true
use_mobility = true
# This is a production wellbore (a sink of fluid that removes fluid from porespace)
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
indirect_dependencies = 'fluid_mass1 fluid_mass0 bh_report'
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
[Outputs]
file_base = bh02
exodus = false
csv = true
execute_on = timestep_end
[]
(modules/porous_flow/test/tests/dirackernels/bh_except15.i)
# fully-saturated
# production
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/bh_except09.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
compute_enthalpy = false
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
use_mobility = true
use_enthalpy = true
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/bh_except07.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = bh02.bh
use_mobility = true
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/test/tests/dirackernels/bh_except12.i)
# PorousFlowPeacemanBorehole exception test
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = TimeDerivative
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
bottom_p_or_t = 0
fluid_phase = 0
point_file = does_not_exist
SumQuantityUO = borehole_total_outflow_mass
variable = pp
unit_weight = '0 0 0'
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 1E-2
solve_type = NEWTON
[]
(modules/porous_flow/examples/multiapp_fracture_flow/3dFracture/fracture_only_aperture_changing.i)
# Cold water injection into one side of the fracture network, and production from the other side
injection_rate = 10 # kg/s
[Mesh]
uniform_refine = 0
[cluster34]
type = FileMeshGenerator
file = 'Cluster_34.exo'
[]
[injection_node]
type = BoundingBoxNodeSetGenerator
input = cluster34
bottom_left = '-1000 0 -1000'
top_right = '1000 0.504 1000'
new_boundary = injection_node
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 -9.81E-6' # Note the value, because of pressure_unit
[]
[Variables]
[frac_P]
scaling = 1E6
[]
[frac_T]
initial_condition = 473
[]
[]
[ICs]
[frac_P]
type = FunctionIC
variable = frac_P
function = insitu_pp
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = frac_P
temperature = frac_T
fp = water
pressure_unit = MPa
[]
[Kernels]
[toMatrix]
type = PorousFlowHeatMassTransfer
variable = frac_T
v = transferred_matrix_T
transfer_coefficient = heat_transfer_coefficient
save_in = joules_per_s
[]
[]
[AuxVariables]
[heat_transfer_coefficient]
family = MONOMIAL
order = CONSTANT
initial_condition = 0.0
[]
[transferred_matrix_T]
initial_condition = 473
[]
[joules_per_s]
[]
[normal_dirn_x]
family = MONOMIAL
order = CONSTANT
[]
[normal_dirn_y]
family = MONOMIAL
order = CONSTANT
[]
[normal_dirn_z]
family = MONOMIAL
order = CONSTANT
[]
[enclosing_element_normal_length]
family = MONOMIAL
order = CONSTANT
[]
[enclosing_element_normal_thermal_cond]
family = MONOMIAL
order = CONSTANT
[]
[aperture]
family = MONOMIAL
order = CONSTANT
[]
[perm_times_app]
family = MONOMIAL
order = CONSTANT
[]
[density]
family = MONOMIAL
order = CONSTANT
[]
[viscosity]
family = MONOMIAL
order = CONSTANT
[]
[insitu_pp]
[]
[]
[AuxKernels]
[normal_dirn_x_auxk]
type = PorousFlowElementNormal
variable = normal_dirn_x
component = x
[]
[normal_dirn_y]
type = PorousFlowElementNormal
variable = normal_dirn_y
component = y
[]
[normal_dirn_z]
type = PorousFlowElementNormal
variable = normal_dirn_z
component = z
[]
[heat_transfer_coefficient_auxk]
type = ParsedAux
variable = heat_transfer_coefficient
coupled_variables = 'enclosing_element_normal_length enclosing_element_normal_thermal_cond'
constant_names = h_s
constant_expressions = 1E3 # should be much bigger than thermal_conductivity / L ~ 1
expression = 'if(enclosing_element_normal_length = 0, 0, h_s * enclosing_element_normal_thermal_cond * 2 * enclosing_element_normal_length / (h_s * enclosing_element_normal_length * enclosing_element_normal_length + enclosing_element_normal_thermal_cond * 2 * enclosing_element_normal_length))'
[]
[aperture]
type = PorousFlowPropertyAux
variable = aperture
property = porosity
[]
[perm_times_app]
type = PorousFlowPropertyAux
variable = perm_times_app
property = permeability
row = 0
column = 0
[]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
phase = 0
[]
[viscosity]
type = PorousFlowPropertyAux
variable = viscosity
property = viscosity
phase = 0
[]
[insitu_pp]
type = FunctionAux
execute_on = initial
variable = insitu_pp
function = insitu_pp
[]
[]
[BCs]
[inject_heat]
type = DirichletBC
boundary = injection_node
variable = frac_T
value = 373
[]
[]
[DiracKernels]
[inject_fluid]
type = PorousFlowPointSourceFromPostprocessor
mass_flux = ${injection_rate}
point = '58.8124 0.50384 74.7838'
variable = frac_P
[]
[withdraw_fluid]
type = PorousFlowPeacemanBorehole
SumQuantityUO = kg_out_uo
bottom_p_or_t = 10.6 # 1MPa + approx insitu at production point, to prevent aperture closing due to low porepressures
character = 1
line_length = 1
point_file = production.xyz
unit_weight = '0 0 0'
fluid_phase = 0
use_mobility = true
variable = frac_P
[]
[withdraw_heat]
type = PorousFlowPeacemanBorehole
SumQuantityUO = J_out_uo
bottom_p_or_t = 10.6 # 1MPa + approx insitu at production point, to prevent aperture closing due to low porepressures
character = 1
line_length = 1
point_file = production.xyz
unit_weight = '0 0 0'
fluid_phase = 0
use_mobility = true
use_enthalpy = true
variable = frac_T
[]
[]
[UserObjects]
[kg_out_uo]
type = PorousFlowSumQuantity
[]
[J_out_uo]
type = PorousFlowSumQuantity
[]
[]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[water]
type = TabulatedBicubicFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_output_file = water97_tabulated.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water97_tabulated.csv
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityLinear
porosity_ref = 1E-4 # fracture porosity = 1.0, but must include fracture aperture of 1E-4 at P = insitu_pp
P_ref = insitu_pp
P_coeff = 1E-3 # this is in metres/MPa, ie for P_ref = 1/P_coeff, the aperture becomes 1 metre
porosity_min = 1E-5
[]
[permeability]
type = PorousFlowPermeabilityKozenyCarman
k0 = 1E-15 # fracture perm = 1E-11 m^2, but must include fracture aperture of 1E-4
poroperm_function = kozeny_carman_phi0
m = 0
n = 3
phi0 = 1E-4
[]
[internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2700 # kg/m^3
specific_heat_capacity = 0 # basically no rock inside the fracture
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0.6E-4 0 0 0 0.6E-4 0 0 0 0.6E-4' # thermal conductivity of water times fracture aperture. This should increase linearly with aperture, but is set constant in this model
[]
[]
[Functions]
[kg_rate]
type = ParsedFunction
symbol_values = 'dt kg_out'
symbol_names = 'dt kg_out'
expression = 'kg_out/dt'
[]
[insitu_pp]
type = ParsedFunction
expression = '10 - 0.847E-2 * z' # Approximate hydrostatic in MPa
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
outputs = 'none'
[]
[kg_out]
type = PorousFlowPlotQuantity
uo = kg_out_uo
[]
[kg_per_s]
type = FunctionValuePostprocessor
function = kg_rate
[]
[J_out]
type = PorousFlowPlotQuantity
uo = J_out_uo
[]
[TK_out]
type = PointValue
variable = frac_T
point = '101.705 160.459 39.5722'
[]
[P_out]
type = PointValue
variable = frac_P
point = '101.705 160.459 39.5722'
[]
[P_in]
type = PointValue
variable = frac_P
point = '58.8124 0.50384 74.7838'
[]
[]
[VectorPostprocessors]
[heat_transfer_rate]
type = NodalValueSampler
outputs = none
sort_by = id
variable = joules_per_s
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 10
growth_factor = 1.5
[]
dtmax = 1E8
end_time = 1E8
nl_abs_tol = 1E-3
nl_max_its = 20
[]
[Outputs]
print_linear_residuals = false
csv = true
[ex]
type = Exodus
sync_times = '1 10 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 30000 50000 70000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000 2100000 2200000 2300000 2400000 2500000 2600000 2700000 2800000 2900000'
sync_only = true
[]
[]
(modules/porous_flow/test/tests/actions/basicthm_borehole.i)
# PorousFlowBasicTHM action with coupling_type = Hydro (no thermal or
# mechanical effects), plus a Peaceman borehole with use_mobility = true
# to test that nodal relative permeability is added by this action.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
initial_condition = 1e7
[]
[]
[AuxVariables]
[temperature]
initial_condition = 293
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = Hydro
gravity = '0 0 0'
fp = simple_fluid
multiply_by_density = true
[]
[UserObjects]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 1
fluid_bulk_modulus = 2e9
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
variable = porepressure
SumQuantityUO = borehole_total_outflow_mass
point_file = borehole.bh
function_of = pressure
fluid_phase = 0
bottom_p_or_t = 0
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1e-10 1e-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 0.1
solve_type = NEWTON
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/porous_flow/test/tests/dirackernels/bh04.i)
# fully-saturated
# production
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Functions]
[dts]
type = PiecewiseLinear
y = '1E-2 1E-1 1 1E1 1E2 1E3'
x = '0 1E-1 1 1E1 1E2 1E3'
[]
[]
[Variables]
[pp]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[relperm]
type = PorousFlowRelativePermeabilityFLAC
m = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
variable = pp
SumQuantityUO = borehole_total_outflow_mass
point_file = bh02.bh
fluid_phase = 0
bottom_p_or_t = -1E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[fluid_mass0]
type = PorousFlowFluidMass
execute_on = timestep_begin
[]
[fluid_mass1]
type = PorousFlowFluidMass
execute_on = timestep_end
[]
[zmass_error]
type = FunctionValuePostprocessor
function = mass_bal_fcn
execute_on = timestep_end
indirect_dependencies = 'fluid_mass1 fluid_mass0 bh_report'
[]
[p0]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = timestep_end
[]
[]
[Functions]
[mass_bal_fcn]
type = ParsedFunction
expression = abs((a-c+d)/2/(a+c))
symbol_names = 'a c d'
symbol_values = 'fluid_mass1 fluid_mass0 bh_report'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 1E3
solve_type = NEWTON
[TimeStepper]
type = FunctionDT
function = dts
[]
[]
[Outputs]
file_base = bh04
exodus = false
csv = true
execute_on = timestep_end
[]
(modules/porous_flow/test/tests/actions/fullsat_borehole.i)
# PorousFlowFullySaturated action with coupling_type = ThermoHydro (no
# mechanical effects), plus a Peaceman borehole with use_mobility = true
# to test that nodal relative permeability is added by this action.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
initial_condition = 1E7
[]
[temperature]
initial_condition = 323.15
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
dictator_name = dictator
stabilization = none
fp = simple_fluid
gravity = '0 0 0'
[]
[BCs]
[temperature]
type = DirichletBC
variable = temperature
boundary = 'left right'
value = 323.15
[]
[]
[UserObjects]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.25
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
wet_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 850
density = 2700
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
variable = porepressure
SumQuantityUO = borehole_total_outflow_mass
point_file = borehole.bh
function_of = pressure
fluid_phase = 0
bottom_p_or_t = 0
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 0.1
solve_type = NEWTON
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/porous_flow/test/tests/jacobian/line_sink01.i)
# PorousFlowPeacemanBorehole with 2-phase, 3-components, with enthalpy, internal_energy, and thermal_conductivity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[ppwater]
[]
[ppgas]
[]
[massfrac_ph0_sp0]
[]
[massfrac_ph0_sp1]
[]
[massfrac_ph1_sp0]
[]
[massfrac_ph1_sp1]
[]
[temp]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp ppwater ppgas massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[dummy_outflow0]
type = PorousFlowSumQuantity
[]
[dummy_outflow1]
type = PorousFlowSumQuantity
[]
[dummy_outflow2]
type = PorousFlowSumQuantity
[]
[dummy_outflow3]
type = PorousFlowSumQuantity
[]
[dummy_outflow4]
type = PorousFlowSumQuantity
[]
[dummy_outflow5]
type = PorousFlowSumQuantity
[]
[dummy_outflow6]
type = PorousFlowSumQuantity
[]
[dummy_outflow7]
type = PorousFlowSumQuantity
[]
[]
[ICs]
[temp]
type = RandomIC
variable = temp
min = 1
max = 2
[]
[ppwater]
type = RandomIC
variable = ppwater
min = -1
max = 0
[]
[ppgas]
type = RandomIC
variable = ppgas
min = 0
max = 1
[]
[massfrac_ph0_sp0]
type = RandomIC
variable = massfrac_ph0_sp0
min = 0
max = 1
[]
[massfrac_ph0_sp1]
type = RandomIC
variable = massfrac_ph0_sp1
min = 0
max = 1
[]
[massfrac_ph1_sp0]
type = RandomIC
variable = massfrac_ph1_sp0
min = 0
max = 1
[]
[massfrac_ph1_sp1]
type = RandomIC
variable = massfrac_ph1_sp1
min = 0
max = 1
[]
[]
[Kernels]
[dummy_temp]
type = TimeDerivative
variable = temp
[]
[dummy_ppwater]
type = TimeDerivative
variable = ppwater
[]
[dummy_ppgas]
type = TimeDerivative
variable = ppgas
[]
[dummy_m00]
type = TimeDerivative
variable = massfrac_ph0_sp0
[]
[dummy_m01]
type = TimeDerivative
variable = massfrac_ph0_sp1
[]
[dummy_m10]
type = TimeDerivative
variable = massfrac_ph1_sp0
[]
[dummy_m11]
type = TimeDerivative
variable = massfrac_ph1_sp1
[]
[]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
cv = 1.1
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.5
thermal_expansion = 0
viscosity = 1.4
cv = 1.8
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph0_sp1 massfrac_ph1_sp0 massfrac_ph1_sp1'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0.1 0.02 0.03 0.02 0.0 0.01 0.03 0.01 0.3'
[]
[]
[DiracKernels]
[dirac0]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = ppwater
point_file = one_point.bh
line_length = 1
SumQuantityUO = dummy_outflow0
character = 1
bottom_p_or_t = -10
unit_weight = '1 2 3'
re_constant = 0.123
[]
[dirac1]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = ppgas
line_length = 1
line_direction = '-1 -1 -1'
use_relative_permeability = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow1
character = -0.5
bottom_p_or_t = 10
unit_weight = '1 2 -3'
re_constant = 0.3
[]
[dirac2]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = massfrac_ph0_sp0
line_length = 1.3
line_direction = '1 0 1'
use_mobility = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow2
character = 0.6
bottom_p_or_t = -4
unit_weight = '-1 -2 -3'
re_constant = 0.4
[]
[dirac3]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = massfrac_ph0_sp1
line_length = 1.3
line_direction = '1 1 1'
use_enthalpy = true
mass_fraction_component = 0
point_file = one_point.bh
SumQuantityUO = dummy_outflow3
character = -1
bottom_p_or_t = 3
unit_weight = '0.1 0.2 0.3'
re_constant = 0.5
[]
[dirac4]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = massfrac_ph1_sp0
function_of = temperature
line_length = 0.9
line_direction = '1 1 1'
mass_fraction_component = 1
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow4
character = 1.1
bottom_p_or_t = -7
unit_weight = '-1 2 3'
re_constant = 0.6
[]
[dirac5]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = temp
line_length = 0.9
function_of = temperature
line_direction = '1 2 3'
mass_fraction_component = 2
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow5
character = 0.9
bottom_p_or_t = -8
unit_weight = '1 2 1'
re_constant = 0.7
[]
[dirac6]
type = PorousFlowPeacemanBorehole
fluid_phase = 0
variable = ppwater
point_file = one_point.bh
SumQuantityUO = dummy_outflow6
character = 0
bottom_p_or_t = 10
unit_weight = '0.0 0.0 0.0'
[]
[dirac7]
type = PorousFlowPeacemanBorehole
fluid_phase = 1
variable = massfrac_ph0_sp0
use_mobility = true
mass_fraction_component = 1
use_relative_permeability = true
use_internal_energy = true
point_file = one_point.bh
SumQuantityUO = dummy_outflow7
character = -1
bottom_p_or_t = 10
unit_weight = '0.1 0.2 0.3'
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
file_base = line_sink01
[]