www.mooseframework.org
Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Types | Private Attributes | List of all members
TensileStressUpdate Class Reference

TensileStressUpdate implements rate-independent associative tensile failure ("Rankine" plasticity) with hardening/softening. More...

#include <TensileStressUpdate.h>

Inheritance diagram for TensileStressUpdate:
[legend]

Public Member Functions

 TensileStressUpdate (const InputParameters &parameters)
 
bool requiresIsotropicTensor () override
 Does the model require the elasticity tensor to be isotropic? More...
 
void setQp (unsigned int qp)
 Sets the value of the global variable _qp for inheriting classes. More...
 
virtual bool isIsotropic ()
 Is the implmented model isotropic? The safe default is 'false'. More...
 
virtual Real computeTimeStepLimit ()
 
void resetQpProperties () final
 Retained as empty methods to avoid a warning from Material.C in framework. These methods are unused in all inheriting classes and should not be overwritten. More...
 
void resetProperties () final
 

Static Public Member Functions

static InputParameters validParams ()
 

Protected Member Functions

virtual Real tensile_strength (const Real internal_param) const
 tensile strength as a function of residual value, rate, and internal_param More...
 
virtual Real dtensile_strength (const Real internal_param) const
 d(tensile strength)/d(internal_param) as a function of residual value, rate, and internal_param More...
 
void computeStressParams (const RankTwoTensor &stress, std::vector< Real > &stress_params) const override
 Computes stress_params, given stress. More...
 
std::vector< RankTwoTensordstress_param_dstress (const RankTwoTensor &stress) const override
 d(stress_param[i])/d(stress) at given stress More...
 
std::vector< RankFourTensord2stress_param_dstress (const RankTwoTensor &stress) const override
 d2(stress_param[i])/d(stress)/d(stress) at given stress More...
 
virtual void setStressAfterReturnV (const RankTwoTensor &stress_trial, const std::vector< Real > &stress_params, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, RankTwoTensor &stress) const override
 Sets stress from the admissible parameters. More...
 
virtual void preReturnMapV (const std::vector< Real > &trial_stress_params, const RankTwoTensor &stress_trial, const std::vector< Real > &intnl_old, const std::vector< Real > &yf, const RankFourTensor &Eijkl) override
 Derived classes may employ this function to record stuff or do other computations prior to the return-mapping algorithm. More...
 
void setEffectiveElasticity (const RankFourTensor &Eijkl) override
 Sets _Eij and _En and _Cij. More...
 
void yieldFunctionValuesV (const std::vector< Real > &stress_params, const std::vector< Real > &intnl, std::vector< Real > &yf) const override
 Computes the values of the yield functions, given stress_params and intnl parameters. More...
 
void computeAllQV (const std::vector< Real > &stress_params, const std::vector< Real > &intnl, std::vector< yieldAndFlow > &all_q) const override
 Completely fills all_q with correct values. More...
 
void initializeVarsV (const std::vector< Real > &trial_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &stress_params, Real &gaE, std::vector< Real > &intnl) const override
 Sets (stress_params, intnl) at "good guesses" of the solution to the Return-Map algorithm. More...
 
void setIntnlValuesV (const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &intnl) const override
 Sets the internal parameters based on the trial values of stress_params, their current values, and the old values of the internal parameters. More...
 
void setIntnlDerivativesV (const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl, std::vector< std::vector< Real >> &dintnl) const override
 Sets the derivatives of internal parameters, based on the trial values of stress_params, their current values, and the current values of the internal parameters. More...
 
virtual void consistentTangentOperatorV (const RankTwoTensor &stress_trial, const std::vector< Real > &trial_stress_params, const RankTwoTensor &stress, const std::vector< Real > &stress_params, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, bool compute_full_tangent_operator, const std::vector< std::vector< Real >> &dvar_dtrial, RankFourTensor &cto) override
 Calculates the consistent tangent operator. More...
 
virtual void initQpStatefulProperties () override
 
virtual void updateState (RankTwoTensor &strain_increment, RankTwoTensor &inelastic_strain_increment, const RankTwoTensor &rotation_increment, RankTwoTensor &stress_new, const RankTwoTensor &stress_old, const RankFourTensor &elasticity_tensor, const RankTwoTensor &elastic_strain_old, bool compute_full_tangent_operator, RankFourTensor &tangent_operator) override
 Given a strain increment that results in a trial stress, perform some procedure (such as an iterative return-mapping process) to produce an admissible stress, an elastic strain increment and an inelastic strain increment. More...
 
virtual void propagateQpStatefulProperties () override
 If updateState is not called during a timestep, this will be. More...
 
virtual TangentCalculationMethod getTangentCalculationMethod () override
 
Real yieldF (const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
 Computes the smoothed yield function. More...
 
Real yieldF (const std::vector< Real > &yfs) const
 Computes the smoothed yield function. More...
 
Real ismoother (Real f_diff) const
 Smooths yield functions. More...
 
Real smoother (Real f_diff) const
 Derivative of ismoother. More...
 
Real dsmoother (Real f_diff) const
 Derivative of smoother. More...
 
yieldAndFlow smoothAllQuantities (const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
 Calculates all yield functions and derivatives, and then performs the smoothing scheme. More...
 
int lineSearch (Real &res2, std::vector< Real > &stress_params, Real &gaE, const std::vector< Real > &trial_stress_params, yieldAndFlow &smoothed_q, const std::vector< Real > &intnl_ok, std::vector< Real > &intnl, std::vector< Real > &rhs, Real &linesearch_needed) const
 Performs a line-search to find stress_params and gaE Upon entry: More...
 
int nrStep (const yieldAndFlow &smoothed_q, const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, const std::vector< Real > &intnl, Real gaE, std::vector< Real > &rhs) const
 Performs a Newton-Raphson step to attempt to zero rhs Upon return, rhs will contain the solution. More...
 
Real calculateRes2 (const std::vector< Real > &rhs) const
 Calculates the residual-squared for the Newton-Raphson + line-search. More...
 
void calculateRHS (const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, Real gaE, const yieldAndFlow &smoothed_q, std::vector< Real > &rhs) const
 Calculates the RHS in the following 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, j] * dg/dS[j] 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1, j] * dg/dS[j] ... More...
 
void dnRHSdVar (const yieldAndFlow &smoothed_q, const std::vector< std::vector< Real >> &dintnl, const std::vector< Real > &stress_params, Real gaE, std::vector< double > &jac) const
 Derivative of -RHS with respect to the stress_params and gaE, placed into an array ready for solving the linear system using LAPACK gsev. More...
 
virtual void errorHandler (const std::string &message) const
 Performs any necessary cleaning-up, then throw MooseException(message) More...
 
virtual void initializeReturnProcess ()
 Derived classes may use this to perform calculations before any return-map process is performed, for instance, to initialize variables. More...
 
virtual void finalizeReturnProcess (const RankTwoTensor &rotation_increment)
 Derived classes may use this to perform calculations after the return-map process has completed successfully in stress_param space but before the returned stress tensor has been calculcated. More...
 
virtual void setInelasticStrainIncrementAfterReturn (const RankTwoTensor &stress_trial, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &elasticity_tensor, const RankTwoTensor &returned_stress, RankTwoTensor &inelastic_strain_increment) const
 Sets inelastic strain increment from the returned configuration This is called after the return-map process has completed successfully in stress_param space, just after finalizeReturnProcess has been called. More...
 
void dVardTrial (bool elastic_only, const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, Real step_size, bool compute_full_tangent_operator, std::vector< std::vector< Real >> &dvar_dtrial) const
 Calculates derivatives of the stress_params and gaE with repect to the trial values of the stress_params for the (sub)strain increment. More...
 
bool precisionLoss (const std::vector< Real > &solution, const std::vector< Real > &stress_params, Real gaE) const
 Check whether precision loss has occurred. More...
 

Protected Attributes

const TensorMechanicsHardeningModel_strength
 Hardening model for tensile strength. More...
 
const bool _perfect_guess
 Whether to provide an estimate of the returned stress, based on perfect plasticity. More...
 
RankTwoTensor _eigvecs
 Eigenvectors of the trial stress as a RankTwoTensor, in order to rotate the returned stress back to stress space. More...
 
const unsigned _num_sp
 Number of stress parameters. More...
 
const std::vector< Real > _definitely_ok_sp
 An admissible value of stress_params at the initial time. More...
 
std::vector< std::vector< Real > > _Eij
 E[i, j] in the system of equations to be solved. More...
 
Real _En
 normalising factor More...
 
std::vector< std::vector< Real > > _Cij
 _Cij[i, j] * _Eij[j, k] = 1 iff j == k More...
 
const unsigned _num_yf
 Number of yield functions. More...
 
const unsigned _num_intnl
 Number of internal parameters. More...
 
const unsigned _max_nr_its
 Maximum number of Newton-Raphson iterations allowed in the return-map process. More...
 
const bool _perform_finite_strain_rotations
 Whether to perform finite-strain rotations. More...
 
const Real _smoothing_tol
 Smoothing tolerance: edges of the yield surface get smoothed by this amount. More...
 
const Real _smoothing_tol2
 Square of the smoothing tolerance. More...
 
const Real _f_tol
 The yield-function tolerance. More...
 
const Real _f_tol2
 Square of the yield-function tolerance. More...
 
const Real _min_step_size
 In order to help the Newton-Raphson procedure, the applied strain increment may be applied in sub-increments of size greater than this value. More...
 
bool _step_one
 handles case of initial_stress that is inadmissible being supplied More...
 
const bool _warn_about_precision_loss
 Output a warning message if precision loss is encountered during the return-map process. More...
 
MaterialProperty< RankTwoTensor > & _plastic_strain
 plastic strain More...
 
const MaterialProperty< RankTwoTensor > & _plastic_strain_old
 Old value of plastic strain. More...
 
MaterialProperty< std::vector< Real > > & _intnl
 internal parameters More...
 
const MaterialProperty< std::vector< Real > > & _intnl_old
 old values of internal parameters More...
 
MaterialProperty< std::vector< Real > > & _yf
 yield functions More...
 
MaterialProperty< Real > & _iter
 Number of Newton-Raphson iterations used in the return-map. More...
 
MaterialProperty< Real > & _max_iter_used
 Maximum number of Newton-Raphson iterations used in the return-map during the course of the entire simulation. More...
 
const MaterialProperty< Real > & _max_iter_used_old
 Old value of maximum number of Newton-Raphson iterations used in the return-map during the course of the entire simulation. More...
 
MaterialProperty< Real > & _linesearch_needed
 Whether a line-search was needed in the latest Newton-Raphson process (1 if true, 0 otherwise) More...
 
const std::string _base_name
 Name used as a prefix for all material properties related to the stress update model. More...
 

Static Protected Attributes

constexpr static unsigned _tensor_dimensionality = 3
 Internal dimensionality of tensors (currently this is 3 throughout tensor_mechanics) More...
 

Private Types

enum  SmootherFunctionType { SmootherFunctionType::cos, SmootherFunctionType::poly1, SmootherFunctionType::poly2, SmootherFunctionType::poly3 }
 The type of smoother function. More...
 

Private Attributes

std::vector< Real > _trial_sp
 "Trial" value of stress_params that initializes the return-map process This is derived from stress = stress_old + Eijkl * strain_increment. More...
 
RankTwoTensor _stress_trial
 "Trial" value of stress that is set at the beginning of the return-map process. More...
 
std::vector< Real > _rhs
 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, i] * dg/dS[i] 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1, i] * dg/dS[i] ... More...
 
std::vector< std::vector< Real > > _dvar_dtrial
 d({stress_param[i], gaE})/d(trial_stress_param[j]) More...
 
std::vector< Real > _ok_sp
 The state (ok_sp, ok_intnl) is known to be admissible, so ok_sp are stress_params that are "OK". More...
 
std::vector< Real > _ok_intnl
 The state (ok_sp, ok_intnl) is known to be admissible. More...
 
std::vector< Real > _del_stress_params
 _del_stress_params = trial_stress_params - ok_sp This is fixed at the beginning of the return-map process, irrespective of substepping. More...
 
std::vector< Real > _current_sp
 The current values of the stress params during the Newton-Raphson. More...
 
std::vector< Real > _current_intnl
 The current values of the internal params during the Newton-Raphson. More...
 
enum MultiParameterPlasticityStressUpdate::SmootherFunctionType _smoother_function_type
 

Detailed Description

TensileStressUpdate implements rate-independent associative tensile failure ("Rankine" plasticity) with hardening/softening.

Definition at line 24 of file TensileStressUpdate.h.

Member Enumeration Documentation

◆ SmootherFunctionType

The type of smoother function.

Enumerator
cos 
poly1 
poly2 
poly3 

Definition at line 743 of file MultiParameterPlasticityStressUpdate.h.

744  {
745  cos,
746  poly1,
747  poly2,
748  poly3

Constructor & Destructor Documentation

◆ TensileStressUpdate()

TensileStressUpdate::TensileStressUpdate ( const InputParameters &  parameters)

Definition at line 35 of file TensileStressUpdate.C.

36  : MultiParameterPlasticityStressUpdate(parameters, 3, 3, 1),
37  _strength(getUserObject<TensorMechanicsHardeningModel>("tensile_strength")),
38  _perfect_guess(getParam<bool>("perfect_guess")),
40 {
41 }

Member Function Documentation

◆ calculateRes2()

Real MultiParameterPlasticityStressUpdate::calculateRes2 ( const std::vector< Real > &  rhs) const
protectedinherited

Calculates the residual-squared for the Newton-Raphson + line-search.

Parameters
rhs[in]The RHS vector
Returns
sum_i (rhs[i] * rhs[i])

Definition at line 802 of file MultiParameterPlasticityStressUpdate.C.

803 {
804  Real res2 = 0.0;
805  for (const auto & r : rhs)
806  res2 += r * r;
807  return res2;
808 }

Referenced by MultiParameterPlasticityStressUpdate::lineSearch(), and MultiParameterPlasticityStressUpdate::updateState().

◆ calculateRHS()

void MultiParameterPlasticityStressUpdate::calculateRHS ( const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  stress_params,
Real  gaE,
const yieldAndFlow smoothed_q,
std::vector< Real > &  rhs 
) const
protectedinherited

Calculates the RHS in the following 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, j] * dg/dS[j] 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1, j] * dg/dS[j] ...

0 = rhs[N-1] = S[N-1] - S[N-1]^trial + ga * E[N-1, j] * dg/dS[j] 0 = rhs[N] = f(S, intnl) where N = _num_sp

Parameters
trial_stress_params[in]The trial stress parameters for this (sub)strain increment, S[:]^trial
stress_params[in]The current stress parameters, S[:]
gaE[in]ga*_En (the normalisation with _En is so that gaE is of similar magnitude to S)
smoothed_q[in]Holds the current value of yield function and derivatives evaluated at the current stress parameters and the current internal parameters
rhs[out]The result

Definition at line 811 of file MultiParameterPlasticityStressUpdate.C.

816 {
817  const Real ga = gaE / _En;
818  for (unsigned i = 0; i < _num_sp; ++i)
819  {
820  rhs[i] = stress_params[i] - trial_stress_params[i];
821  for (unsigned j = 0; j < _num_sp; ++j)
822  rhs[i] += ga * _Eij[i][j] * smoothed_q.dg[j];
823  }
824  rhs[_num_sp] = smoothed_q.f;
825 }

Referenced by MultiParameterPlasticityStressUpdate::lineSearch(), and MultiParameterPlasticityStressUpdate::updateState().

◆ computeAllQV()

void TensileStressUpdate::computeAllQV ( const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl,
std::vector< yieldAndFlow > &  all_q 
) const
overrideprotectedvirtual

Completely fills all_q with correct values.

These values are: (1) the yield function values, yf[i] (2) d(yf[i])/d(stress_params[j]) (3) d(yf[i])/d(intnl[j]) (4) d(flowPotential[i])/d(stress_params[j]) (5) d2(flowPotential[i])/d(stress_params[j])/d(stress_params[k]) (6) d2(flowPotential[i])/d(stress_params[j])/d(intnl[k])

Parameters
stress_params[in]The stress parameters
intnl[in]The internal parameters
[out]all_qAll the desired quantities

Implements MultiParameterPlasticityStressUpdate.

Definition at line 110 of file TensileStressUpdate.C.

113 {
114  const Real ts = tensile_strength(intnl[0]);
115  const Real dts = dtensile_strength(intnl[0]);
116 
117  // yield functions. See comment in yieldFunctionValuesV
118  all_q[0].f = stress_params[2] - ts;
119  all_q[1].f = stress_params[1] - ts;
120  all_q[2].f = stress_params[0] - ts;
121 
122  // d(yield function)/d(stress_params)
123  for (unsigned yf = 0; yf < _num_yf; ++yf)
124  for (unsigned a = 0; a < _num_sp; ++a)
125  all_q[yf].df[a] = 0.0;
126  all_q[0].df[2] = 1.0;
127  all_q[1].df[1] = 1.0;
128  all_q[2].df[0] = 1.0;
129 
130  // d(yield function)/d(intnl)
131  for (unsigned yf = 0; yf < _num_yf; ++yf)
132  all_q[yf].df_di[0] = -dts;
133 
134  // the flow potential is just the yield function
135  // d(flow potential)/d(stress_params)
136  for (unsigned yf = 0; yf < _num_yf; ++yf)
137  for (unsigned a = 0; a < _num_sp; ++a)
138  all_q[yf].dg[a] = all_q[yf].df[a];
139 
140  // d(flow potential)/d(stress_params)/d(intnl)
141  for (unsigned yf = 0; yf < _num_yf; ++yf)
142  for (unsigned a = 0; a < _num_sp; ++a)
143  all_q[yf].d2g_di[a][0] = 0.0;
144 
145  // d(flow potential)/d(stress_params)/d(stress_params)
146  for (unsigned yf = 0; yf < _num_yf; ++yf)
147  for (unsigned a = 0; a < _num_sp; ++a)
148  for (unsigned b = 0; b < _num_sp; ++b)
149  all_q[yf].d2g[a][b] = 0.0;
150 }

◆ computeStressParams()

void TensileStressUpdate::computeStressParams ( const RankTwoTensor stress,
std::vector< Real > &  stress_params 
) const
overrideprotectedvirtual

Computes stress_params, given stress.

Derived classes must override this

Parameters
stress[in]Stress tensor
stress_params[out]The compute stress_params

Implements MultiParameterPlasticityStressUpdate.

Definition at line 44 of file TensileStressUpdate.C.

46 {
47  // stress_params[0] = smallest eigenvalue, stress_params[2] = largest eigenvalue
48  stress.symmetricEigenvalues(stress_params);
49 }

◆ computeTimeStepLimit()

Real StressUpdateBase::computeTimeStepLimit ( )
virtualinherited

Reimplemented in RadialReturnStressUpdate.

Definition at line 56 of file StressUpdateBase.C.

57 {
58  return std::numeric_limits<Real>::max();
59 }

◆ consistentTangentOperatorV()

void TensileStressUpdate::consistentTangentOperatorV ( const RankTwoTensor stress_trial,
const std::vector< Real > &  trial_stress_params,
const RankTwoTensor stress,
const std::vector< Real > &  stress_params,
Real  gaE,
const yieldAndFlow smoothed_q,
const RankFourTensor Eijkl,
bool  compute_full_tangent_operator,
const std::vector< std::vector< Real >> &  dvar_dtrial,
RankFourTensor cto 
)
overrideprotectedvirtual

Calculates the consistent tangent operator.

Derived classes may choose to override this for computational efficiency. The implementation in this class is quite expensive, even though it looks compact and clean, because of all the manipulations of RankFourTensors involved.

Parameters
stress_trial[in]the trial value of the stress tensor for this strain increment
trial_stress_params[in]the trial values of the stress_params for this strain increment
stress[in]the returned value of the stress tensor for this strain increment
stress_params[in]the returned value of the stress_params for this strain increment
gaE[in]the total value of that came from this strain increment
smoothed_q[in]contains the yield function and derivatives evaluated at (p, q)
Eijkl[in]The elasticity tensor
compute_full_tangent_operator[in]true if the full consistent tangent operator is needed, otherwise false
dvar_dtrial[in]dvar_dtrial[i][j] = d({stress_param[i],gaE})/d(trial_stress_param[j]) for this strain increment
[out]ctoThe consistent tangent operator

Reimplemented from MultiParameterPlasticityStressUpdate.

Definition at line 227 of file TensileStressUpdate.C.

237 {
238  cto = elasticity_tensor;
239  if (!compute_full_tangent_operator)
240  return;
241 
242  // dvar_dtrial has been computed already, so
243  // d(stress)/d(trial_stress) = d(eigvecs * stress_params * eigvecs.transpose())/d(trial_stress)
244  // eigvecs is a rotation matrix, rot(i, j) = e_j(i) = i^th component of j^th eigenvector
245  // d(rot_ij)/d(stress_kl) = d(e_j(i))/d(stress_kl)
246  // = sum_a 0.5 * e_a(i) * (e_a(k)e_j(l) + e_a(l)e_j(k)) / (la_j - la_a)
247  // = sum_a 0.5 * rot(i,a) * (rot(k,a)rot(l,j) + rot(l,a)*rot(k,j)) / (la_j - la_a)
248  RankFourTensor drot_dstress;
249  for (unsigned i = 0; i < _tensor_dimensionality; ++i)
250  for (unsigned j = 0; j < _tensor_dimensionality; ++j)
251  for (unsigned k = 0; k < _tensor_dimensionality; ++k)
252  for (unsigned l = 0; l < _tensor_dimensionality; ++l)
253  for (unsigned a = 0; a < _num_sp; ++a)
254  {
255  if (trial_stress_params[a] == trial_stress_params[j])
256  continue;
257  drot_dstress(i, j, k, l) += 0.5 * _eigvecs(i, a) * (_eigvecs(k, a) * _eigvecs(l, j) +
258  _eigvecs(l, a) * _eigvecs(k, j)) /
259  (trial_stress_params[j] - trial_stress_params[a]);
260  }
261 
262  const RankTwoTensor eT = _eigvecs.transpose();
263 
264  RankFourTensor dstress_dtrial;
265  for (unsigned i = 0; i < _tensor_dimensionality; ++i)
266  for (unsigned j = 0; j < _tensor_dimensionality; ++j)
267  for (unsigned k = 0; k < _tensor_dimensionality; ++k)
268  for (unsigned l = 0; l < _tensor_dimensionality; ++l)
269  for (unsigned a = 0; a < _num_sp; ++a)
270  dstress_dtrial(i, j, k, l) +=
271  drot_dstress(i, a, k, l) * stress_params[a] * eT(a, j) +
272  _eigvecs(i, a) * stress_params[a] * drot_dstress(j, a, k, l);
273 
274  const std::vector<RankTwoTensor> dsp_trial = dstress_param_dstress(stress_trial);
275  for (unsigned i = 0; i < _tensor_dimensionality; ++i)
276  for (unsigned j = 0; j < _tensor_dimensionality; ++j)
277  for (unsigned k = 0; k < _tensor_dimensionality; ++k)
278  for (unsigned l = 0; l < _tensor_dimensionality; ++l)
279  for (unsigned a = 0; a < _num_sp; ++a)
280  for (unsigned b = 0; b < _num_sp; ++b)
281  dstress_dtrial(i, j, k, l) +=
282  _eigvecs(i, a) * dvar_dtrial[a][b] * dsp_trial[b](k, l) * eT(a, j);
283 
284  cto = dstress_dtrial * elasticity_tensor;
285 }

◆ d2stress_param_dstress()

std::vector< RankFourTensor > TensileStressUpdate::d2stress_param_dstress ( const RankTwoTensor stress) const
overrideprotectedvirtual

d2(stress_param[i])/d(stress)/d(stress) at given stress

Parameters
stressstress tensor
Returns
d2(stress_param[:])/d(stress)/d(stress)

Implements MultiParameterPlasticityStressUpdate.

Definition at line 61 of file TensileStressUpdate.C.

62 {
63  std::vector<RankFourTensor> d2;
64  stress.d2symmetricEigenvalues(d2);
65  return d2;
66 }

◆ dnRHSdVar()

void MultiParameterPlasticityStressUpdate::dnRHSdVar ( const yieldAndFlow smoothed_q,
const std::vector< std::vector< Real >> &  dintnl,
const std::vector< Real > &  stress_params,
Real  gaE,
std::vector< double > &  jac 
) const
protectedinherited

Derivative of -RHS with respect to the stress_params and gaE, placed into an array ready for solving the linear system using LAPACK gsev.

Parameters
smoothed_q[in]Holds the current value of yield function and derivatives evaluated at the current values of the stress_params and the internal parameters
dintnl[in]The derivatives of the internal parameters wrt the stress_params
stress_params[in]The current value of the stress_params during the Newton-Raphson process
gaE[in]The current value of gaE
jac[out]The outputted derivatives

Definition at line 828 of file MultiParameterPlasticityStressUpdate.C.

833 {
834  for (auto & jac_entry : jac)
835  jac_entry = 0.0;
836 
837  const Real ga = gaE / _En;
838 
839  unsigned ind = 0;
840  for (unsigned var = 0; var < _num_sp; ++var)
841  {
842  for (unsigned rhs = 0; rhs < _num_sp; ++rhs)
843  {
844  if (var == rhs)
845  jac[ind] -= 1.0;
846  for (unsigned j = 0; j < _num_sp; ++j)
847  {
848  jac[ind] -= ga * _Eij[rhs][j] * smoothed_q.d2g[j][var];
849  for (unsigned k = 0; k < _num_intnl; ++k)
850  jac[ind] -= ga * _Eij[rhs][j] * smoothed_q.d2g_di[j][k] * dintnl[k][var];
851  }
852  ind++;
853  }
854  // now rhs = _num_sp (that is, the yield function)
855  jac[ind] -= smoothed_q.df[var];
856  for (unsigned k = 0; k < _num_intnl; ++k)
857  jac[ind] -= smoothed_q.df_di[k] * dintnl[k][var];
858  ind++;
859  }
860 
861  // now var = _num_sp (that is, gaE)
862  for (unsigned rhs = 0; rhs < _num_sp; ++rhs)
863  {
864  for (unsigned j = 0; j < _num_sp; ++j)
865  jac[ind] -= (1.0 / _En) * _Eij[rhs][j] * smoothed_q.dg[j];
866  ind++;
867  }
868  // now rhs = _num_sp (that is, the yield function)
869  jac[ind] = 0.0;
870 }

Referenced by MultiParameterPlasticityStressUpdate::dVardTrial(), and MultiParameterPlasticityStressUpdate::nrStep().

◆ dsmoother()

Real MultiParameterPlasticityStressUpdate::dsmoother ( Real  f_diff) const
protectedinherited

Derivative of smoother.

Definition at line 533 of file MultiParameterPlasticityStressUpdate.C.

534 {
535  if (std::abs(f_diff) >= _smoothing_tol)
536  return 0.0;
537  switch (_smoother_function_type)
538  {
540  return 0.25 * M_PI / _smoothing_tol * std::cos(f_diff * M_PI * 0.5 / _smoothing_tol);
542  return 0.75 / _smoothing_tol * (1.0 - Utility::pow<2>(f_diff / _smoothing_tol));
544  return 0.625 / _smoothing_tol * (1.0 - Utility::pow<4>(f_diff / _smoothing_tol));
546  return (7.0 / 12.0 / _smoothing_tol) * (1.0 - Utility::pow<6>(f_diff / _smoothing_tol));
547  default:
548  return 0.0;
549  }
550 }

Referenced by MultiParameterPlasticityStressUpdate::smoothAllQuantities().

◆ dstress_param_dstress()

std::vector< RankTwoTensor > TensileStressUpdate::dstress_param_dstress ( const RankTwoTensor stress) const
overrideprotectedvirtual

d(stress_param[i])/d(stress) at given stress

Parameters
stressstress tensor
Returns
d(stress_param[:])/d(stress)

Implements MultiParameterPlasticityStressUpdate.

Definition at line 52 of file TensileStressUpdate.C.

53 {
54  std::vector<Real> sp;
55  std::vector<RankTwoTensor> dsp;
56  stress.dsymmetricEigenvalues(sp, dsp);
57  return dsp;
58 }

Referenced by consistentTangentOperatorV().

◆ dtensile_strength()

Real TensileStressUpdate::dtensile_strength ( const Real  internal_param) const
protectedvirtual

d(tensile strength)/d(internal_param) as a function of residual value, rate, and internal_param

Definition at line 221 of file TensileStressUpdate.C.

222 {
223  return _strength.derivative(internal_param);
224 }

Referenced by computeAllQV().

◆ dVardTrial()

void MultiParameterPlasticityStressUpdate::dVardTrial ( bool  elastic_only,
const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  stress_params,
Real  gaE,
const std::vector< Real > &  intnl,
const yieldAndFlow smoothed_q,
Real  step_size,
bool  compute_full_tangent_operator,
std::vector< std::vector< Real >> &  dvar_dtrial 
) const
protectedinherited

Calculates derivatives of the stress_params and gaE with repect to the trial values of the stress_params for the (sub)strain increment.

After the strain increment has been fully applied, dvar_dtrial will contain the result appropriate to the full strain increment. Before that time (if applying in sub-strain increments) it will contain the result appropriate to the amount of strain increment applied successfully.

Parameters
elastic_only[in]whether this was an elastic step: if so then the updates to dvar_dtrial are fairly trivial
trial_stress_params[in]Trial values of stress_params for this (sub)strain increment
stress_params[in]Returned values of stress_params for this (sub)strain increment
gaE[in]the value of gaE that came from this (sub)strain increment
intnl[in]the value of the internal parameters at the returned position
smoothed_q[in]contains the yield function and derivatives evaluated at (stress_params, intnl)
step_size[in]size of this (sub)strain increment
compute_full_tangent_operator[in]true if the full consistent tangent operator is needed, otherwise false
dvar_dtrial[out]dvar_dtrial[i][j] = d({stress_param[i],gaE})/d(trial_stress_param[j])

Definition at line 873 of file MultiParameterPlasticityStressUpdate.C.

882 {
883  if (!_fe_problem.currentlyComputingJacobian())
884  return;
885 
886  if (!compute_full_tangent_operator)
887  return;
888 
889  if (elastic_only)
890  {
891  // no change to gaE, and all off-diag stuff remains unchanged from previous step
892  for (unsigned v = 0; v < _num_sp; ++v)
893  dvar_dtrial[v][v] += step_size;
894  return;
895  }
896 
897  const Real ga = gaE / _En;
898 
899  std::vector<std::vector<Real>> dintnl(_num_intnl, std::vector<Real>(_num_sp));
900  setIntnlDerivativesV(trial_stress_params, stress_params, intnl, dintnl);
901 
902  // rhs is described elsewhere, the following are changes in rhs wrt the trial_stress_param
903  // values
904  // In the following we use d(intnl)/d(trial variable) = - d(intnl)/d(variable)
905  std::vector<Real> rhs_cto((_num_sp + 1) * _num_sp);
906 
907  unsigned ind = 0;
908  for (unsigned a = 0; a < _num_sp; ++a)
909  {
910  // change in RHS[b] wrt changes in stress_param_trial[a]
911  for (unsigned b = 0; b < _num_sp; ++b)
912  {
913  if (a == b)
914  rhs_cto[ind] -= 1.0;
915  for (unsigned j = 0; j < _num_sp; ++j)
916  for (unsigned k = 0; k < _num_intnl; ++k)
917  rhs_cto[ind] -= ga * _Eij[b][j] * smoothed_q.d2g_di[j][k] * dintnl[k][a];
918  ind++;
919  }
920  // now b = _num_sp (that is, the yield function)
921  for (unsigned k = 0; k < _num_intnl; ++k)
922  rhs_cto[ind] -= smoothed_q.df_di[k] * dintnl[k][a];
923  ind++;
924  }
925 
926  // jac = d(-rhs)/d(var)
927  std::vector<double> jac((_num_sp + 1) * (_num_sp + 1));
928  dnRHSdVar(smoothed_q, dintnl, stress_params, gaE, jac);
929 
930  std::vector<int> ipiv(_num_sp + 1);
931  int info;
932  const int gesv_num_rhs = _num_sp + 1;
933  const int gesv_num_pq = _num_sp;
934  LAPACKgesv_(&gesv_num_rhs,
935  &gesv_num_pq,
936  &jac[0],
937  &gesv_num_rhs,
938  &ipiv[0],
939  &rhs_cto[0],
940  &gesv_num_rhs,
941  &info);
942  if (info != 0)
943  errorHandler("MultiParameterPlasticityStressUpdate: PETSC LAPACK gsev routine returned with "
944  "error code " +
945  Moose::stringify(info));
946 
947  ind = 0;
948  std::vector<std::vector<Real>> dvarn_dtrialn(_num_sp + 1, std::vector<Real>(_num_sp, 0.0));
949  for (unsigned spt = 0; spt < _num_sp; ++spt) // loop over trial stress-param variables
950  {
951  for (unsigned v = 0; v < _num_sp; ++v) // loop over variables in NR procedure
952  {
953  dvarn_dtrialn[v][spt] = rhs_cto[ind];
954  ind++;
955  }
956  // the final NR variable is gaE
957  dvarn_dtrialn[_num_sp][spt] = rhs_cto[ind];
958  ind++;
959  }
960 
961  const std::vector<std::vector<Real>> dvar_dtrial_old = dvar_dtrial;
962 
963  for (unsigned v = 0; v < _num_sp; ++v) // loop over variables in NR procedure
964  {
965  for (unsigned spt = 0; spt < _num_sp; ++spt) // loop over trial stress-param variables
966  {
967  dvar_dtrial[v][spt] = step_size * dvarn_dtrialn[v][spt];
968  for (unsigned a = 0; a < _num_sp; ++a)
969  dvar_dtrial[v][spt] += dvarn_dtrialn[v][a] * dvar_dtrial_old[a][spt];
970  }
971  }
972  // for gaE the formulae are a little different
973  const unsigned v = _num_sp;
974  for (unsigned spt = 0; spt < _num_sp; ++spt)
975  {
976  dvar_dtrial[v][spt] += step_size * dvarn_dtrialn[v][spt]; // note +=
977  for (unsigned a = 0; a < _num_sp; ++a)
978  dvar_dtrial[v][spt] += dvarn_dtrialn[v][a] * dvar_dtrial_old[a][spt];
979  }
980 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ errorHandler()

void MultiParameterPlasticityStressUpdate::errorHandler ( const std::string &  message) const
protectedvirtualinherited

Performs any necessary cleaning-up, then throw MooseException(message)

Parameters
messageThe message to using in MooseException

Definition at line 661 of file MultiParameterPlasticityStressUpdate.C.

662 {
663  throw MooseException(message);
664 }

Referenced by MultiParameterPlasticityStressUpdate::dVardTrial(), and MultiParameterPlasticityStressUpdate::updateState().

◆ finalizeReturnProcess()

void MultiParameterPlasticityStressUpdate::finalizeReturnProcess ( const RankTwoTensor rotation_increment)
protectedvirtualinherited

Derived classes may use this to perform calculations after the return-map process has completed successfully in stress_param space but before the returned stress tensor has been calculcated.

Parameters
rotation_increment[in]The large-strain rotation increment

Reimplemented in CappedDruckerPragerStressUpdate, CappedWeakPlaneStressUpdate, and CappedWeakInclinedPlaneStressUpdate.

Definition at line 672 of file MultiParameterPlasticityStressUpdate.C.

674 {
675 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ getTangentCalculationMethod()

virtual TangentCalculationMethod MultiParameterPlasticityStressUpdate::getTangentCalculationMethod ( )
inlineoverrideprotectedvirtualinherited

Reimplemented from StressUpdateBase.

Definition at line 123 of file MultiParameterPlasticityStressUpdate.h.

124  {
126  }

◆ initializeReturnProcess()

void MultiParameterPlasticityStressUpdate::initializeReturnProcess ( )
protectedvirtualinherited

Derived classes may use this to perform calculations before any return-map process is performed, for instance, to initialize variables.

This is called at the very start of updateState, even before any checking for admissible stresses, etc, is performed

Reimplemented in CappedDruckerPragerStressUpdate, CappedWeakPlaneStressUpdate, and CappedWeakInclinedPlaneStressUpdate.

Definition at line 667 of file MultiParameterPlasticityStressUpdate.C.

668 {
669 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ initializeVarsV()

void TensileStressUpdate::initializeVarsV ( const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  intnl_old,
std::vector< Real > &  stress_params,
Real &  gaE,
std::vector< Real > &  intnl 
) const
overrideprotectedvirtual

Sets (stress_params, intnl) at "good guesses" of the solution to the Return-Map algorithm.

The purpose of these "good guesses" is to speed up the Newton-Raphson process by providing it with a good initial guess. Derived classes may choose to override this if their plastic models are easy enough to solve approximately. The default values, provided by this class, are simply gaE = 0, stress_params = trial_stress_params, that is, the "good guess" is just the trial point for this (sub)strain increment.

Parameters
trial_stress_params[in]The stress_params at the trial point
intnl_old[in]The internal parameters before applying the (sub)strain increment
stress_params[out]The "good guess" value of the stress_params
gaE[out]The "good guess" value of gaE
intnl[out]The "good guess" value of the internal parameters

Reimplemented from MultiParameterPlasticityStressUpdate.

Definition at line 171 of file TensileStressUpdate.C.

176 {
177  if (!_perfect_guess)
178  {
179  for (unsigned i = 0; i < _num_sp; ++i)
180  stress_params[i] = trial_stress_params[i];
181  gaE = 0.0;
182  }
183  else
184  {
185  const Real ts = tensile_strength(intnl_old[0]);
186  stress_params[2] = ts; // largest eigenvalue
187  stress_params[1] = std::min(stress_params[1], ts);
188  stress_params[0] = std::min(stress_params[0], ts);
189  gaE = trial_stress_params[2] - stress_params[2];
190  }
191  setIntnlValuesV(trial_stress_params, stress_params, intnl_old, intnl);
192 }

◆ initQpStatefulProperties()

void MultiParameterPlasticityStressUpdate::initQpStatefulProperties ( )
overrideprotectedvirtualinherited

Reimplemented in CappedWeakInclinedPlaneStressUpdate.

Definition at line 141 of file MultiParameterPlasticityStressUpdate.C.

142 {
143  _plastic_strain[_qp].zero();
144  _intnl[_qp].assign(_num_intnl, 0);
145  _yf[_qp].assign(_num_yf, 0);
146  _iter[_qp] = 0.0;
147  _max_iter_used[_qp] = 0.0;
148  _linesearch_needed[_qp] = 0.0;
149 }

Referenced by CappedWeakInclinedPlaneStressUpdate::initQpStatefulProperties(), and MultiParameterPlasticityStressUpdate::updateState().

◆ isIsotropic()

virtual bool StressUpdateBase::isIsotropic ( )
inlinevirtualinherited

Is the implmented model isotropic? The safe default is 'false'.

Reimplemented in RadialReturnStressUpdate, CappedDruckerPragerStressUpdate, and CappedMohrCoulombStressUpdate.

Definition at line 112 of file StressUpdateBase.h.

112 { return false; };

Referenced by ComputeMultipleInelasticStress::initialSetup().

◆ ismoother()

Real MultiParameterPlasticityStressUpdate::ismoother ( Real  f_diff) const
protectedinherited

Smooths yield functions.

The returned value must be zero if abs(f_diff) >= _smoothing_tol and otherwise must satisfy, over -_smoothing_tol <= f_diff <= _smoothing_tol: (1) C2 (2) zero at f_diff = +/- _smoothing_tol (3) derivative is +/-0.5 at f_diff = +/- _smoothing_tol (4) derivative must be in [-0.5, 0.5] (5) second derivative is zero at f_diff = +/- _smoothing_tol (6) second derivative must be non-negative in order to ensure C2 differentiability and convexity of the smoothed yield surface.

Definition at line 484 of file MultiParameterPlasticityStressUpdate.C.

485 {
486  if (std::abs(f_diff) >= _smoothing_tol)
487  return 0.0;
488  switch (_smoother_function_type)
489  {
491  return -_smoothing_tol / M_PI * std::cos(0.5 * M_PI * f_diff / _smoothing_tol);
493  return 0.75 / _smoothing_tol *
494  (0.5 * (Utility::pow<2>(f_diff) - _smoothing_tol2) -
495  (_smoothing_tol2 / 12.0) * (Utility::pow<4>(f_diff / _smoothing_tol) - 1.0));
497  return 0.625 / _smoothing_tol *
498  (0.5 * (Utility::pow<2>(f_diff) - _smoothing_tol2) -
499  (_smoothing_tol2 / 30.0) * (Utility::pow<6>(f_diff / _smoothing_tol) - 1.0));
501  return (7.0 / 12.0 / _smoothing_tol) *
502  (0.5 * (Utility::pow<2>(f_diff) - _smoothing_tol2) -
503  (_smoothing_tol2 / 56.0) * (Utility::pow<8>(f_diff / _smoothing_tol) - 1.0));
504  default:
505  return 0.0;
506  }
507 }

Referenced by MultiParameterPlasticityStressUpdate::smoothAllQuantities(), and MultiParameterPlasticityStressUpdate::yieldF().

◆ lineSearch()

int MultiParameterPlasticityStressUpdate::lineSearch ( Real &  res2,
std::vector< Real > &  stress_params,
Real &  gaE,
const std::vector< Real > &  trial_stress_params,
yieldAndFlow smoothed_q,
const std::vector< Real > &  intnl_ok,
std::vector< Real > &  intnl,
std::vector< Real > &  rhs,
Real &  linesearch_needed 
) const
protectedinherited

Performs a line-search to find stress_params and gaE Upon entry:

  • rhs contains the solution to the Newton-Raphson (ie nrStep should have been called). If a full Newton step is used then stress_params[:] += rhs[0:_num_sp-1] and gaE += rhs[_num_sp]
  • res2 contains the residual-squared before applying any of solution
  • stress_params contains the stress_params before applying any of the solution
  • gaE contains gaE before applying any of the solution (that is contained in rhs) Upon exit:
  • stress_params will be the stress_params after applying the solution
  • gaE will be the stress_params after applying the solution
  • rhs will contain the updated rhs values (after applying the solution) ready for the next Newton-Raphson step,
  • res2 will be the residual-squared after applying the solution
  • intnl will contain the internal variables corresponding to the return from trial_stress_params to stress_params (and starting from intnl_ok)
  • linesearch_needed will be 1.0 if a linesearch was needed
  • smoothed_q will contain the value of the yield function and its derivatives, etc, at (stress_params, intnl)
    Parameters
    res2[in,out]the residual-squared, both as an input and output
    stress_params[in,out]Upon input the value of the stress_params before the current Newton-Raphson process was initiated. Upon exit this will hold the values coming from the line search.
    trial_stress_params[in]Trial value for the stress_params for this (sub)strain increment
    gaE[in,out]Upon input the value of gaE before the current Newton-Raphson iteration was initiated. Upon exit this will hold the value coming from the line-search
    smoothed_q[in,out]Upon input, the value of the smoothed yield function and derivatives at the prior-to-Newton configuration. Upon exit this is evaluated at the new (stress_params, intnl)
    intnl_ok[in]The value of the internal parameters from the start of this (sub)strain increment
    intnl[in,out]The value of the internal parameters after the line-search has converged
    rhs[in,out]Upon entry this contains the solution to the Newton-Raphson. Upon exit this contains the updated rhs values
    Returns
    0 if successful, 1 otherwise

Definition at line 553 of file MultiParameterPlasticityStressUpdate.C.

562 {
563  const Real res2_old = res2;
564  const std::vector<Real> sp_params_old = stress_params;
565  const Real gaE_old = gaE;
566  const std::vector<Real> delta_nr_params = rhs;
567 
568  Real lam = 1.0; // line-search parameter
569  const Real lam_min = 1E-10; // minimum value of lam allowed
570  const Real slope = -2.0 * res2_old; // "Numerical Recipes" uses -b*A*x, in order to check for
571  // roundoff, but i hope the nrStep would warn if there were
572  // problems
573  Real tmp_lam; // cached value of lam used in quadratic & cubic line search
574  Real f2 = res2_old; // cached value of f = residual2 used in the cubic in the line search
575  Real lam2 = lam; // cached value of lam used in the cubic in the line search
576 
577  while (true)
578  {
579  // update variables using the current line-search parameter
580  for (unsigned i = 0; i < _num_sp; ++i)
581  stress_params[i] = sp_params_old[i] + lam * delta_nr_params[i];
582  gaE = gaE_old + lam * delta_nr_params[_num_sp];
583 
584  // and internal parameters
585  setIntnlValuesV(trial_stress_params, stress_params, intnl_ok, intnl);
586 
587  smoothed_q = smoothAllQuantities(stress_params, intnl);
588 
589  // update rhs for next-time through
590  calculateRHS(trial_stress_params, stress_params, gaE, smoothed_q, rhs);
591  res2 = calculateRes2(rhs);
592 
593  // do the line-search
594  if (res2 < res2_old + 1E-4 * lam * slope)
595  break;
596  else if (lam < lam_min)
597  return 1;
598  else if (lam == 1.0)
599  {
600  // model as a quadratic
601  tmp_lam = -0.5 * slope / (res2 - res2_old - slope);
602  }
603  else
604  {
605  // model as a cubic
606  const Real rhs1 = res2 - res2_old - lam * slope;
607  const Real rhs2 = f2 - res2_old - lam2 * slope;
608  const Real a = (rhs1 / Utility::pow<2>(lam) - rhs2 / Utility::pow<2>(lam2)) / (lam - lam2);
609  const Real b =
610  (-lam2 * rhs1 / Utility::pow<2>(lam) + lam * rhs2 / Utility::pow<2>(lam2)) / (lam - lam2);
611  if (a == 0.0)
612  tmp_lam = -slope / (2.0 * b);
613  else
614  {
615  const Real disc = Utility::pow<2>(b) - 3.0 * a * slope;
616  if (disc < 0)
617  tmp_lam = 0.5 * lam;
618  else if (b <= 0)
619  tmp_lam = (-b + std::sqrt(disc)) / (3.0 * a);
620  else
621  tmp_lam = -slope / (b + std::sqrt(disc));
622  }
623  if (tmp_lam > 0.5 * lam)
624  tmp_lam = 0.5 * lam;
625  }
626  lam2 = lam;
627  f2 = res2;
628  lam = std::max(tmp_lam, 0.1 * lam);
629  }
630 
631  if (lam < 1.0)
632  linesearch_needed = 1.0;
633  return 0;
634 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ nrStep()

int MultiParameterPlasticityStressUpdate::nrStep ( const yieldAndFlow smoothed_q,
const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl,
Real  gaE,
std::vector< Real > &  rhs 
) const
protectedinherited

Performs a Newton-Raphson step to attempt to zero rhs Upon return, rhs will contain the solution.

Parameters
smoothed_q[in]The value of the smoothed yield function and derivatives prior to this Newton-Raphson step
trial_stress_params[in]Trial value for the stress_params for this (sub)strain increment
stress_params[in]The current value of the stress_params
intnl[in]The current value of the internal parameters
gaE[in]The current value of gaE
rhs[in,out]Upon entry, the rhs to zero using Newton-Raphson. Upon exit, the solution to the Newton-Raphson problem
Returns
0 if successful, 1 otherwise

Definition at line 637 of file MultiParameterPlasticityStressUpdate.C.

643 {
644  std::vector<std::vector<Real>> dintnl(_num_intnl, std::vector<Real>(_num_sp));
645  setIntnlDerivativesV(trial_stress_params, stress_params, intnl, dintnl);
646 
647  std::vector<double> jac((_num_sp + 1) * (_num_sp + 1));
648  dnRHSdVar(smoothed_q, dintnl, stress_params, gaE, jac);
649 
650  // use LAPACK to solve the linear system
651  const int nrhs = 1;
652  std::vector<int> ipiv(_num_sp + 1);
653  int info;
654  const int gesv_num_rhs = _num_sp + 1;
655  LAPACKgesv_(
656  &gesv_num_rhs, &nrhs, &jac[0], &gesv_num_rhs, &ipiv[0], &rhs[0], &gesv_num_rhs, &info);
657  return info;
658 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ precisionLoss()

bool MultiParameterPlasticityStressUpdate::precisionLoss ( const std::vector< Real > &  solution,
const std::vector< Real > &  stress_params,
Real  gaE 
) const
protectedinherited

Check whether precision loss has occurred.

Parameters
[in]solutionThe solution to the Newton-Raphson system
[in]stress_paramsThe currect values of the stress_params for this (sub)strain increment
[in]gaEThe currenct value of gaE for this (sub)strain increment
Returns
true if precision loss has occurred

Definition at line 983 of file MultiParameterPlasticityStressUpdate.C.

986 {
987  if (std::abs(solution[_num_sp]) > 1E-13 * std::abs(gaE))
988  return false;
989  for (unsigned i = 0; i < _num_sp; ++i)
990  if (std::abs(solution[i]) > 1E-13 * std::abs(stress_params[i]))
991  return false;
992  return true;
993 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ preReturnMapV()

void TensileStressUpdate::preReturnMapV ( const std::vector< Real > &  trial_stress_params,
const RankTwoTensor stress_trial,
const std::vector< Real > &  intnl_old,
const std::vector< Real > &  yf,
const RankFourTensor Eijkl 
)
overrideprotectedvirtual

Derived classes may employ this function to record stuff or do other computations prior to the return-mapping algorithm.

We know that (trial_stress_params, intnl_old) is inadmissible when this is called

Parameters
trial_stress_params[in]The trial values of the stress parameters
stress_trial[in]Trial stress tensor
intnl_old[in]Old value of the internal parameters.
yf[in]The yield functions at (p_trial, q_trial, intnl_old)
Eijkl[in]The elasticity tensor

Reimplemented from MultiParameterPlasticityStressUpdate.

Definition at line 69 of file TensileStressUpdate.C.

74 {
75  std::vector<Real> eigvals;
76  stress_trial.symmetricEigenvaluesEigenvectors(eigvals, _eigvecs);
77 }

◆ propagateQpStatefulProperties()

void MultiParameterPlasticityStressUpdate::propagateQpStatefulProperties ( )
overrideprotectedvirtualinherited

If updateState is not called during a timestep, this will be.

This method allows derived classes to set internal parameters from their Old values, for instance

Reimplemented from StressUpdateBase.

Definition at line 152 of file MultiParameterPlasticityStressUpdate.C.

153 {
155  std::copy(_intnl_old[_qp].begin(), _intnl_old[_qp].end(), _intnl[_qp].begin());
157 }

◆ requiresIsotropicTensor()

bool TensileStressUpdate::requiresIsotropicTensor ( )
inlineoverridevirtual

Does the model require the elasticity tensor to be isotropic?

Implements StressUpdateBase.

Definition at line 34 of file TensileStressUpdate.h.

34 { return true; }

◆ resetProperties()

void StressUpdateBase::resetProperties ( )
inlinefinalinherited

Definition at line 123 of file StressUpdateBase.h.

123 {}

◆ resetQpProperties()

void StressUpdateBase::resetQpProperties ( )
inlinefinalinherited

Retained as empty methods to avoid a warning from Material.C in framework. These methods are unused in all inheriting classes and should not be overwritten.

Definition at line 122 of file StressUpdateBase.h.

122 {}

◆ setEffectiveElasticity()

void TensileStressUpdate::setEffectiveElasticity ( const RankFourTensor Eijkl)
overrideprotectedvirtual

Sets _Eij and _En and _Cij.

Implements MultiParameterPlasticityStressUpdate.

Definition at line 153 of file TensileStressUpdate.C.

154 {
155  // Eijkl is required to be isotropic, so we can use the
156  // frame where stress is diagonal
157  for (unsigned a = 0; a < _num_sp; ++a)
158  for (unsigned b = 0; b < _num_sp; ++b)
159  _Eij[a][b] = Eijkl(a, a, b, b);
160  _En = _Eij[2][2];
161  const Real denom = _Eij[0][0] * (_Eij[0][0] + _Eij[0][1]) - 2 * Utility::pow<2>(_Eij[0][1]);
162  for (unsigned a = 0; a < _num_sp; ++a)
163  {
164  _Cij[a][a] = (_Eij[0][0] + _Eij[0][1]) / denom;
165  for (unsigned b = 0; b < a; ++b)
166  _Cij[a][b] = _Cij[b][a] = -_Eij[0][1] / denom;
167  }
168 }

◆ setInelasticStrainIncrementAfterReturn()

void MultiParameterPlasticityStressUpdate::setInelasticStrainIncrementAfterReturn ( const RankTwoTensor stress_trial,
Real  gaE,
const yieldAndFlow smoothed_q,
const RankFourTensor elasticity_tensor,
const RankTwoTensor returned_stress,
RankTwoTensor inelastic_strain_increment 
) const
protectedvirtualinherited

Sets inelastic strain increment from the returned configuration This is called after the return-map process has completed successfully in stress_param space, just after finalizeReturnProcess has been called.

Derived classes may override this function

Parameters
stress_trial[in]The trial value of stress
gaE[in]The value of gaE after the return-map process has completed successfully
smoothed_q[in]Holds the current value of yield function and derivatives evaluated at the returned configuration
elasticity_tensor[in]The elasticity tensor
returned_stress[in]The stress after the return-map process
inelastic_strain_increment[out]The inelastic strain increment resulting from this return-map

Reimplemented in TwoParameterPlasticityStressUpdate.

Definition at line 786 of file MultiParameterPlasticityStressUpdate.C.

793 {
794  const std::vector<RankTwoTensor> dsp_dstress = dstress_param_dstress(returned_stress);
795  inelastic_strain_increment = RankTwoTensor();
796  for (unsigned i = 0; i < _num_sp; ++i)
797  inelastic_strain_increment += smoothed_q.dg[i] * dsp_dstress[i];
798  inelastic_strain_increment *= gaE / _En;
799 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ setIntnlDerivativesV()

void TensileStressUpdate::setIntnlDerivativesV ( const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  current_stress_params,
const std::vector< Real > &  intnl,
std::vector< std::vector< Real >> &  dintnl 
) const
overrideprotectedvirtual

Sets the derivatives of internal parameters, based on the trial values of stress_params, their current values, and the current values of the internal parameters.

Derived classes must override this.

Parameters
trial_stress_params[in]The trial stress parameters
current_stress_params[in]The current stress parameters
intnl[in]The current value of the internal parameters
dintnl[out]The derivatives dintnl[i][j] = d(intnl[i])/d(stress_param j)

Implements MultiParameterPlasticityStressUpdate.

Definition at line 204 of file TensileStressUpdate.C.

208 {
209  dintnl[0][0] = 0.0;
210  dintnl[0][1] = 0.0;
211  dintnl[0][2] = -1.0 / _Eij[2][2];
212 }

◆ setIntnlValuesV()

void TensileStressUpdate::setIntnlValuesV ( const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  current_stress_params,
const std::vector< Real > &  intnl_old,
std::vector< Real > &  intnl 
) const
overrideprotectedvirtual

Sets the internal parameters based on the trial values of stress_params, their current values, and the old values of the internal parameters.

Derived classes must override this.

Parameters
trial_stress_params[in]The trial stress parameters (eg trial_p and trial_q)
current_stress_params[in]The current stress parameters (eg p and q)
intnl_old[out]Old value of internal parameters
intnl[out]The value of internal parameters to be set

Implements MultiParameterPlasticityStressUpdate.

Definition at line 195 of file TensileStressUpdate.C.

199 {
200  intnl[0] = intnl_old[0] + (trial_stress_params[2] - current_stress_params[2]) / _Eij[2][2];
201 }

Referenced by initializeVarsV().

◆ setQp()

void StressUpdateBase::setQp ( unsigned int  qp)
inherited

Sets the value of the global variable _qp for inheriting classes.

Definition at line 43 of file StressUpdateBase.C.

44 {
45  _qp = qp;
46 }

◆ setStressAfterReturnV()

void TensileStressUpdate::setStressAfterReturnV ( const RankTwoTensor stress_trial,
const std::vector< Real > &  stress_params,
Real  gaE,
const std::vector< Real > &  intnl,
const yieldAndFlow smoothed_q,
const RankFourTensor Eijkl,
RankTwoTensor stress 
) const
overrideprotectedvirtual

Sets stress from the admissible parameters.

This is called after the return-map process has completed successfully in stress_param space, just after finalizeReturnProcess has been called. Derived classes must override this function

Parameters
stress_trial[in]The trial value of stress
stress_params[in]The value of the stress_params after the return-map process has completed successfully
gaE[in]The value of gaE after the return-map process has completed successfully
intnl[in]The value of the internal parameters after the return-map process has completed successfully
smoothed_q[in]Holds the current value of yield function and derivatives evaluated at the returned state
Eijkl[in]The elasticity tensor
stress[out]The returned value of the stress tensor

Implements MultiParameterPlasticityStressUpdate.

Definition at line 80 of file TensileStressUpdate.C.

87 {
88  // form the diagonal stress
89  stress = RankTwoTensor(stress_params[0], stress_params[1], stress_params[2], 0.0, 0.0, 0.0);
90  // rotate to the original frame
91  stress = _eigvecs * stress * (_eigvecs.transpose());
92 }

◆ smoothAllQuantities()

MultiParameterPlasticityStressUpdate::yieldAndFlow MultiParameterPlasticityStressUpdate::smoothAllQuantities ( const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl 
) const
protectedinherited

Calculates all yield functions and derivatives, and then performs the smoothing scheme.

Parameters
stress_params[in]The stress parameters (eg stress_params[0] = stress_zz and stress_params[1] = sqrt(stress_zx^2 + stress_zy^2))
intnl[in]Internal parameters
Returns
The smoothed yield function and derivatives

Definition at line 400 of file MultiParameterPlasticityStressUpdate.C.

402 {
403  std::vector<yieldAndFlow> all_q(_num_yf, yieldAndFlow(_num_sp, _num_intnl));
404  computeAllQV(stress_params, intnl, all_q);
405 
406  /* This routine holds the key to my smoothing strategy. It
407  * may be proved that this smoothing strategy produces a
408  * yield surface that is both C2 differentiable and convex,
409  * assuming the individual yield functions are C2 and
410  * convex too.
411  * Of course all the derivatives must also be smoothed.
412  * Also, I assume that d(flow potential)/dstress gets smoothed
413  * by the Yield Function (which produces a C2 flow potential).
414  * See the line identified in the loop below.
415  * Only time will tell whether this is a good strategy, but it
416  * works well in all tests so far. Convexity is irrelevant
417  * for the non-associated case, but at least the return-map
418  * problem should always have a unique solution.
419  * For two yield functions+flows, labelled 1 and 2, we
420  * should have
421  * d(g1 - g2) . d(f1 - f2) >= 0
422  * If not then the return-map problem for even the
423  * multi-surface plasticity with no smoothing won't have a
424  * unique solution. If the multi-surface plasticity has
425  * a unique solution then the smoothed version defined
426  * below will too.
427  */
428 
429  // res_f is the index that contains the smoothed yieldAndFlow
430  std::size_t res_f = 0;
431 
432  for (std::size_t a = 1; a < all_q.size(); ++a)
433  {
434  if (all_q[res_f].f >= all_q[a].f + _smoothing_tol)
435  // no smoothing is needed: res_f is already indexes the largest yield function
436  continue;
437  else if (all_q[a].f >= all_q[res_f].f + _smoothing_tol)
438  {
439  // no smoothing is needed, and res_f needs to index to all_q[a]
440  res_f = a;
441  continue;
442  }
443  else
444  {
445  // smoothing is required
446  const Real f_diff = all_q[res_f].f - all_q[a].f;
447  const Real ism = ismoother(f_diff);
448  const Real sm = smoother(f_diff);
449  const Real dsm = dsmoother(f_diff);
450  // we want: all_q[res_f].f = 0.5 * all_q[res_f].f + all_q[a].f + _smoothing_tol) + ism,
451  // but we have to do the derivatives first
452  for (unsigned i = 0; i < _num_sp; ++i)
453  {
454  for (unsigned j = 0; j < _num_sp; ++j)
455  all_q[res_f].d2g[i][j] =
456  0.5 * (all_q[res_f].d2g[i][j] + all_q[a].d2g[i][j]) +
457  dsm * (all_q[res_f].df[j] - all_q[a].df[j]) * (all_q[res_f].dg[i] - all_q[a].dg[i]) +
458  sm * (all_q[res_f].d2g[i][j] - all_q[a].d2g[i][j]);
459  for (unsigned j = 0; j < _num_intnl; ++j)
460  all_q[res_f].d2g_di[i][j] = 0.5 * (all_q[res_f].d2g_di[i][j] + all_q[a].d2g_di[i][j]) +
461  dsm * (all_q[res_f].df_di[j] - all_q[a].df_di[j]) *
462  (all_q[res_f].dg[i] - all_q[a].dg[i]) +
463  sm * (all_q[res_f].d2g_di[i][j] - all_q[a].d2g_di[i][j]);
464  }
465  for (unsigned i = 0; i < _num_sp; ++i)
466  {
467  all_q[res_f].df[i] = 0.5 * (all_q[res_f].df[i] + all_q[a].df[i]) +
468  sm * (all_q[res_f].df[i] - all_q[a].df[i]);
469  // whether the following (smoothing g with f's smoother) is a good strategy remains to be
470  // seen...
471  all_q[res_f].dg[i] = 0.5 * (all_q[res_f].dg[i] + all_q[a].dg[i]) +
472  sm * (all_q[res_f].dg[i] - all_q[a].dg[i]);
473  }
474  for (unsigned i = 0; i < _num_intnl; ++i)
475  all_q[res_f].df_di[i] = 0.5 * (all_q[res_f].df_di[i] + all_q[a].df_di[i]) +
476  sm * (all_q[res_f].df_di[i] - all_q[a].df_di[i]);
477  all_q[res_f].f = 0.5 * (all_q[res_f].f + all_q[a].f + _smoothing_tol) + ism;
478  }
479  }
480  return all_q[res_f];
481 }

Referenced by MultiParameterPlasticityStressUpdate::lineSearch(), and MultiParameterPlasticityStressUpdate::updateState().

◆ smoother()

Real MultiParameterPlasticityStressUpdate::smoother ( Real  f_diff) const
protectedinherited

Derivative of ismoother.

Definition at line 510 of file MultiParameterPlasticityStressUpdate.C.

511 {
512  if (std::abs(f_diff) >= _smoothing_tol)
513  return 0.0;
514  switch (_smoother_function_type)
515  {
517  return 0.5 * std::sin(f_diff * M_PI * 0.5 / _smoothing_tol);
519  return 0.75 / _smoothing_tol *
520  (f_diff - (_smoothing_tol / 3.0) * Utility::pow<3>(f_diff / _smoothing_tol));
522  return 0.625 / _smoothing_tol *
523  (f_diff - (_smoothing_tol / 5.0) * Utility::pow<5>(f_diff / _smoothing_tol));
525  return (7.0 / 12.0 / _smoothing_tol) *
526  (f_diff - (_smoothing_tol / 7.0) * Utility::pow<7>(f_diff / _smoothing_tol));
527  default:
528  return 0.0;
529  }
530 }

Referenced by MultiParameterPlasticityStressUpdate::smoothAllQuantities().

◆ tensile_strength()

Real TensileStressUpdate::tensile_strength ( const Real  internal_param) const
protectedvirtual

tensile strength as a function of residual value, rate, and internal_param

Definition at line 215 of file TensileStressUpdate.C.

216 {
217  return _strength.value(internal_param);
218 }

Referenced by computeAllQV(), initializeVarsV(), and yieldFunctionValuesV().

◆ updateState()

void MultiParameterPlasticityStressUpdate::updateState ( RankTwoTensor strain_increment,
RankTwoTensor inelastic_strain_increment,
const RankTwoTensor rotation_increment,
RankTwoTensor stress_new,
const RankTwoTensor stress_old,
const RankFourTensor elasticity_tensor,
const RankTwoTensor elastic_strain_old,
bool  compute_full_tangent_operator,
RankFourTensor tangent_operator 
)
overrideprotectedvirtualinherited

Given a strain increment that results in a trial stress, perform some procedure (such as an iterative return-mapping process) to produce an admissible stress, an elastic strain increment and an inelastic strain increment.

If _fe_problem.currentlyComputingJacobian() = true, then updateState also computes d(stress)/d(strain) (or some approximation to it).

This method is called by ComputeMultipleInelasticStress. This method is pure virutal: all inheriting classes must overwrite this method.

Parameters
strain_incrementUpon input: the strain increment. Upon output: the elastic strain increment
inelastic_strain_incrementThe inelastic_strain resulting from the interative procedure
rotation_incrementThe finite-strain rotation increment
stress_newUpon input: the trial stress that results from applying strain_increment as an elastic strain. Upon output: the admissible stress
stress_oldThe old value of stress
elasticity_tensorThe elasticity tensor
compute_full_tangent_operatorThe calling routine would like the full consistent tangent operator to be placed in tangent_operator, if possible. This is irrelevant if _fe_problem.currentlyComputingJacobian() = false
tangent_operatord(stress)/d(strain), or some approximation to it If compute_full_tangent_operator=false, then tangent_operator=elasticity_tensor is an appropriate choice. tangent_operator is only computed if _fe_problem.currentlyComputingJacobian() = true

Implements StressUpdateBase.

Definition at line 160 of file MultiParameterPlasticityStressUpdate.C.

169 {
170  // Size _yf[_qp] appropriately
171  _yf[_qp].assign(_num_yf, 0);
172  // _plastic_strain and _intnl are usually sized appropriately because they are stateful, but this
173  // Material may be used from a DiracKernel where stateful materials are not allowed. The best we
174  // can do is:
175  if (_intnl[_qp].size() != _num_intnl)
177 
179 
180  if (_t_step >= 2)
181  _step_one = false;
182 
183  // initially assume an elastic deformation
184  std::copy(_intnl_old[_qp].begin(), _intnl_old[_qp].end(), _intnl[_qp].begin());
185 
186  _iter[_qp] = 0.0;
187  _max_iter_used[_qp] = std::max(_max_iter_used[_qp], _max_iter_used_old[_qp]);
188  _linesearch_needed[_qp] = 0.0;
189 
190  computeStressParams(stress_new, _trial_sp);
192 
193  if (yieldF(_yf[_qp]) <= _f_tol)
194  {
196  inelastic_strain_increment.zero();
197  if (_fe_problem.currentlyComputingJacobian())
198  tangent_operator = elasticity_tensor;
199  return;
200  }
201 
202  _stress_trial = stress_new;
203  /* The trial stress must be inadmissible
204  * so we need to return to the yield surface. The following
205  * equations must be satisfied.
206  *
207  * 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, i] * dg/dS[i]
208  * 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1, i] * dg/dS[i]
209  * ...
210  * 0 = rhs[N-1] = S[N-1] - S[N-1]^trial + ga * E[N-1, i] * dg/dS[i]
211  * 0 = rhs[N] = f(S, intnl)
212  *
213  * as well as equations defining intnl parameters as functions of
214  * stress_params, trial_stress_params and intnl_old
215  *
216  * The unknowns are S[0], ..., S[N-1], gaE, and the intnl parameters.
217  * Here gaE = ga * _En (the _En serves to make gaE similar magnitude to S)
218  * I find it convenient to solve the first N+1 equations for p, q and gaE,
219  * while substituting the "intnl parameters" equations into these during the solve process
220  */
221 
222  for (auto & deriv : _dvar_dtrial)
223  deriv.assign(_num_sp, 0.0);
224 
225  preReturnMapV(_trial_sp, stress_new, _intnl_old[_qp], _yf[_qp], elasticity_tensor);
226 
227  setEffectiveElasticity(elasticity_tensor);
228 
229  if (_step_one)
230  std::copy(_definitely_ok_sp.begin(), _definitely_ok_sp.end(), _ok_sp.begin());
231  else
232  computeStressParams(stress_old, _ok_sp);
233  std::copy(_intnl_old[_qp].begin(), _intnl_old[_qp].end(), _ok_intnl.begin());
234 
235  // Return-map problem: must apply the following changes in stress_params,
236  // and find the returned stress_params and gaE
237  for (unsigned i = 0; i < _num_sp; ++i)
238  _del_stress_params[i] = _trial_sp[i] - _ok_sp[i];
239 
240  Real step_taken = 0.0; // amount of del_stress_params that we've applied and the return-map
241  // problem has succeeded
242  Real step_size = 1.0; // potentially can apply del_stress_params in substeps
243  Real gaE_total = 0.0;
244 
245  // current values of the yield function, derivatives, etc
246  yieldAndFlow smoothed_q;
247 
248  // In the following sub-stepping procedure it is possible that
249  // the last step is an elastic step, and therefore smoothed_q won't
250  // be computed on the last step, so we have to compute it.
251  bool smoothed_q_calculated = false;
252 
253  while (step_taken < 1.0 && step_size >= _min_step_size)
254  {
255  if (1.0 - step_taken < step_size)
256  // prevent over-shoots of substepping
257  step_size = 1.0 - step_taken;
258 
259  // trial variables in terms of admissible variables
260  for (unsigned i = 0; i < _num_sp; ++i)
261  _trial_sp[i] = _ok_sp[i] + step_size * _del_stress_params[i];
262 
263  // initialize variables that are to be found via Newton-Raphson
265  Real gaE = 0.0;
266 
267  // flags indicating failure of Newton-Raphson and line-search
268  int nr_failure = 0;
269  int ls_failure = 0;
270 
271  // NR iterations taken in this substep
272  unsigned step_iter = 0;
273 
274  // The residual-squared for the line-search
275  Real res2 = 0.0;
276 
277  if (step_size < 1.0 && yieldF(_trial_sp, _ok_intnl) <= _f_tol)
278  // This is an elastic step
279  // The "step_size < 1.0" in above condition is for efficiency: we definitely
280  // know that this is a plastic step if step_size = 1.0
281  smoothed_q_calculated = false;
282  else
283  {
284  // this is a plastic step
285 
286  // initialize current_sp, gaE and current_intnl based on the non-smoothed situation
288  // and find the smoothed yield function, flow potential and derivatives
290  smoothed_q_calculated = true;
291  calculateRHS(_trial_sp, _current_sp, gaE, smoothed_q, _rhs);
292  res2 = calculateRes2(_rhs);
293 
294  // Perform a Newton-Raphson with linesearch to get current_sp, gaE, and also smoothed_q
295  while (res2 > _f_tol2 && step_iter < _max_nr_its && nr_failure == 0 && ls_failure == 0)
296  {
297  // solve the linear system and store the answer (the "updates") in rhs
298  nr_failure = nrStep(smoothed_q, _trial_sp, _current_sp, _current_intnl, gaE, _rhs);
299  if (nr_failure != 0)
300  break;
301 
302  // handle precision loss
303  if (precisionLoss(_rhs, _current_sp, gaE))
304  {
306  {
307  Moose::err << "MultiParameterPlasticityStressUpdate: precision-loss in element "
308  << _current_elem->id() << " quadpoint=" << _qp << ". Stress_params =";
309  for (unsigned i = 0; i < _num_sp; ++i)
310  Moose::err << " " << _current_sp[i];
311  Moose::err << " gaE = " << gaE << "\n";
312  }
313  res2 = 0.0;
314  break;
315  }
316 
317  // apply (parts of) the updates, re-calculate smoothed_q, and res2
318  ls_failure = lineSearch(res2,
319  _current_sp,
320  gaE,
321  _trial_sp,
322  smoothed_q,
323  _ok_intnl,
325  _rhs,
326  _linesearch_needed[_qp]);
327  step_iter++;
328  }
329  }
330  if (res2 <= _f_tol2 && step_iter < _max_nr_its && nr_failure == 0 && ls_failure == 0 &&
331  gaE >= 0.0)
332  {
333  // this Newton-Raphson worked fine, or this was an elastic step
334  std::copy(_current_sp.begin(), _current_sp.end(), _ok_sp.begin());
335  gaE_total += gaE;
336  step_taken += step_size;
338  std::copy(_intnl[_qp].begin(), _intnl[_qp].end(), _ok_intnl.begin());
339  // calculate dp/dp_trial, dp/dq_trial, etc, for Jacobian
340  dVardTrial(!smoothed_q_calculated,
341  _trial_sp,
342  _ok_sp,
343  gaE,
344  _ok_intnl,
345  smoothed_q,
346  step_size,
347  compute_full_tangent_operator,
348  _dvar_dtrial);
349  if (static_cast<Real>(step_iter) > _iter[_qp])
350  _iter[_qp] = static_cast<Real>(step_iter);
351  if (static_cast<Real>(step_iter) > _max_iter_used[_qp])
352  _max_iter_used[_qp] = static_cast<Real>(step_iter);
353  step_size *= 1.1;
354  }
355  else
356  {
357  // Newton-Raphson + line-search process failed
358  step_size *= 0.5;
359  }
360  }
361 
362  if (step_size < _min_step_size)
363  errorHandler("MultiParameterPlasticityStressUpdate: Minimum step-size violated");
364 
365  // success!
366  finalizeReturnProcess(rotation_increment);
367  yieldFunctionValuesV(_ok_sp, _intnl[_qp], _yf[_qp]);
368 
369  if (!smoothed_q_calculated)
370  smoothed_q = smoothAllQuantities(_ok_sp, _intnl[_qp]);
371 
373  _stress_trial, _ok_sp, gaE_total, _intnl[_qp], smoothed_q, elasticity_tensor, stress_new);
374 
376  gaE_total,
377  smoothed_q,
378  elasticity_tensor,
379  stress_new,
380  inelastic_strain_increment);
381 
382  strain_increment = strain_increment - inelastic_strain_increment;
383  _plastic_strain[_qp] = _plastic_strain_old[_qp] + inelastic_strain_increment;
384 
385  if (_fe_problem.currentlyComputingJacobian())
386  // for efficiency, do not compute the tangent operator if not currently computing Jacobian
388  _trial_sp,
389  stress_new,
390  _ok_sp,
391  gaE_total,
392  smoothed_q,
393  elasticity_tensor,
394  compute_full_tangent_operator,
395  _dvar_dtrial,
396  tangent_operator);
397 }

◆ validParams()

InputParameters TensileStressUpdate::validParams ( )
static

Definition at line 18 of file TensileStressUpdate.C.

19 {
20  InputParameters params = MultiParameterPlasticityStressUpdate::validParams();
21  params.addRequiredParam<UserObjectName>(
22  "tensile_strength",
23  "A TensorMechanicsHardening UserObject that defines hardening of the tensile strength");
24  params.addParam<bool>("perfect_guess",
25  true,
26  "Provide a guess to the Newton-Raphson procedure "
27  "that is the result from perfect plasticity. With "
28  "severe hardening/softening this may be "
29  "suboptimal.");
30  params.addClassDescription(
31  "Associative, smoothed, tensile (Rankine) plasticity with hardening/softening");
32  return params;
33 }

◆ yieldF() [1/2]

Real MultiParameterPlasticityStressUpdate::yieldF ( const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl 
) const
protectedinherited

Computes the smoothed yield function.

Parameters
stress_paramsThe stress parameters (eg stress_params[0] = stress_zz and stress_params[1] = sqrt(stress_zx^2 + stress_zy^2))
intnlThe internal parameters (eg intnl[0] is shear, intnl[1] is tensile)
Returns
The smoothed yield function value

Definition at line 688 of file MultiParameterPlasticityStressUpdate.C.

690 {
691  std::vector<Real> yfs(_num_yf);
692  yieldFunctionValuesV(stress_params, intnl, yfs);
693  return yieldF(yfs);
694 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ yieldF() [2/2]

Real MultiParameterPlasticityStressUpdate::yieldF ( const std::vector< Real > &  yfs) const
protectedinherited

Computes the smoothed yield function.

Parameters
yfsThe values of the individual yield functions
Returns
The smoothed yield function value

Definition at line 697 of file MultiParameterPlasticityStressUpdate.C.

698 {
699  Real yf = yfs[0];
700  for (std::size_t i = 1; i < yfs.size(); ++i)
701  if (yf >= yfs[i] + _smoothing_tol)
702  // no smoothing is needed, and yf is the biggest yield function
703  continue;
704  else if (yfs[i] >= yf + _smoothing_tol)
705  // no smoothing is needed, and yfs[i] is the biggest yield function
706  yf = yfs[i];
707  else
708  yf = 0.5 * (yf + yfs[i] + _smoothing_tol) + ismoother(yf - yfs[i]);
709  return yf;
710 }

◆ yieldFunctionValuesV()

void TensileStressUpdate::yieldFunctionValuesV ( const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl,
std::vector< Real > &  yf 
) const
overrideprotectedvirtual

Computes the values of the yield functions, given stress_params and intnl parameters.

Derived classes must override this, to provide the values of the yield functions in yf.

Parameters
stress_params[in]The stress parameters
intnl[in]The internal parameters
[out]yfThe yield function values

Implements MultiParameterPlasticityStressUpdate.

Definition at line 95 of file TensileStressUpdate.C.

98 {
99  const Real ts = tensile_strength(intnl[0]);
100  // The smoothing strategy means that the last yield function
101  // gives the smallest value when returning to a line/point where,
102  // without smoothing, the yield functions are equal.
103  // Therefore, i use the smallest eigenvalue in this yield function
104  yf[0] = stress_params[2] - ts; // use largest eigenvalue
105  yf[1] = stress_params[1] - ts;
106  yf[2] = stress_params[0] - ts; // use smallest eigenvalue
107 }

Member Data Documentation

◆ _base_name

const std::string StressUpdateBase::_base_name
protectedinherited

Name used as a prefix for all material properties related to the stress update model.

Definition at line 128 of file StressUpdateBase.h.

◆ _Cij

std::vector<std::vector<Real> > MultiParameterPlasticityStressUpdate::_Cij
protectedinherited

◆ _current_intnl

std::vector<Real> MultiParameterPlasticityStressUpdate::_current_intnl
privateinherited

The current values of the internal params during the Newton-Raphson.

Definition at line 737 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _current_sp

std::vector<Real> MultiParameterPlasticityStressUpdate::_current_sp
privateinherited

The current values of the stress params during the Newton-Raphson.

Definition at line 732 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _definitely_ok_sp

const std::vector<Real> MultiParameterPlasticityStressUpdate::_definitely_ok_sp
protectedinherited

◆ _del_stress_params

std::vector<Real> MultiParameterPlasticityStressUpdate::_del_stress_params
privateinherited

_del_stress_params = trial_stress_params - ok_sp This is fixed at the beginning of the return-map process, irrespective of substepping.

The return-map problem is: apply del_stress_params to stress_prams, and then find an admissible (returned) stress_params and gaE

Definition at line 727 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _dvar_dtrial

std::vector<std::vector<Real> > MultiParameterPlasticityStressUpdate::_dvar_dtrial
privateinherited

d({stress_param[i], gaE})/d(trial_stress_param[j])

Definition at line 703 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _eigvecs

RankTwoTensor TensileStressUpdate::_eigvecs
protected

Eigenvectors of the trial stress as a RankTwoTensor, in order to rotate the returned stress back to stress space.

Definition at line 44 of file TensileStressUpdate.h.

Referenced by consistentTangentOperatorV(), preReturnMapV(), and setStressAfterReturnV().

◆ _Eij

std::vector<std::vector<Real> > MultiParameterPlasticityStressUpdate::_Eij
protectedinherited

◆ _En

Real MultiParameterPlasticityStressUpdate::_En
protectedinherited

◆ _f_tol

const Real MultiParameterPlasticityStressUpdate::_f_tol
protectedinherited

◆ _f_tol2

const Real MultiParameterPlasticityStressUpdate::_f_tol2
protectedinherited

Square of the yield-function tolerance.

Definition at line 168 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _intnl

MaterialProperty<std::vector<Real> >& MultiParameterPlasticityStressUpdate::_intnl
protectedinherited

◆ _intnl_old

const MaterialProperty<std::vector<Real> >& MultiParameterPlasticityStressUpdate::_intnl_old
protectedinherited

◆ _iter

MaterialProperty<Real>& MultiParameterPlasticityStressUpdate::_iter
protectedinherited

Number of Newton-Raphson iterations used in the return-map.

Definition at line 199 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::initQpStatefulProperties(), and MultiParameterPlasticityStressUpdate::updateState().

◆ _linesearch_needed

MaterialProperty<Real>& MultiParameterPlasticityStressUpdate::_linesearch_needed
protectedinherited

Whether a line-search was needed in the latest Newton-Raphson process (1 if true, 0 otherwise)

Definition at line 208 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::initQpStatefulProperties(), and MultiParameterPlasticityStressUpdate::updateState().

◆ _max_iter_used

MaterialProperty<Real>& MultiParameterPlasticityStressUpdate::_max_iter_used
protectedinherited

Maximum number of Newton-Raphson iterations used in the return-map during the course of the entire simulation.

Definition at line 202 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::initQpStatefulProperties(), MultiParameterPlasticityStressUpdate::propagateQpStatefulProperties(), and MultiParameterPlasticityStressUpdate::updateState().

◆ _max_iter_used_old

const MaterialProperty<Real>& MultiParameterPlasticityStressUpdate::_max_iter_used_old
protectedinherited

Old value of maximum number of Newton-Raphson iterations used in the return-map during the course of the entire simulation.

Definition at line 205 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::propagateQpStatefulProperties(), and MultiParameterPlasticityStressUpdate::updateState().

◆ _max_nr_its

const unsigned MultiParameterPlasticityStressUpdate::_max_nr_its
protectedinherited

Maximum number of Newton-Raphson iterations allowed in the return-map process.

Definition at line 153 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _min_step_size

const Real MultiParameterPlasticityStressUpdate::_min_step_size
protectedinherited

In order to help the Newton-Raphson procedure, the applied strain increment may be applied in sub-increments of size greater than this value.

Definition at line 175 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _num_intnl

const unsigned MultiParameterPlasticityStressUpdate::_num_intnl
protectedinherited

◆ _num_sp

const unsigned MultiParameterPlasticityStressUpdate::_num_sp
protectedinherited

◆ _num_yf

const unsigned MultiParameterPlasticityStressUpdate::_num_yf
protectedinherited

◆ _ok_intnl

std::vector<Real> MultiParameterPlasticityStressUpdate::_ok_intnl
privateinherited

The state (ok_sp, ok_intnl) is known to be admissible.

Definition at line 718 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _ok_sp

std::vector<Real> MultiParameterPlasticityStressUpdate::_ok_sp
privateinherited

The state (ok_sp, ok_intnl) is known to be admissible, so ok_sp are stress_params that are "OK".

If the strain_increment is applied in substeps then ok_sp is updated after each sub strain_increment is applied and the return-map is successful. At the end of the entire return-map process _ok_sp will contain the stress_params where (_ok_sp, _intnl) is admissible.

Definition at line 713 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _perfect_guess

const bool TensileStressUpdate::_perfect_guess
protected

Whether to provide an estimate of the returned stress, based on perfect plasticity.

Definition at line 41 of file TensileStressUpdate.h.

Referenced by initializeVarsV().

◆ _perform_finite_strain_rotations

const bool MultiParameterPlasticityStressUpdate::_perform_finite_strain_rotations
protectedinherited

◆ _plastic_strain

MaterialProperty<RankTwoTensor>& MultiParameterPlasticityStressUpdate::_plastic_strain
protectedinherited

◆ _plastic_strain_old

const MaterialProperty<RankTwoTensor>& MultiParameterPlasticityStressUpdate::_plastic_strain_old
protectedinherited

◆ _rhs

std::vector<Real> MultiParameterPlasticityStressUpdate::_rhs
privateinherited

0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, i] * dg/dS[i] 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1, i] * dg/dS[i] ...

0 = rhs[N-1] = S[N-1] - S[N-1]^trial + ga * E[N-1, i] * dg/dS[i] 0 = rhs[N] = f(S, intnl) Here N = num_sp

Definition at line 698 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _smoother_function_type

enum MultiParameterPlasticityStressUpdate::SmootherFunctionType MultiParameterPlasticityStressUpdate::_smoother_function_type
privateinherited

◆ _smoothing_tol

const Real MultiParameterPlasticityStressUpdate::_smoothing_tol
protectedinherited

◆ _smoothing_tol2

const Real MultiParameterPlasticityStressUpdate::_smoothing_tol2
protectedinherited

Square of the smoothing tolerance.

Definition at line 162 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::ismoother().

◆ _step_one

bool MultiParameterPlasticityStressUpdate::_step_one
protectedinherited

handles case of initial_stress that is inadmissible being supplied

Definition at line 178 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _strength

const TensorMechanicsHardeningModel& TensileStressUpdate::_strength
protected

Hardening model for tensile strength.

Definition at line 38 of file TensileStressUpdate.h.

Referenced by dtensile_strength(), and tensile_strength().

◆ _stress_trial

RankTwoTensor MultiParameterPlasticityStressUpdate::_stress_trial
privateinherited

"Trial" value of stress that is set at the beginning of the return-map process.

It is fixed at stress_old + Eijkl * strain_increment irrespective of any sub-stepping

Definition at line 688 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _tensor_dimensionality

constexpr static unsigned MultiParameterPlasticityStressUpdate::_tensor_dimensionality = 3
staticconstexprprotectedinherited

◆ _trial_sp

std::vector<Real> MultiParameterPlasticityStressUpdate::_trial_sp
privateinherited

"Trial" value of stress_params that initializes the return-map process This is derived from stress = stress_old + Eijkl * strain_increment.

However, since the return-map process can fail and be restarted by applying strain_increment in multiple substeps, _trial_sp can vary from substep to substep.

Definition at line 681 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _warn_about_precision_loss

const bool MultiParameterPlasticityStressUpdate::_warn_about_precision_loss
protectedinherited

Output a warning message if precision loss is encountered during the return-map process.

Definition at line 181 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _yf

MaterialProperty<std::vector<Real> >& MultiParameterPlasticityStressUpdate::_yf
protectedinherited

The documentation for this class was generated from the following files:
MultiParameterPlasticityStressUpdate::computeAllQV
virtual void computeAllQV(const std::vector< Real > &stress_params, const std::vector< Real > &intnl, std::vector< yieldAndFlow > &all_q) const =0
Completely fills all_q with correct values.
MultiParameterPlasticityStressUpdate::_max_nr_its
const unsigned _max_nr_its
Maximum number of Newton-Raphson iterations allowed in the return-map process.
Definition: MultiParameterPlasticityStressUpdate.h:153
MultiParameterPlasticityStressUpdate::_warn_about_precision_loss
const bool _warn_about_precision_loss
Output a warning message if precision loss is encountered during the return-map process.
Definition: MultiParameterPlasticityStressUpdate.h:181
MultiParameterPlasticityStressUpdate::_stress_trial
RankTwoTensor _stress_trial
"Trial" value of stress that is set at the beginning of the return-map process.
Definition: MultiParameterPlasticityStressUpdate.h:688
MultiParameterPlasticityStressUpdate::ismoother
Real ismoother(Real f_diff) const
Smooths yield functions.
Definition: MultiParameterPlasticityStressUpdate.C:484
MultiParameterPlasticityStressUpdate::MultiParameterPlasticityStressUpdate
MultiParameterPlasticityStressUpdate(const InputParameters &parameters, unsigned num_sp, unsigned num_yf, unsigned num_intnl)
Definition: MultiParameterPlasticityStressUpdate.C:82
MultiParameterPlasticityStressUpdate::_current_intnl
std::vector< Real > _current_intnl
The current values of the internal params during the Newton-Raphson.
Definition: MultiParameterPlasticityStressUpdate.h:737
MultiParameterPlasticityStressUpdate::SmootherFunctionType::poly1
MultiParameterPlasticityStressUpdate::SmootherFunctionType::cos
MultiParameterPlasticityStressUpdate::_smoothing_tol
const Real _smoothing_tol
Smoothing tolerance: edges of the yield surface get smoothed by this amount.
Definition: MultiParameterPlasticityStressUpdate.h:159
TangentCalculationMethod::FULL
MultiParameterPlasticityStressUpdate::finalizeReturnProcess
virtual void finalizeReturnProcess(const RankTwoTensor &rotation_increment)
Derived classes may use this to perform calculations after the return-map process has completed succe...
Definition: MultiParameterPlasticityStressUpdate.C:672
MultiParameterPlasticityStressUpdate::_smoother_function_type
enum MultiParameterPlasticityStressUpdate::SmootherFunctionType _smoother_function_type
MultiParameterPlasticityStressUpdate::_Cij
std::vector< std::vector< Real > > _Cij
_Cij[i, j] * _Eij[j, k] = 1 iff j == k
Definition: MultiParameterPlasticityStressUpdate.h:144
MultiParameterPlasticityStressUpdate::lineSearch
int lineSearch(Real &res2, std::vector< Real > &stress_params, Real &gaE, const std::vector< Real > &trial_stress_params, yieldAndFlow &smoothed_q, const std::vector< Real > &intnl_ok, std::vector< Real > &intnl, std::vector< Real > &rhs, Real &linesearch_needed) const
Performs a line-search to find stress_params and gaE Upon entry:
Definition: MultiParameterPlasticityStressUpdate.C:553
MultiParameterPlasticityStressUpdate::SmootherFunctionType::poly3
MultiParameterPlasticityStressUpdate::_iter
MaterialProperty< Real > & _iter
Number of Newton-Raphson iterations used in the return-map.
Definition: MultiParameterPlasticityStressUpdate.h:199
MultiParameterPlasticityStressUpdate::_f_tol2
const Real _f_tol2
Square of the yield-function tolerance.
Definition: MultiParameterPlasticityStressUpdate.h:168
MultiParameterPlasticityStressUpdate::_min_step_size
const Real _min_step_size
In order to help the Newton-Raphson procedure, the applied strain increment may be applied in sub-inc...
Definition: MultiParameterPlasticityStressUpdate.h:175
MultiParameterPlasticityStressUpdate::setEffectiveElasticity
virtual void setEffectiveElasticity(const RankFourTensor &Eijkl)=0
Sets _Eij and _En and _Cij.
MultiParameterPlasticityStressUpdate::initQpStatefulProperties
virtual void initQpStatefulProperties() override
Definition: MultiParameterPlasticityStressUpdate.C:141
MultiParameterPlasticityStressUpdate::_ok_intnl
std::vector< Real > _ok_intnl
The state (ok_sp, ok_intnl) is known to be admissible.
Definition: MultiParameterPlasticityStressUpdate.h:718
TensileStressUpdate::_perfect_guess
const bool _perfect_guess
Whether to provide an estimate of the returned stress, based on perfect plasticity.
Definition: TensileStressUpdate.h:41
MultiParameterPlasticityStressUpdate::_linesearch_needed
MaterialProperty< Real > & _linesearch_needed
Whether a line-search was needed in the latest Newton-Raphson process (1 if true, 0 otherwise)
Definition: MultiParameterPlasticityStressUpdate.h:208
TensileStressUpdate::dtensile_strength
virtual Real dtensile_strength(const Real internal_param) const
d(tensile strength)/d(internal_param) as a function of residual value, rate, and internal_param
Definition: TensileStressUpdate.C:221
MultiParameterPlasticityStressUpdate::dstress_param_dstress
virtual std::vector< RankTwoTensor > dstress_param_dstress(const RankTwoTensor &stress) const =0
d(stress_param[i])/d(stress) at given stress
MultiParameterPlasticityStressUpdate::dVardTrial
void dVardTrial(bool elastic_only, const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, Real step_size, bool compute_full_tangent_operator, std::vector< std::vector< Real >> &dvar_dtrial) const
Calculates derivatives of the stress_params and gaE with repect to the trial values of the stress_par...
Definition: MultiParameterPlasticityStressUpdate.C:873
MultiParameterPlasticityStressUpdate::initializeVarsV
virtual void initializeVarsV(const std::vector< Real > &trial_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &stress_params, Real &gaE, std::vector< Real > &intnl) const
Sets (stress_params, intnl) at "good guesses" of the solution to the Return-Map algorithm.
Definition: MultiParameterPlasticityStressUpdate.C:713
MultiParameterPlasticityStressUpdate::precisionLoss
bool precisionLoss(const std::vector< Real > &solution, const std::vector< Real > &stress_params, Real gaE) const
Check whether precision loss has occurred.
Definition: MultiParameterPlasticityStressUpdate.C:983
MultiParameterPlasticityStressUpdate::validParams
static InputParameters validParams()
Definition: MultiParameterPlasticityStressUpdate.C:23
MultiParameterPlasticityStressUpdate::_plastic_strain_old
const MaterialProperty< RankTwoTensor > & _plastic_strain_old
Old value of plastic strain.
Definition: MultiParameterPlasticityStressUpdate.h:187
MultiParameterPlasticityStressUpdate::_Eij
std::vector< std::vector< Real > > _Eij
E[i, j] in the system of equations to be solved.
Definition: MultiParameterPlasticityStressUpdate.h:138
MultiParameterPlasticityStressUpdate::yieldF
Real yieldF(const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
Computes the smoothed yield function.
Definition: MultiParameterPlasticityStressUpdate.C:688
MultiParameterPlasticityStressUpdate::_del_stress_params
std::vector< Real > _del_stress_params
_del_stress_params = trial_stress_params - ok_sp This is fixed at the beginning of the return-map pro...
Definition: MultiParameterPlasticityStressUpdate.h:727
MultiParameterPlasticityStressUpdate::_intnl_old
const MaterialProperty< std::vector< Real > > & _intnl_old
old values of internal parameters
Definition: MultiParameterPlasticityStressUpdate.h:193
MultiParameterPlasticityStressUpdate::computeStressParams
virtual void computeStressParams(const RankTwoTensor &stress, std::vector< Real > &stress_params) const =0
Computes stress_params, given stress.
MultiParameterPlasticityStressUpdate::initializeReturnProcess
virtual void initializeReturnProcess()
Derived classes may use this to perform calculations before any return-map process is performed,...
Definition: MultiParameterPlasticityStressUpdate.C:667
TensileStressUpdate::dstress_param_dstress
std::vector< RankTwoTensor > dstress_param_dstress(const RankTwoTensor &stress) const override
d(stress_param[i])/d(stress) at given stress
Definition: TensileStressUpdate.C:52
MultiParameterPlasticityStressUpdate::smoother
Real smoother(Real f_diff) const
Derivative of ismoother.
Definition: MultiParameterPlasticityStressUpdate.C:510
MultiParameterPlasticityStressUpdate::_rhs
std::vector< Real > _rhs
0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, i] * dg/dS[i] 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1,...
Definition: MultiParameterPlasticityStressUpdate.h:698
MultiParameterPlasticityStressUpdate::_num_sp
const unsigned _num_sp
Number of stress parameters.
Definition: MultiParameterPlasticityStressUpdate.h:132
MultiParameterPlasticityStressUpdate::yieldFunctionValuesV
virtual void yieldFunctionValuesV(const std::vector< Real > &stress_params, const std::vector< Real > &intnl, std::vector< Real > &yf) const =0
Computes the values of the yield functions, given stress_params and intnl parameters.
TensileStressUpdate::_strength
const TensorMechanicsHardeningModel & _strength
Hardening model for tensile strength.
Definition: TensileStressUpdate.h:38
MultiParameterPlasticityStressUpdate::_yf
MaterialProperty< std::vector< Real > > & _yf
yield functions
Definition: MultiParameterPlasticityStressUpdate.h:196
MultiParameterPlasticityStressUpdate::_num_yf
const unsigned _num_yf
Number of yield functions.
Definition: MultiParameterPlasticityStressUpdate.h:147
MultiParameterPlasticityStressUpdate::dnRHSdVar
void dnRHSdVar(const yieldAndFlow &smoothed_q, const std::vector< std::vector< Real >> &dintnl, const std::vector< Real > &stress_params, Real gaE, std::vector< double > &jac) const
Derivative of -RHS with respect to the stress_params and gaE, placed into an array ready for solving ...
Definition: MultiParameterPlasticityStressUpdate.C:828
TensileStressUpdate::tensile_strength
virtual Real tensile_strength(const Real internal_param) const
tensile strength as a function of residual value, rate, and internal_param
Definition: TensileStressUpdate.C:215
MultiParameterPlasticityStressUpdate::_plastic_strain
MaterialProperty< RankTwoTensor > & _plastic_strain
plastic strain
Definition: MultiParameterPlasticityStressUpdate.h:184
TensorMechanicsHardeningModel::derivative
virtual Real derivative(Real intnl) const
Definition: TensorMechanicsHardeningModel.C:47
MultiParameterPlasticityStressUpdate::_definitely_ok_sp
const std::vector< Real > _definitely_ok_sp
An admissible value of stress_params at the initial time.
Definition: MultiParameterPlasticityStressUpdate.h:135
MultiParameterPlasticityStressUpdate::_trial_sp
std::vector< Real > _trial_sp
"Trial" value of stress_params that initializes the return-map process This is derived from stress = ...
Definition: MultiParameterPlasticityStressUpdate.h:681
TensorMechanicsHardeningModel::value
virtual Real value(Real intnl) const
Definition: TensorMechanicsHardeningModel.C:45
MultiParameterPlasticityStressUpdate::_num_intnl
const unsigned _num_intnl
Number of internal parameters.
Definition: MultiParameterPlasticityStressUpdate.h:150
RankTwoTensor
RankTwoTensorTempl< Real > RankTwoTensor
Definition: ACGrGrElasticDrivingForce.h:17
MultiParameterPlasticityStressUpdate::_step_one
bool _step_one
handles case of initial_stress that is inadmissible being supplied
Definition: MultiParameterPlasticityStressUpdate.h:178
MultiParameterPlasticityStressUpdate::dsmoother
Real dsmoother(Real f_diff) const
Derivative of smoother.
Definition: MultiParameterPlasticityStressUpdate.C:533
MultiParameterPlasticityStressUpdate::calculateRes2
Real calculateRes2(const std::vector< Real > &rhs) const
Calculates the residual-squared for the Newton-Raphson + line-search.
Definition: MultiParameterPlasticityStressUpdate.C:802
MultiParameterPlasticityStressUpdate::setIntnlDerivativesV
virtual void setIntnlDerivativesV(const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl, std::vector< std::vector< Real >> &dintnl) const =0
Sets the derivatives of internal parameters, based on the trial values of stress_params,...
MultiParameterPlasticityStressUpdate::errorHandler
virtual void errorHandler(const std::string &message) const
Performs any necessary cleaning-up, then throw MooseException(message)
Definition: MultiParameterPlasticityStressUpdate.C:661
MultiParameterPlasticityStressUpdate::_current_sp
std::vector< Real > _current_sp
The current values of the stress params during the Newton-Raphson.
Definition: MultiParameterPlasticityStressUpdate.h:732
MultiParameterPlasticityStressUpdate::_En
Real _En
normalising factor
Definition: MultiParameterPlasticityStressUpdate.h:141
RankFourTensorTempl
Definition: ACGrGrElasticDrivingForce.h:20
MultiParameterPlasticityStressUpdate::consistentTangentOperatorV
virtual void consistentTangentOperatorV(const RankTwoTensor &stress_trial, const std::vector< Real > &trial_stress_params, const RankTwoTensor &stress, const std::vector< Real > &stress_params, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, bool compute_full_tangent_operator, const std::vector< std::vector< Real >> &dvar_dtrial, RankFourTensor &cto)
Calculates the consistent tangent operator.
Definition: MultiParameterPlasticityStressUpdate.C:725
MultiParameterPlasticityStressUpdate::_max_iter_used
MaterialProperty< Real > & _max_iter_used
Maximum number of Newton-Raphson iterations used in the return-map during the course of the entire si...
Definition: MultiParameterPlasticityStressUpdate.h:202
MultiParameterPlasticityStressUpdate::SmootherFunctionType::poly2
MultiParameterPlasticityStressUpdate::setIntnlValuesV
virtual void setIntnlValuesV(const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &intnl) const =0
Sets the internal parameters based on the trial values of stress_params, their current values,...
MultiParameterPlasticityStressUpdate::_dvar_dtrial
std::vector< std::vector< Real > > _dvar_dtrial
d({stress_param[i], gaE})/d(trial_stress_param[j])
Definition: MultiParameterPlasticityStressUpdate.h:703
MultiParameterPlasticityStressUpdate::smoothAllQuantities
yieldAndFlow smoothAllQuantities(const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
Calculates all yield functions and derivatives, and then performs the smoothing scheme.
Definition: MultiParameterPlasticityStressUpdate.C:400
MultiParameterPlasticityStressUpdate::calculateRHS
void calculateRHS(const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, Real gaE, const yieldAndFlow &smoothed_q, std::vector< Real > &rhs) const
Calculates the RHS in the following 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, j] * dg/dS[j] 0 = rhs[...
Definition: MultiParameterPlasticityStressUpdate.C:811
RankTwoTensorTempl< Real >
TensileStressUpdate::_eigvecs
RankTwoTensor _eigvecs
Eigenvectors of the trial stress as a RankTwoTensor, in order to rotate the returned stress back to s...
Definition: TensileStressUpdate.h:44
MultiParameterPlasticityStressUpdate::_ok_sp
std::vector< Real > _ok_sp
The state (ok_sp, ok_intnl) is known to be admissible, so ok_sp are stress_params that are "OK".
Definition: MultiParameterPlasticityStressUpdate.h:713
TensileStressUpdate::setIntnlValuesV
void setIntnlValuesV(const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &intnl) const override
Sets the internal parameters based on the trial values of stress_params, their current values,...
Definition: TensileStressUpdate.C:195
MultiParameterPlasticityStressUpdate::setStressAfterReturnV
virtual void setStressAfterReturnV(const RankTwoTensor &stress_trial, const std::vector< Real > &stress_params, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, RankTwoTensor &stress) const =0
Sets stress from the admissible parameters.
MultiParameterPlasticityStressUpdate::preReturnMapV
virtual void preReturnMapV(const std::vector< Real > &trial_stress_params, const RankTwoTensor &stress_trial, const std::vector< Real > &intnl_old, const std::vector< Real > &yf, const RankFourTensor &Eijkl)
Derived classes may employ this function to record stuff or do other computations prior to the return...
Definition: MultiParameterPlasticityStressUpdate.C:678
MultiParameterPlasticityStressUpdate::_smoothing_tol2
const Real _smoothing_tol2
Square of the smoothing tolerance.
Definition: MultiParameterPlasticityStressUpdate.h:162
MultiParameterPlasticityStressUpdate::nrStep
int nrStep(const yieldAndFlow &smoothed_q, const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, const std::vector< Real > &intnl, Real gaE, std::vector< Real > &rhs) const
Performs a Newton-Raphson step to attempt to zero rhs Upon return, rhs will contain the solution.
Definition: MultiParameterPlasticityStressUpdate.C:637
MultiParameterPlasticityStressUpdate::_tensor_dimensionality
constexpr static unsigned _tensor_dimensionality
Internal dimensionality of tensors (currently this is 3 throughout tensor_mechanics)
Definition: MultiParameterPlasticityStressUpdate.h:129
MultiParameterPlasticityStressUpdate::_intnl
MaterialProperty< std::vector< Real > > & _intnl
internal parameters
Definition: MultiParameterPlasticityStressUpdate.h:190
MultiParameterPlasticityStressUpdate::_max_iter_used_old
const MaterialProperty< Real > & _max_iter_used_old
Old value of maximum number of Newton-Raphson iterations used in the return-map during the course of ...
Definition: MultiParameterPlasticityStressUpdate.h:205
MultiParameterPlasticityStressUpdate::setInelasticStrainIncrementAfterReturn
virtual void setInelasticStrainIncrementAfterReturn(const RankTwoTensor &stress_trial, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &elasticity_tensor, const RankTwoTensor &returned_stress, RankTwoTensor &inelastic_strain_increment) const
Sets inelastic strain increment from the returned configuration This is called after the return-map p...
Definition: MultiParameterPlasticityStressUpdate.C:786
MultiParameterPlasticityStressUpdate::_f_tol
const Real _f_tol
The yield-function tolerance.
Definition: MultiParameterPlasticityStressUpdate.h:165