www.mooseframework.org
Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Types | Private Attributes | List of all members
CappedMohrCoulombStressUpdate Class Reference

CappedMohrCoulombStressUpdate implements rate-independent nonassociative Mohr-Coulomb plus tensile plus compressive plasticity with hardening/softening. More...

#include <CappedMohrCoulombStressUpdate.h>

Inheritance diagram for CappedMohrCoulombStressUpdate:
[legend]

Public Member Functions

 CappedMohrCoulombStressUpdate (const InputParameters &parameters)
 
bool requiresIsotropicTensor () override
 Does the model require the elasticity tensor to be isotropic? More...
 
bool isIsotropic () override
 Is the implmented model isotropic? The safe default is 'false'. More...
 
void setQp (unsigned int qp)
 Sets the value of the global variable _qp for inheriting classes. More...
 
virtual Real computeTimeStepLimit ()
 
void resetQpProperties () final
 Retained as empty methods to avoid a warning from Material.C in framework. These methods are unused in all inheriting classes and should not be overwritten. More...
 
void resetProperties () final
 

Static Public Member Functions

static InputParameters validParams ()
 

Protected Member Functions

void computeStressParams (const RankTwoTensor &stress, std::vector< Real > &stress_params) const override
 Computes stress_params, given stress. More...
 
std::vector< RankTwoTensordstress_param_dstress (const RankTwoTensor &stress) const override
 d(stress_param[i])/d(stress) at given stress More...
 
std::vector< RankFourTensord2stress_param_dstress (const RankTwoTensor &stress) const override
 d2(stress_param[i])/d(stress)/d(stress) at given stress More...
 
virtual void setStressAfterReturnV (const RankTwoTensor &stress_trial, const std::vector< Real > &stress_params, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, RankTwoTensor &stress) const override
 Sets stress from the admissible parameters. More...
 
virtual void preReturnMapV (const std::vector< Real > &trial_stress_params, const RankTwoTensor &stress_trial, const std::vector< Real > &intnl_old, const std::vector< Real > &yf, const RankFourTensor &Eijkl) override
 Derived classes may employ this function to record stuff or do other computations prior to the return-mapping algorithm. More...
 
void setEffectiveElasticity (const RankFourTensor &Eijkl) override
 Sets _Eij and _En and _Cij. More...
 
void yieldFunctionValuesV (const std::vector< Real > &stress_params, const std::vector< Real > &intnl, std::vector< Real > &yf) const override
 Computes the values of the yield functions, given stress_params and intnl parameters. More...
 
void computeAllQV (const std::vector< Real > &stress_params, const std::vector< Real > &intnl, std::vector< yieldAndFlow > &all_q) const override
 Completely fills all_q with correct values. More...
 
void initializeVarsV (const std::vector< Real > &trial_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &stress_params, Real &gaE, std::vector< Real > &intnl) const override
 Sets (stress_params, intnl) at "good guesses" of the solution to the Return-Map algorithm. More...
 
void setIntnlValuesV (const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &intnl) const override
 Sets the internal parameters based on the trial values of stress_params, their current values, and the old values of the internal parameters. More...
 
void setIntnlDerivativesV (const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl, std::vector< std::vector< Real >> &dintnl) const override
 Sets the derivatives of internal parameters, based on the trial values of stress_params, their current values, and the current values of the internal parameters. More...
 
virtual void consistentTangentOperatorV (const RankTwoTensor &stress_trial, const std::vector< Real > &trial_stress_params, const RankTwoTensor &stress, const std::vector< Real > &stress_params, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, bool compute_full_tangent_operator, const std::vector< std::vector< Real >> &dvar_dtrial, RankFourTensor &cto) override
 Calculates the consistent tangent operator. More...
 
virtual void initQpStatefulProperties () override
 
virtual void updateState (RankTwoTensor &strain_increment, RankTwoTensor &inelastic_strain_increment, const RankTwoTensor &rotation_increment, RankTwoTensor &stress_new, const RankTwoTensor &stress_old, const RankFourTensor &elasticity_tensor, const RankTwoTensor &elastic_strain_old, bool compute_full_tangent_operator, RankFourTensor &tangent_operator) override
 Given a strain increment that results in a trial stress, perform some procedure (such as an iterative return-mapping process) to produce an admissible stress, an elastic strain increment and an inelastic strain increment. More...
 
virtual void propagateQpStatefulProperties () override
 If updateState is not called during a timestep, this will be. More...
 
virtual TangentCalculationMethod getTangentCalculationMethod () override
 
Real yieldF (const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
 Computes the smoothed yield function. More...
 
Real yieldF (const std::vector< Real > &yfs) const
 Computes the smoothed yield function. More...
 
Real ismoother (Real f_diff) const
 Smooths yield functions. More...
 
Real smoother (Real f_diff) const
 Derivative of ismoother. More...
 
Real dsmoother (Real f_diff) const
 Derivative of smoother. More...
 
yieldAndFlow smoothAllQuantities (const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
 Calculates all yield functions and derivatives, and then performs the smoothing scheme. More...
 
int lineSearch (Real &res2, std::vector< Real > &stress_params, Real &gaE, const std::vector< Real > &trial_stress_params, yieldAndFlow &smoothed_q, const std::vector< Real > &intnl_ok, std::vector< Real > &intnl, std::vector< Real > &rhs, Real &linesearch_needed) const
 Performs a line-search to find stress_params and gaE Upon entry: More...
 
int nrStep (const yieldAndFlow &smoothed_q, const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, const std::vector< Real > &intnl, Real gaE, std::vector< Real > &rhs) const
 Performs a Newton-Raphson step to attempt to zero rhs Upon return, rhs will contain the solution. More...
 
Real calculateRes2 (const std::vector< Real > &rhs) const
 Calculates the residual-squared for the Newton-Raphson + line-search. More...
 
void calculateRHS (const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, Real gaE, const yieldAndFlow &smoothed_q, std::vector< Real > &rhs) const
 Calculates the RHS in the following 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, j] * dg/dS[j] 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1, j] * dg/dS[j] ... More...
 
void dnRHSdVar (const yieldAndFlow &smoothed_q, const std::vector< std::vector< Real >> &dintnl, const std::vector< Real > &stress_params, Real gaE, std::vector< double > &jac) const
 Derivative of -RHS with respect to the stress_params and gaE, placed into an array ready for solving the linear system using LAPACK gsev. More...
 
virtual void errorHandler (const std::string &message) const
 Performs any necessary cleaning-up, then throw MooseException(message) More...
 
virtual void initializeReturnProcess ()
 Derived classes may use this to perform calculations before any return-map process is performed, for instance, to initialize variables. More...
 
virtual void finalizeReturnProcess (const RankTwoTensor &rotation_increment)
 Derived classes may use this to perform calculations after the return-map process has completed successfully in stress_param space but before the returned stress tensor has been calculcated. More...
 
virtual void setInelasticStrainIncrementAfterReturn (const RankTwoTensor &stress_trial, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &elasticity_tensor, const RankTwoTensor &returned_stress, RankTwoTensor &inelastic_strain_increment) const
 Sets inelastic strain increment from the returned configuration This is called after the return-map process has completed successfully in stress_param space, just after finalizeReturnProcess has been called. More...
 
void dVardTrial (bool elastic_only, const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, Real step_size, bool compute_full_tangent_operator, std::vector< std::vector< Real >> &dvar_dtrial) const
 Calculates derivatives of the stress_params and gaE with repect to the trial values of the stress_params for the (sub)strain increment. More...
 
bool precisionLoss (const std::vector< Real > &solution, const std::vector< Real > &stress_params, Real gaE) const
 Check whether precision loss has occurred. More...
 

Protected Attributes

const TensorMechanicsHardeningModel_tensile_strength
 Hardening model for tensile strength. More...
 
const TensorMechanicsHardeningModel_compressive_strength
 Hardening model for compressive strength. More...
 
const TensorMechanicsHardeningModel_cohesion
 Hardening model for cohesion. More...
 
const TensorMechanicsHardeningModel_phi
 Hardening model for friction angle. More...
 
const TensorMechanicsHardeningModel_psi
 Hardening model for dilation angle. More...
 
const bool _perfect_guess
 Whether to provide an estimate of the returned stress, based on perfect plasticity. More...
 
Real _poissons_ratio
 Poisson's ratio. More...
 
const Real _shifter
 When equal-eigenvalues are predicted from the stress initialization routine, shift them by this amount. More...
 
RankTwoTensor _eigvecs
 Eigenvectors of the trial stress as a RankTwoTensor, in order to rotate the returned stress back to stress space. More...
 
const unsigned _num_sp
 Number of stress parameters. More...
 
const std::vector< Real > _definitely_ok_sp
 An admissible value of stress_params at the initial time. More...
 
std::vector< std::vector< Real > > _Eij
 E[i, j] in the system of equations to be solved. More...
 
Real _En
 normalising factor More...
 
std::vector< std::vector< Real > > _Cij
 _Cij[i, j] * _Eij[j, k] = 1 iff j == k More...
 
const unsigned _num_yf
 Number of yield functions. More...
 
const unsigned _num_intnl
 Number of internal parameters. More...
 
const unsigned _max_nr_its
 Maximum number of Newton-Raphson iterations allowed in the return-map process. More...
 
const bool _perform_finite_strain_rotations
 Whether to perform finite-strain rotations. More...
 
const Real _smoothing_tol
 Smoothing tolerance: edges of the yield surface get smoothed by this amount. More...
 
const Real _smoothing_tol2
 Square of the smoothing tolerance. More...
 
const Real _f_tol
 The yield-function tolerance. More...
 
const Real _f_tol2
 Square of the yield-function tolerance. More...
 
const Real _min_step_size
 In order to help the Newton-Raphson procedure, the applied strain increment may be applied in sub-increments of size greater than this value. More...
 
bool _step_one
 handles case of initial_stress that is inadmissible being supplied More...
 
const bool _warn_about_precision_loss
 Output a warning message if precision loss is encountered during the return-map process. More...
 
MaterialProperty< RankTwoTensor > & _plastic_strain
 plastic strain More...
 
const MaterialProperty< RankTwoTensor > & _plastic_strain_old
 Old value of plastic strain. More...
 
MaterialProperty< std::vector< Real > > & _intnl
 internal parameters More...
 
const MaterialProperty< std::vector< Real > > & _intnl_old
 old values of internal parameters More...
 
MaterialProperty< std::vector< Real > > & _yf
 yield functions More...
 
MaterialProperty< Real > & _iter
 Number of Newton-Raphson iterations used in the return-map. More...
 
MaterialProperty< Real > & _max_iter_used
 Maximum number of Newton-Raphson iterations used in the return-map during the course of the entire simulation. More...
 
const MaterialProperty< Real > & _max_iter_used_old
 Old value of maximum number of Newton-Raphson iterations used in the return-map during the course of the entire simulation. More...
 
MaterialProperty< Real > & _linesearch_needed
 Whether a line-search was needed in the latest Newton-Raphson process (1 if true, 0 otherwise) More...
 
const std::string _base_name
 Name used as a prefix for all material properties related to the stress update model. More...
 

Static Protected Attributes

constexpr static unsigned _tensor_dimensionality = 3
 Internal dimensionality of tensors (currently this is 3 throughout tensor_mechanics) More...
 

Private Types

enum  SmootherFunctionType { SmootherFunctionType::cos, SmootherFunctionType::poly1, SmootherFunctionType::poly2, SmootherFunctionType::poly3 }
 The type of smoother function. More...
 

Private Attributes

std::vector< Real > _trial_sp
 "Trial" value of stress_params that initializes the return-map process This is derived from stress = stress_old + Eijkl * strain_increment. More...
 
RankTwoTensor _stress_trial
 "Trial" value of stress that is set at the beginning of the return-map process. More...
 
std::vector< Real > _rhs
 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, i] * dg/dS[i] 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1, i] * dg/dS[i] ... More...
 
std::vector< std::vector< Real > > _dvar_dtrial
 d({stress_param[i], gaE})/d(trial_stress_param[j]) More...
 
std::vector< Real > _ok_sp
 The state (ok_sp, ok_intnl) is known to be admissible, so ok_sp are stress_params that are "OK". More...
 
std::vector< Real > _ok_intnl
 The state (ok_sp, ok_intnl) is known to be admissible. More...
 
std::vector< Real > _del_stress_params
 _del_stress_params = trial_stress_params - ok_sp This is fixed at the beginning of the return-map process, irrespective of substepping. More...
 
std::vector< Real > _current_sp
 The current values of the stress params during the Newton-Raphson. More...
 
std::vector< Real > _current_intnl
 The current values of the internal params during the Newton-Raphson. More...
 
enum MultiParameterPlasticityStressUpdate::SmootherFunctionType _smoother_function_type
 

Detailed Description

CappedMohrCoulombStressUpdate implements rate-independent nonassociative Mohr-Coulomb plus tensile plus compressive plasticity with hardening/softening.

Definition at line 24 of file CappedMohrCoulombStressUpdate.h.

Member Enumeration Documentation

◆ SmootherFunctionType

The type of smoother function.

Enumerator
cos 
poly1 
poly2 
poly3 

Definition at line 743 of file MultiParameterPlasticityStressUpdate.h.

744  {
745  cos,
746  poly1,
747  poly2,
748  poly3

Constructor & Destructor Documentation

◆ CappedMohrCoulombStressUpdate()

CappedMohrCoulombStressUpdate::CappedMohrCoulombStressUpdate ( const InputParameters &  parameters)

Definition at line 53 of file CappedMohrCoulombStressUpdate.C.

54  : MultiParameterPlasticityStressUpdate(parameters, 3, 12, 2),
55  _tensile_strength(getUserObject<TensorMechanicsHardeningModel>("tensile_strength")),
56  _compressive_strength(getUserObject<TensorMechanicsHardeningModel>("compressive_strength")),
57  _cohesion(getUserObject<TensorMechanicsHardeningModel>("cohesion")),
58  _phi(getUserObject<TensorMechanicsHardeningModel>("friction_angle")),
59  _psi(getUserObject<TensorMechanicsHardeningModel>("dilation_angle")),
60  _perfect_guess(getParam<bool>("perfect_guess")),
61  _poissons_ratio(0.0),
64 {
65  if (_psi.value(0.0) <= 0.0 || _psi.value(0.0) > _phi.value(0.0))
66  mooseWarning("Usually the Mohr-Coulomb dilation angle is positive and not greater than the "
67  "friction angle");
68 }

Member Function Documentation

◆ calculateRes2()

Real MultiParameterPlasticityStressUpdate::calculateRes2 ( const std::vector< Real > &  rhs) const
protectedinherited

Calculates the residual-squared for the Newton-Raphson + line-search.

Parameters
rhs[in]The RHS vector
Returns
sum_i (rhs[i] * rhs[i])

Definition at line 802 of file MultiParameterPlasticityStressUpdate.C.

803 {
804  Real res2 = 0.0;
805  for (const auto & r : rhs)
806  res2 += r * r;
807  return res2;
808 }

Referenced by MultiParameterPlasticityStressUpdate::lineSearch(), and MultiParameterPlasticityStressUpdate::updateState().

◆ calculateRHS()

void MultiParameterPlasticityStressUpdate::calculateRHS ( const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  stress_params,
Real  gaE,
const yieldAndFlow smoothed_q,
std::vector< Real > &  rhs 
) const
protectedinherited

Calculates the RHS in the following 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, j] * dg/dS[j] 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1, j] * dg/dS[j] ...

0 = rhs[N-1] = S[N-1] - S[N-1]^trial + ga * E[N-1, j] * dg/dS[j] 0 = rhs[N] = f(S, intnl) where N = _num_sp

Parameters
trial_stress_params[in]The trial stress parameters for this (sub)strain increment, S[:]^trial
stress_params[in]The current stress parameters, S[:]
gaE[in]ga*_En (the normalisation with _En is so that gaE is of similar magnitude to S)
smoothed_q[in]Holds the current value of yield function and derivatives evaluated at the current stress parameters and the current internal parameters
rhs[out]The result

Definition at line 811 of file MultiParameterPlasticityStressUpdate.C.

816 {
817  const Real ga = gaE / _En;
818  for (unsigned i = 0; i < _num_sp; ++i)
819  {
820  rhs[i] = stress_params[i] - trial_stress_params[i];
821  for (unsigned j = 0; j < _num_sp; ++j)
822  rhs[i] += ga * _Eij[i][j] * smoothed_q.dg[j];
823  }
824  rhs[_num_sp] = smoothed_q.f;
825 }

Referenced by MultiParameterPlasticityStressUpdate::lineSearch(), and MultiParameterPlasticityStressUpdate::updateState().

◆ computeAllQV()

void CappedMohrCoulombStressUpdate::computeAllQV ( const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl,
std::vector< yieldAndFlow > &  all_q 
) const
overrideprotectedvirtual

Completely fills all_q with correct values.

These values are: (1) the yield function values, yf[i] (2) d(yf[i])/d(stress_params[j]) (3) d(yf[i])/d(intnl[j]) (4) d(flowPotential[i])/d(stress_params[j]) (5) d2(flowPotential[i])/d(stress_params[j])/d(stress_params[k]) (6) d2(flowPotential[i])/d(stress_params[j])/d(intnl[k])

Parameters
stress_params[in]The stress parameters
intnl[in]The internal parameters
[out]all_qAll the desired quantities

Implements MultiParameterPlasticityStressUpdate.

Definition at line 150 of file CappedMohrCoulombStressUpdate.C.

153 {
154  const Real ts = _tensile_strength.value(intnl[1]);
155  const Real dts = _tensile_strength.derivative(intnl[1]);
156  const Real cs = _compressive_strength.value(intnl[1]);
157  const Real dcs = _compressive_strength.derivative(intnl[1]);
158  const Real sinphi = std::sin(_phi.value(intnl[0]));
159  const Real dsinphi = std::cos(_phi.value(intnl[0])) * _phi.derivative(intnl[0]);
160  const Real sinpsi = std::sin(_psi.value(intnl[0]));
161  const Real dsinpsi = std::cos(_psi.value(intnl[0])) * _psi.derivative(intnl[0]);
162  const Real cohcos = _cohesion.value(intnl[0]) * std::cos(_phi.value(intnl[0]));
163  const Real dcohcos =
164  _cohesion.derivative(intnl[0]) * std::cos(_phi.value(intnl[0])) -
165  _cohesion.value(intnl[0]) * std::sin(_phi.value(intnl[0])) * _phi.derivative(intnl[0]);
166  const Real smax = stress_params[2]; // largest eigenvalue
167  const Real smid = stress_params[1];
168  const Real smin = stress_params[0]; // smallest eigenvalue
169 
170  // yield functions. See comment in yieldFunctionValuesV
171  all_q[0].f = smax - ts;
172  all_q[1].f = smid - ts;
173  all_q[2].f = smin - ts;
174  all_q[3].f = -smin - cs;
175  all_q[4].f = -smid - cs;
176  all_q[5].f = -smax - cs;
177  all_q[6].f = 0.5 * (smax - smin) + 0.5 * (smax + smin) * sinphi - cohcos;
178  all_q[7].f = 0.5 * (smid - smin) + 0.5 * (smid + smin) * sinphi - cohcos;
179  all_q[8].f = 0.5 * (smax - smid) + 0.5 * (smax + smid) * sinphi - cohcos;
180  all_q[9].f = 0.5 * (smid - smax) + 0.5 * (smid + smax) * sinphi - cohcos;
181  all_q[10].f = 0.5 * (smin - smid) + 0.5 * (smin + smid) * sinphi - cohcos;
182  all_q[11].f = 0.5 * (smin - smax) + 0.5 * (smin + smax) * sinphi - cohcos;
183 
184  // d(yield function)/d(stress_params)
185  for (unsigned yf = 0; yf < _num_yf; ++yf)
186  for (unsigned a = 0; a < _num_sp; ++a)
187  all_q[yf].df[a] = 0.0;
188  all_q[0].df[2] = 1.0;
189  all_q[1].df[1] = 1.0;
190  all_q[2].df[0] = 1.0;
191  all_q[3].df[0] = -1.0;
192  all_q[4].df[1] = -1.0;
193  all_q[5].df[2] = -1.0;
194  all_q[6].df[2] = 0.5 * (1.0 + sinphi);
195  all_q[6].df[0] = 0.5 * (-1.0 + sinphi);
196  all_q[7].df[1] = 0.5 * (1.0 + sinphi);
197  all_q[7].df[0] = 0.5 * (-1.0 + sinphi);
198  all_q[8].df[2] = 0.5 * (1.0 + sinphi);
199  all_q[8].df[1] = 0.5 * (-1.0 + sinphi);
200  all_q[9].df[1] = 0.5 * (1.0 + sinphi);
201  all_q[9].df[2] = 0.5 * (-1.0 + sinphi);
202  all_q[10].df[0] = 0.5 * (1.0 + sinphi);
203  all_q[10].df[1] = 0.5 * (-1.0 + sinphi);
204  all_q[11].df[0] = 0.5 * (1.0 + sinphi);
205  all_q[11].df[2] = 0.5 * (-1.0 + sinphi);
206 
207  // d(yield function)/d(intnl)
208  for (unsigned i = 0; i < 6; ++i)
209  all_q[i].df_di[0] = 0.0;
210  all_q[0].df_di[1] = all_q[1].df_di[1] = all_q[2].df_di[1] = -dts;
211  all_q[3].df_di[1] = all_q[4].df_di[1] = all_q[5].df_di[1] = -dcs;
212  for (unsigned i = 6; i < 12; ++i)
213  all_q[i].df_di[1] = 0.0;
214  all_q[6].df_di[0] = 0.5 * (smax + smin) * dsinphi - dcohcos;
215  all_q[7].df_di[0] = 0.5 * (smid + smin) * dsinphi - dcohcos;
216  all_q[8].df_di[0] = 0.5 * (smax + smid) * dsinphi - dcohcos;
217  all_q[9].df_di[0] = 0.5 * (smid + smax) * dsinphi - dcohcos;
218  all_q[10].df_di[0] = 0.5 * (smin + smid) * dsinphi - dcohcos;
219  all_q[11].df_di[0] = 0.5 * (smin + smax) * dsinphi - dcohcos;
220 
221  // the flow potential is just the yield function with phi->psi
222  // d(flow potential)/d(stress_params)
223  for (unsigned yf = 0; yf < 6; ++yf)
224  for (unsigned a = 0; a < _num_sp; ++a)
225  all_q[yf].dg[a] = all_q[yf].df[a];
226  all_q[6].dg[2] = all_q[7].dg[1] = all_q[8].dg[2] = all_q[9].dg[1] = all_q[10].dg[0] =
227  all_q[11].dg[0] = 0.5 * (1.0 + sinpsi);
228  all_q[6].dg[0] = all_q[7].dg[0] = all_q[8].dg[1] = all_q[9].dg[2] = all_q[10].dg[1] =
229  all_q[11].dg[2] = 0.5 * (-1.0 + sinpsi);
230 
231  // d(flow potential)/d(stress_params)/d(intnl)
232  for (unsigned yf = 0; yf < _num_yf; ++yf)
233  for (unsigned a = 0; a < _num_sp; ++a)
234  for (unsigned i = 0; i < _num_intnl; ++i)
235  all_q[yf].d2g_di[a][i] = 0.0;
236  all_q[6].d2g_di[2][0] = all_q[7].d2g_di[1][0] = all_q[8].d2g_di[2][0] = all_q[9].d2g_di[1][0] =
237  all_q[10].d2g_di[0][0] = all_q[11].d2g_di[0][0] = 0.5 * dsinpsi;
238  all_q[6].d2g_di[0][0] = all_q[7].d2g_di[0][0] = all_q[8].d2g_di[1][0] = all_q[9].d2g_di[2][0] =
239  all_q[10].d2g_di[1][0] = all_q[11].d2g_di[2][0] = 0.5 * dsinpsi;
240 
241  // d(flow potential)/d(stress_params)/d(stress_params)
242  for (unsigned yf = 0; yf < _num_yf; ++yf)
243  for (unsigned a = 0; a < _num_sp; ++a)
244  for (unsigned b = 0; b < _num_sp; ++b)
245  all_q[yf].d2g[a][b] = 0.0;
246 }

◆ computeStressParams()

void CappedMohrCoulombStressUpdate::computeStressParams ( const RankTwoTensor stress,
std::vector< Real > &  stress_params 
) const
overrideprotectedvirtual

Computes stress_params, given stress.

Derived classes must override this

Parameters
stress[in]Stress tensor
stress_params[out]The compute stress_params

Implements MultiParameterPlasticityStressUpdate.

Definition at line 71 of file CappedMohrCoulombStressUpdate.C.

73 {
74  // stress_params[0] = smallest eigenvalue, stress_params[2] = largest eigenvalue
75  stress.symmetricEigenvalues(stress_params);
76 }

◆ computeTimeStepLimit()

Real StressUpdateBase::computeTimeStepLimit ( )
virtualinherited

Reimplemented in RadialReturnStressUpdate.

Definition at line 56 of file StressUpdateBase.C.

57 {
58  return std::numeric_limits<Real>::max();
59 }

◆ consistentTangentOperatorV()

void CappedMohrCoulombStressUpdate::consistentTangentOperatorV ( const RankTwoTensor stress_trial,
const std::vector< Real > &  trial_stress_params,
const RankTwoTensor stress,
const std::vector< Real > &  stress_params,
Real  gaE,
const yieldAndFlow smoothed_q,
const RankFourTensor Eijkl,
bool  compute_full_tangent_operator,
const std::vector< std::vector< Real >> &  dvar_dtrial,
RankFourTensor cto 
)
overrideprotectedvirtual

Calculates the consistent tangent operator.

Derived classes may choose to override this for computational efficiency. The implementation in this class is quite expensive, even though it looks compact and clean, because of all the manipulations of RankFourTensors involved.

Parameters
stress_trial[in]the trial value of the stress tensor for this strain increment
trial_stress_params[in]the trial values of the stress_params for this strain increment
stress[in]the returned value of the stress tensor for this strain increment
stress_params[in]the returned value of the stress_params for this strain increment
gaE[in]the total value of that came from this strain increment
smoothed_q[in]contains the yield function and derivatives evaluated at (p, q)
Eijkl[in]The elasticity tensor
compute_full_tangent_operator[in]true if the full consistent tangent operator is needed, otherwise false
dvar_dtrial[in]dvar_dtrial[i][j] = d({stress_param[i],gaE})/d(trial_stress_param[j]) for this strain increment
[out]ctoThe consistent tangent operator

Reimplemented from MultiParameterPlasticityStressUpdate.

Reimplemented in CappedMohrCoulombCosseratStressUpdate.

Definition at line 793 of file CappedMohrCoulombStressUpdate.C.

804 {
805  cto = elasticity_tensor;
806  if (!compute_full_tangent_operator)
807  return;
808 
809  // dvar_dtrial has been computed already, so
810  // d(stress)/d(trial_stress) = d(eigvecs * stress_params * eigvecs.transpose())/d(trial_stress)
811  // eigvecs is a rotation matrix, rot(i, j) = e_j(i) = i^th component of j^th eigenvector
812  // d(rot_ij)/d(stress_kl) = d(e_j(i))/d(stress_kl)
813  // = sum_a 0.5 * e_a(i) * (e_a(k)e_j(l) + e_a(l)e_j(k)) / (la_j - la_a)
814  // = sum_a 0.5 * rot(i,a) * (rot(k,a)rot(l,j) + rot(l,a)*rot(k,j)) / (la_j - la_a)
815  RankFourTensor drot_dstress;
816  for (unsigned i = 0; i < _tensor_dimensionality; ++i)
817  for (unsigned j = 0; j < _tensor_dimensionality; ++j)
818  for (unsigned k = 0; k < _tensor_dimensionality; ++k)
819  for (unsigned l = 0; l < _tensor_dimensionality; ++l)
820  for (unsigned a = 0; a < _num_sp; ++a)
821  {
822  if (trial_stress_params[a] == trial_stress_params[j])
823  continue;
824  drot_dstress(i, j, k, l) += 0.5 * _eigvecs(i, a) * (_eigvecs(k, a) * _eigvecs(l, j) +
825  _eigvecs(l, a) * _eigvecs(k, j)) /
826  (trial_stress_params[j] - trial_stress_params[a]);
827  }
828 
829  const RankTwoTensor eT = _eigvecs.transpose();
830 
831  RankFourTensor dstress_dtrial;
832  for (unsigned i = 0; i < _tensor_dimensionality; ++i)
833  for (unsigned j = 0; j < _tensor_dimensionality; ++j)
834  for (unsigned k = 0; k < _tensor_dimensionality; ++k)
835  for (unsigned l = 0; l < _tensor_dimensionality; ++l)
836  for (unsigned a = 0; a < _num_sp; ++a)
837  dstress_dtrial(i, j, k, l) +=
838  drot_dstress(i, a, k, l) * stress_params[a] * eT(a, j) +
839  _eigvecs(i, a) * stress_params[a] * drot_dstress(j, a, k, l);
840 
841  const std::vector<RankTwoTensor> dsp_trial = dstress_param_dstress(stress_trial);
842  for (unsigned i = 0; i < _tensor_dimensionality; ++i)
843  for (unsigned j = 0; j < _tensor_dimensionality; ++j)
844  for (unsigned k = 0; k < _tensor_dimensionality; ++k)
845  for (unsigned l = 0; l < _tensor_dimensionality; ++l)
846  for (unsigned a = 0; a < _num_sp; ++a)
847  for (unsigned b = 0; b < _num_sp; ++b)
848  dstress_dtrial(i, j, k, l) +=
849  _eigvecs(i, a) * dvar_dtrial[a][b] * dsp_trial[b](k, l) * eT(a, j);
850 
851  cto = dstress_dtrial * elasticity_tensor;
852 }

Referenced by CappedMohrCoulombCosseratStressUpdate::consistentTangentOperatorV().

◆ d2stress_param_dstress()

std::vector< RankFourTensor > CappedMohrCoulombStressUpdate::d2stress_param_dstress ( const RankTwoTensor stress) const
overrideprotectedvirtual

d2(stress_param[i])/d(stress)/d(stress) at given stress

Parameters
stressstress tensor
Returns
d2(stress_param[:])/d(stress)/d(stress)

Implements MultiParameterPlasticityStressUpdate.

Definition at line 88 of file CappedMohrCoulombStressUpdate.C.

89 {
90  std::vector<RankFourTensor> d2;
91  stress.d2symmetricEigenvalues(d2);
92  return d2;
93 }

◆ dnRHSdVar()

void MultiParameterPlasticityStressUpdate::dnRHSdVar ( const yieldAndFlow smoothed_q,
const std::vector< std::vector< Real >> &  dintnl,
const std::vector< Real > &  stress_params,
Real  gaE,
std::vector< double > &  jac 
) const
protectedinherited

Derivative of -RHS with respect to the stress_params and gaE, placed into an array ready for solving the linear system using LAPACK gsev.

Parameters
smoothed_q[in]Holds the current value of yield function and derivatives evaluated at the current values of the stress_params and the internal parameters
dintnl[in]The derivatives of the internal parameters wrt the stress_params
stress_params[in]The current value of the stress_params during the Newton-Raphson process
gaE[in]The current value of gaE
jac[out]The outputted derivatives

Definition at line 828 of file MultiParameterPlasticityStressUpdate.C.

833 {
834  for (auto & jac_entry : jac)
835  jac_entry = 0.0;
836 
837  const Real ga = gaE / _En;
838 
839  unsigned ind = 0;
840  for (unsigned var = 0; var < _num_sp; ++var)
841  {
842  for (unsigned rhs = 0; rhs < _num_sp; ++rhs)
843  {
844  if (var == rhs)
845  jac[ind] -= 1.0;
846  for (unsigned j = 0; j < _num_sp; ++j)
847  {
848  jac[ind] -= ga * _Eij[rhs][j] * smoothed_q.d2g[j][var];
849  for (unsigned k = 0; k < _num_intnl; ++k)
850  jac[ind] -= ga * _Eij[rhs][j] * smoothed_q.d2g_di[j][k] * dintnl[k][var];
851  }
852  ind++;
853  }
854  // now rhs = _num_sp (that is, the yield function)
855  jac[ind] -= smoothed_q.df[var];
856  for (unsigned k = 0; k < _num_intnl; ++k)
857  jac[ind] -= smoothed_q.df_di[k] * dintnl[k][var];
858  ind++;
859  }
860 
861  // now var = _num_sp (that is, gaE)
862  for (unsigned rhs = 0; rhs < _num_sp; ++rhs)
863  {
864  for (unsigned j = 0; j < _num_sp; ++j)
865  jac[ind] -= (1.0 / _En) * _Eij[rhs][j] * smoothed_q.dg[j];
866  ind++;
867  }
868  // now rhs = _num_sp (that is, the yield function)
869  jac[ind] = 0.0;
870 }

Referenced by MultiParameterPlasticityStressUpdate::dVardTrial(), and MultiParameterPlasticityStressUpdate::nrStep().

◆ dsmoother()

Real MultiParameterPlasticityStressUpdate::dsmoother ( Real  f_diff) const
protectedinherited

Derivative of smoother.

Definition at line 533 of file MultiParameterPlasticityStressUpdate.C.

534 {
535  if (std::abs(f_diff) >= _smoothing_tol)
536  return 0.0;
537  switch (_smoother_function_type)
538  {
540  return 0.25 * M_PI / _smoothing_tol * std::cos(f_diff * M_PI * 0.5 / _smoothing_tol);
542  return 0.75 / _smoothing_tol * (1.0 - Utility::pow<2>(f_diff / _smoothing_tol));
544  return 0.625 / _smoothing_tol * (1.0 - Utility::pow<4>(f_diff / _smoothing_tol));
546  return (7.0 / 12.0 / _smoothing_tol) * (1.0 - Utility::pow<6>(f_diff / _smoothing_tol));
547  default:
548  return 0.0;
549  }
550 }

Referenced by MultiParameterPlasticityStressUpdate::smoothAllQuantities().

◆ dstress_param_dstress()

std::vector< RankTwoTensor > CappedMohrCoulombStressUpdate::dstress_param_dstress ( const RankTwoTensor stress) const
overrideprotectedvirtual

d(stress_param[i])/d(stress) at given stress

Parameters
stressstress tensor
Returns
d(stress_param[:])/d(stress)

Implements MultiParameterPlasticityStressUpdate.

Definition at line 79 of file CappedMohrCoulombStressUpdate.C.

80 {
81  std::vector<Real> sp;
82  std::vector<RankTwoTensor> dsp;
83  stress.dsymmetricEigenvalues(sp, dsp);
84  return dsp;
85 }

Referenced by consistentTangentOperatorV().

◆ dVardTrial()

void MultiParameterPlasticityStressUpdate::dVardTrial ( bool  elastic_only,
const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  stress_params,
Real  gaE,
const std::vector< Real > &  intnl,
const yieldAndFlow smoothed_q,
Real  step_size,
bool  compute_full_tangent_operator,
std::vector< std::vector< Real >> &  dvar_dtrial 
) const
protectedinherited

Calculates derivatives of the stress_params and gaE with repect to the trial values of the stress_params for the (sub)strain increment.

After the strain increment has been fully applied, dvar_dtrial will contain the result appropriate to the full strain increment. Before that time (if applying in sub-strain increments) it will contain the result appropriate to the amount of strain increment applied successfully.

Parameters
elastic_only[in]whether this was an elastic step: if so then the updates to dvar_dtrial are fairly trivial
trial_stress_params[in]Trial values of stress_params for this (sub)strain increment
stress_params[in]Returned values of stress_params for this (sub)strain increment
gaE[in]the value of gaE that came from this (sub)strain increment
intnl[in]the value of the internal parameters at the returned position
smoothed_q[in]contains the yield function and derivatives evaluated at (stress_params, intnl)
step_size[in]size of this (sub)strain increment
compute_full_tangent_operator[in]true if the full consistent tangent operator is needed, otherwise false
dvar_dtrial[out]dvar_dtrial[i][j] = d({stress_param[i],gaE})/d(trial_stress_param[j])

Definition at line 873 of file MultiParameterPlasticityStressUpdate.C.

882 {
883  if (!_fe_problem.currentlyComputingJacobian())
884  return;
885 
886  if (!compute_full_tangent_operator)
887  return;
888 
889  if (elastic_only)
890  {
891  // no change to gaE, and all off-diag stuff remains unchanged from previous step
892  for (unsigned v = 0; v < _num_sp; ++v)
893  dvar_dtrial[v][v] += step_size;
894  return;
895  }
896 
897  const Real ga = gaE / _En;
898 
899  std::vector<std::vector<Real>> dintnl(_num_intnl, std::vector<Real>(_num_sp));
900  setIntnlDerivativesV(trial_stress_params, stress_params, intnl, dintnl);
901 
902  // rhs is described elsewhere, the following are changes in rhs wrt the trial_stress_param
903  // values
904  // In the following we use d(intnl)/d(trial variable) = - d(intnl)/d(variable)
905  std::vector<Real> rhs_cto((_num_sp + 1) * _num_sp);
906 
907  unsigned ind = 0;
908  for (unsigned a = 0; a < _num_sp; ++a)
909  {
910  // change in RHS[b] wrt changes in stress_param_trial[a]
911  for (unsigned b = 0; b < _num_sp; ++b)
912  {
913  if (a == b)
914  rhs_cto[ind] -= 1.0;
915  for (unsigned j = 0; j < _num_sp; ++j)
916  for (unsigned k = 0; k < _num_intnl; ++k)
917  rhs_cto[ind] -= ga * _Eij[b][j] * smoothed_q.d2g_di[j][k] * dintnl[k][a];
918  ind++;
919  }
920  // now b = _num_sp (that is, the yield function)
921  for (unsigned k = 0; k < _num_intnl; ++k)
922  rhs_cto[ind] -= smoothed_q.df_di[k] * dintnl[k][a];
923  ind++;
924  }
925 
926  // jac = d(-rhs)/d(var)
927  std::vector<double> jac((_num_sp + 1) * (_num_sp + 1));
928  dnRHSdVar(smoothed_q, dintnl, stress_params, gaE, jac);
929 
930  std::vector<int> ipiv(_num_sp + 1);
931  int info;
932  const int gesv_num_rhs = _num_sp + 1;
933  const int gesv_num_pq = _num_sp;
934  LAPACKgesv_(&gesv_num_rhs,
935  &gesv_num_pq,
936  &jac[0],
937  &gesv_num_rhs,
938  &ipiv[0],
939  &rhs_cto[0],
940  &gesv_num_rhs,
941  &info);
942  if (info != 0)
943  errorHandler("MultiParameterPlasticityStressUpdate: PETSC LAPACK gsev routine returned with "
944  "error code " +
945  Moose::stringify(info));
946 
947  ind = 0;
948  std::vector<std::vector<Real>> dvarn_dtrialn(_num_sp + 1, std::vector<Real>(_num_sp, 0.0));
949  for (unsigned spt = 0; spt < _num_sp; ++spt) // loop over trial stress-param variables
950  {
951  for (unsigned v = 0; v < _num_sp; ++v) // loop over variables in NR procedure
952  {
953  dvarn_dtrialn[v][spt] = rhs_cto[ind];
954  ind++;
955  }
956  // the final NR variable is gaE
957  dvarn_dtrialn[_num_sp][spt] = rhs_cto[ind];
958  ind++;
959  }
960 
961  const std::vector<std::vector<Real>> dvar_dtrial_old = dvar_dtrial;
962 
963  for (unsigned v = 0; v < _num_sp; ++v) // loop over variables in NR procedure
964  {
965  for (unsigned spt = 0; spt < _num_sp; ++spt) // loop over trial stress-param variables
966  {
967  dvar_dtrial[v][spt] = step_size * dvarn_dtrialn[v][spt];
968  for (unsigned a = 0; a < _num_sp; ++a)
969  dvar_dtrial[v][spt] += dvarn_dtrialn[v][a] * dvar_dtrial_old[a][spt];
970  }
971  }
972  // for gaE the formulae are a little different
973  const unsigned v = _num_sp;
974  for (unsigned spt = 0; spt < _num_sp; ++spt)
975  {
976  dvar_dtrial[v][spt] += step_size * dvarn_dtrialn[v][spt]; // note +=
977  for (unsigned a = 0; a < _num_sp; ++a)
978  dvar_dtrial[v][spt] += dvarn_dtrialn[v][a] * dvar_dtrial_old[a][spt];
979  }
980 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ errorHandler()

void MultiParameterPlasticityStressUpdate::errorHandler ( const std::string &  message) const
protectedvirtualinherited

Performs any necessary cleaning-up, then throw MooseException(message)

Parameters
messageThe message to using in MooseException

Definition at line 661 of file MultiParameterPlasticityStressUpdate.C.

662 {
663  throw MooseException(message);
664 }

Referenced by MultiParameterPlasticityStressUpdate::dVardTrial(), and MultiParameterPlasticityStressUpdate::updateState().

◆ finalizeReturnProcess()

void MultiParameterPlasticityStressUpdate::finalizeReturnProcess ( const RankTwoTensor rotation_increment)
protectedvirtualinherited

Derived classes may use this to perform calculations after the return-map process has completed successfully in stress_param space but before the returned stress tensor has been calculcated.

Parameters
rotation_increment[in]The large-strain rotation increment

Reimplemented in CappedDruckerPragerStressUpdate, CappedWeakPlaneStressUpdate, and CappedWeakInclinedPlaneStressUpdate.

Definition at line 672 of file MultiParameterPlasticityStressUpdate.C.

674 {
675 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ getTangentCalculationMethod()

virtual TangentCalculationMethod MultiParameterPlasticityStressUpdate::getTangentCalculationMethod ( )
inlineoverrideprotectedvirtualinherited

Reimplemented from StressUpdateBase.

Definition at line 123 of file MultiParameterPlasticityStressUpdate.h.

124  {
126  }

◆ initializeReturnProcess()

void MultiParameterPlasticityStressUpdate::initializeReturnProcess ( )
protectedvirtualinherited

Derived classes may use this to perform calculations before any return-map process is performed, for instance, to initialize variables.

This is called at the very start of updateState, even before any checking for admissible stresses, etc, is performed

Reimplemented in CappedDruckerPragerStressUpdate, CappedWeakPlaneStressUpdate, and CappedWeakInclinedPlaneStressUpdate.

Definition at line 667 of file MultiParameterPlasticityStressUpdate.C.

668 {
669 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ initializeVarsV()

void CappedMohrCoulombStressUpdate::initializeVarsV ( const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  intnl_old,
std::vector< Real > &  stress_params,
Real &  gaE,
std::vector< Real > &  intnl 
) const
overrideprotectedvirtual

Sets (stress_params, intnl) at "good guesses" of the solution to the Return-Map algorithm.

The purpose of these "good guesses" is to speed up the Newton-Raphson process by providing it with a good initial guess. Derived classes may choose to override this if their plastic models are easy enough to solve approximately. The default values, provided by this class, are simply gaE = 0, stress_params = trial_stress_params, that is, the "good guess" is just the trial point for this (sub)strain increment.

Parameters
trial_stress_params[in]The stress_params at the trial point
intnl_old[in]The internal parameters before applying the (sub)strain increment
stress_params[out]The "good guess" value of the stress_params
gaE[out]The "good guess" value of gaE
intnl[out]The "good guess" value of the internal parameters

For CappedMohrCoulomb there are a number of possibilities for the returned stress configuration:

  • return to the Tensile yield surface to its plane
  • return to the Tensile yield surface to its max=mid edge
  • return to the Tensile yield surface to its tip
  • return to the Compressive yield surface to its plane
  • return to the Compressive yield surface to its max=mid edge
  • return to the Compressive yield surface to its tip
  • return to the Mohr-Coulomb yield surface to its plane
  • return to the Mohr-Coulomb yield surface to its max=mid edge
  • return to the Mohr-Coulomb yield surface to its mid=min edge
  • return to the Mohr-Coulomb yield surface to its tip
  • return to the edge between Tensile and Mohr-Coulomb
  • return to the edge between Tensile and Mohr-Coulomb, at max=mid point
  • return to the edge between Tensile and Mohr-Coulomb, at mid=min point
  • return to the edge between Compressive and Mohr-Coulomb
  • return to the edge between Compressive and Mohr-Coulomb, at max=mid point
  • return to the edge between Compressive and Mohr-Coulomb, at mid=min point Which of these is more prelevant depends on the parameters tensile strength, compressive strength, cohesion, etc. I simply check each possibility until i find one that works. _shifter is used to avoid equal eigenvalues

Reimplemented from MultiParameterPlasticityStressUpdate.

Definition at line 267 of file CappedMohrCoulombStressUpdate.C.

272 {
273  if (!_perfect_guess)
274  {
275  for (unsigned i = 0; i < _num_sp; ++i)
276  stress_params[i] = trial_stress_params[i];
277  gaE = 0.0;
278  }
279  else
280  {
281  const Real ts = _tensile_strength.value(intnl_old[1]);
282  const Real cs = _compressive_strength.value(intnl_old[1]);
283  const Real sinphi = std::sin(_phi.value(intnl_old[0]));
284  const Real cohcos = _cohesion.value(intnl_old[0]) * std::cos(_phi.value(intnl_old[0]));
285 
286  const Real trial_tensile_yf = trial_stress_params[2] - ts;
287  const Real trial_compressive_yf = -trial_stress_params[0] - cs;
288  const Real trial_mc_yf = 0.5 * (trial_stress_params[2] - trial_stress_params[0]) +
289  0.5 * (trial_stress_params[2] + trial_stress_params[0]) * sinphi -
290  cohcos;
291 
317  bool found_solution = false;
318 
319  if (trial_tensile_yf <= _f_tol && trial_compressive_yf <= _f_tol && trial_mc_yf <= _f_tol)
320  {
321  // this is needed because although we know the smoothed yield function is
322  // positive, the individual yield functions may not be
323  for (unsigned i = 0; i < _num_sp; ++i)
324  stress_params[i] = trial_stress_params[i];
325  gaE = 0.0;
326  found_solution = true;
327  }
328 
329  const bool tensile_possible = (ts < cohcos / sinphi); // tensile chops MC tip
330  const bool mc_tip_possible = (cohcos / sinphi < ts); // MC tip pokes through tensile
331  const bool mc_impossible = (0.5 * (ts + cs) + 0.5 * (ts - cs) * sinphi - cohcos <
332  _f_tol); // MC outside tensile and compressive
333 
334  const Real sinpsi = std::sin(_psi.value(intnl_old[0]));
335  const Real halfplus = 0.5 + 0.5 * sinpsi;
336  const Real neghalfplus = -0.5 + 0.5 * sinpsi;
337 
338  if (!found_solution && tensile_possible && trial_tensile_yf > _f_tol &&
339  (trial_compressive_yf <= _f_tol || (trial_compressive_yf > _f_tol && mc_impossible)))
340  {
341  // try pure tensile failure, return to the plane
342  // This involves solving yf[0] = 0 and the three flow-direction equations
343  // Don't try this if there is compressive failure, since returning to
344  // the tensile yield surface will only make compressive failure worse
345  const Real ga = (trial_stress_params[2] - ts) / _Eij[2][2];
346  stress_params[2] = ts; // largest eigenvalue
347  stress_params[1] = trial_stress_params[1] - ga * _Eij[1][2];
348  stress_params[0] = trial_stress_params[0] - ga * _Eij[0][2];
349 
350  // if we have to return to the edge, or tip, do that
351  Real dist_mod = 1.0;
352  const Real to_subtract1 = stress_params[1] - (ts - 0.5 * _shifter);
353  if (to_subtract1 > 0.0)
354  {
355  dist_mod += Utility::pow<2>(to_subtract1 / (trial_stress_params[2] - ts));
356  stress_params[1] -= to_subtract1;
357  }
358  const Real to_subtract0 = stress_params[0] - (ts - _shifter);
359  if (to_subtract0 > 0.0)
360  {
361  dist_mod += Utility::pow<2>(to_subtract0 / (trial_stress_params[2] - ts));
362  stress_params[0] -= to_subtract0;
363  }
364  if (mc_impossible) // might have to shift up to the compressive yield surface
365  {
366  const Real to_add0 = -stress_params[0] - cs;
367  if (to_add0 > 0.0)
368  {
369  dist_mod += Utility::pow<2>(to_add0 / (trial_stress_params[2] - ts));
370  stress_params[0] += to_add0;
371  }
372  const Real to_add1 = -cs + 0.5 * _shifter - stress_params[1];
373  if (to_add1 > 0.0)
374  {
375  dist_mod += Utility::pow<2>(to_add1 / (trial_stress_params[2] - ts));
376  stress_params[1] += to_add1;
377  }
378  }
379 
380  const Real new_compressive_yf = -stress_params[0] - cs;
381  const Real new_mc_yf = 0.5 * (stress_params[2] - stress_params[0]) +
382  0.5 * (stress_params[2] + stress_params[0]) * sinphi - cohcos;
383  if (new_mc_yf <= _f_tol && new_compressive_yf <= _f_tol)
384  {
385  gaE = std::sqrt(dist_mod) * (trial_stress_params[2] - stress_params[2]);
386  found_solution = true;
387  }
388  }
389  if (!found_solution && trial_compressive_yf > _f_tol &&
390  (trial_tensile_yf <= _f_tol || (trial_tensile_yf > _f_tol && mc_impossible)))
391  {
392  // try pure compressive failure
393  // Don't try this if there is tensile failure, since returning to
394  // the compressive yield surface will only make tensile failure worse
395  const Real ga = (trial_stress_params[0] + cs) / _Eij[0][0]; // this is negative
396  stress_params[0] = -cs;
397  stress_params[1] = trial_stress_params[1] - ga * _Eij[1][0];
398  stress_params[2] = trial_stress_params[2] - ga * _Eij[2][0];
399 
400  // if we have to return to the edge, or tip, do that
401  Real dist_mod = 1.0;
402  const Real to_add1 = -cs + 0.5 * _shifter - stress_params[1];
403  if (to_add1 > 0.0)
404  {
405  dist_mod += Utility::pow<2>(to_add1 / (trial_stress_params[0] + cs));
406  stress_params[1] += to_add1;
407  }
408  const Real to_add2 = -cs + _shifter - stress_params[2];
409  if (to_add2 > 0.0)
410  {
411  dist_mod += Utility::pow<2>(to_add2 / (trial_stress_params[0] + cs));
412  stress_params[2] += to_add2;
413  }
414  if (mc_impossible) // might have to shift down to the tensile yield surface
415  {
416  const Real to_subtract2 = stress_params[2] - ts;
417  if (to_subtract2 > 0.0)
418  {
419  dist_mod += Utility::pow<2>(to_subtract2 / (trial_stress_params[0] + cs));
420  stress_params[2] -= to_subtract2;
421  }
422  const Real to_subtract1 = stress_params[1] - (ts - 0.5 * _shifter);
423  if (to_subtract1 > 0.0)
424  {
425  dist_mod += Utility::pow<2>(to_subtract1 / (trial_stress_params[0] + cs));
426  stress_params[1] -= to_subtract1;
427  }
428  }
429 
430  const Real new_tensile_yf = stress_params[2] - ts;
431  const Real new_mc_yf = 0.5 * (stress_params[2] - stress_params[0]) +
432  0.5 * (stress_params[2] + stress_params[0]) * sinphi - cohcos;
433  if (new_mc_yf <= _f_tol && new_tensile_yf <= _f_tol)
434  {
435  gaE = std::sqrt(dist_mod) * (-trial_stress_params[0] + stress_params[0]);
436  found_solution = true;
437  }
438  }
439  if (!found_solution && !mc_impossible && trial_mc_yf > _f_tol)
440  {
441  // try pure shear failure, return to the plane
442  // This involves solving yf[6]=0 and the three flow-direction equations
443  const Real ga = ((trial_stress_params[2] - trial_stress_params[0]) +
444  (trial_stress_params[2] + trial_stress_params[0]) * sinphi - 2.0 * cohcos) /
445  (_Eij[2][2] - _Eij[0][2] + (_Eij[2][2] + _Eij[0][2]) * sinpsi * sinphi);
446  stress_params[2] =
447  trial_stress_params[2] - ga * (_Eij[2][2] * halfplus + _Eij[2][0] * neghalfplus);
448  stress_params[1] = trial_stress_params[1] - ga * _Eij[1][0] * sinpsi;
449  stress_params[0] =
450  trial_stress_params[0] - ga * (_Eij[0][0] * neghalfplus + _Eij[0][2] * halfplus);
451  const Real f7 = 0.5 * (stress_params[1] - stress_params[0]) +
452  0.5 * (stress_params[1] + stress_params[0]) * sinphi - cohcos;
453  const Real f8 = 0.5 * (stress_params[2] - stress_params[1]) +
454  0.5 * (stress_params[2] + stress_params[1]) * sinphi - cohcos;
455  const Real new_tensile_yf = stress_params[2] - ts;
456  const Real new_compressive_yf = -stress_params[0] - cs;
457 
458  if (f7 <= _f_tol && f8 <= _f_tol && new_tensile_yf <= _f_tol && new_compressive_yf <= _f_tol)
459  {
460  gaE = ((trial_stress_params[2] - trial_stress_params[0]) -
461  (stress_params[2] - stress_params[0])) /
462  (_Eij[2][2] - _Eij[0][2]) * _Eij[2][2];
463  found_solution = true;
464  }
465  }
466  if (!found_solution && !mc_impossible && trial_mc_yf > _f_tol)
467  {
468  // Try return to the max=mid MC line.
469  // To return to the max=mid line, we need to solve f6 = 0 = f7 and
470  // the three flow-direction equations. In the flow-direction equations
471  // there are two plasticity multipliers, which i call ga6 and ga7,
472  // corresponding to the amounts of strain normal to the f6 and f7
473  // directions, respectively.
474  // So:
475  // Smax = Smax^trial - ga6 Emax,a dg6/dSa - ga7 Emax,a dg7/dSa
476  // = Smax^trial - ga6 cmax6 - ga7 cmax7 (with cmax6 and cmax7 evaluated below)
477  // Smid = Smid^trial - ga6 Emid,a dg6/dSa - ga7 Emid,a dg7/dSa
478  // = Smid^trial - ga6 cmid6 - ga7 cmid7
479  // Smin = Smin^trial - ga6 Emin,a dg6/dSa - ga7 Emin,a dg7/dSa
480  // = Smin^trial - ga6 cmin6 - ga7 cmin7
481  const Real cmax6 = _Eij[2][2] * halfplus + _Eij[2][0] * neghalfplus;
482  const Real cmax7 = _Eij[2][1] * halfplus + _Eij[2][0] * neghalfplus;
483  // const Real cmid6 = _Eij[1][2] * halfplus + _Eij[1][0] * neghalfplus;
484  // const Real cmid7 = _Eij[1][1] * halfplus + _Eij[1][0] * neghalfplus;
485  const Real cmin6 = _Eij[0][2] * halfplus + _Eij[0][0] * neghalfplus;
486  const Real cmin7 = _Eij[0][1] * halfplus + _Eij[0][0] * neghalfplus;
487  // Substituting these into f6 = 0 yields
488  // 0 = f6_trial - ga6 (0.5(cmax6 - cmin6) + 0.5(cmax6 + cmin6)sinphi) - ga7 (0.5(cmax6 -
489  // cmin6) + 0.5(cmax6 + cmin6)sinphi) = f6_trial - ga6 c6 - ga7 c7, where
490  const Real c6 = 0.5 * (cmax6 - cmin6) + 0.5 * (cmax6 + cmin6) * sinphi;
491  const Real c7 = 0.5 * (cmax7 - cmin7) + 0.5 * (cmax7 + cmin7) * sinphi;
492  // It isn't too hard to check that the other equation is
493  // 0 = f7_trial - ga6 c7 - ga7 c6
494  // These equations may be inverted to yield
495  if (c6 != c7)
496  {
497  const Real f6_trial = trial_mc_yf;
498  const Real f7_trial = 0.5 * (trial_stress_params[1] - trial_stress_params[0]) +
499  0.5 * (trial_stress_params[1] + trial_stress_params[0]) * sinphi -
500  cohcos;
501  const Real descr = Utility::pow<2>(c6) - Utility::pow<2>(c7);
502  Real ga6 = (c6 * f6_trial - c7 * f7_trial) / descr;
503  Real ga7 = (-c7 * f6_trial + c6 * f7_trial) / descr;
504  // and finally
505  stress_params[2] = trial_stress_params[2] - ga6 * cmax6 - ga7 * cmax7;
506  stress_params[0] = trial_stress_params[0] - ga6 * cmin6 - ga7 * cmin7;
507  stress_params[1] = stress_params[2] - 0.5 * _shifter;
508 
509  Real f8 = 0.5 * (stress_params[2] - stress_params[1]) +
510  0.5 * (stress_params[2] + stress_params[1]) * sinphi - cohcos;
511 
512  if (mc_tip_possible && f8 > _f_tol)
513  {
514  stress_params[2] = cohcos / sinphi;
515  stress_params[1] = stress_params[2] - 0.5 * _shifter;
516  stress_params[0] = stress_params[2] - _shifter;
517  f8 = 0.0;
518  ga6 = 1.0;
519  ga7 = 1.0;
520  }
521 
522  const Real new_tensile_yf = stress_params[2] - ts;
523  const Real new_compressive_yf = -stress_params[0] - cs;
524 
525  if (f8 <= _f_tol && new_tensile_yf <= _f_tol && new_compressive_yf <= _f_tol &&
526  ga6 >= 0.0 && ga7 >= 0.0)
527  {
528  gaE = ((trial_stress_params[2] - trial_stress_params[0]) -
529  (stress_params[2] - stress_params[0])) /
530  (_Eij[2][2] - _Eij[0][2]) * _Eij[2][2];
531  found_solution = true;
532  }
533  }
534  }
535  if (!found_solution && !mc_impossible && trial_mc_yf > _f_tol)
536  {
537  // Try return to the mid=min line.
538  // To return to the mid=min line, we need to solve f6 = 0 = f8 and
539  // the three flow-direction equations. In the flow-direction equations
540  // there are two plasticity multipliers, which i call ga6 and ga8,
541  // corresponding to the amounts of strain normal to the f6 and f8
542  // directions, respectively.
543  // So:
544  // Smax = Smax^trial - ga6 Emax,a dg6/dSa - ga8 Emax,a dg8/dSa
545  // = Smax^trial - ga6 cmax6 - ga8 cmax8 (with cmax6 and cmax8 evaluated below)
546  // Smid = Smid^trial - ga6 Emid,a dg6/dSa - ga8 Emid,a dg8/dSa
547  // = Smid^trial - ga6 cmid6 - ga8 cmid8
548  // Smin = Smin^trial - ga6 Emin,a dg6/dSa - ga8 Emin,a dg8/dSa
549  // = Smin^trial - ga6 cmin6 - ga8 cmin8
550  const Real cmax6 = _Eij[2][2] * halfplus + _Eij[2][0] * neghalfplus;
551  const Real cmax8 = _Eij[2][2] * halfplus + _Eij[2][1] * neghalfplus;
552  // const Real cmid6 = _Eij[1][2] * halfplus + _Eij[1][0] * neghalfplus;
553  // const Real cmid8 = _Eij[1][2] * halfplus + _Eij[1][1] * neghalfplus;
554  const Real cmin6 = _Eij[0][2] * halfplus + _Eij[0][0] * neghalfplus;
555  const Real cmin8 = _Eij[0][2] * halfplus + _Eij[0][1] * neghalfplus;
556  // Substituting these into f6 = 0 yields
557  // 0 = f6_trial - ga6 (0.5(cmax6 - cmin6) + 0.5(cmax6 + cmin6)sinphi) - ga8 (0.5(cmax6 -
558  // cmin6) + 0.5(cmax6 + cmin6)sinphi) = f6_trial - ga6 c6 - ga8 c8, where
559  const Real c6 = 0.5 * (cmax6 - cmin6) + 0.5 * (cmax6 + cmin6) * sinphi;
560  const Real c8 = 0.5 * (cmax8 - cmin8) + 0.5 * (cmax8 + cmin8) * sinphi;
561  // It isn't too hard to check that the other equation is
562  // 0 = f8_trial - ga6 c8 - ga8 c6
563  // These equations may be inverted to yield
564  if (c6 != c8)
565  {
566  const Real f6_trial = trial_mc_yf;
567  const Real f8_trial = 0.5 * (trial_stress_params[2] - trial_stress_params[1]) +
568  0.5 * (trial_stress_params[2] + trial_stress_params[1]) * sinphi -
569  cohcos;
570  const Real descr = Utility::pow<2>(c6) - Utility::pow<2>(c8);
571  Real ga6 = (c6 * f6_trial - c8 * f8_trial) / descr;
572  Real ga8 = (-c8 * f6_trial + c6 * f8_trial) / descr;
573  // and finally
574  stress_params[2] = trial_stress_params[2] - ga6 * cmax6 - ga8 * cmax8;
575  stress_params[0] = trial_stress_params[0] - ga6 * cmin6 - ga8 * cmin8;
576  stress_params[1] = stress_params[0] + 0.5 * _shifter;
577 
578  Real f7 = 0.5 * (stress_params[1] - stress_params[0]) +
579  0.5 * (stress_params[1] + stress_params[0]) * sinphi - cohcos;
580 
581  if (mc_tip_possible && f7 > _f_tol)
582  {
583  stress_params[2] = cohcos / sinphi;
584  stress_params[1] = stress_params[2] - 0.5 * _shifter;
585  stress_params[0] = stress_params[2] - _shifter;
586  f7 = 0.0;
587  ga6 = 1.0;
588  ga8 = 1.0;
589  }
590 
591  const Real new_tensile_yf = stress_params[2] - ts;
592  const Real new_compressive_yf = -stress_params[0] - cs;
593 
594  if (f7 <= _f_tol && new_tensile_yf <= _f_tol && new_compressive_yf <= _f_tol &&
595  ga6 >= 0.0 && ga8 >= 0.0)
596  {
597  gaE = ((trial_stress_params[2] - trial_stress_params[0]) -
598  (stress_params[2] - stress_params[0])) /
599  (_Eij[2][2] - _Eij[0][2]) * _Eij[2][2];
600  found_solution = true;
601  }
602  }
603  }
604  if (!found_solution && !mc_impossible && tensile_possible && trial_tensile_yf > _f_tol)
605  {
606  // Return to the line where yf[0] = 0 = yf[6].
607  // To return to this line, we need to solve f0 = 0 = f6 and
608  // the three flow-direction equations. In the flow-direction equations
609  // there are two plasticity multipliers, which i call ga0 and ga6
610  // corresponding to the amounts of strain normal to the f0 and f6
611  // directions, respectively.
612  // So:
613  // Smax = Smax^trial - ga6 Emax,a dg6/dSa - ga0 Emax,a dg0/dSa
614  // = Smax^trial - ga6 cmax6 - ga0 cmax0 (with cmax6 and cmax0 evaluated below)
615  // Smid = Smid^trial - ga6 Emid,a dg6/dSa - ga0 Emid,a dg0/dSa
616  // = Smid^trial - ga6 cmid6 - ga0 cmid0
617  // Smin = Smin^trial - ga6 Emin,a dg6/dSa - ga0 Emin,a dg0/dSa
618  // = Smin^trial - ga6 cmin6 - ga0 cmin0
619  const Real cmax6 = _Eij[2][2] * halfplus + _Eij[2][0] * neghalfplus;
620  const Real cmax0 = _Eij[2][2];
621  const Real cmid6 = _Eij[1][2] * halfplus + _Eij[1][0] * neghalfplus;
622  const Real cmid0 = _Eij[1][2];
623  const Real cmin6 = _Eij[0][2] * halfplus + _Eij[0][0] * neghalfplus;
624  const Real cmin0 = _Eij[0][2];
625  // Substituting these into f6 = 0 yields
626  // 0 = f6_trial - ga6 (0.5(cmax6 - cmin6) + 0.5(cmax6 + cmin6)sinphi) - ga0 (0.5(cmax0 -
627  // cmin0) + 0.5(cmax0 + cmin0)sinphi) = f6_trial - ga6 c6 - ga0 c0, where
628  const Real c6 = 0.5 * (cmax6 - cmin6) + 0.5 * (cmax6 + cmin6) * sinphi;
629  const Real c0 = 0.5 * (cmax0 - cmin0) + 0.5 * (cmax0 + cmin0) * sinphi;
630  // Substituting these into f0 = 0 yields
631  // 0 = f0_trial - ga6 cmax6 - ga0 cmax0
632  // These equations may be inverted to yield the following
633  const Real descr = c0 * cmax6 - c6 * cmax0;
634  if (descr != 0.0)
635  {
636  const Real ga0 = (-c6 * trial_tensile_yf + cmax6 * trial_mc_yf) / descr;
637  const Real ga6 = (c0 * trial_tensile_yf - cmax0 * trial_mc_yf) / descr;
638  stress_params[2] = trial_stress_params[2] - ga6 * cmax6 - ga0 * cmax0;
639  stress_params[1] = trial_stress_params[1] - ga6 * cmid6 - ga0 * cmid0;
640  stress_params[0] = trial_stress_params[0] - ga6 * cmin6 - ga0 * cmin0;
641 
642  // enforce physicality (go to corners if necessary)
643  stress_params[0] =
644  std::min(stress_params[0],
645  stress_params[2] - _shifter); // account for poor choice from user
646  stress_params[1] = std::max(std::min(stress_params[1], stress_params[2] - 0.5 * _shifter),
647  stress_params[0] + 0.5 * _shifter);
648 
649  const Real new_compressive_yf = -stress_params[0] - cs;
650  if (new_compressive_yf <= _f_tol && ga0 >= 0.0 && ga6 >= 0.0) // enforce ga>0!
651  {
652  gaE = ((trial_stress_params[2] - trial_stress_params[0]) -
653  (stress_params[2] - stress_params[0])) /
654  (_Eij[2][2] - _Eij[0][2]) * _Eij[2][2] +
655  (trial_stress_params[2] - stress_params[2]);
656  found_solution = true;
657  }
658  }
659  }
660  if (!found_solution && !mc_impossible)
661  {
662  // Return to the line where yf[3] = 0 = yf[6].
663  // To return to this line, we need to solve f3 = 0 = f6 and
664  // the three flow-direction equations. In the flow-direction equations
665  // there are two plasticity multipliers, which i call ga3 and ga6
666  // corresponding to the amounts of strain normal to the f3 and f6
667  // directions, respectively.
668  // So:
669  // Smax = Smax^trial - ga6 Emax,a dg6/dSa - ga3 Emax,a dg3/dSa
670  // = Smax^trial - ga6 cmax6 - ga3 cmax3 (with cmax6 and cmax3 evaluated below)
671  // Smid = Smid^trial - ga6 Emid,a dg6/dSa - ga3 Emid,a dg3/dSa
672  // = Smid^trial - ga6 cmid6 - ga3 cmid3
673  // Smin = Smin^trial - ga6 Emin,a dg6/dSa - ga3 Emin,a dg3/dSa
674  // = Smin^trial - ga6 cmin6 - ga3 cmin3
675  const Real cmax6 = _Eij[2][2] * halfplus + _Eij[2][0] * neghalfplus;
676  const Real cmax3 = -_Eij[2][0];
677  const Real cmid6 = _Eij[1][2] * halfplus + _Eij[1][0] * neghalfplus;
678  const Real cmid3 = -_Eij[1][0];
679  const Real cmin6 = _Eij[0][2] * halfplus + _Eij[0][0] * neghalfplus;
680  const Real cmin3 = -_Eij[0][0];
681  // Substituting these into f6 = 0 yields
682  // 0 = f6_trial - ga6 (0.5(cmax6 - cmin6) + 0.5(cmax6 + cmin6)sinphi) - ga3 (0.5(cmax3 -
683  // cmin3) + 0.5(cmax3 + cmin3)sinphi) = f6_trial - ga6 c6 - ga3 c3, where
684  const Real c6 = 0.5 * (cmax6 - cmin6) + 0.5 * (cmax6 + cmin6) * sinphi;
685  const Real c3 = 0.5 * (cmax3 - cmin3) + 0.5 * (cmax3 + cmin3) * sinphi;
686  // Substituting these into f3 = 0 yields
687  // 0 = - f3_trial - ga6 cmin6 - ga3 cmin3
688  // These equations may be inverted to yield the following
689  const Real descr = c3 * cmin6 - c6 * cmin3;
690  if (descr != 0.0)
691  {
692  const Real ga3 = (c6 * trial_compressive_yf + cmin6 * trial_mc_yf) / descr;
693  const Real ga6 = (-c3 * trial_compressive_yf - cmin3 * trial_mc_yf) / descr;
694  stress_params[2] = trial_stress_params[2] - ga6 * cmax6 - ga3 * cmax3;
695  stress_params[1] = trial_stress_params[1] - ga6 * cmid6 - ga3 * cmid3;
696  stress_params[0] = trial_stress_params[0] - ga6 * cmin6 - ga3 * cmin3;
697 
698  const Real new_tensile_yf = stress_params[2] - ts;
699  stress_params[2] =
700  std::max(stress_params[2],
701  stress_params[0] + _shifter); // account for poor choice from user
702  stress_params[1] = std::max(std::min(stress_params[1], stress_params[2] - 0.5 * _shifter),
703  stress_params[0] + 0.5 * _shifter);
704 
705  if (new_tensile_yf <= _f_tol && ga6 >= 0.0)
706  {
707  gaE = ((trial_stress_params[2] - trial_stress_params[0]) -
708  (stress_params[2] - stress_params[0])) /
709  (_Eij[2][2] - _Eij[0][2]) * _Eij[2][2] +
710  (-trial_stress_params[0] - stress_params[0]);
711 
712  found_solution = true;
713  }
714  }
715  }
716  if (!found_solution)
717  {
718  // Cannot find an acceptable initialisation
719  for (unsigned i = 0; i < _num_sp; ++i)
720  stress_params[i] = trial_stress_params[i];
721  gaE = 0.0;
722  mooseWarning("CappedMohrCoulombStressUpdate cannot initialize from max = ",
723  stress_params[2],
724  " mid = ",
725  stress_params[1],
726  " min = ",
727  stress_params[0]);
728  }
729  }
730  setIntnlValuesV(trial_stress_params, stress_params, intnl_old, intnl);
731 }

◆ initQpStatefulProperties()

void MultiParameterPlasticityStressUpdate::initQpStatefulProperties ( )
overrideprotectedvirtualinherited

Reimplemented in CappedWeakInclinedPlaneStressUpdate.

Definition at line 141 of file MultiParameterPlasticityStressUpdate.C.

142 {
143  _plastic_strain[_qp].zero();
144  _intnl[_qp].assign(_num_intnl, 0);
145  _yf[_qp].assign(_num_yf, 0);
146  _iter[_qp] = 0.0;
147  _max_iter_used[_qp] = 0.0;
148  _linesearch_needed[_qp] = 0.0;
149 }

Referenced by CappedWeakInclinedPlaneStressUpdate::initQpStatefulProperties(), and MultiParameterPlasticityStressUpdate::updateState().

◆ isIsotropic()

bool CappedMohrCoulombStressUpdate::isIsotropic ( )
inlineoverridevirtual

Is the implmented model isotropic? The safe default is 'false'.

Reimplemented from StressUpdateBase.

Definition at line 36 of file CappedMohrCoulombStressUpdate.h.

36 { return true; };

◆ ismoother()

Real MultiParameterPlasticityStressUpdate::ismoother ( Real  f_diff) const
protectedinherited

Smooths yield functions.

The returned value must be zero if abs(f_diff) >= _smoothing_tol and otherwise must satisfy, over -_smoothing_tol <= f_diff <= _smoothing_tol: (1) C2 (2) zero at f_diff = +/- _smoothing_tol (3) derivative is +/-0.5 at f_diff = +/- _smoothing_tol (4) derivative must be in [-0.5, 0.5] (5) second derivative is zero at f_diff = +/- _smoothing_tol (6) second derivative must be non-negative in order to ensure C2 differentiability and convexity of the smoothed yield surface.

Definition at line 484 of file MultiParameterPlasticityStressUpdate.C.

485 {
486  if (std::abs(f_diff) >= _smoothing_tol)
487  return 0.0;
488  switch (_smoother_function_type)
489  {
491  return -_smoothing_tol / M_PI * std::cos(0.5 * M_PI * f_diff / _smoothing_tol);
493  return 0.75 / _smoothing_tol *
494  (0.5 * (Utility::pow<2>(f_diff) - _smoothing_tol2) -
495  (_smoothing_tol2 / 12.0) * (Utility::pow<4>(f_diff / _smoothing_tol) - 1.0));
497  return 0.625 / _smoothing_tol *
498  (0.5 * (Utility::pow<2>(f_diff) - _smoothing_tol2) -
499  (_smoothing_tol2 / 30.0) * (Utility::pow<6>(f_diff / _smoothing_tol) - 1.0));
501  return (7.0 / 12.0 / _smoothing_tol) *
502  (0.5 * (Utility::pow<2>(f_diff) - _smoothing_tol2) -
503  (_smoothing_tol2 / 56.0) * (Utility::pow<8>(f_diff / _smoothing_tol) - 1.0));
504  default:
505  return 0.0;
506  }
507 }

Referenced by MultiParameterPlasticityStressUpdate::smoothAllQuantities(), and MultiParameterPlasticityStressUpdate::yieldF().

◆ lineSearch()

int MultiParameterPlasticityStressUpdate::lineSearch ( Real &  res2,
std::vector< Real > &  stress_params,
Real &  gaE,
const std::vector< Real > &  trial_stress_params,
yieldAndFlow smoothed_q,
const std::vector< Real > &  intnl_ok,
std::vector< Real > &  intnl,
std::vector< Real > &  rhs,
Real &  linesearch_needed 
) const
protectedinherited

Performs a line-search to find stress_params and gaE Upon entry:

  • rhs contains the solution to the Newton-Raphson (ie nrStep should have been called). If a full Newton step is used then stress_params[:] += rhs[0:_num_sp-1] and gaE += rhs[_num_sp]
  • res2 contains the residual-squared before applying any of solution
  • stress_params contains the stress_params before applying any of the solution
  • gaE contains gaE before applying any of the solution (that is contained in rhs) Upon exit:
  • stress_params will be the stress_params after applying the solution
  • gaE will be the stress_params after applying the solution
  • rhs will contain the updated rhs values (after applying the solution) ready for the next Newton-Raphson step,
  • res2 will be the residual-squared after applying the solution
  • intnl will contain the internal variables corresponding to the return from trial_stress_params to stress_params (and starting from intnl_ok)
  • linesearch_needed will be 1.0 if a linesearch was needed
  • smoothed_q will contain the value of the yield function and its derivatives, etc, at (stress_params, intnl)
    Parameters
    res2[in,out]the residual-squared, both as an input and output
    stress_params[in,out]Upon input the value of the stress_params before the current Newton-Raphson process was initiated. Upon exit this will hold the values coming from the line search.
    trial_stress_params[in]Trial value for the stress_params for this (sub)strain increment
    gaE[in,out]Upon input the value of gaE before the current Newton-Raphson iteration was initiated. Upon exit this will hold the value coming from the line-search
    smoothed_q[in,out]Upon input, the value of the smoothed yield function and derivatives at the prior-to-Newton configuration. Upon exit this is evaluated at the new (stress_params, intnl)
    intnl_ok[in]The value of the internal parameters from the start of this (sub)strain increment
    intnl[in,out]The value of the internal parameters after the line-search has converged
    rhs[in,out]Upon entry this contains the solution to the Newton-Raphson. Upon exit this contains the updated rhs values
    Returns
    0 if successful, 1 otherwise

Definition at line 553 of file MultiParameterPlasticityStressUpdate.C.

562 {
563  const Real res2_old = res2;
564  const std::vector<Real> sp_params_old = stress_params;
565  const Real gaE_old = gaE;
566  const std::vector<Real> delta_nr_params = rhs;
567 
568  Real lam = 1.0; // line-search parameter
569  const Real lam_min = 1E-10; // minimum value of lam allowed
570  const Real slope = -2.0 * res2_old; // "Numerical Recipes" uses -b*A*x, in order to check for
571  // roundoff, but i hope the nrStep would warn if there were
572  // problems
573  Real tmp_lam; // cached value of lam used in quadratic & cubic line search
574  Real f2 = res2_old; // cached value of f = residual2 used in the cubic in the line search
575  Real lam2 = lam; // cached value of lam used in the cubic in the line search
576 
577  while (true)
578  {
579  // update variables using the current line-search parameter
580  for (unsigned i = 0; i < _num_sp; ++i)
581  stress_params[i] = sp_params_old[i] + lam * delta_nr_params[i];
582  gaE = gaE_old + lam * delta_nr_params[_num_sp];
583 
584  // and internal parameters
585  setIntnlValuesV(trial_stress_params, stress_params, intnl_ok, intnl);
586 
587  smoothed_q = smoothAllQuantities(stress_params, intnl);
588 
589  // update rhs for next-time through
590  calculateRHS(trial_stress_params, stress_params, gaE, smoothed_q, rhs);
591  res2 = calculateRes2(rhs);
592 
593  // do the line-search
594  if (res2 < res2_old + 1E-4 * lam * slope)
595  break;
596  else if (lam < lam_min)
597  return 1;
598  else if (lam == 1.0)
599  {
600  // model as a quadratic
601  tmp_lam = -0.5 * slope / (res2 - res2_old - slope);
602  }
603  else
604  {
605  // model as a cubic
606  const Real rhs1 = res2 - res2_old - lam * slope;
607  const Real rhs2 = f2 - res2_old - lam2 * slope;
608  const Real a = (rhs1 / Utility::pow<2>(lam) - rhs2 / Utility::pow<2>(lam2)) / (lam - lam2);
609  const Real b =
610  (-lam2 * rhs1 / Utility::pow<2>(lam) + lam * rhs2 / Utility::pow<2>(lam2)) / (lam - lam2);
611  if (a == 0.0)
612  tmp_lam = -slope / (2.0 * b);
613  else
614  {
615  const Real disc = Utility::pow<2>(b) - 3.0 * a * slope;
616  if (disc < 0)
617  tmp_lam = 0.5 * lam;
618  else if (b <= 0)
619  tmp_lam = (-b + std::sqrt(disc)) / (3.0 * a);
620  else
621  tmp_lam = -slope / (b + std::sqrt(disc));
622  }
623  if (tmp_lam > 0.5 * lam)
624  tmp_lam = 0.5 * lam;
625  }
626  lam2 = lam;
627  f2 = res2;
628  lam = std::max(tmp_lam, 0.1 * lam);
629  }
630 
631  if (lam < 1.0)
632  linesearch_needed = 1.0;
633  return 0;
634 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ nrStep()

int MultiParameterPlasticityStressUpdate::nrStep ( const yieldAndFlow smoothed_q,
const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl,
Real  gaE,
std::vector< Real > &  rhs 
) const
protectedinherited

Performs a Newton-Raphson step to attempt to zero rhs Upon return, rhs will contain the solution.

Parameters
smoothed_q[in]The value of the smoothed yield function and derivatives prior to this Newton-Raphson step
trial_stress_params[in]Trial value for the stress_params for this (sub)strain increment
stress_params[in]The current value of the stress_params
intnl[in]The current value of the internal parameters
gaE[in]The current value of gaE
rhs[in,out]Upon entry, the rhs to zero using Newton-Raphson. Upon exit, the solution to the Newton-Raphson problem
Returns
0 if successful, 1 otherwise

Definition at line 637 of file MultiParameterPlasticityStressUpdate.C.

643 {
644  std::vector<std::vector<Real>> dintnl(_num_intnl, std::vector<Real>(_num_sp));
645  setIntnlDerivativesV(trial_stress_params, stress_params, intnl, dintnl);
646 
647  std::vector<double> jac((_num_sp + 1) * (_num_sp + 1));
648  dnRHSdVar(smoothed_q, dintnl, stress_params, gaE, jac);
649 
650  // use LAPACK to solve the linear system
651  const int nrhs = 1;
652  std::vector<int> ipiv(_num_sp + 1);
653  int info;
654  const int gesv_num_rhs = _num_sp + 1;
655  LAPACKgesv_(
656  &gesv_num_rhs, &nrhs, &jac[0], &gesv_num_rhs, &ipiv[0], &rhs[0], &gesv_num_rhs, &info);
657  return info;
658 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ precisionLoss()

bool MultiParameterPlasticityStressUpdate::precisionLoss ( const std::vector< Real > &  solution,
const std::vector< Real > &  stress_params,
Real  gaE 
) const
protectedinherited

Check whether precision loss has occurred.

Parameters
[in]solutionThe solution to the Newton-Raphson system
[in]stress_paramsThe currect values of the stress_params for this (sub)strain increment
[in]gaEThe currenct value of gaE for this (sub)strain increment
Returns
true if precision loss has occurred

Definition at line 983 of file MultiParameterPlasticityStressUpdate.C.

986 {
987  if (std::abs(solution[_num_sp]) > 1E-13 * std::abs(gaE))
988  return false;
989  for (unsigned i = 0; i < _num_sp; ++i)
990  if (std::abs(solution[i]) > 1E-13 * std::abs(stress_params[i]))
991  return false;
992  return true;
993 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ preReturnMapV()

void CappedMohrCoulombStressUpdate::preReturnMapV ( const std::vector< Real > &  trial_stress_params,
const RankTwoTensor stress_trial,
const std::vector< Real > &  intnl_old,
const std::vector< Real > &  yf,
const RankFourTensor Eijkl 
)
overrideprotectedvirtual

Derived classes may employ this function to record stuff or do other computations prior to the return-mapping algorithm.

We know that (trial_stress_params, intnl_old) is inadmissible when this is called

Parameters
trial_stress_params[in]The trial values of the stress parameters
stress_trial[in]Trial stress tensor
intnl_old[in]Old value of the internal parameters.
yf[in]The yield functions at (p_trial, q_trial, intnl_old)
Eijkl[in]The elasticity tensor

Reimplemented from MultiParameterPlasticityStressUpdate.

Reimplemented in CappedMohrCoulombCosseratStressUpdate.

Definition at line 96 of file CappedMohrCoulombStressUpdate.C.

101 {
102  std::vector<Real> eigvals;
103  stress_trial.symmetricEigenvaluesEigenvectors(eigvals, _eigvecs);
105 }

◆ propagateQpStatefulProperties()

void MultiParameterPlasticityStressUpdate::propagateQpStatefulProperties ( )
overrideprotectedvirtualinherited

If updateState is not called during a timestep, this will be.

This method allows derived classes to set internal parameters from their Old values, for instance

Reimplemented from StressUpdateBase.

Definition at line 152 of file MultiParameterPlasticityStressUpdate.C.

153 {
155  std::copy(_intnl_old[_qp].begin(), _intnl_old[_qp].end(), _intnl[_qp].begin());
157 }

◆ requiresIsotropicTensor()

bool CappedMohrCoulombStressUpdate::requiresIsotropicTensor ( )
inlineoverridevirtual

Does the model require the elasticity tensor to be isotropic?

Implements StressUpdateBase.

Definition at line 34 of file CappedMohrCoulombStressUpdate.h.

34 { return true; }

◆ resetProperties()

void StressUpdateBase::resetProperties ( )
inlinefinalinherited

Definition at line 123 of file StressUpdateBase.h.

123 {}

◆ resetQpProperties()

void StressUpdateBase::resetQpProperties ( )
inlinefinalinherited

Retained as empty methods to avoid a warning from Material.C in framework. These methods are unused in all inheriting classes and should not be overwritten.

Definition at line 122 of file StressUpdateBase.h.

122 {}

◆ setEffectiveElasticity()

void CappedMohrCoulombStressUpdate::setEffectiveElasticity ( const RankFourTensor Eijkl)
overrideprotectedvirtual

Sets _Eij and _En and _Cij.

Implements MultiParameterPlasticityStressUpdate.

Definition at line 249 of file CappedMohrCoulombStressUpdate.C.

250 {
251  // Eijkl is required to be isotropic, so we can use the
252  // frame where stress is diagonal
253  for (unsigned a = 0; a < _num_sp; ++a)
254  for (unsigned b = 0; b < _num_sp; ++b)
255  _Eij[a][b] = Eijkl(a, a, b, b);
256  _En = _Eij[2][2];
257  const Real denom = _Eij[0][0] * (_Eij[0][0] + _Eij[0][1]) - 2 * Utility::pow<2>(_Eij[0][1]);
258  for (unsigned a = 0; a < _num_sp; ++a)
259  {
260  _Cij[a][a] = (_Eij[0][0] + _Eij[0][1]) / denom;
261  for (unsigned b = 0; b < a; ++b)
262  _Cij[a][b] = _Cij[b][a] = -_Eij[0][1] / denom;
263  }
264 }

◆ setInelasticStrainIncrementAfterReturn()

void MultiParameterPlasticityStressUpdate::setInelasticStrainIncrementAfterReturn ( const RankTwoTensor stress_trial,
Real  gaE,
const yieldAndFlow smoothed_q,
const RankFourTensor elasticity_tensor,
const RankTwoTensor returned_stress,
RankTwoTensor inelastic_strain_increment 
) const
protectedvirtualinherited

Sets inelastic strain increment from the returned configuration This is called after the return-map process has completed successfully in stress_param space, just after finalizeReturnProcess has been called.

Derived classes may override this function

Parameters
stress_trial[in]The trial value of stress
gaE[in]The value of gaE after the return-map process has completed successfully
smoothed_q[in]Holds the current value of yield function and derivatives evaluated at the returned configuration
elasticity_tensor[in]The elasticity tensor
returned_stress[in]The stress after the return-map process
inelastic_strain_increment[out]The inelastic strain increment resulting from this return-map

Reimplemented in TwoParameterPlasticityStressUpdate.

Definition at line 786 of file MultiParameterPlasticityStressUpdate.C.

793 {
794  const std::vector<RankTwoTensor> dsp_dstress = dstress_param_dstress(returned_stress);
795  inelastic_strain_increment = RankTwoTensor();
796  for (unsigned i = 0; i < _num_sp; ++i)
797  inelastic_strain_increment += smoothed_q.dg[i] * dsp_dstress[i];
798  inelastic_strain_increment *= gaE / _En;
799 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ setIntnlDerivativesV()

void CappedMohrCoulombStressUpdate::setIntnlDerivativesV ( const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  current_stress_params,
const std::vector< Real > &  intnl,
std::vector< std::vector< Real >> &  dintnl 
) const
overrideprotectedvirtual

Sets the derivatives of internal parameters, based on the trial values of stress_params, their current values, and the current values of the internal parameters.

Derived classes must override this.

Parameters
trial_stress_params[in]The trial stress parameters
current_stress_params[in]The current stress parameters
intnl[in]The current value of the internal parameters
dintnl[out]The derivatives dintnl[i][j] = d(intnl[i])/d(stress_param j)

Implements MultiParameterPlasticityStressUpdate.

Definition at line 756 of file CappedMohrCoulombStressUpdate.C.

760 {
761  // intnl[0] = shear, intnl[1] = tensile
762  const Real smax = current_stress_params[2]; // largest eigenvalue
763  const Real smin = current_stress_params[0]; // smallest eigenvalue
764  const Real trial_smax = trial_stress_params[2]; // largest eigenvalue
765  const Real trial_smin = trial_stress_params[0]; // smallest eigenvalue
766  const Real ga_shear = ((trial_smax - trial_smin) - (smax - smin)) / (_Eij[2][2] - _Eij[0][2]);
767  const std::vector<Real> dga_shear = {
768  1.0 / (_Eij[2][2] - _Eij[0][2]), 0.0, -1.0 / (_Eij[2][2] - _Eij[0][2])};
769  // intnl[0] = intnl_old[0] + ga_shear;
770  for (std::size_t i = 0; i < _num_sp; ++i)
771  dintnl[0][i] = dga_shear[i];
772 
773  const Real sinpsi = std::sin(_psi.value(intnl[0]));
774  const Real dsinpsi_di0 = _psi.derivative(intnl[0]) * std::cos(_psi.value(intnl[0]));
775 
776  const Real prefactor = (_Eij[2][2] + _Eij[0][2]) * sinpsi;
777  const Real dprefactor_di0 = (_Eij[2][2] + _Eij[0][2]) * dsinpsi_di0;
778  // const Real shear_correction = prefactor * ga_shear;
779  std::vector<Real> dshear_correction(_num_sp);
780  for (std::size_t i = 0; i < _num_sp; ++i)
781  dshear_correction[i] = prefactor * dga_shear[i] + dprefactor_di0 * dintnl[0][i] * ga_shear;
782  // const Real ga_tensile = (1 - _poissons_ratio) * ((trial_smax + trial_smin) - (smax + smin) -
783  // shear_correction) /
784  // _Eij[2][2];
785  // intnl[1] = intnl_old[1] + ga_tensile;
786  for (std::size_t i = 0; i < _num_sp; ++i)
787  dintnl[1][i] = -(1.0 - _poissons_ratio) * dshear_correction[i] / _Eij[2][2];
788  dintnl[1][2] += -(1.0 - _poissons_ratio) / _Eij[2][2];
789  dintnl[1][0] += -(1.0 - _poissons_ratio) / _Eij[2][2];
790 }

◆ setIntnlValuesV()

void CappedMohrCoulombStressUpdate::setIntnlValuesV ( const std::vector< Real > &  trial_stress_params,
const std::vector< Real > &  current_stress_params,
const std::vector< Real > &  intnl_old,
std::vector< Real > &  intnl 
) const
overrideprotectedvirtual

Sets the internal parameters based on the trial values of stress_params, their current values, and the old values of the internal parameters.

Derived classes must override this.

Parameters
trial_stress_params[in]The trial stress parameters (eg trial_p and trial_q)
current_stress_params[in]The current stress parameters (eg p and q)
intnl_old[out]Old value of internal parameters
intnl[out]The value of internal parameters to be set

Implements MultiParameterPlasticityStressUpdate.

Definition at line 734 of file CappedMohrCoulombStressUpdate.C.

738 {
739  // intnl[0] = shear, intnl[1] = tensile
740  const Real smax = current_stress_params[2]; // largest eigenvalue
741  const Real smin = current_stress_params[0]; // smallest eigenvalue
742  const Real trial_smax = trial_stress_params[2]; // largest eigenvalue
743  const Real trial_smin = trial_stress_params[0]; // smallest eigenvalue
744  const Real ga_shear = ((trial_smax - trial_smin) - (smax - smin)) / (_Eij[2][2] - _Eij[0][2]);
745  intnl[0] = intnl_old[0] + ga_shear;
746  const Real sinpsi = std::sin(_psi.value(intnl[0]));
747  const Real prefactor = (_Eij[2][2] + _Eij[0][2]) * sinpsi;
748  const Real shear_correction = prefactor * ga_shear;
749  const Real ga_tensile = (1.0 - _poissons_ratio) *
750  ((trial_smax + trial_smin) - (smax + smin) - shear_correction) /
751  _Eij[2][2];
752  intnl[1] = intnl_old[1] + ga_tensile;
753 }

Referenced by initializeVarsV().

◆ setQp()

void StressUpdateBase::setQp ( unsigned int  qp)
inherited

Sets the value of the global variable _qp for inheriting classes.

Definition at line 43 of file StressUpdateBase.C.

44 {
45  _qp = qp;
46 }

◆ setStressAfterReturnV()

void CappedMohrCoulombStressUpdate::setStressAfterReturnV ( const RankTwoTensor stress_trial,
const std::vector< Real > &  stress_params,
Real  gaE,
const std::vector< Real > &  intnl,
const yieldAndFlow smoothed_q,
const RankFourTensor Eijkl,
RankTwoTensor stress 
) const
overrideprotectedvirtual

Sets stress from the admissible parameters.

This is called after the return-map process has completed successfully in stress_param space, just after finalizeReturnProcess has been called. Derived classes must override this function

Parameters
stress_trial[in]The trial value of stress
stress_params[in]The value of the stress_params after the return-map process has completed successfully
gaE[in]The value of gaE after the return-map process has completed successfully
intnl[in]The value of the internal parameters after the return-map process has completed successfully
smoothed_q[in]Holds the current value of yield function and derivatives evaluated at the returned state
Eijkl[in]The elasticity tensor
stress[out]The returned value of the stress tensor

Implements MultiParameterPlasticityStressUpdate.

Reimplemented in CappedMohrCoulombCosseratStressUpdate.

Definition at line 108 of file CappedMohrCoulombStressUpdate.C.

115 {
116  // form the diagonal stress
117  stress = RankTwoTensor(stress_params[0], stress_params[1], stress_params[2], 0.0, 0.0, 0.0);
118  // rotate to the original frame
119  stress = _eigvecs * stress * (_eigvecs.transpose());
120 }

◆ smoothAllQuantities()

MultiParameterPlasticityStressUpdate::yieldAndFlow MultiParameterPlasticityStressUpdate::smoothAllQuantities ( const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl 
) const
protectedinherited

Calculates all yield functions and derivatives, and then performs the smoothing scheme.

Parameters
stress_params[in]The stress parameters (eg stress_params[0] = stress_zz and stress_params[1] = sqrt(stress_zx^2 + stress_zy^2))
intnl[in]Internal parameters
Returns
The smoothed yield function and derivatives

Definition at line 400 of file MultiParameterPlasticityStressUpdate.C.

402 {
403  std::vector<yieldAndFlow> all_q(_num_yf, yieldAndFlow(_num_sp, _num_intnl));
404  computeAllQV(stress_params, intnl, all_q);
405 
406  /* This routine holds the key to my smoothing strategy. It
407  * may be proved that this smoothing strategy produces a
408  * yield surface that is both C2 differentiable and convex,
409  * assuming the individual yield functions are C2 and
410  * convex too.
411  * Of course all the derivatives must also be smoothed.
412  * Also, I assume that d(flow potential)/dstress gets smoothed
413  * by the Yield Function (which produces a C2 flow potential).
414  * See the line identified in the loop below.
415  * Only time will tell whether this is a good strategy, but it
416  * works well in all tests so far. Convexity is irrelevant
417  * for the non-associated case, but at least the return-map
418  * problem should always have a unique solution.
419  * For two yield functions+flows, labelled 1 and 2, we
420  * should have
421  * d(g1 - g2) . d(f1 - f2) >= 0
422  * If not then the return-map problem for even the
423  * multi-surface plasticity with no smoothing won't have a
424  * unique solution. If the multi-surface plasticity has
425  * a unique solution then the smoothed version defined
426  * below will too.
427  */
428 
429  // res_f is the index that contains the smoothed yieldAndFlow
430  std::size_t res_f = 0;
431 
432  for (std::size_t a = 1; a < all_q.size(); ++a)
433  {
434  if (all_q[res_f].f >= all_q[a].f + _smoothing_tol)
435  // no smoothing is needed: res_f is already indexes the largest yield function
436  continue;
437  else if (all_q[a].f >= all_q[res_f].f + _smoothing_tol)
438  {
439  // no smoothing is needed, and res_f needs to index to all_q[a]
440  res_f = a;
441  continue;
442  }
443  else
444  {
445  // smoothing is required
446  const Real f_diff = all_q[res_f].f - all_q[a].f;
447  const Real ism = ismoother(f_diff);
448  const Real sm = smoother(f_diff);
449  const Real dsm = dsmoother(f_diff);
450  // we want: all_q[res_f].f = 0.5 * all_q[res_f].f + all_q[a].f + _smoothing_tol) + ism,
451  // but we have to do the derivatives first
452  for (unsigned i = 0; i < _num_sp; ++i)
453  {
454  for (unsigned j = 0; j < _num_sp; ++j)
455  all_q[res_f].d2g[i][j] =
456  0.5 * (all_q[res_f].d2g[i][j] + all_q[a].d2g[i][j]) +
457  dsm * (all_q[res_f].df[j] - all_q[a].df[j]) * (all_q[res_f].dg[i] - all_q[a].dg[i]) +
458  sm * (all_q[res_f].d2g[i][j] - all_q[a].d2g[i][j]);
459  for (unsigned j = 0; j < _num_intnl; ++j)
460  all_q[res_f].d2g_di[i][j] = 0.5 * (all_q[res_f].d2g_di[i][j] + all_q[a].d2g_di[i][j]) +
461  dsm * (all_q[res_f].df_di[j] - all_q[a].df_di[j]) *
462  (all_q[res_f].dg[i] - all_q[a].dg[i]) +
463  sm * (all_q[res_f].d2g_di[i][j] - all_q[a].d2g_di[i][j]);
464  }
465  for (unsigned i = 0; i < _num_sp; ++i)
466  {
467  all_q[res_f].df[i] = 0.5 * (all_q[res_f].df[i] + all_q[a].df[i]) +
468  sm * (all_q[res_f].df[i] - all_q[a].df[i]);
469  // whether the following (smoothing g with f's smoother) is a good strategy remains to be
470  // seen...
471  all_q[res_f].dg[i] = 0.5 * (all_q[res_f].dg[i] + all_q[a].dg[i]) +
472  sm * (all_q[res_f].dg[i] - all_q[a].dg[i]);
473  }
474  for (unsigned i = 0; i < _num_intnl; ++i)
475  all_q[res_f].df_di[i] = 0.5 * (all_q[res_f].df_di[i] + all_q[a].df_di[i]) +
476  sm * (all_q[res_f].df_di[i] - all_q[a].df_di[i]);
477  all_q[res_f].f = 0.5 * (all_q[res_f].f + all_q[a].f + _smoothing_tol) + ism;
478  }
479  }
480  return all_q[res_f];
481 }

Referenced by MultiParameterPlasticityStressUpdate::lineSearch(), and MultiParameterPlasticityStressUpdate::updateState().

◆ smoother()

Real MultiParameterPlasticityStressUpdate::smoother ( Real  f_diff) const
protectedinherited

Derivative of ismoother.

Definition at line 510 of file MultiParameterPlasticityStressUpdate.C.

511 {
512  if (std::abs(f_diff) >= _smoothing_tol)
513  return 0.0;
514  switch (_smoother_function_type)
515  {
517  return 0.5 * std::sin(f_diff * M_PI * 0.5 / _smoothing_tol);
519  return 0.75 / _smoothing_tol *
520  (f_diff - (_smoothing_tol / 3.0) * Utility::pow<3>(f_diff / _smoothing_tol));
522  return 0.625 / _smoothing_tol *
523  (f_diff - (_smoothing_tol / 5.0) * Utility::pow<5>(f_diff / _smoothing_tol));
525  return (7.0 / 12.0 / _smoothing_tol) *
526  (f_diff - (_smoothing_tol / 7.0) * Utility::pow<7>(f_diff / _smoothing_tol));
527  default:
528  return 0.0;
529  }
530 }

Referenced by MultiParameterPlasticityStressUpdate::smoothAllQuantities().

◆ updateState()

void MultiParameterPlasticityStressUpdate::updateState ( RankTwoTensor strain_increment,
RankTwoTensor inelastic_strain_increment,
const RankTwoTensor rotation_increment,
RankTwoTensor stress_new,
const RankTwoTensor stress_old,
const RankFourTensor elasticity_tensor,
const RankTwoTensor elastic_strain_old,
bool  compute_full_tangent_operator,
RankFourTensor tangent_operator 
)
overrideprotectedvirtualinherited

Given a strain increment that results in a trial stress, perform some procedure (such as an iterative return-mapping process) to produce an admissible stress, an elastic strain increment and an inelastic strain increment.

If _fe_problem.currentlyComputingJacobian() = true, then updateState also computes d(stress)/d(strain) (or some approximation to it).

This method is called by ComputeMultipleInelasticStress. This method is pure virutal: all inheriting classes must overwrite this method.

Parameters
strain_incrementUpon input: the strain increment. Upon output: the elastic strain increment
inelastic_strain_incrementThe inelastic_strain resulting from the interative procedure
rotation_incrementThe finite-strain rotation increment
stress_newUpon input: the trial stress that results from applying strain_increment as an elastic strain. Upon output: the admissible stress
stress_oldThe old value of stress
elasticity_tensorThe elasticity tensor
compute_full_tangent_operatorThe calling routine would like the full consistent tangent operator to be placed in tangent_operator, if possible. This is irrelevant if _fe_problem.currentlyComputingJacobian() = false
tangent_operatord(stress)/d(strain), or some approximation to it If compute_full_tangent_operator=false, then tangent_operator=elasticity_tensor is an appropriate choice. tangent_operator is only computed if _fe_problem.currentlyComputingJacobian() = true

Implements StressUpdateBase.

Definition at line 160 of file MultiParameterPlasticityStressUpdate.C.

169 {
170  // Size _yf[_qp] appropriately
171  _yf[_qp].assign(_num_yf, 0);
172  // _plastic_strain and _intnl are usually sized appropriately because they are stateful, but this
173  // Material may be used from a DiracKernel where stateful materials are not allowed. The best we
174  // can do is:
175  if (_intnl[_qp].size() != _num_intnl)
177 
179 
180  if (_t_step >= 2)
181  _step_one = false;
182 
183  // initially assume an elastic deformation
184  std::copy(_intnl_old[_qp].begin(), _intnl_old[_qp].end(), _intnl[_qp].begin());
185 
186  _iter[_qp] = 0.0;
187  _max_iter_used[_qp] = std::max(_max_iter_used[_qp], _max_iter_used_old[_qp]);
188  _linesearch_needed[_qp] = 0.0;
189 
190  computeStressParams(stress_new, _trial_sp);
192 
193  if (yieldF(_yf[_qp]) <= _f_tol)
194  {
196  inelastic_strain_increment.zero();
197  if (_fe_problem.currentlyComputingJacobian())
198  tangent_operator = elasticity_tensor;
199  return;
200  }
201 
202  _stress_trial = stress_new;
203  /* The trial stress must be inadmissible
204  * so we need to return to the yield surface. The following
205  * equations must be satisfied.
206  *
207  * 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, i] * dg/dS[i]
208  * 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1, i] * dg/dS[i]
209  * ...
210  * 0 = rhs[N-1] = S[N-1] - S[N-1]^trial + ga * E[N-1, i] * dg/dS[i]
211  * 0 = rhs[N] = f(S, intnl)
212  *
213  * as well as equations defining intnl parameters as functions of
214  * stress_params, trial_stress_params and intnl_old
215  *
216  * The unknowns are S[0], ..., S[N-1], gaE, and the intnl parameters.
217  * Here gaE = ga * _En (the _En serves to make gaE similar magnitude to S)
218  * I find it convenient to solve the first N+1 equations for p, q and gaE,
219  * while substituting the "intnl parameters" equations into these during the solve process
220  */
221 
222  for (auto & deriv : _dvar_dtrial)
223  deriv.assign(_num_sp, 0.0);
224 
225  preReturnMapV(_trial_sp, stress_new, _intnl_old[_qp], _yf[_qp], elasticity_tensor);
226 
227  setEffectiveElasticity(elasticity_tensor);
228 
229  if (_step_one)
230  std::copy(_definitely_ok_sp.begin(), _definitely_ok_sp.end(), _ok_sp.begin());
231  else
232  computeStressParams(stress_old, _ok_sp);
233  std::copy(_intnl_old[_qp].begin(), _intnl_old[_qp].end(), _ok_intnl.begin());
234 
235  // Return-map problem: must apply the following changes in stress_params,
236  // and find the returned stress_params and gaE
237  for (unsigned i = 0; i < _num_sp; ++i)
238  _del_stress_params[i] = _trial_sp[i] - _ok_sp[i];
239 
240  Real step_taken = 0.0; // amount of del_stress_params that we've applied and the return-map
241  // problem has succeeded
242  Real step_size = 1.0; // potentially can apply del_stress_params in substeps
243  Real gaE_total = 0.0;
244 
245  // current values of the yield function, derivatives, etc
246  yieldAndFlow smoothed_q;
247 
248  // In the following sub-stepping procedure it is possible that
249  // the last step is an elastic step, and therefore smoothed_q won't
250  // be computed on the last step, so we have to compute it.
251  bool smoothed_q_calculated = false;
252 
253  while (step_taken < 1.0 && step_size >= _min_step_size)
254  {
255  if (1.0 - step_taken < step_size)
256  // prevent over-shoots of substepping
257  step_size = 1.0 - step_taken;
258 
259  // trial variables in terms of admissible variables
260  for (unsigned i = 0; i < _num_sp; ++i)
261  _trial_sp[i] = _ok_sp[i] + step_size * _del_stress_params[i];
262 
263  // initialize variables that are to be found via Newton-Raphson
265  Real gaE = 0.0;
266 
267  // flags indicating failure of Newton-Raphson and line-search
268  int nr_failure = 0;
269  int ls_failure = 0;
270 
271  // NR iterations taken in this substep
272  unsigned step_iter = 0;
273 
274  // The residual-squared for the line-search
275  Real res2 = 0.0;
276 
277  if (step_size < 1.0 && yieldF(_trial_sp, _ok_intnl) <= _f_tol)
278  // This is an elastic step
279  // The "step_size < 1.0" in above condition is for efficiency: we definitely
280  // know that this is a plastic step if step_size = 1.0
281  smoothed_q_calculated = false;
282  else
283  {
284  // this is a plastic step
285 
286  // initialize current_sp, gaE and current_intnl based on the non-smoothed situation
288  // and find the smoothed yield function, flow potential and derivatives
290  smoothed_q_calculated = true;
291  calculateRHS(_trial_sp, _current_sp, gaE, smoothed_q, _rhs);
292  res2 = calculateRes2(_rhs);
293 
294  // Perform a Newton-Raphson with linesearch to get current_sp, gaE, and also smoothed_q
295  while (res2 > _f_tol2 && step_iter < _max_nr_its && nr_failure == 0 && ls_failure == 0)
296  {
297  // solve the linear system and store the answer (the "updates") in rhs
298  nr_failure = nrStep(smoothed_q, _trial_sp, _current_sp, _current_intnl, gaE, _rhs);
299  if (nr_failure != 0)
300  break;
301 
302  // handle precision loss
303  if (precisionLoss(_rhs, _current_sp, gaE))
304  {
306  {
307  Moose::err << "MultiParameterPlasticityStressUpdate: precision-loss in element "
308  << _current_elem->id() << " quadpoint=" << _qp << ". Stress_params =";
309  for (unsigned i = 0; i < _num_sp; ++i)
310  Moose::err << " " << _current_sp[i];
311  Moose::err << " gaE = " << gaE << "\n";
312  }
313  res2 = 0.0;
314  break;
315  }
316 
317  // apply (parts of) the updates, re-calculate smoothed_q, and res2
318  ls_failure = lineSearch(res2,
319  _current_sp,
320  gaE,
321  _trial_sp,
322  smoothed_q,
323  _ok_intnl,
325  _rhs,
326  _linesearch_needed[_qp]);
327  step_iter++;
328  }
329  }
330  if (res2 <= _f_tol2 && step_iter < _max_nr_its && nr_failure == 0 && ls_failure == 0 &&
331  gaE >= 0.0)
332  {
333  // this Newton-Raphson worked fine, or this was an elastic step
334  std::copy(_current_sp.begin(), _current_sp.end(), _ok_sp.begin());
335  gaE_total += gaE;
336  step_taken += step_size;
338  std::copy(_intnl[_qp].begin(), _intnl[_qp].end(), _ok_intnl.begin());
339  // calculate dp/dp_trial, dp/dq_trial, etc, for Jacobian
340  dVardTrial(!smoothed_q_calculated,
341  _trial_sp,
342  _ok_sp,
343  gaE,
344  _ok_intnl,
345  smoothed_q,
346  step_size,
347  compute_full_tangent_operator,
348  _dvar_dtrial);
349  if (static_cast<Real>(step_iter) > _iter[_qp])
350  _iter[_qp] = static_cast<Real>(step_iter);
351  if (static_cast<Real>(step_iter) > _max_iter_used[_qp])
352  _max_iter_used[_qp] = static_cast<Real>(step_iter);
353  step_size *= 1.1;
354  }
355  else
356  {
357  // Newton-Raphson + line-search process failed
358  step_size *= 0.5;
359  }
360  }
361 
362  if (step_size < _min_step_size)
363  errorHandler("MultiParameterPlasticityStressUpdate: Minimum step-size violated");
364 
365  // success!
366  finalizeReturnProcess(rotation_increment);
367  yieldFunctionValuesV(_ok_sp, _intnl[_qp], _yf[_qp]);
368 
369  if (!smoothed_q_calculated)
370  smoothed_q = smoothAllQuantities(_ok_sp, _intnl[_qp]);
371 
373  _stress_trial, _ok_sp, gaE_total, _intnl[_qp], smoothed_q, elasticity_tensor, stress_new);
374 
376  gaE_total,
377  smoothed_q,
378  elasticity_tensor,
379  stress_new,
380  inelastic_strain_increment);
381 
382  strain_increment = strain_increment - inelastic_strain_increment;
383  _plastic_strain[_qp] = _plastic_strain_old[_qp] + inelastic_strain_increment;
384 
385  if (_fe_problem.currentlyComputingJacobian())
386  // for efficiency, do not compute the tangent operator if not currently computing Jacobian
388  _trial_sp,
389  stress_new,
390  _ok_sp,
391  gaE_total,
392  smoothed_q,
393  elasticity_tensor,
394  compute_full_tangent_operator,
395  _dvar_dtrial,
396  tangent_operator);
397 }

◆ validParams()

InputParameters CappedMohrCoulombStressUpdate::validParams ( )
static

Definition at line 19 of file CappedMohrCoulombStressUpdate.C.

20 {
21  InputParameters params = MultiParameterPlasticityStressUpdate::validParams();
22  params.addRequiredParam<UserObjectName>(
23  "tensile_strength",
24  "A TensorMechanicsHardening UserObject that defines hardening of the "
25  "tensile strength. In physical situations this is positive (and always "
26  "must be greater than negative compressive-strength.");
27  params.addRequiredParam<UserObjectName>(
28  "compressive_strength",
29  "A TensorMechanicsHardening UserObject that defines hardening of the "
30  "compressive strength. In physical situations this is positive.");
31  params.addRequiredParam<UserObjectName>(
32  "cohesion", "A TensorMechanicsHardening UserObject that defines hardening of the cohesion");
33  params.addRequiredParam<UserObjectName>("friction_angle",
34  "A TensorMechanicsHardening UserObject "
35  "that defines hardening of the "
36  "friction angle (in radians)");
37  params.addRequiredParam<UserObjectName>(
38  "dilation_angle",
39  "A TensorMechanicsHardening UserObject that defines hardening of the "
40  "dilation angle (in radians). Unless you are quite confident, this should "
41  "be set positive and not greater than the friction angle.");
42  params.addParam<bool>("perfect_guess",
43  true,
44  "Provide a guess to the Newton-Raphson procedure "
45  "that is the result from perfect plasticity. With "
46  "severe hardening/softening this may be "
47  "suboptimal.");
48  params.addClassDescription("Nonassociative, smoothed, Mohr-Coulomb plasticity capped with "
49  "tensile (Rankine) and compressive caps, with hardening/softening");
50  return params;
51 }

Referenced by CappedMohrCoulombCosseratStressUpdate::validParams().

◆ yieldF() [1/2]

Real MultiParameterPlasticityStressUpdate::yieldF ( const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl 
) const
protectedinherited

Computes the smoothed yield function.

Parameters
stress_paramsThe stress parameters (eg stress_params[0] = stress_zz and stress_params[1] = sqrt(stress_zx^2 + stress_zy^2))
intnlThe internal parameters (eg intnl[0] is shear, intnl[1] is tensile)
Returns
The smoothed yield function value

Definition at line 688 of file MultiParameterPlasticityStressUpdate.C.

690 {
691  std::vector<Real> yfs(_num_yf);
692  yieldFunctionValuesV(stress_params, intnl, yfs);
693  return yieldF(yfs);
694 }

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ yieldF() [2/2]

Real MultiParameterPlasticityStressUpdate::yieldF ( const std::vector< Real > &  yfs) const
protectedinherited

Computes the smoothed yield function.

Parameters
yfsThe values of the individual yield functions
Returns
The smoothed yield function value

Definition at line 697 of file MultiParameterPlasticityStressUpdate.C.

698 {
699  Real yf = yfs[0];
700  for (std::size_t i = 1; i < yfs.size(); ++i)
701  if (yf >= yfs[i] + _smoothing_tol)
702  // no smoothing is needed, and yf is the biggest yield function
703  continue;
704  else if (yfs[i] >= yf + _smoothing_tol)
705  // no smoothing is needed, and yfs[i] is the biggest yield function
706  yf = yfs[i];
707  else
708  yf = 0.5 * (yf + yfs[i] + _smoothing_tol) + ismoother(yf - yfs[i]);
709  return yf;
710 }

◆ yieldFunctionValuesV()

void CappedMohrCoulombStressUpdate::yieldFunctionValuesV ( const std::vector< Real > &  stress_params,
const std::vector< Real > &  intnl,
std::vector< Real > &  yf 
) const
overrideprotectedvirtual

Computes the values of the yield functions, given stress_params and intnl parameters.

Derived classes must override this, to provide the values of the yield functions in yf.

Parameters
stress_params[in]The stress parameters
intnl[in]The internal parameters
[out]yfThe yield function values

Implements MultiParameterPlasticityStressUpdate.

Definition at line 123 of file CappedMohrCoulombStressUpdate.C.

126 {
127  // intnl[0] = shear, intnl[1] = tensile
128  const Real ts = _tensile_strength.value(intnl[1]);
129  const Real cs = _compressive_strength.value(intnl[1]);
130  const Real sinphi = std::sin(_phi.value(intnl[0]));
131  const Real cohcos = _cohesion.value(intnl[0]) * std::cos(_phi.value(intnl[0]));
132  const Real smax = stress_params[2]; // largest eigenvalue
133  const Real smid = stress_params[1];
134  const Real smin = stress_params[0]; // smallest eigenvalue
135  yf[0] = smax - ts;
136  yf[1] = smid - ts;
137  yf[2] = smin - ts;
138  yf[3] = -smin - cs;
139  yf[4] = -smid - cs;
140  yf[5] = -smax - cs;
141  yf[6] = 0.5 * (smax - smin) + 0.5 * (smax + smin) * sinphi - cohcos;
142  yf[7] = 0.5 * (smid - smin) + 0.5 * (smid + smin) * sinphi - cohcos;
143  yf[8] = 0.5 * (smax - smid) + 0.5 * (smax + smid) * sinphi - cohcos;
144  yf[9] = 0.5 * (smid - smax) + 0.5 * (smid + smax) * sinphi - cohcos;
145  yf[10] = 0.5 * (smin - smid) + 0.5 * (smin + smid) * sinphi - cohcos;
146  yf[11] = 0.5 * (smin - smax) + 0.5 * (smin + smax) * sinphi - cohcos;
147 }

Member Data Documentation

◆ _base_name

const std::string StressUpdateBase::_base_name
protectedinherited

Name used as a prefix for all material properties related to the stress update model.

Definition at line 128 of file StressUpdateBase.h.

◆ _Cij

std::vector<std::vector<Real> > MultiParameterPlasticityStressUpdate::_Cij
protectedinherited

◆ _cohesion

const TensorMechanicsHardeningModel& CappedMohrCoulombStressUpdate::_cohesion
protected

Hardening model for cohesion.

Definition at line 46 of file CappedMohrCoulombStressUpdate.h.

Referenced by computeAllQV(), initializeVarsV(), and yieldFunctionValuesV().

◆ _compressive_strength

const TensorMechanicsHardeningModel& CappedMohrCoulombStressUpdate::_compressive_strength
protected

Hardening model for compressive strength.

Definition at line 43 of file CappedMohrCoulombStressUpdate.h.

Referenced by computeAllQV(), initializeVarsV(), and yieldFunctionValuesV().

◆ _current_intnl

std::vector<Real> MultiParameterPlasticityStressUpdate::_current_intnl
privateinherited

The current values of the internal params during the Newton-Raphson.

Definition at line 737 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _current_sp

std::vector<Real> MultiParameterPlasticityStressUpdate::_current_sp
privateinherited

The current values of the stress params during the Newton-Raphson.

Definition at line 732 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _definitely_ok_sp

const std::vector<Real> MultiParameterPlasticityStressUpdate::_definitely_ok_sp
protectedinherited

◆ _del_stress_params

std::vector<Real> MultiParameterPlasticityStressUpdate::_del_stress_params
privateinherited

_del_stress_params = trial_stress_params - ok_sp This is fixed at the beginning of the return-map process, irrespective of substepping.

The return-map problem is: apply del_stress_params to stress_prams, and then find an admissible (returned) stress_params and gaE

Definition at line 727 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _dvar_dtrial

std::vector<std::vector<Real> > MultiParameterPlasticityStressUpdate::_dvar_dtrial
privateinherited

d({stress_param[i], gaE})/d(trial_stress_param[j])

Definition at line 703 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _eigvecs

RankTwoTensor CappedMohrCoulombStressUpdate::_eigvecs
protected

Eigenvectors of the trial stress as a RankTwoTensor, in order to rotate the returned stress back to stress space.

Definition at line 68 of file CappedMohrCoulombStressUpdate.h.

Referenced by consistentTangentOperatorV(), CappedMohrCoulombCosseratStressUpdate::preReturnMapV(), preReturnMapV(), CappedMohrCoulombCosseratStressUpdate::setStressAfterReturnV(), and setStressAfterReturnV().

◆ _Eij

std::vector<std::vector<Real> > MultiParameterPlasticityStressUpdate::_Eij
protectedinherited

◆ _En

Real MultiParameterPlasticityStressUpdate::_En
protectedinherited

◆ _f_tol

const Real MultiParameterPlasticityStressUpdate::_f_tol
protectedinherited

The yield-function tolerance.

Definition at line 165 of file MultiParameterPlasticityStressUpdate.h.

Referenced by initializeVarsV(), and MultiParameterPlasticityStressUpdate::updateState().

◆ _f_tol2

const Real MultiParameterPlasticityStressUpdate::_f_tol2
protectedinherited

Square of the yield-function tolerance.

Definition at line 168 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _intnl

MaterialProperty<std::vector<Real> >& MultiParameterPlasticityStressUpdate::_intnl
protectedinherited

◆ _intnl_old

const MaterialProperty<std::vector<Real> >& MultiParameterPlasticityStressUpdate::_intnl_old
protectedinherited

◆ _iter

MaterialProperty<Real>& MultiParameterPlasticityStressUpdate::_iter
protectedinherited

Number of Newton-Raphson iterations used in the return-map.

Definition at line 199 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::initQpStatefulProperties(), and MultiParameterPlasticityStressUpdate::updateState().

◆ _linesearch_needed

MaterialProperty<Real>& MultiParameterPlasticityStressUpdate::_linesearch_needed
protectedinherited

Whether a line-search was needed in the latest Newton-Raphson process (1 if true, 0 otherwise)

Definition at line 208 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::initQpStatefulProperties(), and MultiParameterPlasticityStressUpdate::updateState().

◆ _max_iter_used

MaterialProperty<Real>& MultiParameterPlasticityStressUpdate::_max_iter_used
protectedinherited

Maximum number of Newton-Raphson iterations used in the return-map during the course of the entire simulation.

Definition at line 202 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::initQpStatefulProperties(), MultiParameterPlasticityStressUpdate::propagateQpStatefulProperties(), and MultiParameterPlasticityStressUpdate::updateState().

◆ _max_iter_used_old

const MaterialProperty<Real>& MultiParameterPlasticityStressUpdate::_max_iter_used_old
protectedinherited

Old value of maximum number of Newton-Raphson iterations used in the return-map during the course of the entire simulation.

Definition at line 205 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::propagateQpStatefulProperties(), and MultiParameterPlasticityStressUpdate::updateState().

◆ _max_nr_its

const unsigned MultiParameterPlasticityStressUpdate::_max_nr_its
protectedinherited

Maximum number of Newton-Raphson iterations allowed in the return-map process.

Definition at line 153 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _min_step_size

const Real MultiParameterPlasticityStressUpdate::_min_step_size
protectedinherited

In order to help the Newton-Raphson procedure, the applied strain increment may be applied in sub-increments of size greater than this value.

Definition at line 175 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _num_intnl

const unsigned MultiParameterPlasticityStressUpdate::_num_intnl
protectedinherited

◆ _num_sp

const unsigned MultiParameterPlasticityStressUpdate::_num_sp
protectedinherited

◆ _num_yf

const unsigned MultiParameterPlasticityStressUpdate::_num_yf
protectedinherited

◆ _ok_intnl

std::vector<Real> MultiParameterPlasticityStressUpdate::_ok_intnl
privateinherited

The state (ok_sp, ok_intnl) is known to be admissible.

Definition at line 718 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _ok_sp

std::vector<Real> MultiParameterPlasticityStressUpdate::_ok_sp
privateinherited

The state (ok_sp, ok_intnl) is known to be admissible, so ok_sp are stress_params that are "OK".

If the strain_increment is applied in substeps then ok_sp is updated after each sub strain_increment is applied and the return-map is successful. At the end of the entire return-map process _ok_sp will contain the stress_params where (_ok_sp, _intnl) is admissible.

Definition at line 713 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _perfect_guess

const bool CappedMohrCoulombStressUpdate::_perfect_guess
protected

Whether to provide an estimate of the returned stress, based on perfect plasticity.

Definition at line 55 of file CappedMohrCoulombStressUpdate.h.

Referenced by initializeVarsV().

◆ _perform_finite_strain_rotations

const bool MultiParameterPlasticityStressUpdate::_perform_finite_strain_rotations
protectedinherited

◆ _phi

const TensorMechanicsHardeningModel& CappedMohrCoulombStressUpdate::_phi
protected

Hardening model for friction angle.

Definition at line 49 of file CappedMohrCoulombStressUpdate.h.

Referenced by CappedMohrCoulombStressUpdate(), computeAllQV(), initializeVarsV(), and yieldFunctionValuesV().

◆ _plastic_strain

MaterialProperty<RankTwoTensor>& MultiParameterPlasticityStressUpdate::_plastic_strain
protectedinherited

◆ _plastic_strain_old

const MaterialProperty<RankTwoTensor>& MultiParameterPlasticityStressUpdate::_plastic_strain_old
protectedinherited

◆ _poissons_ratio

Real CappedMohrCoulombStressUpdate::_poissons_ratio
protected

◆ _psi

const TensorMechanicsHardeningModel& CappedMohrCoulombStressUpdate::_psi
protected

Hardening model for dilation angle.

Definition at line 52 of file CappedMohrCoulombStressUpdate.h.

Referenced by CappedMohrCoulombStressUpdate(), computeAllQV(), initializeVarsV(), setIntnlDerivativesV(), and setIntnlValuesV().

◆ _rhs

std::vector<Real> MultiParameterPlasticityStressUpdate::_rhs
privateinherited

0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, i] * dg/dS[i] 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1, i] * dg/dS[i] ...

0 = rhs[N-1] = S[N-1] - S[N-1]^trial + ga * E[N-1, i] * dg/dS[i] 0 = rhs[N] = f(S, intnl) Here N = num_sp

Definition at line 698 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _shifter

const Real CappedMohrCoulombStressUpdate::_shifter
protected

When equal-eigenvalues are predicted from the stress initialization routine, shift them by this amount.

This avoids equal-eigenvalue problems, but also accounts for the smoothing of the yield surface

Definition at line 65 of file CappedMohrCoulombStressUpdate.h.

Referenced by initializeVarsV().

◆ _smoother_function_type

enum MultiParameterPlasticityStressUpdate::SmootherFunctionType MultiParameterPlasticityStressUpdate::_smoother_function_type
privateinherited

◆ _smoothing_tol

const Real MultiParameterPlasticityStressUpdate::_smoothing_tol
protectedinherited

◆ _smoothing_tol2

const Real MultiParameterPlasticityStressUpdate::_smoothing_tol2
protectedinherited

Square of the smoothing tolerance.

Definition at line 162 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::ismoother().

◆ _step_one

bool MultiParameterPlasticityStressUpdate::_step_one
protectedinherited

handles case of initial_stress that is inadmissible being supplied

Definition at line 178 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _stress_trial

RankTwoTensor MultiParameterPlasticityStressUpdate::_stress_trial
privateinherited

"Trial" value of stress that is set at the beginning of the return-map process.

It is fixed at stress_old + Eijkl * strain_increment irrespective of any sub-stepping

Definition at line 688 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _tensile_strength

const TensorMechanicsHardeningModel& CappedMohrCoulombStressUpdate::_tensile_strength
protected

Hardening model for tensile strength.

Definition at line 36 of file CappedMohrCoulombStressUpdate.h.

Referenced by computeAllQV(), initializeVarsV(), and yieldFunctionValuesV().

◆ _tensor_dimensionality

constexpr static unsigned MultiParameterPlasticityStressUpdate::_tensor_dimensionality = 3
staticconstexprprotectedinherited

◆ _trial_sp

std::vector<Real> MultiParameterPlasticityStressUpdate::_trial_sp
privateinherited

"Trial" value of stress_params that initializes the return-map process This is derived from stress = stress_old + Eijkl * strain_increment.

However, since the return-map process can fail and be restarted by applying strain_increment in multiple substeps, _trial_sp can vary from substep to substep.

Definition at line 681 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _warn_about_precision_loss

const bool MultiParameterPlasticityStressUpdate::_warn_about_precision_loss
protectedinherited

Output a warning message if precision loss is encountered during the return-map process.

Definition at line 181 of file MultiParameterPlasticityStressUpdate.h.

Referenced by MultiParameterPlasticityStressUpdate::updateState().

◆ _yf

MaterialProperty<std::vector<Real> >& MultiParameterPlasticityStressUpdate::_yf
protectedinherited

The documentation for this class was generated from the following files:
MultiParameterPlasticityStressUpdate::computeAllQV
virtual void computeAllQV(const std::vector< Real > &stress_params, const std::vector< Real > &intnl, std::vector< yieldAndFlow > &all_q) const =0
Completely fills all_q with correct values.
CappedMohrCoulombStressUpdate::_eigvecs
RankTwoTensor _eigvecs
Eigenvectors of the trial stress as a RankTwoTensor, in order to rotate the returned stress back to s...
Definition: CappedMohrCoulombStressUpdate.h:68
MultiParameterPlasticityStressUpdate::_max_nr_its
const unsigned _max_nr_its
Maximum number of Newton-Raphson iterations allowed in the return-map process.
Definition: MultiParameterPlasticityStressUpdate.h:153
MultiParameterPlasticityStressUpdate::_warn_about_precision_loss
const bool _warn_about_precision_loss
Output a warning message if precision loss is encountered during the return-map process.
Definition: MultiParameterPlasticityStressUpdate.h:181
MultiParameterPlasticityStressUpdate::_stress_trial
RankTwoTensor _stress_trial
"Trial" value of stress that is set at the beginning of the return-map process.
Definition: MultiParameterPlasticityStressUpdate.h:688
MultiParameterPlasticityStressUpdate::ismoother
Real ismoother(Real f_diff) const
Smooths yield functions.
Definition: MultiParameterPlasticityStressUpdate.C:484
MultiParameterPlasticityStressUpdate::MultiParameterPlasticityStressUpdate
MultiParameterPlasticityStressUpdate(const InputParameters &parameters, unsigned num_sp, unsigned num_yf, unsigned num_intnl)
Definition: MultiParameterPlasticityStressUpdate.C:82
MultiParameterPlasticityStressUpdate::_current_intnl
std::vector< Real > _current_intnl
The current values of the internal params during the Newton-Raphson.
Definition: MultiParameterPlasticityStressUpdate.h:737
MultiParameterPlasticityStressUpdate::SmootherFunctionType::poly1
MultiParameterPlasticityStressUpdate::SmootherFunctionType::cos
MultiParameterPlasticityStressUpdate::_smoothing_tol
const Real _smoothing_tol
Smoothing tolerance: edges of the yield surface get smoothed by this amount.
Definition: MultiParameterPlasticityStressUpdate.h:159
TangentCalculationMethod::FULL
MultiParameterPlasticityStressUpdate::finalizeReturnProcess
virtual void finalizeReturnProcess(const RankTwoTensor &rotation_increment)
Derived classes may use this to perform calculations after the return-map process has completed succe...
Definition: MultiParameterPlasticityStressUpdate.C:672
MultiParameterPlasticityStressUpdate::_smoother_function_type
enum MultiParameterPlasticityStressUpdate::SmootherFunctionType _smoother_function_type
MultiParameterPlasticityStressUpdate::_Cij
std::vector< std::vector< Real > > _Cij
_Cij[i, j] * _Eij[j, k] = 1 iff j == k
Definition: MultiParameterPlasticityStressUpdate.h:144
MultiParameterPlasticityStressUpdate::lineSearch
int lineSearch(Real &res2, std::vector< Real > &stress_params, Real &gaE, const std::vector< Real > &trial_stress_params, yieldAndFlow &smoothed_q, const std::vector< Real > &intnl_ok, std::vector< Real > &intnl, std::vector< Real > &rhs, Real &linesearch_needed) const
Performs a line-search to find stress_params and gaE Upon entry:
Definition: MultiParameterPlasticityStressUpdate.C:553
CappedMohrCoulombStressUpdate::_tensile_strength
const TensorMechanicsHardeningModel & _tensile_strength
Hardening model for tensile strength.
Definition: CappedMohrCoulombStressUpdate.h:36
MultiParameterPlasticityStressUpdate::SmootherFunctionType::poly3
MultiParameterPlasticityStressUpdate::_iter
MaterialProperty< Real > & _iter
Number of Newton-Raphson iterations used in the return-map.
Definition: MultiParameterPlasticityStressUpdate.h:199
MultiParameterPlasticityStressUpdate::_f_tol2
const Real _f_tol2
Square of the yield-function tolerance.
Definition: MultiParameterPlasticityStressUpdate.h:168
MultiParameterPlasticityStressUpdate::_min_step_size
const Real _min_step_size
In order to help the Newton-Raphson procedure, the applied strain increment may be applied in sub-inc...
Definition: MultiParameterPlasticityStressUpdate.h:175
MultiParameterPlasticityStressUpdate::setEffectiveElasticity
virtual void setEffectiveElasticity(const RankFourTensor &Eijkl)=0
Sets _Eij and _En and _Cij.
MultiParameterPlasticityStressUpdate::initQpStatefulProperties
virtual void initQpStatefulProperties() override
Definition: MultiParameterPlasticityStressUpdate.C:141
MultiParameterPlasticityStressUpdate::_ok_intnl
std::vector< Real > _ok_intnl
The state (ok_sp, ok_intnl) is known to be admissible.
Definition: MultiParameterPlasticityStressUpdate.h:718
MultiParameterPlasticityStressUpdate::_linesearch_needed
MaterialProperty< Real > & _linesearch_needed
Whether a line-search was needed in the latest Newton-Raphson process (1 if true, 0 otherwise)
Definition: MultiParameterPlasticityStressUpdate.h:208
MultiParameterPlasticityStressUpdate::dstress_param_dstress
virtual std::vector< RankTwoTensor > dstress_param_dstress(const RankTwoTensor &stress) const =0
d(stress_param[i])/d(stress) at given stress
MultiParameterPlasticityStressUpdate::dVardTrial
void dVardTrial(bool elastic_only, const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, Real step_size, bool compute_full_tangent_operator, std::vector< std::vector< Real >> &dvar_dtrial) const
Calculates derivatives of the stress_params and gaE with repect to the trial values of the stress_par...
Definition: MultiParameterPlasticityStressUpdate.C:873
MultiParameterPlasticityStressUpdate::initializeVarsV
virtual void initializeVarsV(const std::vector< Real > &trial_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &stress_params, Real &gaE, std::vector< Real > &intnl) const
Sets (stress_params, intnl) at "good guesses" of the solution to the Return-Map algorithm.
Definition: MultiParameterPlasticityStressUpdate.C:713
MultiParameterPlasticityStressUpdate::precisionLoss
bool precisionLoss(const std::vector< Real > &solution, const std::vector< Real > &stress_params, Real gaE) const
Check whether precision loss has occurred.
Definition: MultiParameterPlasticityStressUpdate.C:983
MultiParameterPlasticityStressUpdate::validParams
static InputParameters validParams()
Definition: MultiParameterPlasticityStressUpdate.C:23
MultiParameterPlasticityStressUpdate::_plastic_strain_old
const MaterialProperty< RankTwoTensor > & _plastic_strain_old
Old value of plastic strain.
Definition: MultiParameterPlasticityStressUpdate.h:187
MultiParameterPlasticityStressUpdate::_Eij
std::vector< std::vector< Real > > _Eij
E[i, j] in the system of equations to be solved.
Definition: MultiParameterPlasticityStressUpdate.h:138
ElasticityTensorTools::getIsotropicPoissonsRatio
T getIsotropicPoissonsRatio(const RankFourTensorTempl< T > &elasticity_tensor)
Get the Poisson's modulus for an isotropic elasticity tensor param elasticity_tensor the tensor (must...
Definition: ElasticityTensorTools.h:115
MultiParameterPlasticityStressUpdate::yieldF
Real yieldF(const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
Computes the smoothed yield function.
Definition: MultiParameterPlasticityStressUpdate.C:688
MultiParameterPlasticityStressUpdate::_del_stress_params
std::vector< Real > _del_stress_params
_del_stress_params = trial_stress_params - ok_sp This is fixed at the beginning of the return-map pro...
Definition: MultiParameterPlasticityStressUpdate.h:727
MultiParameterPlasticityStressUpdate::_intnl_old
const MaterialProperty< std::vector< Real > > & _intnl_old
old values of internal parameters
Definition: MultiParameterPlasticityStressUpdate.h:193
MultiParameterPlasticityStressUpdate::computeStressParams
virtual void computeStressParams(const RankTwoTensor &stress, std::vector< Real > &stress_params) const =0
Computes stress_params, given stress.
MultiParameterPlasticityStressUpdate::initializeReturnProcess
virtual void initializeReturnProcess()
Derived classes may use this to perform calculations before any return-map process is performed,...
Definition: MultiParameterPlasticityStressUpdate.C:667
CappedMohrCoulombStressUpdate::_poissons_ratio
Real _poissons_ratio
Poisson's ratio.
Definition: CappedMohrCoulombStressUpdate.h:58
MultiParameterPlasticityStressUpdate::smoother
Real smoother(Real f_diff) const
Derivative of ismoother.
Definition: MultiParameterPlasticityStressUpdate.C:510
MultiParameterPlasticityStressUpdate::_rhs
std::vector< Real > _rhs
0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, i] * dg/dS[i] 0 = rhs[1] = S[1] - S[1]^trial + ga * E[1,...
Definition: MultiParameterPlasticityStressUpdate.h:698
CappedMohrCoulombStressUpdate::_compressive_strength
const TensorMechanicsHardeningModel & _compressive_strength
Hardening model for compressive strength.
Definition: CappedMohrCoulombStressUpdate.h:43
MultiParameterPlasticityStressUpdate::_num_sp
const unsigned _num_sp
Number of stress parameters.
Definition: MultiParameterPlasticityStressUpdate.h:132
MultiParameterPlasticityStressUpdate::yieldFunctionValuesV
virtual void yieldFunctionValuesV(const std::vector< Real > &stress_params, const std::vector< Real > &intnl, std::vector< Real > &yf) const =0
Computes the values of the yield functions, given stress_params and intnl parameters.
MultiParameterPlasticityStressUpdate::_yf
MaterialProperty< std::vector< Real > > & _yf
yield functions
Definition: MultiParameterPlasticityStressUpdate.h:196
MultiParameterPlasticityStressUpdate::_num_yf
const unsigned _num_yf
Number of yield functions.
Definition: MultiParameterPlasticityStressUpdate.h:147
MultiParameterPlasticityStressUpdate::dnRHSdVar
void dnRHSdVar(const yieldAndFlow &smoothed_q, const std::vector< std::vector< Real >> &dintnl, const std::vector< Real > &stress_params, Real gaE, std::vector< double > &jac) const
Derivative of -RHS with respect to the stress_params and gaE, placed into an array ready for solving ...
Definition: MultiParameterPlasticityStressUpdate.C:828
CappedMohrCoulombStressUpdate::setIntnlValuesV
void setIntnlValuesV(const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &intnl) const override
Sets the internal parameters based on the trial values of stress_params, their current values,...
Definition: CappedMohrCoulombStressUpdate.C:734
MultiParameterPlasticityStressUpdate::_plastic_strain
MaterialProperty< RankTwoTensor > & _plastic_strain
plastic strain
Definition: MultiParameterPlasticityStressUpdate.h:184
TensorMechanicsHardeningModel::derivative
virtual Real derivative(Real intnl) const
Definition: TensorMechanicsHardeningModel.C:47
MultiParameterPlasticityStressUpdate::_definitely_ok_sp
const std::vector< Real > _definitely_ok_sp
An admissible value of stress_params at the initial time.
Definition: MultiParameterPlasticityStressUpdate.h:135
MultiParameterPlasticityStressUpdate::_trial_sp
std::vector< Real > _trial_sp
"Trial" value of stress_params that initializes the return-map process This is derived from stress = ...
Definition: MultiParameterPlasticityStressUpdate.h:681
TensorMechanicsHardeningModel::value
virtual Real value(Real intnl) const
Definition: TensorMechanicsHardeningModel.C:45
MultiParameterPlasticityStressUpdate::_num_intnl
const unsigned _num_intnl
Number of internal parameters.
Definition: MultiParameterPlasticityStressUpdate.h:150
RankTwoTensor
RankTwoTensorTempl< Real > RankTwoTensor
Definition: ACGrGrElasticDrivingForce.h:17
MultiParameterPlasticityStressUpdate::_step_one
bool _step_one
handles case of initial_stress that is inadmissible being supplied
Definition: MultiParameterPlasticityStressUpdate.h:178
MultiParameterPlasticityStressUpdate::dsmoother
Real dsmoother(Real f_diff) const
Derivative of smoother.
Definition: MultiParameterPlasticityStressUpdate.C:533
MultiParameterPlasticityStressUpdate::calculateRes2
Real calculateRes2(const std::vector< Real > &rhs) const
Calculates the residual-squared for the Newton-Raphson + line-search.
Definition: MultiParameterPlasticityStressUpdate.C:802
MultiParameterPlasticityStressUpdate::setIntnlDerivativesV
virtual void setIntnlDerivativesV(const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl, std::vector< std::vector< Real >> &dintnl) const =0
Sets the derivatives of internal parameters, based on the trial values of stress_params,...
CappedMohrCoulombStressUpdate::_phi
const TensorMechanicsHardeningModel & _phi
Hardening model for friction angle.
Definition: CappedMohrCoulombStressUpdate.h:49
MultiParameterPlasticityStressUpdate::errorHandler
virtual void errorHandler(const std::string &message) const
Performs any necessary cleaning-up, then throw MooseException(message)
Definition: MultiParameterPlasticityStressUpdate.C:661
MultiParameterPlasticityStressUpdate::_current_sp
std::vector< Real > _current_sp
The current values of the stress params during the Newton-Raphson.
Definition: MultiParameterPlasticityStressUpdate.h:732
MultiParameterPlasticityStressUpdate::_En
Real _En
normalising factor
Definition: MultiParameterPlasticityStressUpdate.h:141
RankFourTensorTempl
Definition: ACGrGrElasticDrivingForce.h:20
MultiParameterPlasticityStressUpdate::consistentTangentOperatorV
virtual void consistentTangentOperatorV(const RankTwoTensor &stress_trial, const std::vector< Real > &trial_stress_params, const RankTwoTensor &stress, const std::vector< Real > &stress_params, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, bool compute_full_tangent_operator, const std::vector< std::vector< Real >> &dvar_dtrial, RankFourTensor &cto)
Calculates the consistent tangent operator.
Definition: MultiParameterPlasticityStressUpdate.C:725
MultiParameterPlasticityStressUpdate::_max_iter_used
MaterialProperty< Real > & _max_iter_used
Maximum number of Newton-Raphson iterations used in the return-map during the course of the entire si...
Definition: MultiParameterPlasticityStressUpdate.h:202
MultiParameterPlasticityStressUpdate::SmootherFunctionType::poly2
MultiParameterPlasticityStressUpdate::setIntnlValuesV
virtual void setIntnlValuesV(const std::vector< Real > &trial_stress_params, const std::vector< Real > &current_stress_params, const std::vector< Real > &intnl_old, std::vector< Real > &intnl) const =0
Sets the internal parameters based on the trial values of stress_params, their current values,...
MultiParameterPlasticityStressUpdate::_dvar_dtrial
std::vector< std::vector< Real > > _dvar_dtrial
d({stress_param[i], gaE})/d(trial_stress_param[j])
Definition: MultiParameterPlasticityStressUpdate.h:703
MultiParameterPlasticityStressUpdate::smoothAllQuantities
yieldAndFlow smoothAllQuantities(const std::vector< Real > &stress_params, const std::vector< Real > &intnl) const
Calculates all yield functions and derivatives, and then performs the smoothing scheme.
Definition: MultiParameterPlasticityStressUpdate.C:400
MultiParameterPlasticityStressUpdate::calculateRHS
void calculateRHS(const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, Real gaE, const yieldAndFlow &smoothed_q, std::vector< Real > &rhs) const
Calculates the RHS in the following 0 = rhs[0] = S[0] - S[0]^trial + ga * E[0, j] * dg/dS[j] 0 = rhs[...
Definition: MultiParameterPlasticityStressUpdate.C:811
RankTwoTensorTempl< Real >
MultiParameterPlasticityStressUpdate::_ok_sp
std::vector< Real > _ok_sp
The state (ok_sp, ok_intnl) is known to be admissible, so ok_sp are stress_params that are "OK".
Definition: MultiParameterPlasticityStressUpdate.h:713
MultiParameterPlasticityStressUpdate::setStressAfterReturnV
virtual void setStressAfterReturnV(const RankTwoTensor &stress_trial, const std::vector< Real > &stress_params, Real gaE, const std::vector< Real > &intnl, const yieldAndFlow &smoothed_q, const RankFourTensor &Eijkl, RankTwoTensor &stress) const =0
Sets stress from the admissible parameters.
MultiParameterPlasticityStressUpdate::preReturnMapV
virtual void preReturnMapV(const std::vector< Real > &trial_stress_params, const RankTwoTensor &stress_trial, const std::vector< Real > &intnl_old, const std::vector< Real > &yf, const RankFourTensor &Eijkl)
Derived classes may employ this function to record stuff or do other computations prior to the return...
Definition: MultiParameterPlasticityStressUpdate.C:678
CappedMohrCoulombStressUpdate::_perfect_guess
const bool _perfect_guess
Whether to provide an estimate of the returned stress, based on perfect plasticity.
Definition: CappedMohrCoulombStressUpdate.h:55
MultiParameterPlasticityStressUpdate::_smoothing_tol2
const Real _smoothing_tol2
Square of the smoothing tolerance.
Definition: MultiParameterPlasticityStressUpdate.h:162
MultiParameterPlasticityStressUpdate::nrStep
int nrStep(const yieldAndFlow &smoothed_q, const std::vector< Real > &trial_stress_params, const std::vector< Real > &stress_params, const std::vector< Real > &intnl, Real gaE, std::vector< Real > &rhs) const
Performs a Newton-Raphson step to attempt to zero rhs Upon return, rhs will contain the solution.
Definition: MultiParameterPlasticityStressUpdate.C:637
CappedMohrCoulombStressUpdate::dstress_param_dstress
std::vector< RankTwoTensor > dstress_param_dstress(const RankTwoTensor &stress) const override
d(stress_param[i])/d(stress) at given stress
Definition: CappedMohrCoulombStressUpdate.C:79
MultiParameterPlasticityStressUpdate::_tensor_dimensionality
constexpr static unsigned _tensor_dimensionality
Internal dimensionality of tensors (currently this is 3 throughout tensor_mechanics)
Definition: MultiParameterPlasticityStressUpdate.h:129
CappedMohrCoulombStressUpdate::_shifter
const Real _shifter
When equal-eigenvalues are predicted from the stress initialization routine, shift them by this amoun...
Definition: CappedMohrCoulombStressUpdate.h:65
MultiParameterPlasticityStressUpdate::_intnl
MaterialProperty< std::vector< Real > > & _intnl
internal parameters
Definition: MultiParameterPlasticityStressUpdate.h:190
CappedMohrCoulombStressUpdate::_psi
const TensorMechanicsHardeningModel & _psi
Hardening model for dilation angle.
Definition: CappedMohrCoulombStressUpdate.h:52
MultiParameterPlasticityStressUpdate::_max_iter_used_old
const MaterialProperty< Real > & _max_iter_used_old
Old value of maximum number of Newton-Raphson iterations used in the return-map during the course of ...
Definition: MultiParameterPlasticityStressUpdate.h:205
CappedMohrCoulombStressUpdate::_cohesion
const TensorMechanicsHardeningModel & _cohesion
Hardening model for cohesion.
Definition: CappedMohrCoulombStressUpdate.h:46
MultiParameterPlasticityStressUpdate::setInelasticStrainIncrementAfterReturn
virtual void setInelasticStrainIncrementAfterReturn(const RankTwoTensor &stress_trial, Real gaE, const yieldAndFlow &smoothed_q, const RankFourTensor &elasticity_tensor, const RankTwoTensor &returned_stress, RankTwoTensor &inelastic_strain_increment) const
Sets inelastic strain increment from the returned configuration This is called after the return-map p...
Definition: MultiParameterPlasticityStressUpdate.C:786
MultiParameterPlasticityStressUpdate::_f_tol
const Real _f_tol
The yield-function tolerance.
Definition: MultiParameterPlasticityStressUpdate.h:165