libMesh
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Protected Types | Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Attributes | List of all members
libMesh::AdaptiveTimeSolver Class Referenceabstract

This class wraps another UnsteadySolver derived class, and compares the results of timestepping with deltat and timestepping with 2*deltat to adjust future timestep lengths. More...

#include <adaptive_time_solver.h>

Inheritance diagram for libMesh::AdaptiveTimeSolver:
[legend]

Public Types

typedef FirstOrderUnsteadySolver Parent
 The parent class. More...
 
typedef DifferentiableSystem sys_type
 The type of system. More...
 

Public Member Functions

 AdaptiveTimeSolver (sys_type &s)
 Constructor. More...
 
virtual ~AdaptiveTimeSolver ()
 Destructor. More...
 
virtual void init () override
 The initialization function. More...
 
virtual void reinit () override
 The reinitialization function. More...
 
virtual void solve () override=0
 This method solves for the solution at the next timestep. More...
 
virtual void advance_timestep () override
 This method advances the solution to the next timestep, after a solve() has been performed. More...
 
virtual Real error_order () const override
 This method is passed on to the core_time_solver. More...
 
virtual bool element_residual (bool get_jacobian, DiffContext &) override
 This method is passed on to the core_time_solver. More...
 
virtual bool side_residual (bool get_jacobian, DiffContext &) override
 This method is passed on to the core_time_solver. More...
 
virtual bool nonlocal_residual (bool get_jacobian, DiffContext &) override
 This method is passed on to the core_time_solver. More...
 
virtual std::unique_ptr< DiffSolver > & diff_solver () override
 An implicit linear or nonlinear solver to use at each timestep. More...
 
virtual std::unique_ptr< LinearSolver< Number > > & linear_solver () override
 An implicit linear solver to use for adjoint and sensitivity problems. More...
 
virtual unsigned int time_order () const override
 
virtual void init_data () override
 The data initialization function. More...
 
virtual void adjoint_advance_timestep () override
 This method advances the adjoint solution to the previous timestep, after an adjoint_solve() has been performed. More...
 
virtual void retrieve_timestep () override
 This method retrieves all the stored solutions at the current system.time. More...
 
Number old_nonlinear_solution (const dof_id_type global_dof_number) const
 
virtual Real du (const SystemNorm &norm) const override
 Computes the size of ||u^{n+1} - u^{n}|| in some norm. More...
 
virtual bool is_steady () const override
 This is not a steady-state solver. More...
 
virtual void before_timestep ()
 This method is for subclasses or users to override to do arbitrary processing between timesteps. More...
 
const sys_typesystem () const
 
sys_typesystem ()
 
void set_solution_history (const SolutionHistory &_solution_history)
 A setter function users will employ if they need to do something other than save no solution history. More...
 
bool is_adjoint () const
 Accessor for querying whether we need to do a primal or adjoint solve. More...
 
void set_is_adjoint (bool _is_adjoint_value)
 Accessor for setting whether we need to do a primal or adjoint solve. More...
 

Static Public Member Functions

static std::string get_info ()
 Gets a string containing the reference information. More...
 
static void print_info (std::ostream &out=libMesh::out)
 Prints the reference information, by default to libMesh::out. More...
 
static unsigned int n_objects ()
 Prints the number of outstanding (created, but not yet destroyed) objects. More...
 
static void enable_print_counter_info ()
 Methods to enable/disable the reference counter output from print_info() More...
 
static void disable_print_counter_info ()
 

Public Attributes

std::unique_ptr< UnsteadySolvercore_time_solver
 This object is used to take timesteps. More...
 
SystemNorm component_norm
 Error calculations are done in this norm, DISCRETE_L2 by default. More...
 
std::vector< float > component_scale
 If component_norms is non-empty, each variable's contribution to the error of a system will also be scaled by component_scale[var], unless component_scale is empty in which case all variables will be weighted equally. More...
 
Real target_tolerance
 This tolerance is the target relative error between an exact time integration and a single time step output, scaled by deltat. More...
 
Real upper_tolerance
 This tolerance is the maximum relative error between an exact time integration and a single time step output, scaled by deltat. More...
 
Real max_deltat
 Do not allow the adaptive time solver to select deltat > max_deltat. More...
 
Real min_deltat
 Do not allow the adaptive time solver to select deltat < min_deltat. More...
 
Real max_growth
 Do not allow the adaptive time solver to select a new deltat greater than max_growth times the old deltat. More...
 
bool global_tolerance
 This flag, which is true by default, grows (shrinks) the timestep based on the expected global accuracy of the timestepping scheme. More...
 
std::unique_ptr< NumericVector< Number > > old_local_nonlinear_solution
 Serial vector of _system.get_vector("_old_nonlinear_solution") More...
 
bool quiet
 Print extra debugging information if quiet == false. More...
 
unsigned int reduce_deltat_on_diffsolver_failure
 This value (which defaults to zero) is the number of times the TimeSolver is allowed to halve deltat and let the DiffSolver repeat the latest failed solve with a reduced timestep. More...
 

Protected Types

typedef bool(DifferentiablePhysics::* ResFuncType) (bool, DiffContext &)
 Definitions of argument types for use in refactoring subclasses. More...
 
typedef void(DiffContext::* ReinitFuncType) (Real)
 
typedef std::map< std::string, std::pair< unsigned int, unsigned int > > Counts
 Data structure to log the information. More...
 

Protected Member Functions

virtual Real calculate_norm (System &, NumericVector< Number > &)
 A helper function to calculate error norms. More...
 
void prepare_accel (DiffContext &context)
 If there are second order variables in the system, then we also prepare the accel for those variables so the user can treat them as such. More...
 
bool compute_second_order_eqns (bool compute_jacobian, DiffContext &c)
 If there are second order variables, then we need to compute their residual equations and corresponding Jacobian. More...
 
void increment_constructor_count (const std::string &name)
 Increments the construction counter. More...
 
void increment_destructor_count (const std::string &name)
 Increments the destruction counter. More...
 

Protected Attributes

Real last_deltat
 We need to store the value of the last deltat used, so that advance_timestep() will increment the system time correctly. More...
 
bool first_solve
 A bool that will be true the first time solve() is called, and false thereafter. More...
 
bool first_adjoint_step
 A bool that will be true the first time adjoint_advance_timestep() is called, (when the primal solution is to be used to set adjoint boundary conditions) and false thereafter. More...
 
std::unique_ptr< DiffSolver_diff_solver
 An implicit linear or nonlinear solver to use at each timestep. More...
 
std::unique_ptr< LinearSolver< Number > > _linear_solver
 An implicit linear solver to use for adjoint problems. More...
 
sys_type_system
 A reference to the system we are solving. More...
 
std::unique_ptr< SolutionHistorysolution_history
 A std::unique_ptr to a SolutionHistory object. More...
 

Static Protected Attributes

static Counts _counts
 Actually holds the data. More...
 
static Threads::atomic< unsigned int_n_objects
 The number of objects. More...
 
static Threads::spin_mutex _mutex
 Mutual exclusion object to enable thread-safe reference counting. More...
 
static bool _enable_print_counter = true
 Flag to control whether reference count information is printed when print_info is called. More...
 

Private Attributes

bool _is_adjoint
 This boolean tells the TimeSolver whether we are solving a primal or adjoint problem. More...
 

Detailed Description

This class wraps another UnsteadySolver derived class, and compares the results of timestepping with deltat and timestepping with 2*deltat to adjust future timestep lengths.

Currently this class only works on fully coupled Systems

This class is part of the new DifferentiableSystem framework, which is still experimental. Users of this framework should beware of bugs and future API changes.

Author
Roy H. Stogner
Date
2007

Definition at line 49 of file adaptive_time_solver.h.

Member Typedef Documentation

◆ Counts

typedef std::map<std::string, std::pair<unsigned int, unsigned int> > libMesh::ReferenceCounter::Counts
protectedinherited

Data structure to log the information.

The log is identified by the class name.

Definition at line 117 of file reference_counter.h.

◆ Parent

The parent class.

Definition at line 55 of file adaptive_time_solver.h.

◆ ReinitFuncType

typedef void(DiffContext::* libMesh::TimeSolver::ReinitFuncType) (Real)
protectedinherited

Definition at line 272 of file time_solver.h.

◆ ResFuncType

typedef bool(DifferentiablePhysics::* libMesh::TimeSolver::ResFuncType) (bool, DiffContext &)
protectedinherited

Definitions of argument types for use in refactoring subclasses.

Definition at line 270 of file time_solver.h.

◆ sys_type

The type of system.

Definition at line 64 of file time_solver.h.

Constructor & Destructor Documentation

◆ AdaptiveTimeSolver()

libMesh::AdaptiveTimeSolver::AdaptiveTimeSolver ( sys_type s)
explicit

Constructor.

Requires a reference to the system to be solved.

Definition at line 27 of file adaptive_time_solver.C.

30  target_tolerance(1.e-3),
31  upper_tolerance(0.0),
32  max_deltat(0.),
33  min_deltat(0.),
34  max_growth(0.),
35  global_tolerance(true)
36 {
37  // the child class must populate core_time_solver
38  // with whatever actual time solver is to be used
39 
40  // As an UnsteadySolver, we have an old_local_nonlinear_solution, but we're
41  // going to drop it and use our core time solver's instead.
43 }

References libMesh::UnsteadySolver::old_local_nonlinear_solution.

◆ ~AdaptiveTimeSolver()

libMesh::AdaptiveTimeSolver::~AdaptiveTimeSolver ( )
virtual

Destructor.

Definition at line 47 of file adaptive_time_solver.C.

48 {
49  // As an UnsteadySolver, we have an old_local_nonlinear_solution, but it
50  // is being managed by our core_time_solver. Make sure we don't delete
51  // it out from under them, in case the user wants to keep using the core
52  // solver after they're done with us.
54 }

References libMesh::UnsteadySolver::old_local_nonlinear_solution.

Member Function Documentation

◆ adjoint_advance_timestep()

void libMesh::UnsteadySolver::adjoint_advance_timestep ( )
overridevirtualinherited

This method advances the adjoint solution to the previous timestep, after an adjoint_solve() has been performed.

This will be done before every UnsteadySolver::adjoint_solve().

Reimplemented from libMesh::TimeSolver.

Reimplemented in libMesh::NewmarkSolver.

Definition at line 178 of file unsteady_solver.C.

179 {
180  // On the first call of this function, we dont save the adjoint solution or
181  // decrement the time, we just call the retrieve function below
182  if (!first_adjoint_step)
183  {
184  // Call the store function to store the last adjoint before decrementing the time
185  solution_history->store();
186  // Decrement the system time
188  }
189  else
190  {
191  first_adjoint_step = false;
192  }
193 
194  // Retrieve the primal solution vectors at this time using the
195  // solution_history object
196  solution_history->retrieve();
197 
198  // Dont forget to localize the old_nonlinear_solution !
199  _system.get_vector("_old_nonlinear_solution").localize
202 }

References libMesh::TimeSolver::_system, libMesh::DifferentiableSystem::deltat, libMesh::UnsteadySolver::first_adjoint_step, libMesh::System::get_dof_map(), libMesh::DofMap::get_send_list(), libMesh::System::get_vector(), libMesh::NumericVector< T >::localize(), libMesh::UnsteadySolver::old_local_nonlinear_solution, libMesh::TimeSolver::solution_history, and libMesh::System::time.

◆ advance_timestep()

void libMesh::AdaptiveTimeSolver::advance_timestep ( )
overridevirtual

This method advances the solution to the next timestep, after a solve() has been performed.

Often this will be done after every UnsteadySolver::solve(), but adaptive mesh refinement and/or adaptive time step selection may require some solve() steps to be repeated.

Reimplemented from libMesh::UnsteadySolver.

Definition at line 87 of file adaptive_time_solver.C.

88 {
89  NumericVector<Number> & old_nonlinear_soln =
90  _system.get_vector("_old_nonlinear_solution");
91  NumericVector<Number> & nonlinear_solution =
92  *(_system.solution);
93 
94  old_nonlinear_soln = nonlinear_solution;
95 
96  if (!first_solve)
98 }

References libMesh::TimeSolver::_system, libMesh::UnsteadySolver::first_solve, libMesh::System::get_vector(), last_deltat, libMesh::System::solution, and libMesh::System::time.

◆ before_timestep()

virtual void libMesh::TimeSolver::before_timestep ( )
inlinevirtualinherited

This method is for subclasses or users to override to do arbitrary processing between timesteps.

Definition at line 166 of file time_solver.h.

166 {}

◆ calculate_norm()

Real libMesh::AdaptiveTimeSolver::calculate_norm ( System s,
NumericVector< Number > &  v 
)
protectedvirtual

A helper function to calculate error norms.

Definition at line 155 of file adaptive_time_solver.C.

157 {
158  return s.calculate_norm(v, component_norm);
159 }

References libMesh::System::calculate_norm(), and component_norm.

Referenced by libMesh::TwostepTimeSolver::solve().

◆ compute_second_order_eqns()

bool libMesh::FirstOrderUnsteadySolver::compute_second_order_eqns ( bool  compute_jacobian,
DiffContext c 
)
protectedinherited

If there are second order variables, then we need to compute their residual equations and corresponding Jacobian.

The residual equation will simply be \( \dot{u} - v = 0 \), where \( u \) is the second order variable add by the user and \( v \) is the variable added by the time-solver as the "velocity" variable.

Definition at line 32 of file first_order_unsteady_solver.C.

33 {
34  FEMContext & context = cast_ref<FEMContext &>(c);
35 
36  unsigned int n_qpoints = context.get_element_qrule().n_points();
37 
38  for (auto var : IntRange<unsigned int>(0, context.n_vars()))
39  {
40  if (!this->_system.is_second_order_var(var))
41  continue;
42 
43  unsigned int dot_var = this->_system.get_second_order_dot_var(var);
44 
45  // We're assuming that the FE space for var and dot_var are the same
46  libmesh_assert( context.get_system().variable(var).type() ==
47  context.get_system().variable(dot_var).type() );
48 
49  FEBase * elem_fe = nullptr;
50  context.get_element_fe( var, elem_fe );
51 
52  const std::vector<Real> & JxW = elem_fe->get_JxW();
53 
54  const std::vector<std::vector<Real>> & phi = elem_fe->get_phi();
55 
56  const unsigned int n_dofs = cast_int<unsigned int>
57  (context.get_dof_indices(dot_var).size());
58 
59  DenseSubVector<Number> & Fu = context.get_elem_residual(var);
60  DenseSubMatrix<Number> & Kuu = context.get_elem_jacobian( var, var );
61  DenseSubMatrix<Number> & Kuv = context.get_elem_jacobian( var, dot_var );
62 
63  for (unsigned int qp = 0; qp != n_qpoints; ++qp)
64  {
65  Number udot, v;
66  context.interior_rate(var, qp, udot);
67  context.interior_value(dot_var, qp, v);
68 
69  for (unsigned int i = 0; i < n_dofs; i++)
70  {
71  Fu(i) += JxW[qp]*(udot-v)*phi[i][qp];
72 
73  if (compute_jacobian)
74  {
75  Number rate_factor = JxW[qp]*context.get_elem_solution_rate_derivative()*phi[i][qp];
76  Number soln_factor = JxW[qp]*context.get_elem_solution_derivative()*phi[i][qp];
77 
78  Kuu(i,i) += rate_factor*phi[i][qp];
79  Kuv(i,i) -= soln_factor*phi[i][qp];
80 
81  for (unsigned int j = i+1; j < n_dofs; j++)
82  {
83  Kuu(i,j) += rate_factor*phi[j][qp];
84  Kuu(j,i) += rate_factor*phi[j][qp];
85 
86  Kuv(i,j) -= soln_factor*phi[j][qp];
87  Kuv(j,i) -= soln_factor*phi[j][qp];
88  }
89  }
90  }
91  }
92  }
93 
94  return compute_jacobian;
95 }

References libMesh::TimeSolver::_system, compute_jacobian(), libMesh::DiffContext::get_dof_indices(), libMesh::DiffContext::get_elem_jacobian(), libMesh::DiffContext::get_elem_residual(), libMesh::DiffContext::get_elem_solution_derivative(), libMesh::DiffContext::get_elem_solution_rate_derivative(), libMesh::FEMContext::get_element_fe(), libMesh::FEMContext::get_element_qrule(), libMesh::DifferentiableSystem::get_second_order_dot_var(), libMesh::DiffContext::get_system(), libMesh::FEMContext::interior_rate(), libMesh::FEMContext::interior_value(), libMesh::DifferentiablePhysics::is_second_order_var(), libMesh::libmesh_assert(), libMesh::QBase::n_points(), libMesh::DiffContext::n_vars(), libMesh::Variable::type(), and libMesh::System::variable().

Referenced by libMesh::EulerSolver::_general_residual(), libMesh::Euler2Solver::_general_residual(), libMesh::EulerSolver::element_residual(), libMesh::Euler2Solver::element_residual(), libMesh::EulerSolver::nonlocal_residual(), and libMesh::Euler2Solver::nonlocal_residual().

◆ diff_solver()

std::unique_ptr< DiffSolver > & libMesh::AdaptiveTimeSolver::diff_solver ( )
overridevirtual

An implicit linear or nonlinear solver to use at each timestep.

Reimplemented from libMesh::TimeSolver.

Definition at line 141 of file adaptive_time_solver.C.

142 {
143  return core_time_solver->diff_solver();
144 }

References core_time_solver.

◆ disable_print_counter_info()

void libMesh::ReferenceCounter::disable_print_counter_info ( )
staticinherited

Definition at line 106 of file reference_counter.C.

107 {
108  _enable_print_counter = false;
109  return;
110 }

References libMesh::ReferenceCounter::_enable_print_counter.

Referenced by libMesh::LibMeshInit::LibMeshInit().

◆ du()

Real libMesh::UnsteadySolver::du ( const SystemNorm norm) const
overridevirtualinherited

Computes the size of ||u^{n+1} - u^{n}|| in some norm.

Note
While you can always call this function, its result may or may not be very meaningful. For example, if you call this function right after calling advance_timestep() then you'll get a result of zero since old_nonlinear_solution is set equal to nonlinear_solution in this function.

Implements libMesh::TimeSolver.

Definition at line 227 of file unsteady_solver.C.

228 {
229 
230  std::unique_ptr<NumericVector<Number>> solution_copy =
231  _system.solution->clone();
232 
233  solution_copy->add(-1., _system.get_vector("_old_nonlinear_solution"));
234 
235  solution_copy->close();
236 
237  return _system.calculate_norm(*solution_copy, norm);
238 }

References libMesh::TimeSolver::_system, libMesh::System::calculate_norm(), libMesh::System::get_vector(), std::norm(), and libMesh::System::solution.

◆ element_residual()

bool libMesh::AdaptiveTimeSolver::element_residual ( bool  get_jacobian,
DiffContext context 
)
overridevirtual

This method is passed on to the core_time_solver.

Implements libMesh::TimeSolver.

Definition at line 111 of file adaptive_time_solver.C.

113 {
115 
116  return core_time_solver->element_residual(request_jacobian, context);
117 }

References core_time_solver, and libMesh::libmesh_assert().

◆ enable_print_counter_info()

void libMesh::ReferenceCounter::enable_print_counter_info ( )
staticinherited

Methods to enable/disable the reference counter output from print_info()

Definition at line 100 of file reference_counter.C.

101 {
102  _enable_print_counter = true;
103  return;
104 }

References libMesh::ReferenceCounter::_enable_print_counter.

◆ error_order()

Real libMesh::AdaptiveTimeSolver::error_order ( ) const
overridevirtual

This method is passed on to the core_time_solver.

Implements libMesh::UnsteadySolver.

Definition at line 102 of file adaptive_time_solver.C.

103 {
105 
106  return core_time_solver->error_order();
107 }

References core_time_solver, and libMesh::libmesh_assert().

◆ get_info()

std::string libMesh::ReferenceCounter::get_info ( )
staticinherited

Gets a string containing the reference information.

Definition at line 47 of file reference_counter.C.

48 {
49 #if defined(LIBMESH_ENABLE_REFERENCE_COUNTING) && defined(DEBUG)
50 
51  std::ostringstream oss;
52 
53  oss << '\n'
54  << " ---------------------------------------------------------------------------- \n"
55  << "| Reference count information |\n"
56  << " ---------------------------------------------------------------------------- \n";
57 
58  for (const auto & pr : _counts)
59  {
60  const std::string name(pr.first);
61  const unsigned int creations = pr.second.first;
62  const unsigned int destructions = pr.second.second;
63 
64  oss << "| " << name << " reference count information:\n"
65  << "| Creations: " << creations << '\n'
66  << "| Destructions: " << destructions << '\n';
67  }
68 
69  oss << " ---------------------------------------------------------------------------- \n";
70 
71  return oss.str();
72 
73 #else
74 
75  return "";
76 
77 #endif
78 }

References libMesh::ReferenceCounter::_counts, and libMesh::Quality::name().

Referenced by libMesh::ReferenceCounter::print_info().

◆ increment_constructor_count()

void libMesh::ReferenceCounter::increment_constructor_count ( const std::string &  name)
inlineprotectedinherited

Increments the construction counter.

Should be called in the constructor of any derived class that will be reference counted.

Definition at line 181 of file reference_counter.h.

182 {
183  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
184  std::pair<unsigned int, unsigned int> & p = _counts[name];
185 
186  p.first++;
187 }

References libMesh::ReferenceCounter::_counts, libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::ReferenceCountedObject().

◆ increment_destructor_count()

void libMesh::ReferenceCounter::increment_destructor_count ( const std::string &  name)
inlineprotectedinherited

Increments the destruction counter.

Should be called in the destructor of any derived class that will be reference counted.

Definition at line 194 of file reference_counter.h.

195 {
196  Threads::spin_mutex::scoped_lock lock(Threads::spin_mtx);
197  std::pair<unsigned int, unsigned int> & p = _counts[name];
198 
199  p.second++;
200 }

References libMesh::ReferenceCounter::_counts, libMesh::Quality::name(), and libMesh::Threads::spin_mtx.

Referenced by libMesh::ReferenceCountedObject< RBParametrized >::~ReferenceCountedObject().

◆ init()

void libMesh::AdaptiveTimeSolver::init ( )
overridevirtual

The initialization function.

This method is used to initialize internal data structures before a simulation begins.

Reimplemented from libMesh::UnsteadySolver.

Definition at line 58 of file adaptive_time_solver.C.

59 {
61 
62  // We override this because our core_time_solver is the one that
63  // needs to handle new vectors, diff_solver->init(), etc
64  core_time_solver->init();
65 
66  // As an UnsteadySolver, we have an old_local_nonlinear_solution, but it
67  // isn't pointing to the right place - fix it
68  //
69  // This leaves us with two std::unique_ptrs holding the same pointer - dangerous
70  // for future use. Replace with shared_ptr?
72  std::unique_ptr<NumericVector<Number>>(core_time_solver->old_local_nonlinear_solution.get());
73 }

References core_time_solver, libMesh::libmesh_assert(), and libMesh::UnsteadySolver::old_local_nonlinear_solution.

◆ init_data()

void libMesh::UnsteadySolver::init_data ( )
overridevirtualinherited

The data initialization function.

This method is used to initialize internal data structures after the underlying System has been initialized

Reimplemented from libMesh::TimeSolver.

Reimplemented in libMesh::SecondOrderUnsteadySolver.

Definition at line 55 of file unsteady_solver.C.

56 {
58 
59 #ifdef LIBMESH_ENABLE_GHOSTED
62  GHOSTED);
63 #else
65 #endif
66 }

References libMesh::TimeSolver::_system, libMesh::System::get_dof_map(), libMesh::DofMap::get_send_list(), libMesh::GHOSTED, libMesh::TimeSolver::init_data(), libMesh::System::n_dofs(), libMesh::System::n_local_dofs(), libMesh::UnsteadySolver::old_local_nonlinear_solution, and libMesh::SERIAL.

Referenced by libMesh::SecondOrderUnsteadySolver::init_data().

◆ is_adjoint()

bool libMesh::TimeSolver::is_adjoint ( ) const
inlineinherited

Accessor for querying whether we need to do a primal or adjoint solve.

Definition at line 232 of file time_solver.h.

233  { return _is_adjoint; }

References libMesh::TimeSolver::_is_adjoint.

Referenced by libMesh::FEMSystem::build_context().

◆ is_steady()

virtual bool libMesh::UnsteadySolver::is_steady ( ) const
inlineoverridevirtualinherited

This is not a steady-state solver.

Implements libMesh::TimeSolver.

Definition at line 153 of file unsteady_solver.h.

153 { return false; }

◆ linear_solver()

std::unique_ptr< LinearSolver< Number > > & libMesh::AdaptiveTimeSolver::linear_solver ( )
overridevirtual

An implicit linear solver to use for adjoint and sensitivity problems.

Reimplemented from libMesh::TimeSolver.

Definition at line 148 of file adaptive_time_solver.C.

149 {
150  return core_time_solver->linear_solver();
151 }

References core_time_solver.

◆ n_objects()

static unsigned int libMesh::ReferenceCounter::n_objects ( )
inlinestaticinherited

Prints the number of outstanding (created, but not yet destroyed) objects.

Definition at line 83 of file reference_counter.h.

84  { return _n_objects; }

References libMesh::ReferenceCounter::_n_objects.

◆ nonlocal_residual()

bool libMesh::AdaptiveTimeSolver::nonlocal_residual ( bool  get_jacobian,
DiffContext context 
)
overridevirtual

This method is passed on to the core_time_solver.

Implements libMesh::TimeSolver.

Definition at line 131 of file adaptive_time_solver.C.

133 {
135 
136  return core_time_solver->nonlocal_residual(request_jacobian, context);
137 }

References core_time_solver, and libMesh::libmesh_assert().

◆ old_nonlinear_solution()

Number libMesh::UnsteadySolver::old_nonlinear_solution ( const dof_id_type  global_dof_number) const
inherited
Returns
The old nonlinear solution for the specified global DOF.

Definition at line 216 of file unsteady_solver.C.

218 {
219  libmesh_assert_less (global_dof_number, _system.get_dof_map().n_dofs());
220  libmesh_assert_less (global_dof_number, old_local_nonlinear_solution->size());
221 
222  return (*old_local_nonlinear_solution)(global_dof_number);
223 }

References libMesh::TimeSolver::_system, libMesh::System::get_dof_map(), libMesh::DofMap::n_dofs(), and libMesh::UnsteadySolver::old_local_nonlinear_solution.

Referenced by libMesh::EulerSolver::_general_residual(), libMesh::Euler2Solver::_general_residual(), libMesh::NewmarkSolver::_general_residual(), and libMesh::FEMPhysics::eulerian_residual().

◆ prepare_accel()

void libMesh::FirstOrderUnsteadySolver::prepare_accel ( DiffContext context)
protectedinherited

If there are second order variables in the system, then we also prepare the accel for those variables so the user can treat them as such.

Definition at line 25 of file first_order_unsteady_solver.C.

26 {
27  context.get_elem_solution_accel() = context.get_elem_solution_rate();
28 
29  context.elem_solution_accel_derivative = context.get_elem_solution_rate_derivative();
30 }

References libMesh::DiffContext::elem_solution_accel_derivative, libMesh::DiffContext::get_elem_solution_accel(), libMesh::DiffContext::get_elem_solution_rate(), and libMesh::DiffContext::get_elem_solution_rate_derivative().

Referenced by libMesh::EulerSolver::_general_residual(), and libMesh::Euler2Solver::_general_residual().

◆ print_info()

void libMesh::ReferenceCounter::print_info ( std::ostream &  out = libMesh::out)
staticinherited

Prints the reference information, by default to libMesh::out.

Definition at line 87 of file reference_counter.C.

88 {
90  out_stream << ReferenceCounter::get_info();
91 }

References libMesh::ReferenceCounter::_enable_print_counter, and libMesh::ReferenceCounter::get_info().

◆ reinit()

void libMesh::AdaptiveTimeSolver::reinit ( )
overridevirtual

The reinitialization function.

This method is used to resize internal data vectors after a mesh change.

Reimplemented from libMesh::UnsteadySolver.

Definition at line 77 of file adaptive_time_solver.C.

78 {
80 
81  // We override this because our core_time_solver is the one that
82  // needs to handle new vectors, diff_solver->reinit(), etc
83  core_time_solver->reinit();
84 }

References core_time_solver, and libMesh::libmesh_assert().

◆ retrieve_timestep()

void libMesh::UnsteadySolver::retrieve_timestep ( )
overridevirtualinherited

This method retrieves all the stored solutions at the current system.time.

Reimplemented from libMesh::TimeSolver.

Reimplemented in libMesh::SecondOrderUnsteadySolver.

Definition at line 204 of file unsteady_solver.C.

205 {
206  // Retrieve all the stored vectors at the current time
207  solution_history->retrieve();
208 
209  // Dont forget to localize the old_nonlinear_solution !
210  _system.get_vector("_old_nonlinear_solution").localize
213 }

References libMesh::TimeSolver::_system, libMesh::System::get_dof_map(), libMesh::DofMap::get_send_list(), libMesh::System::get_vector(), libMesh::NumericVector< T >::localize(), libMesh::UnsteadySolver::old_local_nonlinear_solution, and libMesh::TimeSolver::solution_history.

◆ set_is_adjoint()

void libMesh::TimeSolver::set_is_adjoint ( bool  _is_adjoint_value)
inlineinherited

Accessor for setting whether we need to do a primal or adjoint solve.

Definition at line 239 of file time_solver.h.

240  { _is_adjoint = _is_adjoint_value; }

References libMesh::TimeSolver::_is_adjoint.

Referenced by libMesh::DifferentiableSystem::adjoint_solve(), libMesh::FEMSystem::postprocess(), and libMesh::DifferentiableSystem::solve().

◆ set_solution_history()

void libMesh::TimeSolver::set_solution_history ( const SolutionHistory _solution_history)
inherited

A setter function users will employ if they need to do something other than save no solution history.

Definition at line 96 of file time_solver.C.

97 {
98  solution_history = _solution_history.clone();
99 }

References libMesh::SolutionHistory::clone(), and libMesh::TimeSolver::solution_history.

◆ side_residual()

bool libMesh::AdaptiveTimeSolver::side_residual ( bool  get_jacobian,
DiffContext context 
)
overridevirtual

This method is passed on to the core_time_solver.

Implements libMesh::TimeSolver.

Definition at line 121 of file adaptive_time_solver.C.

123 {
125 
126  return core_time_solver->side_residual(request_jacobian, context);
127 }

References core_time_solver, and libMesh::libmesh_assert().

◆ solve()

virtual void libMesh::AdaptiveTimeSolver::solve ( )
overridepure virtual

This method solves for the solution at the next timestep.

Usually we will only need to solve one (non)linear system per timestep, but more complex subclasses may override this.

Reimplemented from libMesh::UnsteadySolver.

Implemented in libMesh::TwostepTimeSolver.

◆ system() [1/2]

sys_type& libMesh::TimeSolver::system ( )
inlineinherited
Returns
A writable reference to the system we are solving.

Definition at line 176 of file time_solver.h.

176 { return _system; }

References libMesh::TimeSolver::_system.

◆ system() [2/2]

const sys_type& libMesh::TimeSolver::system ( ) const
inlineinherited
Returns
A constant reference to the system we are solving.

Definition at line 171 of file time_solver.h.

171 { return _system; }

References libMesh::TimeSolver::_system.

Referenced by libMesh::TimeSolver::reinit(), and libMesh::TimeSolver::solve().

◆ time_order()

virtual unsigned int libMesh::FirstOrderUnsteadySolver::time_order ( ) const
inlineoverridevirtualinherited
Returns
The maximum order of time derivatives for which the UnsteadySolver subclass is capable of handling.

For example, EulerSolver will have time_order() = 1 and NewmarkSolver will have time_order() = 2.

Implements libMesh::UnsteadySolver.

Definition at line 90 of file first_order_unsteady_solver.h.

91  { return 1; }

Member Data Documentation

◆ _counts

ReferenceCounter::Counts libMesh::ReferenceCounter::_counts
staticprotectedinherited

◆ _diff_solver

std::unique_ptr<DiffSolver> libMesh::TimeSolver::_diff_solver
protectedinherited

An implicit linear or nonlinear solver to use at each timestep.

Definition at line 247 of file time_solver.h.

Referenced by libMesh::NewmarkSolver::compute_initial_accel(), libMesh::TimeSolver::diff_solver(), and libMesh::UnsteadySolver::solve().

◆ _enable_print_counter

bool libMesh::ReferenceCounter::_enable_print_counter = true
staticprotectedinherited

Flag to control whether reference count information is printed when print_info is called.

Definition at line 141 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::disable_print_counter_info(), libMesh::ReferenceCounter::enable_print_counter_info(), and libMesh::ReferenceCounter::print_info().

◆ _is_adjoint

bool libMesh::TimeSolver::_is_adjoint
privateinherited

This boolean tells the TimeSolver whether we are solving a primal or adjoint problem.

Definition at line 280 of file time_solver.h.

Referenced by libMesh::TimeSolver::is_adjoint(), and libMesh::TimeSolver::set_is_adjoint().

◆ _linear_solver

std::unique_ptr<LinearSolver<Number> > libMesh::TimeSolver::_linear_solver
protectedinherited

An implicit linear solver to use for adjoint problems.

Definition at line 252 of file time_solver.h.

Referenced by libMesh::TimeSolver::linear_solver().

◆ _mutex

Threads::spin_mutex libMesh::ReferenceCounter::_mutex
staticprotectedinherited

Mutual exclusion object to enable thread-safe reference counting.

Definition at line 135 of file reference_counter.h.

◆ _n_objects

Threads::atomic< unsigned int > libMesh::ReferenceCounter::_n_objects
staticprotectedinherited

The number of objects.

Print the reference count information when the number returns to 0.

Definition at line 130 of file reference_counter.h.

Referenced by libMesh::ReferenceCounter::n_objects(), libMesh::ReferenceCounter::ReferenceCounter(), and libMesh::ReferenceCounter::~ReferenceCounter().

◆ _system

sys_type& libMesh::TimeSolver::_system
protectedinherited

A reference to the system we are solving.

Definition at line 257 of file time_solver.h.

Referenced by libMesh::EulerSolver::_general_residual(), libMesh::Euler2Solver::_general_residual(), libMesh::SteadySolver::_general_residual(), libMesh::NewmarkSolver::_general_residual(), libMesh::UnsteadySolver::adjoint_advance_timestep(), libMesh::NewmarkSolver::advance_timestep(), advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), libMesh::NewmarkSolver::compute_initial_accel(), libMesh::FirstOrderUnsteadySolver::compute_second_order_eqns(), libMesh::UnsteadySolver::du(), libMesh::EulerSolver::element_residual(), libMesh::Euler2Solver::element_residual(), libMesh::EigenTimeSolver::element_residual(), libMesh::SecondOrderUnsteadySolver::init(), libMesh::UnsteadySolver::init(), libMesh::TimeSolver::init(), libMesh::EigenTimeSolver::init(), libMesh::SecondOrderUnsteadySolver::init_data(), libMesh::UnsteadySolver::init_data(), libMesh::TimeSolver::init_data(), libMesh::EulerSolver::nonlocal_residual(), libMesh::Euler2Solver::nonlocal_residual(), libMesh::EigenTimeSolver::nonlocal_residual(), libMesh::UnsteadySolver::old_nonlinear_solution(), libMesh::SecondOrderUnsteadySolver::old_solution_accel(), libMesh::SecondOrderUnsteadySolver::old_solution_rate(), libMesh::NewmarkSolver::project_initial_accel(), libMesh::SecondOrderUnsteadySolver::project_initial_rate(), libMesh::SecondOrderUnsteadySolver::reinit(), libMesh::UnsteadySolver::reinit(), libMesh::TimeSolver::reinit(), libMesh::UnsteadySolver::retrieve_timestep(), libMesh::EigenTimeSolver::side_residual(), libMesh::TwostepTimeSolver::solve(), libMesh::UnsteadySolver::solve(), libMesh::EigenTimeSolver::solve(), and libMesh::TimeSolver::system().

◆ component_norm

SystemNorm libMesh::AdaptiveTimeSolver::component_norm

Error calculations are done in this norm, DISCRETE_L2 by default.

Definition at line 119 of file adaptive_time_solver.h.

Referenced by calculate_norm().

◆ component_scale

std::vector<float> libMesh::AdaptiveTimeSolver::component_scale

If component_norms is non-empty, each variable's contribution to the error of a system will also be scaled by component_scale[var], unless component_scale is empty in which case all variables will be weighted equally.

Definition at line 127 of file adaptive_time_solver.h.

◆ core_time_solver

std::unique_ptr<UnsteadySolver> libMesh::AdaptiveTimeSolver::core_time_solver

◆ first_adjoint_step

bool libMesh::UnsteadySolver::first_adjoint_step
protectedinherited

A bool that will be true the first time adjoint_advance_timestep() is called, (when the primal solution is to be used to set adjoint boundary conditions) and false thereafter.

Definition at line 167 of file unsteady_solver.h.

Referenced by libMesh::UnsteadySolver::adjoint_advance_timestep().

◆ first_solve

bool libMesh::UnsteadySolver::first_solve
protectedinherited

A bool that will be true the first time solve() is called, and false thereafter.

Definition at line 161 of file unsteady_solver.h.

Referenced by libMesh::NewmarkSolver::advance_timestep(), advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), libMesh::TwostepTimeSolver::solve(), and libMesh::UnsteadySolver::solve().

◆ global_tolerance

bool libMesh::AdaptiveTimeSolver::global_tolerance

This flag, which is true by default, grows (shrinks) the timestep based on the expected global accuracy of the timestepping scheme.

Global in this sense means the cumulative final-time accuracy of the scheme. For example, the backward Euler scheme's truncation error is locally of order 2, so that after N timesteps of size deltat, the result is first-order accurate. If you set this to false, you can grow (shrink) your timestep based on the local accuracy rather than the global accuracy of the core TimeSolver.

Note
By setting this value to false you may fail to achieve the predicted convergence in time of the underlying method, however it may be possible to get more fine-grained control over step sizes as well.

Definition at line 198 of file adaptive_time_solver.h.

Referenced by libMesh::TwostepTimeSolver::solve().

◆ last_deltat

Real libMesh::AdaptiveTimeSolver::last_deltat
protected

We need to store the value of the last deltat used, so that advance_timestep() will increment the system time correctly.

Definition at line 207 of file adaptive_time_solver.h.

Referenced by advance_timestep(), and libMesh::TwostepTimeSolver::solve().

◆ max_deltat

Real libMesh::AdaptiveTimeSolver::max_deltat

Do not allow the adaptive time solver to select deltat > max_deltat.

If you use the default max_deltat=0.0, then deltat is unlimited.

Definition at line 167 of file adaptive_time_solver.h.

Referenced by libMesh::TwostepTimeSolver::solve().

◆ max_growth

Real libMesh::AdaptiveTimeSolver::max_growth

Do not allow the adaptive time solver to select a new deltat greater than max_growth times the old deltat.

If you use the default max_growth=0.0, then the deltat growth is unlimited.

Definition at line 181 of file adaptive_time_solver.h.

Referenced by libMesh::TwostepTimeSolver::solve().

◆ min_deltat

Real libMesh::AdaptiveTimeSolver::min_deltat

Do not allow the adaptive time solver to select deltat < min_deltat.

The default value is 0.0.

Definition at line 173 of file adaptive_time_solver.h.

Referenced by libMesh::TwostepTimeSolver::solve().

◆ old_local_nonlinear_solution

std::unique_ptr<NumericVector<Number> > libMesh::UnsteadySolver::old_local_nonlinear_solution
inherited

◆ quiet

bool libMesh::TimeSolver::quiet
inherited

Print extra debugging information if quiet == false.

Definition at line 191 of file time_solver.h.

Referenced by libMesh::TwostepTimeSolver::solve(), libMesh::UnsteadySolver::solve(), and libMesh::EigenTimeSolver::solve().

◆ reduce_deltat_on_diffsolver_failure

unsigned int libMesh::TimeSolver::reduce_deltat_on_diffsolver_failure
inherited

This value (which defaults to zero) is the number of times the TimeSolver is allowed to halve deltat and let the DiffSolver repeat the latest failed solve with a reduced timestep.

Note
This has no effect for SteadySolvers.
You must set at least one of the DiffSolver flags "continue_after_max_iterations" or "continue_after_backtrack_failure" to allow the TimeSolver to retry the solve.

Definition at line 220 of file time_solver.h.

Referenced by libMesh::TwostepTimeSolver::solve(), and libMesh::UnsteadySolver::solve().

◆ solution_history

std::unique_ptr<SolutionHistory> libMesh::TimeSolver::solution_history
protectedinherited

A std::unique_ptr to a SolutionHistory object.

Default is NoSolutionHistory, which the user can override by declaring a different kind of SolutionHistory in the application

Definition at line 264 of file time_solver.h.

Referenced by libMesh::UnsteadySolver::adjoint_advance_timestep(), libMesh::UnsteadySolver::advance_timestep(), libMesh::UnsteadySolver::retrieve_timestep(), and libMesh::TimeSolver::set_solution_history().

◆ target_tolerance

Real libMesh::AdaptiveTimeSolver::target_tolerance

This tolerance is the target relative error between an exact time integration and a single time step output, scaled by deltat.

integrator, scaled by deltat. If the estimated error exceeds or undershoots the target error tolerance, future timesteps will be run with deltat shrunk or grown to compensate.

The default value is 1.0e-2; obviously users should select their own tolerance.

If a negative target_tolerance is specified, then its absolute value is used to scale the estimated error from the first simulation time step, and this becomes the target tolerance of all future time steps.

Definition at line 144 of file adaptive_time_solver.h.

Referenced by libMesh::TwostepTimeSolver::solve().

◆ upper_tolerance

Real libMesh::AdaptiveTimeSolver::upper_tolerance

This tolerance is the maximum relative error between an exact time integration and a single time step output, scaled by deltat.

If this error tolerance is exceeded by the estimated error of the current time step, that time step will be repeated with a smaller deltat.

If you use the default upper_tolerance=0.0, then the current time step will not be repeated regardless of estimated error.

If a negative upper_tolerance is specified, then its absolute value is used to scale the estimated error from the first simulation time step, and this becomes the upper tolerance of all future time steps.

Definition at line 161 of file adaptive_time_solver.h.

Referenced by libMesh::TwostepTimeSolver::solve().


The documentation for this class was generated from the following files:
libMesh::DifferentiableSystem::deltat
Real deltat
For time-dependent problems, this is the amount delta t to advance the solution in time.
Definition: diff_system.h:260
libMesh::Number
Real Number
Definition: libmesh_common.h:195
compute_jacobian
void compute_jacobian(const NumericVector< Number > &, SparseMatrix< Number > &J, NonlinearImplicitSystem &system)
Definition: assembly.C:311
libMesh::DofMap::n_dofs
dof_id_type n_dofs() const
Definition: dof_map.h:625
libMesh::SERIAL
Definition: enum_parallel_type.h:35
libMesh::FirstOrderUnsteadySolver::FirstOrderUnsteadySolver
FirstOrderUnsteadySolver(sys_type &s)
Constructor.
Definition: first_order_unsteady_solver.h:82
libMesh::ReferenceCounter::_counts
static Counts _counts
Actually holds the data.
Definition: reference_counter.h:122
libMesh::GHOSTED
Definition: enum_parallel_type.h:37
libMesh::AdaptiveTimeSolver::upper_tolerance
Real upper_tolerance
This tolerance is the maximum relative error between an exact time integration and a single time step...
Definition: adaptive_time_solver.h:161
libMesh::ReferenceCounter::_n_objects
static Threads::atomic< unsigned int > _n_objects
The number of objects.
Definition: reference_counter.h:130
libMesh::ReferenceCounter::get_info
static std::string get_info()
Gets a string containing the reference information.
Definition: reference_counter.C:47
libMesh::TimeSolver::_is_adjoint
bool _is_adjoint
This boolean tells the TimeSolver whether we are solving a primal or adjoint problem.
Definition: time_solver.h:280
libMesh::libmesh_assert
libmesh_assert(ctx)
libMesh::DifferentiablePhysics::is_second_order_var
bool is_second_order_var(unsigned int var) const
Definition: diff_physics.h:534
libMesh::NumericVector::localize
virtual void localize(std::vector< T > &v_local) const =0
Creates a copy of the global vector in the local vector v_local.
libMesh::System::n_local_dofs
dof_id_type n_local_dofs() const
Definition: system.C:187
libMesh::AdaptiveTimeSolver::core_time_solver
std::unique_ptr< UnsteadySolver > core_time_solver
This object is used to take timesteps.
Definition: adaptive_time_solver.h:114
libMesh::FEBase
FEGenericBase< Real > FEBase
Definition: exact_error_estimator.h:39
libMesh::AdaptiveTimeSolver::component_norm
SystemNorm component_norm
Error calculations are done in this norm, DISCRETE_L2 by default.
Definition: adaptive_time_solver.h:119
libMesh::AdaptiveTimeSolver::last_deltat
Real last_deltat
We need to store the value of the last deltat used, so that advance_timestep() will increment the sys...
Definition: adaptive_time_solver.h:207
libMesh::Threads::spin_mtx
spin_mutex spin_mtx
A convenient spin mutex object which can be used for obtaining locks.
Definition: threads.C:29
libMesh::AdaptiveTimeSolver::global_tolerance
bool global_tolerance
This flag, which is true by default, grows (shrinks) the timestep based on the expected global accura...
Definition: adaptive_time_solver.h:198
libMesh::AdaptiveTimeSolver::max_growth
Real max_growth
Do not allow the adaptive time solver to select a new deltat greater than max_growth times the old de...
Definition: adaptive_time_solver.h:181
libMesh::TimeSolver::_system
sys_type & _system
A reference to the system we are solving.
Definition: time_solver.h:257
libMesh::DofMap::get_send_list
const std::vector< dof_id_type > & get_send_list() const
Definition: dof_map.h:496
libMesh::System::time
Real time
For time-dependent problems, this is the time t at the beginning of the current timestep.
Definition: system.h:1561
libMesh::TimeSolver::init_data
virtual void init_data()
The data initialization function.
Definition: time_solver.C:76
libMesh::UnsteadySolver::first_solve
bool first_solve
A bool that will be true the first time solve() is called, and false thereafter.
Definition: unsteady_solver.h:161
libMesh::System::solution
std::unique_ptr< NumericVector< Number > > solution
Data structure to hold solution values.
Definition: system.h:1539
libMesh::AdaptiveTimeSolver::max_deltat
Real max_deltat
Do not allow the adaptive time solver to select deltat > max_deltat.
Definition: adaptive_time_solver.h:167
libMesh::UnsteadySolver::old_local_nonlinear_solution
std::unique_ptr< NumericVector< Number > > old_local_nonlinear_solution
Serial vector of _system.get_vector("_old_nonlinear_solution")
Definition: unsteady_solver.h:137
std::norm
MetaPhysicL::DualNumber< T, D > norm(const MetaPhysicL::DualNumber< T, D > &in)
libMesh::System::calculate_norm
Real calculate_norm(const NumericVector< Number > &v, unsigned int var, FEMNormType norm_type, std::set< unsigned int > *skip_dimensions=nullptr) const
Definition: system.C:1356
libMesh::DifferentiableSystem::get_second_order_dot_var
unsigned int get_second_order_dot_var(unsigned int var) const
For a given second order (in time) variable var, this method will return the index to the correspondi...
Definition: diff_system.C:310
libMesh::UnsteadySolver::first_adjoint_step
bool first_adjoint_step
A bool that will be true the first time adjoint_advance_timestep() is called, (when the primal soluti...
Definition: unsteady_solver.h:167
libMesh::System::get_dof_map
const DofMap & get_dof_map() const
Definition: system.h:2099
libMesh::System::n_dofs
dof_id_type n_dofs() const
Definition: system.C:150
libMesh::AdaptiveTimeSolver::min_deltat
Real min_deltat
Do not allow the adaptive time solver to select deltat < min_deltat.
Definition: adaptive_time_solver.h:173
libMesh::ReferenceCounter::_enable_print_counter
static bool _enable_print_counter
Flag to control whether reference count information is printed when print_info is called.
Definition: reference_counter.h:141
libMesh::TimeSolver::solution_history
std::unique_ptr< SolutionHistory > solution_history
A std::unique_ptr to a SolutionHistory object.
Definition: time_solver.h:264
libMesh::System::get_vector
const NumericVector< Number > & get_vector(const std::string &vec_name) const
Definition: system.C:774
libMesh::AdaptiveTimeSolver::target_tolerance
Real target_tolerance
This tolerance is the target relative error between an exact time integration and a single time step ...
Definition: adaptive_time_solver.h:144
libMesh::Quality::name
std::string name(const ElemQuality q)
This function returns a string containing some name for q.
Definition: elem_quality.C:42