Cold CO injection into an elastic reservoir - a multi-phase THM problem
Andy Wilkins, Chris Green, Jonathan Ennis-King
Two papers of LaForce et al. (LaForce et al., 2014a; LaForce et al., 2014b) derive semi-analytical solutions of a 2-phase THM problem involving injection of a cold fluid into a warmer, elastic reservoir depicted in Figure 1. In this page, their solution will be replicated in MOOSE. The nomenclature used here is described in a separate page.

Figure 1: The geometrical setup used in the papers of LaForce et al.
LaForce et al. consider a cylindrically-symmetric model, as depicted in Figure 1, with radial coordinate labelled by and axial coordinate . A permeable reservoir is sandwiched between two impermeable seals. The reservoir and seals are oriented horizontally (normal to ). The reservoir is initially fully water saturated.
A vertical wellbore intersects the reservoir and injects CO into it at a constant rate. The CO is colder than the initial reservoir temperature. The injected fluid advects through the reservoir (but not through the impermeable seals). Heat (or cold) advects with the fluid, slowly cooling the reservoir, and conducting into the surrounding seals.
The PorousFlow input file and associated scripts that generate the analytic solutions are here. The input file describes an axially symmetric situation:
[Mesh<<<{"href": "../../syntax/Mesh/index.html"}>>>]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
(modules/porous_flow/examples/thm_example/2D.i)[Problem<<<{"href": "../../syntax/Problem/index.html"}>>>]
coord_type = RZ
[]
(modules/porous_flow/examples/thm_example/2D.i)Equations and assumptions
To derive the semi-analytical solutions, LaForce et al. employ the assumptions stated below.
Fluid flow: mass
In PorousFlow, the mass of species per volume of rock is written as a sum over all phases present in the system: (1) LaForce et al. make the following assumptions
The porosity, , is constant. It is independent of time, fluid pressure, temperature and volumetric expansion. However, it is dependent on rock type.
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
(modules/porous_flow/examples/thm_example/2D.i)There are two phases, liquid and gas. Hence .
The liquid is water and the gas is CO. Hence . The water component exists only in the liquid phase and the CO component exists only in the gas phase. Hence , , and .
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
(modules/porous_flow/examples/thm_example/2D.i)The density of each phase is constant. This is in order to simplify the fluid equations, which eventually reduce to a well-studied form that models advection of a saturation shock front. However, in order to derive solutions for the pressure distribution, LaForce et al. assume a small fluid compressibility, which is the same for each phase. To satisfy both the incompressibility and small compressibility requirements, the MOOSE model uses a fluid bulk modulus that is larger than any porepressures.
There is no desorbed fluid.
With these assumptions, the mass formula becomes
The PorousFlow input file uses the porepressure of water and the gas saturation as its primary nonlinear variables describing fluid flow:
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
(modules/porous_flow/examples/thm_example/2D.i)Fluid flow: flux
In PorousFlow, the flux is a sum of advective flux and diffusive-and-dispersive flux: (2) Advective flux is governed by Darcy's law: (3) Diffusion and dispersion are proportional to the gradient of : (4)
LaForce et al. make the following assumptions
The permeability tensor is diagonal and constant (independent of fluid pressure, temperature and rock stress and strain). Its and components are equal, and its component is zero. It is dependent on rock type. Since the PorousFlow input file is setup in 2D RZ coordinates, the radial permeability enters the first "slot", the component appears in the central slot, and all other components are zero in this situation
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
(modules/porous_flow/examples/thm_example/2D.i)There is a constant and nonzero residual water saturation and constant and nonzero residual CO saturation .
The relative permeability functions are functions of the effective saturation and the functions are (17)
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
(modules/porous_flow/examples/thm_example/2D.i)The viscosity is a function of temperature only. LaForce et al. use a particular function of temperature that is not included in PorousFlow. Therefore, here we shall use constant viscosity for each phase that is equal to the average viscosity quoted in LaForce et al., and use LaForce et al.'s solution based on that constant viscosity. This results in only very tiny modifications to LaForce's solutions which would be difficult to see in the finite-resolution of the MOOSE model anyway.
There is no capillarity. Therefore . Define .
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
(modules/porous_flow/examples/thm_example/2D.i)There is no gravity.
There is no diffusion and dispersion (which is implicitly implied by the assumptions on ).
With these assumptions, the fluid fluxes are
Fluid flow: mass conservation
In PorousFlow, mass conservation for fluid species is described by the continuity equation (5)
LaForce et al. make the following assumptions:
The term is ignored.
There is no radioactive decay, .
Sources and sinks only occur on the boundary, so except for on the boundary.
Therefore, the fluid-flow Kernels
are
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
(modules/porous_flow/examples/thm_example/2D.i)Fluid flow: summary
With all the assumptions so far, the mass conservation equations read The sum of these yields the total flow rate: This total flow rate is dependent on time (controlled by the boundary conditions) but satisfies .
For later use, define the fractional flows (6)
Heat flow: heat energy
In PorousFlow, the heat energy per unit volume is (7)
LaForce et al. make the following assumptions
The rock grain density, , is constant.
The specific heat capacity of the rock grains, , is constant.
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
(modules/porous_flow/examples/thm_example/2D.i)The internal energy of the liquid phase is , where is constant and independent of all other parameters in the system.
The internal energy of the gas phase is , where is constant and independent of all other parameters of the system.
With these assumptions the heat energy density is
Heat flow: flux
In PorousFlow, the heat flux is a sum of heat conduction and convection with the fluid: (8)
LaForce et al. make the following assumptions
The only non-zero component of the thermal conductivity is the component. It varies with water saturation The coefficients and are independent of time, fluid pressure, temperature and mechanical deformation, but they are dependent on rock type.
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
(modules/porous_flow/examples/thm_example/2D.i)The enthalpy of the liquid phase is .
The enthalpy of the gas phase is .
With the assumptions made so far where the fractional flows of Eq. (6) have been employed.
Heat flow: energy conservation
In PorousFlow, energy conservation for heat is described by the continuity equation (9)
LaForce et al. make the following assumptions
There is no plastic heating.
There are no heat sources, save for on the boundary.
Heat flow: summary
With the assumptions made so far, the heat equation reads (10) where the following two variables, and have been defined: (11) Eq. (10) and Eq. (11) are exactly Eq. (A1) in LaForce et al. (2014a).
During the course of their analysis, LaForce et al. replace the diffusive term, with a Lauwerier heat-loss expression: (12) In terms of LaForce et al.'s variables, the new heat-loss coefficient is (13) This is a particularly nice simplification because it means that the overburden and underburden don't need to be considered any further in the analysis. It does mean, however, that the mechanical effects of these surrounding rocks on the aquifer are not modelled by LaForce et al.
Therefore, the heat-flow Kernels
are
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
(modules/porous_flow/examples/thm_example/2D.i)along with the rate of heat loss:
[Functions<<<{"href": "../../syntax/Functions/index.html"}>>>]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction<<<{"description": "Function created by parsing a string", "href": "../../source/functions/MooseParsedFunction.html"}>>>
expression<<<{"description": "The user defined function."}>>> = 'sqrt(10056886.914/t)/11.0'
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)Solid mechanics
Denote the effective stress tensor by . In PorousFlow it is defined by (14)
LaForce et al. assume
The Biot coefficient, , is constant and independent of all other parameters in the theory.
The effective fluid pressure is
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
(modules/porous_flow/examples/thm_example/2D.i)In PorousFlow, the solid-mechanical constitutive law reads (15)
LaForce et al. assume
The drained elasticity tensor, , is isotropic, constant and independent of all other parameters in the theory.
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
(modules/porous_flow/examples/thm_example/2D.i)There is no plasticity.
The drained thermal expansion coefficient, , is constant and independent of all other parameters in the theory.
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
(modules/porous_flow/examples/thm_example/2D.i)In PorousFlow, conservation of momentum reads (16)
LaForce et al. assume
The acceleration of the solid skeleton, , is zero.
There are no body forces, , except for on the boundary.
Further assumptions and implications
LaForce et al. make the following assumptions:
There is no displacement in the direction, . The solid-mechanics
Kernels
are therefore
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
(modules/porous_flow/examples/thm_example/2D.i)The reservoir is free to contract and expand radially without being hindered by the impermeable seals.
There is no dependence on the axial coordinates, , because of the use of the Lauwerier heat-loss model (Eq. (12)) that simulates axial heat conduction. Therefore, all independent variables — the water saturation , fluid porepressure , temperature , and radial displacement — are dependent on radius only.
The Variables
used in the PorousFlow input file are:
[Variables<<<{"href": "../../syntax/Variables/index.html"}>>>]
[pwater]
initial_condition<<<{"description": "Specifies a constant initial condition for this variable"}>>> = 18.3e6
[]
[sgas]
initial_condition<<<{"description": "Specifies a constant initial condition for this variable"}>>> = 0.0
[]
[temp]
initial_condition<<<{"description": "Specifies a constant initial condition for this variable"}>>> = 358
[]
[disp_r]
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)Parameter values and initial conditions
Table 1: Parameters and their numerical values used in the benchmark against LaForce et al.
Symbol | Value | Physical description |
---|---|---|
1.0 | Biot coefficient for reservoir and seals | |
K | Drained linear thermal expansion coefficient of the reservoir and seals | |
1100J.kg.K | Specific heat capacity of reservoir rock grains | |
828.9J.kg.K | Specific heat capacity of seal rock grains | |
2920.5J.kg.K | Specific heat capacity of water | |
4149J.kg.K | Specific heat capacity of water | |
0.2 | Porosity of reservoir | |
0.02 | Porosity of seals | |
6GPa | Shear modulus of the reservoir and seals | |
11m | Vertical height of the reservoir | |
Tonne.year | Injection rate of CO. | |
8GPa | Drained bulk modulus of the reservoir and seals | |
GPa | Bulk density of water | |
GPa | Bulk density of CO | |
m | horizontal permeability components of the reservoir (there is zero vertical permeability) | |
0 | permeability of seal | |
1.32J.s.m.K | Vertical thermal conductivity of reservoir at zero water saturation | |
3.083J.s.m.K | Vertical thermal conductivity of reservoir at full water saturation | |
1.6J.s.m.K | Vertical thermal conductivity of seal at zero water saturation | |
4.31J.s.m.K | Vertical thermal conductivity of seal at full water saturation | |
Pa.s | Viscosity of water | |
Pa.s | Viscosity of CO | |
0.2 | Drained Poisson's ratio of the reservoir and seals | |
18.3MPa | Initial porepressure | |
0.1m | Borehole radius | |
5km | Radial size of the model | |
2350kg.m | Density of reservoir rock grains | |
2773.4kg.m | Density of seal rock grains | |
970kg.m | Density of water | |
516.48kg.m | Density of CO | |
1.0 | Initial water saturation | |
0.205 | Residual saturation of CO | |
0.2 | Residual saturation of water | |
-12.8MPa | Initial horizontal effective stress in reservoir and seals | |
-51.3MPa | Initial vertical effective stress in reservoir and seals | |
358K | Initial reservoir and seal temperature | |
294K | Injection temperature of CO | |
358K | Reference temperature for thermal strains and Lauwerier term | |
5years | End-time for the simulation |
These parameter values may be found through the PorousFlow input file. For instance:
[GlobalParams<<<{"href": "../../syntax/GlobalParams/index.html"}>>>]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
(modules/porous_flow/examples/thm_example/2D.i)and the fluid properties are
[FluidProperties<<<{"href": "../../syntax/FluidProperties/index.html"}>>>]
[water]
type = SimpleFluidProperties<<<{"description": "Fluid properties for a simple fluid with a constant bulk density", "href": "../../source/fluidproperties/SimpleFluidProperties.html"}>>>
bulk_modulus<<<{"description": "Constant bulk modulus (Pa)"}>>> = 2.27e14
density0<<<{"description": "Density at zero pressure and zero temperature"}>>> = 970.0
viscosity<<<{"description": "Constant dynamic viscosity (Pa.s)"}>>> = 0.3394e-3
cv<<<{"description": "Constant specific heat capacity at constant volume (J/kg/K)"}>>> = 4149.0
cp<<<{"description": "Constant specific heat capacity at constant pressure (J/kg/K)"}>>> = 4149.0
porepressure_coefficient<<<{"description": "The enthalpy is internal_energy + P / density * porepressure_coefficient. Physically this should be 1.0, but analytic solutions are simplified when it is zero"}>>> = 0.0
thermal_expansion<<<{"description": "Constant coefficient of thermal expansion (1/K)"}>>> = 0
[]
[co2]
type = SimpleFluidProperties<<<{"description": "Fluid properties for a simple fluid with a constant bulk density", "href": "../../source/fluidproperties/SimpleFluidProperties.html"}>>>
bulk_modulus<<<{"description": "Constant bulk modulus (Pa)"}>>> = 2.27e14
density0<<<{"description": "Density at zero pressure and zero temperature"}>>> = 516.48
viscosity<<<{"description": "Constant dynamic viscosity (Pa.s)"}>>> = 0.0393e-3
cv<<<{"description": "Constant specific heat capacity at constant volume (J/kg/K)"}>>> = 2920.5
cp<<<{"description": "Constant specific heat capacity at constant pressure (J/kg/K)"}>>> = 2920.5
porepressure_coefficient<<<{"description": "The enthalpy is internal_energy + P / density * porepressure_coefficient. Physically this should be 1.0, but analytic solutions are simplified when it is zero"}>>> = 0.0
thermal_expansion<<<{"description": "Constant coefficient of thermal expansion (1/K)"}>>> = 0
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)Note the initial stress is effective stress and the horizontal initial stress occupies the first slot, while the vertical stress occupies the central slot
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
(modules/porous_flow/examples/thm_example/2D.i)The seals do not actually have to be considered in the model, because of LaForce et al.'s assumptions.
Boundary conditions
LaForce et al. assume the following boundary conditions.
The porepressure at the outer boundary is
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
(modules/porous_flow/examples/thm_example/2D.i)The temperature at the outer boundary is
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
(modules/porous_flow/examples/thm_example/2D.i)All displacements at the outer boundary are zero
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
(modules/porous_flow/examples/thm_example/2D.i)The injection is at a constant rate of T.year at a constant temperature of 294K. In the PorousFlow input file, the fluid injection is implemented as a PorousFlowSink, which slowly ramps up to its full value during the initial 100s in order to help convergence, and a preset
DirichletBC
:
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
(modules/porous_flow/examples/thm_example/2D.i)The total radial compressive stress at the well is equal to the porepressure in the well. This is dictated by the dynamics of the problem: since the injection rate is constant, the porepressure will increase with time.
This is implemented in a slightly convoluted way in the MOOSE input file. First, a Postprocessor
records the value of porepressure at the beginning of each time step:
[Postprocessors<<<{"href": "../../syntax/Postprocessors/index.html"}>>>]
[p_bh]
type = PointValue<<<{"description": "Compute the value of a variable at a specified location", "href": "../../source/postprocessors/PointValue.html"}>>>
variable<<<{"description": "The name of the variable that this postprocessor operates on."}>>> = pwater
point<<<{"description": "The physical point where the solution will be evaluated."}>>> = '0.1 0 0'
execute_on<<<{"description": "The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html."}>>> = timestep_begin
use_displaced_mesh<<<{"description": "Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used."}>>> = false
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)Then a PressureBC applies this total stress (physically, a mechanical pushing force) at the borehole wall:
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
(modules/porous_flow/examples/thm_example/2D.i)The component
is zero because this is an axially-symmetric (2D RZ) problem. The value of the total pressure should be equal to the variable pwater
, but because the p_bh
is recorded at the start of each time step, this boundary condition actually lags by one time step. Because porepressure pwater
does not change significantly over each time step, this leads to minimal error.
Results

Figure 2: Comparison between the PorousFlow result and the analytic expression derived by LaForce et al. for the porepressure (Eq. (12) in LaForce et al. (2014b))

Figure 3: Comparison between the PorousFlow result and the analytic expression derived by LaForce et al. for the temperature (Eq. (20) in LaForce et al. (2014a))

Figure 4: Comparison between the PorousFlow result and the analytic expression derived by LaForce et al. for the radial displacement (Eq. (33) in LaForce et al. (2014b))

Figure 5: Comparison between the PorousFlow result and the analytic expression derived by LaForce et al. for the gas saturation (from Eq. (16) in LaForce et al. (2014a))

Figure 6: Comparison between the PorousFlow result and the analytic expression derived by LaForce et al. for the effective radial stress (Eq. (A3) in LaForce et al. (2014b)). The small discrepancy at the borehole wall is due to the finite resolution of the MOOSE model, where stresses are evaluated at finite-element centroids instead of at nodes.

Figure 7: Comparison between the PorousFlow result and the analytic expression derived by LaForce et al. for the effective hoop stress (Eq. (A3) in LaForce et al. (2014b)). The small discrepancy at the borehole wall is due to the finite resolution of the MOOSE model, where stresses are evaluated at finite-element centroids instead of at nodes.
Acknowledgement
The authors wish to acknowledge financial assistance provided through Australian National Low Emissions Coal Research and Development ANLEC R&D. ANLEC R&D is supported by Australian Coal Association Low Emissions Technology Limited and the Australian Government through the Clean Energy Initiative.
A chemically-reactive, elastic reservoir
Another page describes how the model of this page may be extended to include geochemical reactions in the reservoir.
References
- T. LaForce, J. Ennis-King, and L. Paterson.
Semi-analytical solutions for nonisothermal fluid injection including heat loss from the reservoir: Part 1. Saturation and temperature.
Advances in Water Resources, 73:227–234, 2014a.[BibTeX]
@article{laforce2014a, author = "LaForce, T. and Ennis-King, J. and Paterson, L.", title = "{Semi-analytical solutions for nonisothermal fluid injection including heat loss from the reservoir: Part 1. Saturation and temperature}", journal = "Advances in Water Resources", volume = "73", pages = "227--234", year = "2014a" }
- T. LaForce, A. Mijic, J. Ennis-King, and L. Paterson.
Semi-analytical solutions for nonisothermal fluid injection including heat loss from the reservoir: Part 2. Pressure and stress.
Advances in Water Resources, 73:242–253, 2014b.[BibTeX]
@article{laforce2014b, author = "LaForce, T. and Mijic, A. and Ennis-King, J. and Paterson, L.", title = "{Semi-analytical solutions for nonisothermal fluid injection including heat loss from the reservoir: Part 2. Pressure and stress}", journal = "Advances in Water Resources", volume = "73", pages = "242--253", year = "2014b" }
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
expression = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]