Aquifer thermal energy storage
The material in this page is based on Sheldon et al. (2021).
Introduction
Aquifer Thermal Energy Storage (ATES) systems use resident groundwater in a subsurface aquifer to store heat energy (Fleuchaus et al., 2018). The basic premise of ATES is:
Water is produced from an aquifer;
The thermal energy from some external source (e.g. excess renewable energy or industrial waste heat) is transferred to the water;
The hot water is re-injected into the aquifer, where it is stored until it is needed;
When needed, the hot water is produced, and the energy extracted.
This process can be reversed to enable cooling. The duration of an ATES cycle can range from hours to months, depending on the intended use of the energy; for example, storing excess solar energy during the day and extracting it for use at night (daily cycle); or, the very common case of storing excess heat energy in the warmer months and extracting it for use in the colder months (annual cycle). As such, ATES systems can be used to address energy storage challenges that arise from the intermittent nature of renewable energy and other sources.
There are many ATES systems in operation currently. Their viability depends crucially on the recovery efficiency, R, which is the ratio of heat energy extracted to heat energy injected, because it is impossible to extract all of the injected heat from an ATES system due to heat losses caused by conduction and convection. R is
R=hi−hambhp−hamb≈Ti−TambTp−Tamb ,
where h denotes enthalpy and T temperature. The subscript "p" indicates "produced" (retrieved from the aquifer), "amb" indicates "ambient", and "i" indicates "injected". For instance, if the ambient aquifer temperature is Tamb=20∘C, the injection temperature is Ti=150∘C and R=0.9, then the average produced temperature is Tp≈137∘C.
R has been measured at ATES sites, and estimated using numerical modelling. Numerical models can provide accurate estimates of R as a function of operational parameters, such as the injection temperature and rate, and aquifer parameters such as the permeability, thickness and depth. Such estimates are useful for rapid screening of potential ATES sites, indicating which sites might or might not be viable.
The purpose of this page is to describe a MOOSE model of an ATES system, with the goal of predicting R, and present a few results. For significantly more background discussion, discussion of the modelling approach and results, the reader is referred to Sheldon et al. (2021).
Model setup
The model simulates an ATES system comprising a single injection-production well penetrating a horizontal aquifer 20 m thick. Five injection-production cycles are simulated, with each cycle comprising 91 days each of injection, storage, production and rest. The injection temperature is 90∘C, and the injected fluid mass is 108kg.
The single-well system has radial symmetry, hence it may be simulated using "RZ" coordinates:
[Mesh]
coord_type = RZ
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = false
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomains = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
which means gravity acts along what is usually thought of as the "y" direction:
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
The geometry is shown in Figure 1.

Figure 1: Geometry on a radial slice of the ATES model.
In this example, the mesh is created by using a combination of MOOSE MeshGenerators, however, for accurate prediction of R, readers are encouraged to use a more sophisticated approach involving greater refinement of the mesh close to the well screen, such as the one outlined in Sheldon et al. (2021).
[Mesh]
coord_type = RZ
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = false
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomains = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
The core physics is handled by the PorousFlowFullySaturated Action, and Kuzmin-Turek stabilization is used to minimise numerical diffusion of the temperature front which impacts computation of R:
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
The porepressure and temperature are fixed at the extremities of the model:
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
The injection and production of heat from the borehole are the most complicated aspect of this input file. The boundary conditions corresponding to injection are fixed temperature and constant rate of fluid flux:
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
These boundary conditions are not always active. They are controlled using
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
with the conditional_function
being:
[inject]
type = ParsedFunction
expression = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
The boundary conditions corresponding to production are a withdrawal of fluid mass using a PorousFlowSink along with its corresponding withdrawal of heat energy (with the use_enthalpy
flag set to true):
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
These are controlled using similar Controls
as the injection phase. Notice the save_in
for the heat withdrawal. This records the rate of heat leaving each node. To find the total rate of heat loss (with units J.day−1), a NodalSum is used:
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
This may be multiplied by the time-step size to find the total heat withdrawn (with units J) in each time-step
[heat_out_in_timestep]
type = ParsedFunction
symbol_names = 'dt heat_out'
symbol_values = 'dt heat_out_fromBC'
expression = 'dt*heat_out'
[]
which in turn can be used to calculate R for each cycle.
Results
Figure 2 shows the evolution of temperature for the first cycle in this example. Notice the buoyancy-driven convection, which causes hot water to rise to the top of the aquifer: this is the prime reason why not all the heat energy can be extracted. In subsequent cycles, the aquifer temperature starts slightly hotter than ambient, so recovery efficiency gradually increases with cycle, as shown in Table 1.
Figure 2: Evolution of the temperature during injection of 90∘C water into an aquifer of thickness 20m (indicated by the white horizontal lines) for a annual cycle length
Table 1: Recovery efficiency
Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5 |
---|---|---|---|---|
0.65 | 0.70 | 0.72 | 0.76 | 0.78 |
References
- P. Fleuchaus, B. Godschalk, I. Stober, and P. Blum.
Worldwide application of aquifer thermal energy storage – A review.
Renewable and Sustainable Energy Reviews, 94(June):861–876, 2018.
URL: https://doi.org/10.1016/j.rser.2018.06.057, doi:10.1016/j.rser.2018.06.057.[BibTeX]
@article{fleuchaus2018, author = "Fleuchaus, P. and Godschalk, B. and Stober, I. and Blum, P.", doi = "10.1016/j.rser.2018.06.057", issn = "18790690", journal = "Renewable and Sustainable Energy Reviews", keywords = "Geothermal energy,Heating and cooling,Renewable energy,Seasonal thermal energy storage,Underground thermal energy storage", number = "June", pages = "861--876", publisher = "Elsevier Ltd", title = "{Worldwide application of aquifer thermal energy storage – A review}", url = "https://doi.org/10.1016/j.rser.2018.06.057", volume = "94", year = "2018" }
- H. A. Sheldon, A. Wilkins, and C. P. Green.
Recovery efficiency in high-temperature aquifer thermal energy storage systems.
Geothermics, 1234:1234–1234, 2021.
doi:1234.[BibTeX]
@article{sheldon2021, author = "Sheldon, H. A. and Wilkins, A. and Green, C. P.", year = "2021", pages = "1234--1234", title = "Recovery efficiency in high-temperature aquifer thermal energy storage systems", volume = "1234", journal = "Geothermics", doi = "1234" }
(modules/porous_flow/examples/ates/ates.i)
# Simulation designed to assess the recovery efficiency of a single-well ATES system
# Using KT stabilisation
# Boundary conditions: fixed porepressure and temperature at top, bottom and far end of model.
#####################################
flux_limiter = minmod # minmod, vanleer, mc, superbee, none
# depth of top of aquifer (m)
depth = 400
inject_fluid_mass = 1E8 # kg
produce_fluid_mass = ${inject_fluid_mass} # kg
inject_temp = 90 # degC
inject_time = 91 # days
store_time = 91 # days
produce_time = 91 # days
rest_time = 91 # days
num_cycles = 5 # Currently needs to be <= 10
cycle_length = '${fparse inject_time + store_time + produce_time + rest_time}'
end_simulation = '${fparse cycle_length * num_cycles}'
# Note: I have setup 10 cycles but you can set num_cycles less than 10.
start_injection1 = 0
start_injection2 = ${cycle_length}
start_injection3 = '${fparse cycle_length * 2}'
start_injection4 = '${fparse cycle_length * 3}'
start_injection5 = '${fparse cycle_length * 4}'
start_injection6 = '${fparse cycle_length * 5}'
start_injection7 = '${fparse cycle_length * 6}'
start_injection8 = '${fparse cycle_length * 7}'
start_injection9 = '${fparse cycle_length * 8}'
start_injection10 = '${fparse cycle_length * 9}'
end_injection1 = '${fparse start_injection1 + inject_time}'
end_injection2 = '${fparse start_injection2 + inject_time}'
end_injection3 = '${fparse start_injection3 + inject_time}'
end_injection4 = '${fparse start_injection4 + inject_time}'
end_injection5 = '${fparse start_injection5 + inject_time}'
end_injection6 = '${fparse start_injection6 + inject_time}'
end_injection7 = '${fparse start_injection7 + inject_time}'
end_injection8 = '${fparse start_injection8 + inject_time}'
end_injection9 = '${fparse start_injection9 + inject_time}'
end_injection10 = '${fparse start_injection10 + inject_time}'
start_production1 = '${fparse end_injection1 + store_time}'
start_production2 = '${fparse end_injection2 + store_time}'
start_production3 = '${fparse end_injection3 + store_time}'
start_production4 = '${fparse end_injection4 + store_time}'
start_production5 = '${fparse end_injection5 + store_time}'
start_production6 = '${fparse end_injection6 + store_time}'
start_production7 = '${fparse end_injection7 + store_time}'
start_production8 = '${fparse end_injection8 + store_time}'
start_production9 = '${fparse end_injection9 + store_time}'
start_production10 = '${fparse end_injection10 + store_time}'
end_production1 = '${fparse start_production1 + produce_time}'
end_production2 = '${fparse start_production2 + produce_time}'
end_production3 = '${fparse start_production3 + produce_time}'
end_production4 = '${fparse start_production4 + produce_time}'
end_production5 = '${fparse start_production5 + produce_time}'
end_production6 = '${fparse start_production6 + produce_time}'
end_production7 = '${fparse start_production7 + produce_time}'
end_production8 = '${fparse start_production8 + produce_time}'
end_production9 = '${fparse start_production9 + produce_time}'
end_production10 = '${fparse start_production10 + produce_time}'
synctimes = '${start_injection1} ${end_injection1} ${start_production1} ${end_production1}
${start_injection2} ${end_injection2} ${start_production2} ${end_production2}
${start_injection3} ${end_injection3} ${start_production3} ${end_production3}
${start_injection4} ${end_injection4} ${start_production4} ${end_production4}
${start_injection5} ${end_injection5} ${start_production5} ${end_production5}
${start_injection6} ${end_injection6} ${start_production6} ${end_production6}
${start_injection7} ${end_injection7} ${start_production7} ${end_production7}
${start_injection8} ${end_injection8} ${start_production8} ${end_production8}
${start_injection9} ${end_injection9} ${start_production9} ${end_production9}
${start_injection10} ${end_injection10} ${start_production10} ${end_production10}'
#####################################
# Geometry in RZ coordinates
# borehole radius (m)
bh_r = 0.1
# model radius (m)
max_r = 1000
# aquifer thickness (m)
aq_thickness = 20
# cap thickness (m)
cap_thickness = 40
# injection region top and bottom (m). Note, the mesh is created with the aquifer in y = (-0.5 * aq_thickness, 0.5 * aq_thickness), irrespective of depth (depth only sets the insitu porepressure and temperature)
screen_top = '${fparse 0.5 * aq_thickness}'
screen_bottom = '${fparse -0.5 * aq_thickness}'
# number of elements in radial direction
num_r = 25
# number of elements across half height of aquifer
num_y_aq = 10
# number of elements across height of cap
num_y_cap = 8
# mesh bias in radial direction
bias_r = 1.22
# mesh bias in vertical direction in aquifer top
bias_y_aq_top = 0.9
# mesh bias in vertical direction in cap top
bias_y_cap_top = 1.3
# mesh bias in vertical direction in aquifer bottom
bias_y_aq_bottom = '${fparse 1.0 / bias_y_aq_top}'
# mesh bias in vertical direction in cap bottom
bias_y_cap_bottom = '${fparse 1.0 / bias_y_cap_top}'
depth_centre = '${fparse depth + aq_thickness/2}'
#####################################
# temperature at ground surface (degC)
temp0 = 20
# Vertical geothermal gradient (K/m). A positive number means temperature increases downwards.
geothermal_gradient = 20E-3
#####################################
# Gravity
gravity = -9.81
#####################################
half_aq_thickness = '${fparse aq_thickness * 0.5}'
half_height = '${fparse half_aq_thickness + cap_thickness}'
approx_screen_length = '${fparse screen_top - screen_bottom}'
# Thermal radius (note this is not strictly correct, it should use the bulk specific heat
# capacity as defined below, but it doesn't matter here because this is purely for
# defining the region of refined mesh)
th_r = '${fparse sqrt(inject_fluid_mass / 1000 * 4.12e6 / (approx_screen_length * 3.1416 * aq_specific_heat_cap * aq_density))}'
# radius of fine mesh
fine_r = '${fparse th_r * 2}'
bias_r_fine = 1
num_r_fine = '${fparse int(fine_r/1)}'
######################################
# aquifer properties
aq_porosity = 0.25
aq_hor_perm = 1E-11 # m^2
aq_ver_perm = 2E-12 # m^2
aq_density = 2650 # kg/m^3
aq_specific_heat_cap = 800 # J/Kg/K
aq_hor_thermal_cond = 3 # W/m/K
aq_ver_thermal_cond = 3 # W/m/K
aq_disp_parallel = 0 # m
aq_disp_perp = 0 # m
# Bulk volumetric heat capacity of aquifer:
aq_vol_cp = '${fparse aq_specific_heat_cap * aq_density * (1 - aq_porosity) + 4180 * 1000 * aq_porosity}'
# Thermal radius (correct version using bulk cp):
R_th = '${fparse sqrt(inject_fluid_mass * 4180 / (approx_screen_length * 3.1416 * aq_vol_cp))}'
aq_lambda_eff_hor = '${fparse aq_hor_thermal_cond + 0.3 * aq_disp_parallel * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_lambda_eff_ver = '${fparse aq_ver_thermal_cond + 0.3 * aq_disp_perp * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_hor_dry_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_dry_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
aq_hor_wet_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_wet_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
# cap-rock properties
cap_porosity = 0.25
cap_hor_perm = 1E-16 # m^2
cap_ver_perm = 1E-17 # m^2
cap_density = 2650 # kg/m^3
cap_specific_heat_cap = 800 # J/kg/K
cap_hor_thermal_cond = 3 # W/m/K
cap_ver_thermal_cond = 3 # W/m/K
cap_hor_dry_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_dry_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_hor_wet_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_wet_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
######################################
[Mesh]
coord_type = RZ
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = false
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomains = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
[Variables]
[porepressure]
[]
[temperature]
scaling = 1E-5
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = insitu_pressure
[]
[temperature]
type = FunctionIC
variable = temperature
function = insitu_temperature
[]
[]
[BCs]
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
[Controls]
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
[produce_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::produce_heat BCs::produce_fluid'
conditional_function = produce
implicit = false
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[insitu_pressure]
type = ParsedFunction
expression = '(y - ${depth_centre}) * 1000 * ${gravity} + 1E5' # approx insitu pressure in Pa
[]
[insitu_temperature]
type = ParsedFunction
expression = '${temp0} + (${depth_centre} - y) * ${geothermal_gradient}'
[]
[inject]
type = ParsedFunction
expression = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
[produce]
type = ParsedFunction
expression = 'if(t >= ${start_production1} & t < ${end_production1}, 1,
if(t >= ${start_production2} & t < ${end_production2}, 1,
if(t >= ${start_production3} & t < ${end_production3}, 1,
if(t >= ${start_production4} & t < ${end_production4}, 1,
if(t >= ${start_production5} & t < ${end_production5}, 1,
if(t >= ${start_production6} & t < ${end_production6}, 1,
if(t >= ${start_production7} & t < ${end_production7}, 1,
if(t >= ${start_production8} & t < ${end_production8}, 1,
if(t >= ${start_production9} & t < ${end_production9}, 1,
if(t >= ${start_production10} & t < ${end_production10}, 1, 0))))))))))'
[]
[injection_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '-${inject_fluid_mass}/(true_screen_area * ${inject_time})'
[]
[production_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '${produce_fluid_mass}/(true_screen_area * ${produce_time})'
[]
[heat_out_in_timestep]
type = ParsedFunction
symbol_names = 'dt heat_out'
symbol_values = 'dt heat_out_fromBC'
expression = 'dt*heat_out'
[]
[produced_T_time_integrated]
type = ParsedFunction
symbol_names = 'dt produced_T'
symbol_values = 'dt produced_T'
expression = 'dt*produced_T / ${produce_time}'
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[heat_flux_out]
outputs = none
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_output_file = water97_tabulated_modified.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water97_tabulated_modified.csv
[]
[]
[Materials]
[porosity_aq]
type = PorousFlowPorosityConst
porosity = ${aq_porosity}
block = aquifer
[]
[porosity_caps]
type = PorousFlowPorosityConst
porosity = ${cap_porosity}
block = caps
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '${aq_hor_perm} 0 0 0 ${aq_ver_perm} 0 0 0 0'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '${cap_hor_perm} 0 0 0 ${cap_ver_perm} 0 0 0 0'
[]
[aq_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = aquifer
density = ${aq_density}
specific_heat_capacity = ${aq_specific_heat_cap}
[]
[caps_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = caps
density = ${cap_density}
specific_heat_capacity = ${cap_specific_heat_cap}
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = aquifer
dry_thermal_conductivity = '${aq_hor_dry_thermal_cond} 0 0 0 ${aq_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${aq_hor_wet_thermal_cond} 0 0 0 ${aq_ver_wet_thermal_cond} 0 0 0 0'
[]
[caps_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = caps
dry_thermal_conductivity = '${cap_hor_dry_thermal_cond} 0 0 0 ${cap_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${cap_hor_wet_thermal_cond} 0 0 0 ${cap_ver_wet_thermal_cond} 0 0 0 0'
[]
[]
[Postprocessors]
[true_screen_area] # this accounts for meshes that do not match screen_top and screen_bottom exactly
type = AreaPostprocessor
boundary = injection_area
execute_on = 'initial'
outputs = 'none'
[]
[dt]
type = TimestepSize
[]
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
[heat_out_per_timestep]
type = FunctionValuePostprocessor
function = heat_out_in_timestep
execute_on = 'timestep_end'
outputs = 'none'
[]
[heat_out_cumulative]
type = CumulativeValuePostprocessor
postprocessor = heat_out_per_timestep
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[produced_T]
type = SideAverageValue
boundary = injection_area
variable = temperature
execute_on = 'initial timestep_end'
outputs = 'csv console'
[]
[produced_T_time_integrated]
type = FunctionValuePostprocessor
function = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'none'
[]
[produced_T_cumulative]
type = CumulativeValuePostprocessor
postprocessor = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = ${end_simulation}
timestep_tolerance = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
growth_factor = 2
[]
dtmax = 1
dtmin = 1e-5
# rough calc for fluid, |R| ~ V*k*1E6 ~ V*1E-5
# rough calc for heat, |R| ~ V*(lam*1E-3 + h*1E-5) ~ V*(1E3 + 1E-2)
# so scale heat by 1E-7 and go for nl_abs_tol = 1E-4, which should give a max error of
# ~1Pa and ~0.1K in the first metre around the borehole
nl_abs_tol = 1E-4
nl_rel_tol = 1E-5
[]
[Outputs]
sync_times = ${synctimes}
[ex]
type = Exodus
time_step_interval = 20
[]
[csv]
type = CSV
execute_postprocessors_on = 'initial timestep_end'
[]
[]
(modules/porous_flow/examples/ates/ates.i)
# Simulation designed to assess the recovery efficiency of a single-well ATES system
# Using KT stabilisation
# Boundary conditions: fixed porepressure and temperature at top, bottom and far end of model.
#####################################
flux_limiter = minmod # minmod, vanleer, mc, superbee, none
# depth of top of aquifer (m)
depth = 400
inject_fluid_mass = 1E8 # kg
produce_fluid_mass = ${inject_fluid_mass} # kg
inject_temp = 90 # degC
inject_time = 91 # days
store_time = 91 # days
produce_time = 91 # days
rest_time = 91 # days
num_cycles = 5 # Currently needs to be <= 10
cycle_length = '${fparse inject_time + store_time + produce_time + rest_time}'
end_simulation = '${fparse cycle_length * num_cycles}'
# Note: I have setup 10 cycles but you can set num_cycles less than 10.
start_injection1 = 0
start_injection2 = ${cycle_length}
start_injection3 = '${fparse cycle_length * 2}'
start_injection4 = '${fparse cycle_length * 3}'
start_injection5 = '${fparse cycle_length * 4}'
start_injection6 = '${fparse cycle_length * 5}'
start_injection7 = '${fparse cycle_length * 6}'
start_injection8 = '${fparse cycle_length * 7}'
start_injection9 = '${fparse cycle_length * 8}'
start_injection10 = '${fparse cycle_length * 9}'
end_injection1 = '${fparse start_injection1 + inject_time}'
end_injection2 = '${fparse start_injection2 + inject_time}'
end_injection3 = '${fparse start_injection3 + inject_time}'
end_injection4 = '${fparse start_injection4 + inject_time}'
end_injection5 = '${fparse start_injection5 + inject_time}'
end_injection6 = '${fparse start_injection6 + inject_time}'
end_injection7 = '${fparse start_injection7 + inject_time}'
end_injection8 = '${fparse start_injection8 + inject_time}'
end_injection9 = '${fparse start_injection9 + inject_time}'
end_injection10 = '${fparse start_injection10 + inject_time}'
start_production1 = '${fparse end_injection1 + store_time}'
start_production2 = '${fparse end_injection2 + store_time}'
start_production3 = '${fparse end_injection3 + store_time}'
start_production4 = '${fparse end_injection4 + store_time}'
start_production5 = '${fparse end_injection5 + store_time}'
start_production6 = '${fparse end_injection6 + store_time}'
start_production7 = '${fparse end_injection7 + store_time}'
start_production8 = '${fparse end_injection8 + store_time}'
start_production9 = '${fparse end_injection9 + store_time}'
start_production10 = '${fparse end_injection10 + store_time}'
end_production1 = '${fparse start_production1 + produce_time}'
end_production2 = '${fparse start_production2 + produce_time}'
end_production3 = '${fparse start_production3 + produce_time}'
end_production4 = '${fparse start_production4 + produce_time}'
end_production5 = '${fparse start_production5 + produce_time}'
end_production6 = '${fparse start_production6 + produce_time}'
end_production7 = '${fparse start_production7 + produce_time}'
end_production8 = '${fparse start_production8 + produce_time}'
end_production9 = '${fparse start_production9 + produce_time}'
end_production10 = '${fparse start_production10 + produce_time}'
synctimes = '${start_injection1} ${end_injection1} ${start_production1} ${end_production1}
${start_injection2} ${end_injection2} ${start_production2} ${end_production2}
${start_injection3} ${end_injection3} ${start_production3} ${end_production3}
${start_injection4} ${end_injection4} ${start_production4} ${end_production4}
${start_injection5} ${end_injection5} ${start_production5} ${end_production5}
${start_injection6} ${end_injection6} ${start_production6} ${end_production6}
${start_injection7} ${end_injection7} ${start_production7} ${end_production7}
${start_injection8} ${end_injection8} ${start_production8} ${end_production8}
${start_injection9} ${end_injection9} ${start_production9} ${end_production9}
${start_injection10} ${end_injection10} ${start_production10} ${end_production10}'
#####################################
# Geometry in RZ coordinates
# borehole radius (m)
bh_r = 0.1
# model radius (m)
max_r = 1000
# aquifer thickness (m)
aq_thickness = 20
# cap thickness (m)
cap_thickness = 40
# injection region top and bottom (m). Note, the mesh is created with the aquifer in y = (-0.5 * aq_thickness, 0.5 * aq_thickness), irrespective of depth (depth only sets the insitu porepressure and temperature)
screen_top = '${fparse 0.5 * aq_thickness}'
screen_bottom = '${fparse -0.5 * aq_thickness}'
# number of elements in radial direction
num_r = 25
# number of elements across half height of aquifer
num_y_aq = 10
# number of elements across height of cap
num_y_cap = 8
# mesh bias in radial direction
bias_r = 1.22
# mesh bias in vertical direction in aquifer top
bias_y_aq_top = 0.9
# mesh bias in vertical direction in cap top
bias_y_cap_top = 1.3
# mesh bias in vertical direction in aquifer bottom
bias_y_aq_bottom = '${fparse 1.0 / bias_y_aq_top}'
# mesh bias in vertical direction in cap bottom
bias_y_cap_bottom = '${fparse 1.0 / bias_y_cap_top}'
depth_centre = '${fparse depth + aq_thickness/2}'
#####################################
# temperature at ground surface (degC)
temp0 = 20
# Vertical geothermal gradient (K/m). A positive number means temperature increases downwards.
geothermal_gradient = 20E-3
#####################################
# Gravity
gravity = -9.81
#####################################
half_aq_thickness = '${fparse aq_thickness * 0.5}'
half_height = '${fparse half_aq_thickness + cap_thickness}'
approx_screen_length = '${fparse screen_top - screen_bottom}'
# Thermal radius (note this is not strictly correct, it should use the bulk specific heat
# capacity as defined below, but it doesn't matter here because this is purely for
# defining the region of refined mesh)
th_r = '${fparse sqrt(inject_fluid_mass / 1000 * 4.12e6 / (approx_screen_length * 3.1416 * aq_specific_heat_cap * aq_density))}'
# radius of fine mesh
fine_r = '${fparse th_r * 2}'
bias_r_fine = 1
num_r_fine = '${fparse int(fine_r/1)}'
######################################
# aquifer properties
aq_porosity = 0.25
aq_hor_perm = 1E-11 # m^2
aq_ver_perm = 2E-12 # m^2
aq_density = 2650 # kg/m^3
aq_specific_heat_cap = 800 # J/Kg/K
aq_hor_thermal_cond = 3 # W/m/K
aq_ver_thermal_cond = 3 # W/m/K
aq_disp_parallel = 0 # m
aq_disp_perp = 0 # m
# Bulk volumetric heat capacity of aquifer:
aq_vol_cp = '${fparse aq_specific_heat_cap * aq_density * (1 - aq_porosity) + 4180 * 1000 * aq_porosity}'
# Thermal radius (correct version using bulk cp):
R_th = '${fparse sqrt(inject_fluid_mass * 4180 / (approx_screen_length * 3.1416 * aq_vol_cp))}'
aq_lambda_eff_hor = '${fparse aq_hor_thermal_cond + 0.3 * aq_disp_parallel * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_lambda_eff_ver = '${fparse aq_ver_thermal_cond + 0.3 * aq_disp_perp * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_hor_dry_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_dry_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
aq_hor_wet_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_wet_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
# cap-rock properties
cap_porosity = 0.25
cap_hor_perm = 1E-16 # m^2
cap_ver_perm = 1E-17 # m^2
cap_density = 2650 # kg/m^3
cap_specific_heat_cap = 800 # J/kg/K
cap_hor_thermal_cond = 3 # W/m/K
cap_ver_thermal_cond = 3 # W/m/K
cap_hor_dry_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_dry_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_hor_wet_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_wet_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
######################################
[Mesh]
coord_type = RZ
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = false
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomains = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
[Variables]
[porepressure]
[]
[temperature]
scaling = 1E-5
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = insitu_pressure
[]
[temperature]
type = FunctionIC
variable = temperature
function = insitu_temperature
[]
[]
[BCs]
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
[Controls]
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
[produce_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::produce_heat BCs::produce_fluid'
conditional_function = produce
implicit = false
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[insitu_pressure]
type = ParsedFunction
expression = '(y - ${depth_centre}) * 1000 * ${gravity} + 1E5' # approx insitu pressure in Pa
[]
[insitu_temperature]
type = ParsedFunction
expression = '${temp0} + (${depth_centre} - y) * ${geothermal_gradient}'
[]
[inject]
type = ParsedFunction
expression = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
[produce]
type = ParsedFunction
expression = 'if(t >= ${start_production1} & t < ${end_production1}, 1,
if(t >= ${start_production2} & t < ${end_production2}, 1,
if(t >= ${start_production3} & t < ${end_production3}, 1,
if(t >= ${start_production4} & t < ${end_production4}, 1,
if(t >= ${start_production5} & t < ${end_production5}, 1,
if(t >= ${start_production6} & t < ${end_production6}, 1,
if(t >= ${start_production7} & t < ${end_production7}, 1,
if(t >= ${start_production8} & t < ${end_production8}, 1,
if(t >= ${start_production9} & t < ${end_production9}, 1,
if(t >= ${start_production10} & t < ${end_production10}, 1, 0))))))))))'
[]
[injection_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '-${inject_fluid_mass}/(true_screen_area * ${inject_time})'
[]
[production_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '${produce_fluid_mass}/(true_screen_area * ${produce_time})'
[]
[heat_out_in_timestep]
type = ParsedFunction
symbol_names = 'dt heat_out'
symbol_values = 'dt heat_out_fromBC'
expression = 'dt*heat_out'
[]
[produced_T_time_integrated]
type = ParsedFunction
symbol_names = 'dt produced_T'
symbol_values = 'dt produced_T'
expression = 'dt*produced_T / ${produce_time}'
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[heat_flux_out]
outputs = none
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_output_file = water97_tabulated_modified.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water97_tabulated_modified.csv
[]
[]
[Materials]
[porosity_aq]
type = PorousFlowPorosityConst
porosity = ${aq_porosity}
block = aquifer
[]
[porosity_caps]
type = PorousFlowPorosityConst
porosity = ${cap_porosity}
block = caps
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '${aq_hor_perm} 0 0 0 ${aq_ver_perm} 0 0 0 0'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '${cap_hor_perm} 0 0 0 ${cap_ver_perm} 0 0 0 0'
[]
[aq_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = aquifer
density = ${aq_density}
specific_heat_capacity = ${aq_specific_heat_cap}
[]
[caps_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = caps
density = ${cap_density}
specific_heat_capacity = ${cap_specific_heat_cap}
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = aquifer
dry_thermal_conductivity = '${aq_hor_dry_thermal_cond} 0 0 0 ${aq_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${aq_hor_wet_thermal_cond} 0 0 0 ${aq_ver_wet_thermal_cond} 0 0 0 0'
[]
[caps_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = caps
dry_thermal_conductivity = '${cap_hor_dry_thermal_cond} 0 0 0 ${cap_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${cap_hor_wet_thermal_cond} 0 0 0 ${cap_ver_wet_thermal_cond} 0 0 0 0'
[]
[]
[Postprocessors]
[true_screen_area] # this accounts for meshes that do not match screen_top and screen_bottom exactly
type = AreaPostprocessor
boundary = injection_area
execute_on = 'initial'
outputs = 'none'
[]
[dt]
type = TimestepSize
[]
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
[heat_out_per_timestep]
type = FunctionValuePostprocessor
function = heat_out_in_timestep
execute_on = 'timestep_end'
outputs = 'none'
[]
[heat_out_cumulative]
type = CumulativeValuePostprocessor
postprocessor = heat_out_per_timestep
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[produced_T]
type = SideAverageValue
boundary = injection_area
variable = temperature
execute_on = 'initial timestep_end'
outputs = 'csv console'
[]
[produced_T_time_integrated]
type = FunctionValuePostprocessor
function = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'none'
[]
[produced_T_cumulative]
type = CumulativeValuePostprocessor
postprocessor = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = ${end_simulation}
timestep_tolerance = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
growth_factor = 2
[]
dtmax = 1
dtmin = 1e-5
# rough calc for fluid, |R| ~ V*k*1E6 ~ V*1E-5
# rough calc for heat, |R| ~ V*(lam*1E-3 + h*1E-5) ~ V*(1E3 + 1E-2)
# so scale heat by 1E-7 and go for nl_abs_tol = 1E-4, which should give a max error of
# ~1Pa and ~0.1K in the first metre around the borehole
nl_abs_tol = 1E-4
nl_rel_tol = 1E-5
[]
[Outputs]
sync_times = ${synctimes}
[ex]
type = Exodus
time_step_interval = 20
[]
[csv]
type = CSV
execute_postprocessors_on = 'initial timestep_end'
[]
[]
(modules/porous_flow/examples/ates/ates.i)
# Simulation designed to assess the recovery efficiency of a single-well ATES system
# Using KT stabilisation
# Boundary conditions: fixed porepressure and temperature at top, bottom and far end of model.
#####################################
flux_limiter = minmod # minmod, vanleer, mc, superbee, none
# depth of top of aquifer (m)
depth = 400
inject_fluid_mass = 1E8 # kg
produce_fluid_mass = ${inject_fluid_mass} # kg
inject_temp = 90 # degC
inject_time = 91 # days
store_time = 91 # days
produce_time = 91 # days
rest_time = 91 # days
num_cycles = 5 # Currently needs to be <= 10
cycle_length = '${fparse inject_time + store_time + produce_time + rest_time}'
end_simulation = '${fparse cycle_length * num_cycles}'
# Note: I have setup 10 cycles but you can set num_cycles less than 10.
start_injection1 = 0
start_injection2 = ${cycle_length}
start_injection3 = '${fparse cycle_length * 2}'
start_injection4 = '${fparse cycle_length * 3}'
start_injection5 = '${fparse cycle_length * 4}'
start_injection6 = '${fparse cycle_length * 5}'
start_injection7 = '${fparse cycle_length * 6}'
start_injection8 = '${fparse cycle_length * 7}'
start_injection9 = '${fparse cycle_length * 8}'
start_injection10 = '${fparse cycle_length * 9}'
end_injection1 = '${fparse start_injection1 + inject_time}'
end_injection2 = '${fparse start_injection2 + inject_time}'
end_injection3 = '${fparse start_injection3 + inject_time}'
end_injection4 = '${fparse start_injection4 + inject_time}'
end_injection5 = '${fparse start_injection5 + inject_time}'
end_injection6 = '${fparse start_injection6 + inject_time}'
end_injection7 = '${fparse start_injection7 + inject_time}'
end_injection8 = '${fparse start_injection8 + inject_time}'
end_injection9 = '${fparse start_injection9 + inject_time}'
end_injection10 = '${fparse start_injection10 + inject_time}'
start_production1 = '${fparse end_injection1 + store_time}'
start_production2 = '${fparse end_injection2 + store_time}'
start_production3 = '${fparse end_injection3 + store_time}'
start_production4 = '${fparse end_injection4 + store_time}'
start_production5 = '${fparse end_injection5 + store_time}'
start_production6 = '${fparse end_injection6 + store_time}'
start_production7 = '${fparse end_injection7 + store_time}'
start_production8 = '${fparse end_injection8 + store_time}'
start_production9 = '${fparse end_injection9 + store_time}'
start_production10 = '${fparse end_injection10 + store_time}'
end_production1 = '${fparse start_production1 + produce_time}'
end_production2 = '${fparse start_production2 + produce_time}'
end_production3 = '${fparse start_production3 + produce_time}'
end_production4 = '${fparse start_production4 + produce_time}'
end_production5 = '${fparse start_production5 + produce_time}'
end_production6 = '${fparse start_production6 + produce_time}'
end_production7 = '${fparse start_production7 + produce_time}'
end_production8 = '${fparse start_production8 + produce_time}'
end_production9 = '${fparse start_production9 + produce_time}'
end_production10 = '${fparse start_production10 + produce_time}'
synctimes = '${start_injection1} ${end_injection1} ${start_production1} ${end_production1}
${start_injection2} ${end_injection2} ${start_production2} ${end_production2}
${start_injection3} ${end_injection3} ${start_production3} ${end_production3}
${start_injection4} ${end_injection4} ${start_production4} ${end_production4}
${start_injection5} ${end_injection5} ${start_production5} ${end_production5}
${start_injection6} ${end_injection6} ${start_production6} ${end_production6}
${start_injection7} ${end_injection7} ${start_production7} ${end_production7}
${start_injection8} ${end_injection8} ${start_production8} ${end_production8}
${start_injection9} ${end_injection9} ${start_production9} ${end_production9}
${start_injection10} ${end_injection10} ${start_production10} ${end_production10}'
#####################################
# Geometry in RZ coordinates
# borehole radius (m)
bh_r = 0.1
# model radius (m)
max_r = 1000
# aquifer thickness (m)
aq_thickness = 20
# cap thickness (m)
cap_thickness = 40
# injection region top and bottom (m). Note, the mesh is created with the aquifer in y = (-0.5 * aq_thickness, 0.5 * aq_thickness), irrespective of depth (depth only sets the insitu porepressure and temperature)
screen_top = '${fparse 0.5 * aq_thickness}'
screen_bottom = '${fparse -0.5 * aq_thickness}'
# number of elements in radial direction
num_r = 25
# number of elements across half height of aquifer
num_y_aq = 10
# number of elements across height of cap
num_y_cap = 8
# mesh bias in radial direction
bias_r = 1.22
# mesh bias in vertical direction in aquifer top
bias_y_aq_top = 0.9
# mesh bias in vertical direction in cap top
bias_y_cap_top = 1.3
# mesh bias in vertical direction in aquifer bottom
bias_y_aq_bottom = '${fparse 1.0 / bias_y_aq_top}'
# mesh bias in vertical direction in cap bottom
bias_y_cap_bottom = '${fparse 1.0 / bias_y_cap_top}'
depth_centre = '${fparse depth + aq_thickness/2}'
#####################################
# temperature at ground surface (degC)
temp0 = 20
# Vertical geothermal gradient (K/m). A positive number means temperature increases downwards.
geothermal_gradient = 20E-3
#####################################
# Gravity
gravity = -9.81
#####################################
half_aq_thickness = '${fparse aq_thickness * 0.5}'
half_height = '${fparse half_aq_thickness + cap_thickness}'
approx_screen_length = '${fparse screen_top - screen_bottom}'
# Thermal radius (note this is not strictly correct, it should use the bulk specific heat
# capacity as defined below, but it doesn't matter here because this is purely for
# defining the region of refined mesh)
th_r = '${fparse sqrt(inject_fluid_mass / 1000 * 4.12e6 / (approx_screen_length * 3.1416 * aq_specific_heat_cap * aq_density))}'
# radius of fine mesh
fine_r = '${fparse th_r * 2}'
bias_r_fine = 1
num_r_fine = '${fparse int(fine_r/1)}'
######################################
# aquifer properties
aq_porosity = 0.25
aq_hor_perm = 1E-11 # m^2
aq_ver_perm = 2E-12 # m^2
aq_density = 2650 # kg/m^3
aq_specific_heat_cap = 800 # J/Kg/K
aq_hor_thermal_cond = 3 # W/m/K
aq_ver_thermal_cond = 3 # W/m/K
aq_disp_parallel = 0 # m
aq_disp_perp = 0 # m
# Bulk volumetric heat capacity of aquifer:
aq_vol_cp = '${fparse aq_specific_heat_cap * aq_density * (1 - aq_porosity) + 4180 * 1000 * aq_porosity}'
# Thermal radius (correct version using bulk cp):
R_th = '${fparse sqrt(inject_fluid_mass * 4180 / (approx_screen_length * 3.1416 * aq_vol_cp))}'
aq_lambda_eff_hor = '${fparse aq_hor_thermal_cond + 0.3 * aq_disp_parallel * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_lambda_eff_ver = '${fparse aq_ver_thermal_cond + 0.3 * aq_disp_perp * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_hor_dry_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_dry_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
aq_hor_wet_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_wet_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
# cap-rock properties
cap_porosity = 0.25
cap_hor_perm = 1E-16 # m^2
cap_ver_perm = 1E-17 # m^2
cap_density = 2650 # kg/m^3
cap_specific_heat_cap = 800 # J/kg/K
cap_hor_thermal_cond = 3 # W/m/K
cap_ver_thermal_cond = 3 # W/m/K
cap_hor_dry_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_dry_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_hor_wet_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_wet_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
######################################
[Mesh]
coord_type = RZ
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = false
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomains = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
[Variables]
[porepressure]
[]
[temperature]
scaling = 1E-5
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = insitu_pressure
[]
[temperature]
type = FunctionIC
variable = temperature
function = insitu_temperature
[]
[]
[BCs]
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
[Controls]
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
[produce_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::produce_heat BCs::produce_fluid'
conditional_function = produce
implicit = false
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[insitu_pressure]
type = ParsedFunction
expression = '(y - ${depth_centre}) * 1000 * ${gravity} + 1E5' # approx insitu pressure in Pa
[]
[insitu_temperature]
type = ParsedFunction
expression = '${temp0} + (${depth_centre} - y) * ${geothermal_gradient}'
[]
[inject]
type = ParsedFunction
expression = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
[produce]
type = ParsedFunction
expression = 'if(t >= ${start_production1} & t < ${end_production1}, 1,
if(t >= ${start_production2} & t < ${end_production2}, 1,
if(t >= ${start_production3} & t < ${end_production3}, 1,
if(t >= ${start_production4} & t < ${end_production4}, 1,
if(t >= ${start_production5} & t < ${end_production5}, 1,
if(t >= ${start_production6} & t < ${end_production6}, 1,
if(t >= ${start_production7} & t < ${end_production7}, 1,
if(t >= ${start_production8} & t < ${end_production8}, 1,
if(t >= ${start_production9} & t < ${end_production9}, 1,
if(t >= ${start_production10} & t < ${end_production10}, 1, 0))))))))))'
[]
[injection_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '-${inject_fluid_mass}/(true_screen_area * ${inject_time})'
[]
[production_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '${produce_fluid_mass}/(true_screen_area * ${produce_time})'
[]
[heat_out_in_timestep]
type = ParsedFunction
symbol_names = 'dt heat_out'
symbol_values = 'dt heat_out_fromBC'
expression = 'dt*heat_out'
[]
[produced_T_time_integrated]
type = ParsedFunction
symbol_names = 'dt produced_T'
symbol_values = 'dt produced_T'
expression = 'dt*produced_T / ${produce_time}'
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[heat_flux_out]
outputs = none
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_output_file = water97_tabulated_modified.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water97_tabulated_modified.csv
[]
[]
[Materials]
[porosity_aq]
type = PorousFlowPorosityConst
porosity = ${aq_porosity}
block = aquifer
[]
[porosity_caps]
type = PorousFlowPorosityConst
porosity = ${cap_porosity}
block = caps
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '${aq_hor_perm} 0 0 0 ${aq_ver_perm} 0 0 0 0'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '${cap_hor_perm} 0 0 0 ${cap_ver_perm} 0 0 0 0'
[]
[aq_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = aquifer
density = ${aq_density}
specific_heat_capacity = ${aq_specific_heat_cap}
[]
[caps_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = caps
density = ${cap_density}
specific_heat_capacity = ${cap_specific_heat_cap}
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = aquifer
dry_thermal_conductivity = '${aq_hor_dry_thermal_cond} 0 0 0 ${aq_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${aq_hor_wet_thermal_cond} 0 0 0 ${aq_ver_wet_thermal_cond} 0 0 0 0'
[]
[caps_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = caps
dry_thermal_conductivity = '${cap_hor_dry_thermal_cond} 0 0 0 ${cap_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${cap_hor_wet_thermal_cond} 0 0 0 ${cap_ver_wet_thermal_cond} 0 0 0 0'
[]
[]
[Postprocessors]
[true_screen_area] # this accounts for meshes that do not match screen_top and screen_bottom exactly
type = AreaPostprocessor
boundary = injection_area
execute_on = 'initial'
outputs = 'none'
[]
[dt]
type = TimestepSize
[]
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
[heat_out_per_timestep]
type = FunctionValuePostprocessor
function = heat_out_in_timestep
execute_on = 'timestep_end'
outputs = 'none'
[]
[heat_out_cumulative]
type = CumulativeValuePostprocessor
postprocessor = heat_out_per_timestep
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[produced_T]
type = SideAverageValue
boundary = injection_area
variable = temperature
execute_on = 'initial timestep_end'
outputs = 'csv console'
[]
[produced_T_time_integrated]
type = FunctionValuePostprocessor
function = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'none'
[]
[produced_T_cumulative]
type = CumulativeValuePostprocessor
postprocessor = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = ${end_simulation}
timestep_tolerance = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
growth_factor = 2
[]
dtmax = 1
dtmin = 1e-5
# rough calc for fluid, |R| ~ V*k*1E6 ~ V*1E-5
# rough calc for heat, |R| ~ V*(lam*1E-3 + h*1E-5) ~ V*(1E3 + 1E-2)
# so scale heat by 1E-7 and go for nl_abs_tol = 1E-4, which should give a max error of
# ~1Pa and ~0.1K in the first metre around the borehole
nl_abs_tol = 1E-4
nl_rel_tol = 1E-5
[]
[Outputs]
sync_times = ${synctimes}
[ex]
type = Exodus
time_step_interval = 20
[]
[csv]
type = CSV
execute_postprocessors_on = 'initial timestep_end'
[]
[]
(modules/porous_flow/examples/ates/ates.i)
# Simulation designed to assess the recovery efficiency of a single-well ATES system
# Using KT stabilisation
# Boundary conditions: fixed porepressure and temperature at top, bottom and far end of model.
#####################################
flux_limiter = minmod # minmod, vanleer, mc, superbee, none
# depth of top of aquifer (m)
depth = 400
inject_fluid_mass = 1E8 # kg
produce_fluid_mass = ${inject_fluid_mass} # kg
inject_temp = 90 # degC
inject_time = 91 # days
store_time = 91 # days
produce_time = 91 # days
rest_time = 91 # days
num_cycles = 5 # Currently needs to be <= 10
cycle_length = '${fparse inject_time + store_time + produce_time + rest_time}'
end_simulation = '${fparse cycle_length * num_cycles}'
# Note: I have setup 10 cycles but you can set num_cycles less than 10.
start_injection1 = 0
start_injection2 = ${cycle_length}
start_injection3 = '${fparse cycle_length * 2}'
start_injection4 = '${fparse cycle_length * 3}'
start_injection5 = '${fparse cycle_length * 4}'
start_injection6 = '${fparse cycle_length * 5}'
start_injection7 = '${fparse cycle_length * 6}'
start_injection8 = '${fparse cycle_length * 7}'
start_injection9 = '${fparse cycle_length * 8}'
start_injection10 = '${fparse cycle_length * 9}'
end_injection1 = '${fparse start_injection1 + inject_time}'
end_injection2 = '${fparse start_injection2 + inject_time}'
end_injection3 = '${fparse start_injection3 + inject_time}'
end_injection4 = '${fparse start_injection4 + inject_time}'
end_injection5 = '${fparse start_injection5 + inject_time}'
end_injection6 = '${fparse start_injection6 + inject_time}'
end_injection7 = '${fparse start_injection7 + inject_time}'
end_injection8 = '${fparse start_injection8 + inject_time}'
end_injection9 = '${fparse start_injection9 + inject_time}'
end_injection10 = '${fparse start_injection10 + inject_time}'
start_production1 = '${fparse end_injection1 + store_time}'
start_production2 = '${fparse end_injection2 + store_time}'
start_production3 = '${fparse end_injection3 + store_time}'
start_production4 = '${fparse end_injection4 + store_time}'
start_production5 = '${fparse end_injection5 + store_time}'
start_production6 = '${fparse end_injection6 + store_time}'
start_production7 = '${fparse end_injection7 + store_time}'
start_production8 = '${fparse end_injection8 + store_time}'
start_production9 = '${fparse end_injection9 + store_time}'
start_production10 = '${fparse end_injection10 + store_time}'
end_production1 = '${fparse start_production1 + produce_time}'
end_production2 = '${fparse start_production2 + produce_time}'
end_production3 = '${fparse start_production3 + produce_time}'
end_production4 = '${fparse start_production4 + produce_time}'
end_production5 = '${fparse start_production5 + produce_time}'
end_production6 = '${fparse start_production6 + produce_time}'
end_production7 = '${fparse start_production7 + produce_time}'
end_production8 = '${fparse start_production8 + produce_time}'
end_production9 = '${fparse start_production9 + produce_time}'
end_production10 = '${fparse start_production10 + produce_time}'
synctimes = '${start_injection1} ${end_injection1} ${start_production1} ${end_production1}
${start_injection2} ${end_injection2} ${start_production2} ${end_production2}
${start_injection3} ${end_injection3} ${start_production3} ${end_production3}
${start_injection4} ${end_injection4} ${start_production4} ${end_production4}
${start_injection5} ${end_injection5} ${start_production5} ${end_production5}
${start_injection6} ${end_injection6} ${start_production6} ${end_production6}
${start_injection7} ${end_injection7} ${start_production7} ${end_production7}
${start_injection8} ${end_injection8} ${start_production8} ${end_production8}
${start_injection9} ${end_injection9} ${start_production9} ${end_production9}
${start_injection10} ${end_injection10} ${start_production10} ${end_production10}'
#####################################
# Geometry in RZ coordinates
# borehole radius (m)
bh_r = 0.1
# model radius (m)
max_r = 1000
# aquifer thickness (m)
aq_thickness = 20
# cap thickness (m)
cap_thickness = 40
# injection region top and bottom (m). Note, the mesh is created with the aquifer in y = (-0.5 * aq_thickness, 0.5 * aq_thickness), irrespective of depth (depth only sets the insitu porepressure and temperature)
screen_top = '${fparse 0.5 * aq_thickness}'
screen_bottom = '${fparse -0.5 * aq_thickness}'
# number of elements in radial direction
num_r = 25
# number of elements across half height of aquifer
num_y_aq = 10
# number of elements across height of cap
num_y_cap = 8
# mesh bias in radial direction
bias_r = 1.22
# mesh bias in vertical direction in aquifer top
bias_y_aq_top = 0.9
# mesh bias in vertical direction in cap top
bias_y_cap_top = 1.3
# mesh bias in vertical direction in aquifer bottom
bias_y_aq_bottom = '${fparse 1.0 / bias_y_aq_top}'
# mesh bias in vertical direction in cap bottom
bias_y_cap_bottom = '${fparse 1.0 / bias_y_cap_top}'
depth_centre = '${fparse depth + aq_thickness/2}'
#####################################
# temperature at ground surface (degC)
temp0 = 20
# Vertical geothermal gradient (K/m). A positive number means temperature increases downwards.
geothermal_gradient = 20E-3
#####################################
# Gravity
gravity = -9.81
#####################################
half_aq_thickness = '${fparse aq_thickness * 0.5}'
half_height = '${fparse half_aq_thickness + cap_thickness}'
approx_screen_length = '${fparse screen_top - screen_bottom}'
# Thermal radius (note this is not strictly correct, it should use the bulk specific heat
# capacity as defined below, but it doesn't matter here because this is purely for
# defining the region of refined mesh)
th_r = '${fparse sqrt(inject_fluid_mass / 1000 * 4.12e6 / (approx_screen_length * 3.1416 * aq_specific_heat_cap * aq_density))}'
# radius of fine mesh
fine_r = '${fparse th_r * 2}'
bias_r_fine = 1
num_r_fine = '${fparse int(fine_r/1)}'
######################################
# aquifer properties
aq_porosity = 0.25
aq_hor_perm = 1E-11 # m^2
aq_ver_perm = 2E-12 # m^2
aq_density = 2650 # kg/m^3
aq_specific_heat_cap = 800 # J/Kg/K
aq_hor_thermal_cond = 3 # W/m/K
aq_ver_thermal_cond = 3 # W/m/K
aq_disp_parallel = 0 # m
aq_disp_perp = 0 # m
# Bulk volumetric heat capacity of aquifer:
aq_vol_cp = '${fparse aq_specific_heat_cap * aq_density * (1 - aq_porosity) + 4180 * 1000 * aq_porosity}'
# Thermal radius (correct version using bulk cp):
R_th = '${fparse sqrt(inject_fluid_mass * 4180 / (approx_screen_length * 3.1416 * aq_vol_cp))}'
aq_lambda_eff_hor = '${fparse aq_hor_thermal_cond + 0.3 * aq_disp_parallel * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_lambda_eff_ver = '${fparse aq_ver_thermal_cond + 0.3 * aq_disp_perp * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_hor_dry_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_dry_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
aq_hor_wet_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_wet_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
# cap-rock properties
cap_porosity = 0.25
cap_hor_perm = 1E-16 # m^2
cap_ver_perm = 1E-17 # m^2
cap_density = 2650 # kg/m^3
cap_specific_heat_cap = 800 # J/kg/K
cap_hor_thermal_cond = 3 # W/m/K
cap_ver_thermal_cond = 3 # W/m/K
cap_hor_dry_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_dry_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_hor_wet_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_wet_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
######################################
[Mesh]
coord_type = RZ
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = false
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomains = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
[Variables]
[porepressure]
[]
[temperature]
scaling = 1E-5
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = insitu_pressure
[]
[temperature]
type = FunctionIC
variable = temperature
function = insitu_temperature
[]
[]
[BCs]
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
[Controls]
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
[produce_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::produce_heat BCs::produce_fluid'
conditional_function = produce
implicit = false
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[insitu_pressure]
type = ParsedFunction
expression = '(y - ${depth_centre}) * 1000 * ${gravity} + 1E5' # approx insitu pressure in Pa
[]
[insitu_temperature]
type = ParsedFunction
expression = '${temp0} + (${depth_centre} - y) * ${geothermal_gradient}'
[]
[inject]
type = ParsedFunction
expression = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
[produce]
type = ParsedFunction
expression = 'if(t >= ${start_production1} & t < ${end_production1}, 1,
if(t >= ${start_production2} & t < ${end_production2}, 1,
if(t >= ${start_production3} & t < ${end_production3}, 1,
if(t >= ${start_production4} & t < ${end_production4}, 1,
if(t >= ${start_production5} & t < ${end_production5}, 1,
if(t >= ${start_production6} & t < ${end_production6}, 1,
if(t >= ${start_production7} & t < ${end_production7}, 1,
if(t >= ${start_production8} & t < ${end_production8}, 1,
if(t >= ${start_production9} & t < ${end_production9}, 1,
if(t >= ${start_production10} & t < ${end_production10}, 1, 0))))))))))'
[]
[injection_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '-${inject_fluid_mass}/(true_screen_area * ${inject_time})'
[]
[production_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '${produce_fluid_mass}/(true_screen_area * ${produce_time})'
[]
[heat_out_in_timestep]
type = ParsedFunction
symbol_names = 'dt heat_out'
symbol_values = 'dt heat_out_fromBC'
expression = 'dt*heat_out'
[]
[produced_T_time_integrated]
type = ParsedFunction
symbol_names = 'dt produced_T'
symbol_values = 'dt produced_T'
expression = 'dt*produced_T / ${produce_time}'
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[heat_flux_out]
outputs = none
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_output_file = water97_tabulated_modified.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water97_tabulated_modified.csv
[]
[]
[Materials]
[porosity_aq]
type = PorousFlowPorosityConst
porosity = ${aq_porosity}
block = aquifer
[]
[porosity_caps]
type = PorousFlowPorosityConst
porosity = ${cap_porosity}
block = caps
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '${aq_hor_perm} 0 0 0 ${aq_ver_perm} 0 0 0 0'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '${cap_hor_perm} 0 0 0 ${cap_ver_perm} 0 0 0 0'
[]
[aq_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = aquifer
density = ${aq_density}
specific_heat_capacity = ${aq_specific_heat_cap}
[]
[caps_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = caps
density = ${cap_density}
specific_heat_capacity = ${cap_specific_heat_cap}
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = aquifer
dry_thermal_conductivity = '${aq_hor_dry_thermal_cond} 0 0 0 ${aq_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${aq_hor_wet_thermal_cond} 0 0 0 ${aq_ver_wet_thermal_cond} 0 0 0 0'
[]
[caps_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = caps
dry_thermal_conductivity = '${cap_hor_dry_thermal_cond} 0 0 0 ${cap_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${cap_hor_wet_thermal_cond} 0 0 0 ${cap_ver_wet_thermal_cond} 0 0 0 0'
[]
[]
[Postprocessors]
[true_screen_area] # this accounts for meshes that do not match screen_top and screen_bottom exactly
type = AreaPostprocessor
boundary = injection_area
execute_on = 'initial'
outputs = 'none'
[]
[dt]
type = TimestepSize
[]
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
[heat_out_per_timestep]
type = FunctionValuePostprocessor
function = heat_out_in_timestep
execute_on = 'timestep_end'
outputs = 'none'
[]
[heat_out_cumulative]
type = CumulativeValuePostprocessor
postprocessor = heat_out_per_timestep
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[produced_T]
type = SideAverageValue
boundary = injection_area
variable = temperature
execute_on = 'initial timestep_end'
outputs = 'csv console'
[]
[produced_T_time_integrated]
type = FunctionValuePostprocessor
function = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'none'
[]
[produced_T_cumulative]
type = CumulativeValuePostprocessor
postprocessor = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = ${end_simulation}
timestep_tolerance = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
growth_factor = 2
[]
dtmax = 1
dtmin = 1e-5
# rough calc for fluid, |R| ~ V*k*1E6 ~ V*1E-5
# rough calc for heat, |R| ~ V*(lam*1E-3 + h*1E-5) ~ V*(1E3 + 1E-2)
# so scale heat by 1E-7 and go for nl_abs_tol = 1E-4, which should give a max error of
# ~1Pa and ~0.1K in the first metre around the borehole
nl_abs_tol = 1E-4
nl_rel_tol = 1E-5
[]
[Outputs]
sync_times = ${synctimes}
[ex]
type = Exodus
time_step_interval = 20
[]
[csv]
type = CSV
execute_postprocessors_on = 'initial timestep_end'
[]
[]
(modules/porous_flow/examples/ates/ates.i)
# Simulation designed to assess the recovery efficiency of a single-well ATES system
# Using KT stabilisation
# Boundary conditions: fixed porepressure and temperature at top, bottom and far end of model.
#####################################
flux_limiter = minmod # minmod, vanleer, mc, superbee, none
# depth of top of aquifer (m)
depth = 400
inject_fluid_mass = 1E8 # kg
produce_fluid_mass = ${inject_fluid_mass} # kg
inject_temp = 90 # degC
inject_time = 91 # days
store_time = 91 # days
produce_time = 91 # days
rest_time = 91 # days
num_cycles = 5 # Currently needs to be <= 10
cycle_length = '${fparse inject_time + store_time + produce_time + rest_time}'
end_simulation = '${fparse cycle_length * num_cycles}'
# Note: I have setup 10 cycles but you can set num_cycles less than 10.
start_injection1 = 0
start_injection2 = ${cycle_length}
start_injection3 = '${fparse cycle_length * 2}'
start_injection4 = '${fparse cycle_length * 3}'
start_injection5 = '${fparse cycle_length * 4}'
start_injection6 = '${fparse cycle_length * 5}'
start_injection7 = '${fparse cycle_length * 6}'
start_injection8 = '${fparse cycle_length * 7}'
start_injection9 = '${fparse cycle_length * 8}'
start_injection10 = '${fparse cycle_length * 9}'
end_injection1 = '${fparse start_injection1 + inject_time}'
end_injection2 = '${fparse start_injection2 + inject_time}'
end_injection3 = '${fparse start_injection3 + inject_time}'
end_injection4 = '${fparse start_injection4 + inject_time}'
end_injection5 = '${fparse start_injection5 + inject_time}'
end_injection6 = '${fparse start_injection6 + inject_time}'
end_injection7 = '${fparse start_injection7 + inject_time}'
end_injection8 = '${fparse start_injection8 + inject_time}'
end_injection9 = '${fparse start_injection9 + inject_time}'
end_injection10 = '${fparse start_injection10 + inject_time}'
start_production1 = '${fparse end_injection1 + store_time}'
start_production2 = '${fparse end_injection2 + store_time}'
start_production3 = '${fparse end_injection3 + store_time}'
start_production4 = '${fparse end_injection4 + store_time}'
start_production5 = '${fparse end_injection5 + store_time}'
start_production6 = '${fparse end_injection6 + store_time}'
start_production7 = '${fparse end_injection7 + store_time}'
start_production8 = '${fparse end_injection8 + store_time}'
start_production9 = '${fparse end_injection9 + store_time}'
start_production10 = '${fparse end_injection10 + store_time}'
end_production1 = '${fparse start_production1 + produce_time}'
end_production2 = '${fparse start_production2 + produce_time}'
end_production3 = '${fparse start_production3 + produce_time}'
end_production4 = '${fparse start_production4 + produce_time}'
end_production5 = '${fparse start_production5 + produce_time}'
end_production6 = '${fparse start_production6 + produce_time}'
end_production7 = '${fparse start_production7 + produce_time}'
end_production8 = '${fparse start_production8 + produce_time}'
end_production9 = '${fparse start_production9 + produce_time}'
end_production10 = '${fparse start_production10 + produce_time}'
synctimes = '${start_injection1} ${end_injection1} ${start_production1} ${end_production1}
${start_injection2} ${end_injection2} ${start_production2} ${end_production2}
${start_injection3} ${end_injection3} ${start_production3} ${end_production3}
${start_injection4} ${end_injection4} ${start_production4} ${end_production4}
${start_injection5} ${end_injection5} ${start_production5} ${end_production5}
${start_injection6} ${end_injection6} ${start_production6} ${end_production6}
${start_injection7} ${end_injection7} ${start_production7} ${end_production7}
${start_injection8} ${end_injection8} ${start_production8} ${end_production8}
${start_injection9} ${end_injection9} ${start_production9} ${end_production9}
${start_injection10} ${end_injection10} ${start_production10} ${end_production10}'
#####################################
# Geometry in RZ coordinates
# borehole radius (m)
bh_r = 0.1
# model radius (m)
max_r = 1000
# aquifer thickness (m)
aq_thickness = 20
# cap thickness (m)
cap_thickness = 40
# injection region top and bottom (m). Note, the mesh is created with the aquifer in y = (-0.5 * aq_thickness, 0.5 * aq_thickness), irrespective of depth (depth only sets the insitu porepressure and temperature)
screen_top = '${fparse 0.5 * aq_thickness}'
screen_bottom = '${fparse -0.5 * aq_thickness}'
# number of elements in radial direction
num_r = 25
# number of elements across half height of aquifer
num_y_aq = 10
# number of elements across height of cap
num_y_cap = 8
# mesh bias in radial direction
bias_r = 1.22
# mesh bias in vertical direction in aquifer top
bias_y_aq_top = 0.9
# mesh bias in vertical direction in cap top
bias_y_cap_top = 1.3
# mesh bias in vertical direction in aquifer bottom
bias_y_aq_bottom = '${fparse 1.0 / bias_y_aq_top}'
# mesh bias in vertical direction in cap bottom
bias_y_cap_bottom = '${fparse 1.0 / bias_y_cap_top}'
depth_centre = '${fparse depth + aq_thickness/2}'
#####################################
# temperature at ground surface (degC)
temp0 = 20
# Vertical geothermal gradient (K/m). A positive number means temperature increases downwards.
geothermal_gradient = 20E-3
#####################################
# Gravity
gravity = -9.81
#####################################
half_aq_thickness = '${fparse aq_thickness * 0.5}'
half_height = '${fparse half_aq_thickness + cap_thickness}'
approx_screen_length = '${fparse screen_top - screen_bottom}'
# Thermal radius (note this is not strictly correct, it should use the bulk specific heat
# capacity as defined below, but it doesn't matter here because this is purely for
# defining the region of refined mesh)
th_r = '${fparse sqrt(inject_fluid_mass / 1000 * 4.12e6 / (approx_screen_length * 3.1416 * aq_specific_heat_cap * aq_density))}'
# radius of fine mesh
fine_r = '${fparse th_r * 2}'
bias_r_fine = 1
num_r_fine = '${fparse int(fine_r/1)}'
######################################
# aquifer properties
aq_porosity = 0.25
aq_hor_perm = 1E-11 # m^2
aq_ver_perm = 2E-12 # m^2
aq_density = 2650 # kg/m^3
aq_specific_heat_cap = 800 # J/Kg/K
aq_hor_thermal_cond = 3 # W/m/K
aq_ver_thermal_cond = 3 # W/m/K
aq_disp_parallel = 0 # m
aq_disp_perp = 0 # m
# Bulk volumetric heat capacity of aquifer:
aq_vol_cp = '${fparse aq_specific_heat_cap * aq_density * (1 - aq_porosity) + 4180 * 1000 * aq_porosity}'
# Thermal radius (correct version using bulk cp):
R_th = '${fparse sqrt(inject_fluid_mass * 4180 / (approx_screen_length * 3.1416 * aq_vol_cp))}'
aq_lambda_eff_hor = '${fparse aq_hor_thermal_cond + 0.3 * aq_disp_parallel * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_lambda_eff_ver = '${fparse aq_ver_thermal_cond + 0.3 * aq_disp_perp * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_hor_dry_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_dry_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
aq_hor_wet_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_wet_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
# cap-rock properties
cap_porosity = 0.25
cap_hor_perm = 1E-16 # m^2
cap_ver_perm = 1E-17 # m^2
cap_density = 2650 # kg/m^3
cap_specific_heat_cap = 800 # J/kg/K
cap_hor_thermal_cond = 3 # W/m/K
cap_ver_thermal_cond = 3 # W/m/K
cap_hor_dry_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_dry_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_hor_wet_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_wet_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
######################################
[Mesh]
coord_type = RZ
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = false
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomains = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
[Variables]
[porepressure]
[]
[temperature]
scaling = 1E-5
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = insitu_pressure
[]
[temperature]
type = FunctionIC
variable = temperature
function = insitu_temperature
[]
[]
[BCs]
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
[Controls]
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
[produce_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::produce_heat BCs::produce_fluid'
conditional_function = produce
implicit = false
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[insitu_pressure]
type = ParsedFunction
expression = '(y - ${depth_centre}) * 1000 * ${gravity} + 1E5' # approx insitu pressure in Pa
[]
[insitu_temperature]
type = ParsedFunction
expression = '${temp0} + (${depth_centre} - y) * ${geothermal_gradient}'
[]
[inject]
type = ParsedFunction
expression = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
[produce]
type = ParsedFunction
expression = 'if(t >= ${start_production1} & t < ${end_production1}, 1,
if(t >= ${start_production2} & t < ${end_production2}, 1,
if(t >= ${start_production3} & t < ${end_production3}, 1,
if(t >= ${start_production4} & t < ${end_production4}, 1,
if(t >= ${start_production5} & t < ${end_production5}, 1,
if(t >= ${start_production6} & t < ${end_production6}, 1,
if(t >= ${start_production7} & t < ${end_production7}, 1,
if(t >= ${start_production8} & t < ${end_production8}, 1,
if(t >= ${start_production9} & t < ${end_production9}, 1,
if(t >= ${start_production10} & t < ${end_production10}, 1, 0))))))))))'
[]
[injection_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '-${inject_fluid_mass}/(true_screen_area * ${inject_time})'
[]
[production_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '${produce_fluid_mass}/(true_screen_area * ${produce_time})'
[]
[heat_out_in_timestep]
type = ParsedFunction
symbol_names = 'dt heat_out'
symbol_values = 'dt heat_out_fromBC'
expression = 'dt*heat_out'
[]
[produced_T_time_integrated]
type = ParsedFunction
symbol_names = 'dt produced_T'
symbol_values = 'dt produced_T'
expression = 'dt*produced_T / ${produce_time}'
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[heat_flux_out]
outputs = none
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_output_file = water97_tabulated_modified.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water97_tabulated_modified.csv
[]
[]
[Materials]
[porosity_aq]
type = PorousFlowPorosityConst
porosity = ${aq_porosity}
block = aquifer
[]
[porosity_caps]
type = PorousFlowPorosityConst
porosity = ${cap_porosity}
block = caps
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '${aq_hor_perm} 0 0 0 ${aq_ver_perm} 0 0 0 0'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '${cap_hor_perm} 0 0 0 ${cap_ver_perm} 0 0 0 0'
[]
[aq_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = aquifer
density = ${aq_density}
specific_heat_capacity = ${aq_specific_heat_cap}
[]
[caps_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = caps
density = ${cap_density}
specific_heat_capacity = ${cap_specific_heat_cap}
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = aquifer
dry_thermal_conductivity = '${aq_hor_dry_thermal_cond} 0 0 0 ${aq_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${aq_hor_wet_thermal_cond} 0 0 0 ${aq_ver_wet_thermal_cond} 0 0 0 0'
[]
[caps_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = caps
dry_thermal_conductivity = '${cap_hor_dry_thermal_cond} 0 0 0 ${cap_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${cap_hor_wet_thermal_cond} 0 0 0 ${cap_ver_wet_thermal_cond} 0 0 0 0'
[]
[]
[Postprocessors]
[true_screen_area] # this accounts for meshes that do not match screen_top and screen_bottom exactly
type = AreaPostprocessor
boundary = injection_area
execute_on = 'initial'
outputs = 'none'
[]
[dt]
type = TimestepSize
[]
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
[heat_out_per_timestep]
type = FunctionValuePostprocessor
function = heat_out_in_timestep
execute_on = 'timestep_end'
outputs = 'none'
[]
[heat_out_cumulative]
type = CumulativeValuePostprocessor
postprocessor = heat_out_per_timestep
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[produced_T]
type = SideAverageValue
boundary = injection_area
variable = temperature
execute_on = 'initial timestep_end'
outputs = 'csv console'
[]
[produced_T_time_integrated]
type = FunctionValuePostprocessor
function = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'none'
[]
[produced_T_cumulative]
type = CumulativeValuePostprocessor
postprocessor = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = ${end_simulation}
timestep_tolerance = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
growth_factor = 2
[]
dtmax = 1
dtmin = 1e-5
# rough calc for fluid, |R| ~ V*k*1E6 ~ V*1E-5
# rough calc for heat, |R| ~ V*(lam*1E-3 + h*1E-5) ~ V*(1E3 + 1E-2)
# so scale heat by 1E-7 and go for nl_abs_tol = 1E-4, which should give a max error of
# ~1Pa and ~0.1K in the first metre around the borehole
nl_abs_tol = 1E-4
nl_rel_tol = 1E-5
[]
[Outputs]
sync_times = ${synctimes}
[ex]
type = Exodus
time_step_interval = 20
[]
[csv]
type = CSV
execute_postprocessors_on = 'initial timestep_end'
[]
[]
(modules/porous_flow/examples/ates/ates.i)
# Simulation designed to assess the recovery efficiency of a single-well ATES system
# Using KT stabilisation
# Boundary conditions: fixed porepressure and temperature at top, bottom and far end of model.
#####################################
flux_limiter = minmod # minmod, vanleer, mc, superbee, none
# depth of top of aquifer (m)
depth = 400
inject_fluid_mass = 1E8 # kg
produce_fluid_mass = ${inject_fluid_mass} # kg
inject_temp = 90 # degC
inject_time = 91 # days
store_time = 91 # days
produce_time = 91 # days
rest_time = 91 # days
num_cycles = 5 # Currently needs to be <= 10
cycle_length = '${fparse inject_time + store_time + produce_time + rest_time}'
end_simulation = '${fparse cycle_length * num_cycles}'
# Note: I have setup 10 cycles but you can set num_cycles less than 10.
start_injection1 = 0
start_injection2 = ${cycle_length}
start_injection3 = '${fparse cycle_length * 2}'
start_injection4 = '${fparse cycle_length * 3}'
start_injection5 = '${fparse cycle_length * 4}'
start_injection6 = '${fparse cycle_length * 5}'
start_injection7 = '${fparse cycle_length * 6}'
start_injection8 = '${fparse cycle_length * 7}'
start_injection9 = '${fparse cycle_length * 8}'
start_injection10 = '${fparse cycle_length * 9}'
end_injection1 = '${fparse start_injection1 + inject_time}'
end_injection2 = '${fparse start_injection2 + inject_time}'
end_injection3 = '${fparse start_injection3 + inject_time}'
end_injection4 = '${fparse start_injection4 + inject_time}'
end_injection5 = '${fparse start_injection5 + inject_time}'
end_injection6 = '${fparse start_injection6 + inject_time}'
end_injection7 = '${fparse start_injection7 + inject_time}'
end_injection8 = '${fparse start_injection8 + inject_time}'
end_injection9 = '${fparse start_injection9 + inject_time}'
end_injection10 = '${fparse start_injection10 + inject_time}'
start_production1 = '${fparse end_injection1 + store_time}'
start_production2 = '${fparse end_injection2 + store_time}'
start_production3 = '${fparse end_injection3 + store_time}'
start_production4 = '${fparse end_injection4 + store_time}'
start_production5 = '${fparse end_injection5 + store_time}'
start_production6 = '${fparse end_injection6 + store_time}'
start_production7 = '${fparse end_injection7 + store_time}'
start_production8 = '${fparse end_injection8 + store_time}'
start_production9 = '${fparse end_injection9 + store_time}'
start_production10 = '${fparse end_injection10 + store_time}'
end_production1 = '${fparse start_production1 + produce_time}'
end_production2 = '${fparse start_production2 + produce_time}'
end_production3 = '${fparse start_production3 + produce_time}'
end_production4 = '${fparse start_production4 + produce_time}'
end_production5 = '${fparse start_production5 + produce_time}'
end_production6 = '${fparse start_production6 + produce_time}'
end_production7 = '${fparse start_production7 + produce_time}'
end_production8 = '${fparse start_production8 + produce_time}'
end_production9 = '${fparse start_production9 + produce_time}'
end_production10 = '${fparse start_production10 + produce_time}'
synctimes = '${start_injection1} ${end_injection1} ${start_production1} ${end_production1}
${start_injection2} ${end_injection2} ${start_production2} ${end_production2}
${start_injection3} ${end_injection3} ${start_production3} ${end_production3}
${start_injection4} ${end_injection4} ${start_production4} ${end_production4}
${start_injection5} ${end_injection5} ${start_production5} ${end_production5}
${start_injection6} ${end_injection6} ${start_production6} ${end_production6}
${start_injection7} ${end_injection7} ${start_production7} ${end_production7}
${start_injection8} ${end_injection8} ${start_production8} ${end_production8}
${start_injection9} ${end_injection9} ${start_production9} ${end_production9}
${start_injection10} ${end_injection10} ${start_production10} ${end_production10}'
#####################################
# Geometry in RZ coordinates
# borehole radius (m)
bh_r = 0.1
# model radius (m)
max_r = 1000
# aquifer thickness (m)
aq_thickness = 20
# cap thickness (m)
cap_thickness = 40
# injection region top and bottom (m). Note, the mesh is created with the aquifer in y = (-0.5 * aq_thickness, 0.5 * aq_thickness), irrespective of depth (depth only sets the insitu porepressure and temperature)
screen_top = '${fparse 0.5 * aq_thickness}'
screen_bottom = '${fparse -0.5 * aq_thickness}'
# number of elements in radial direction
num_r = 25
# number of elements across half height of aquifer
num_y_aq = 10
# number of elements across height of cap
num_y_cap = 8
# mesh bias in radial direction
bias_r = 1.22
# mesh bias in vertical direction in aquifer top
bias_y_aq_top = 0.9
# mesh bias in vertical direction in cap top
bias_y_cap_top = 1.3
# mesh bias in vertical direction in aquifer bottom
bias_y_aq_bottom = '${fparse 1.0 / bias_y_aq_top}'
# mesh bias in vertical direction in cap bottom
bias_y_cap_bottom = '${fparse 1.0 / bias_y_cap_top}'
depth_centre = '${fparse depth + aq_thickness/2}'
#####################################
# temperature at ground surface (degC)
temp0 = 20
# Vertical geothermal gradient (K/m). A positive number means temperature increases downwards.
geothermal_gradient = 20E-3
#####################################
# Gravity
gravity = -9.81
#####################################
half_aq_thickness = '${fparse aq_thickness * 0.5}'
half_height = '${fparse half_aq_thickness + cap_thickness}'
approx_screen_length = '${fparse screen_top - screen_bottom}'
# Thermal radius (note this is not strictly correct, it should use the bulk specific heat
# capacity as defined below, but it doesn't matter here because this is purely for
# defining the region of refined mesh)
th_r = '${fparse sqrt(inject_fluid_mass / 1000 * 4.12e6 / (approx_screen_length * 3.1416 * aq_specific_heat_cap * aq_density))}'
# radius of fine mesh
fine_r = '${fparse th_r * 2}'
bias_r_fine = 1
num_r_fine = '${fparse int(fine_r/1)}'
######################################
# aquifer properties
aq_porosity = 0.25
aq_hor_perm = 1E-11 # m^2
aq_ver_perm = 2E-12 # m^2
aq_density = 2650 # kg/m^3
aq_specific_heat_cap = 800 # J/Kg/K
aq_hor_thermal_cond = 3 # W/m/K
aq_ver_thermal_cond = 3 # W/m/K
aq_disp_parallel = 0 # m
aq_disp_perp = 0 # m
# Bulk volumetric heat capacity of aquifer:
aq_vol_cp = '${fparse aq_specific_heat_cap * aq_density * (1 - aq_porosity) + 4180 * 1000 * aq_porosity}'
# Thermal radius (correct version using bulk cp):
R_th = '${fparse sqrt(inject_fluid_mass * 4180 / (approx_screen_length * 3.1416 * aq_vol_cp))}'
aq_lambda_eff_hor = '${fparse aq_hor_thermal_cond + 0.3 * aq_disp_parallel * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_lambda_eff_ver = '${fparse aq_ver_thermal_cond + 0.3 * aq_disp_perp * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_hor_dry_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_dry_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
aq_hor_wet_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_wet_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
# cap-rock properties
cap_porosity = 0.25
cap_hor_perm = 1E-16 # m^2
cap_ver_perm = 1E-17 # m^2
cap_density = 2650 # kg/m^3
cap_specific_heat_cap = 800 # J/kg/K
cap_hor_thermal_cond = 3 # W/m/K
cap_ver_thermal_cond = 3 # W/m/K
cap_hor_dry_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_dry_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_hor_wet_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_wet_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
######################################
[Mesh]
coord_type = RZ
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = false
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomains = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
[Variables]
[porepressure]
[]
[temperature]
scaling = 1E-5
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = insitu_pressure
[]
[temperature]
type = FunctionIC
variable = temperature
function = insitu_temperature
[]
[]
[BCs]
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
[Controls]
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
[produce_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::produce_heat BCs::produce_fluid'
conditional_function = produce
implicit = false
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[insitu_pressure]
type = ParsedFunction
expression = '(y - ${depth_centre}) * 1000 * ${gravity} + 1E5' # approx insitu pressure in Pa
[]
[insitu_temperature]
type = ParsedFunction
expression = '${temp0} + (${depth_centre} - y) * ${geothermal_gradient}'
[]
[inject]
type = ParsedFunction
expression = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
[produce]
type = ParsedFunction
expression = 'if(t >= ${start_production1} & t < ${end_production1}, 1,
if(t >= ${start_production2} & t < ${end_production2}, 1,
if(t >= ${start_production3} & t < ${end_production3}, 1,
if(t >= ${start_production4} & t < ${end_production4}, 1,
if(t >= ${start_production5} & t < ${end_production5}, 1,
if(t >= ${start_production6} & t < ${end_production6}, 1,
if(t >= ${start_production7} & t < ${end_production7}, 1,
if(t >= ${start_production8} & t < ${end_production8}, 1,
if(t >= ${start_production9} & t < ${end_production9}, 1,
if(t >= ${start_production10} & t < ${end_production10}, 1, 0))))))))))'
[]
[injection_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '-${inject_fluid_mass}/(true_screen_area * ${inject_time})'
[]
[production_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '${produce_fluid_mass}/(true_screen_area * ${produce_time})'
[]
[heat_out_in_timestep]
type = ParsedFunction
symbol_names = 'dt heat_out'
symbol_values = 'dt heat_out_fromBC'
expression = 'dt*heat_out'
[]
[produced_T_time_integrated]
type = ParsedFunction
symbol_names = 'dt produced_T'
symbol_values = 'dt produced_T'
expression = 'dt*produced_T / ${produce_time}'
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[heat_flux_out]
outputs = none
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_output_file = water97_tabulated_modified.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water97_tabulated_modified.csv
[]
[]
[Materials]
[porosity_aq]
type = PorousFlowPorosityConst
porosity = ${aq_porosity}
block = aquifer
[]
[porosity_caps]
type = PorousFlowPorosityConst
porosity = ${cap_porosity}
block = caps
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '${aq_hor_perm} 0 0 0 ${aq_ver_perm} 0 0 0 0'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '${cap_hor_perm} 0 0 0 ${cap_ver_perm} 0 0 0 0'
[]
[aq_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = aquifer
density = ${aq_density}
specific_heat_capacity = ${aq_specific_heat_cap}
[]
[caps_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = caps
density = ${cap_density}
specific_heat_capacity = ${cap_specific_heat_cap}
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = aquifer
dry_thermal_conductivity = '${aq_hor_dry_thermal_cond} 0 0 0 ${aq_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${aq_hor_wet_thermal_cond} 0 0 0 ${aq_ver_wet_thermal_cond} 0 0 0 0'
[]
[caps_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = caps
dry_thermal_conductivity = '${cap_hor_dry_thermal_cond} 0 0 0 ${cap_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${cap_hor_wet_thermal_cond} 0 0 0 ${cap_ver_wet_thermal_cond} 0 0 0 0'
[]
[]
[Postprocessors]
[true_screen_area] # this accounts for meshes that do not match screen_top and screen_bottom exactly
type = AreaPostprocessor
boundary = injection_area
execute_on = 'initial'
outputs = 'none'
[]
[dt]
type = TimestepSize
[]
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
[heat_out_per_timestep]
type = FunctionValuePostprocessor
function = heat_out_in_timestep
execute_on = 'timestep_end'
outputs = 'none'
[]
[heat_out_cumulative]
type = CumulativeValuePostprocessor
postprocessor = heat_out_per_timestep
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[produced_T]
type = SideAverageValue
boundary = injection_area
variable = temperature
execute_on = 'initial timestep_end'
outputs = 'csv console'
[]
[produced_T_time_integrated]
type = FunctionValuePostprocessor
function = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'none'
[]
[produced_T_cumulative]
type = CumulativeValuePostprocessor
postprocessor = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = ${end_simulation}
timestep_tolerance = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
growth_factor = 2
[]
dtmax = 1
dtmin = 1e-5
# rough calc for fluid, |R| ~ V*k*1E6 ~ V*1E-5
# rough calc for heat, |R| ~ V*(lam*1E-3 + h*1E-5) ~ V*(1E3 + 1E-2)
# so scale heat by 1E-7 and go for nl_abs_tol = 1E-4, which should give a max error of
# ~1Pa and ~0.1K in the first metre around the borehole
nl_abs_tol = 1E-4
nl_rel_tol = 1E-5
[]
[Outputs]
sync_times = ${synctimes}
[ex]
type = Exodus
time_step_interval = 20
[]
[csv]
type = CSV
execute_postprocessors_on = 'initial timestep_end'
[]
[]
(modules/porous_flow/examples/ates/ates.i)
# Simulation designed to assess the recovery efficiency of a single-well ATES system
# Using KT stabilisation
# Boundary conditions: fixed porepressure and temperature at top, bottom and far end of model.
#####################################
flux_limiter = minmod # minmod, vanleer, mc, superbee, none
# depth of top of aquifer (m)
depth = 400
inject_fluid_mass = 1E8 # kg
produce_fluid_mass = ${inject_fluid_mass} # kg
inject_temp = 90 # degC
inject_time = 91 # days
store_time = 91 # days
produce_time = 91 # days
rest_time = 91 # days
num_cycles = 5 # Currently needs to be <= 10
cycle_length = '${fparse inject_time + store_time + produce_time + rest_time}'
end_simulation = '${fparse cycle_length * num_cycles}'
# Note: I have setup 10 cycles but you can set num_cycles less than 10.
start_injection1 = 0
start_injection2 = ${cycle_length}
start_injection3 = '${fparse cycle_length * 2}'
start_injection4 = '${fparse cycle_length * 3}'
start_injection5 = '${fparse cycle_length * 4}'
start_injection6 = '${fparse cycle_length * 5}'
start_injection7 = '${fparse cycle_length * 6}'
start_injection8 = '${fparse cycle_length * 7}'
start_injection9 = '${fparse cycle_length * 8}'
start_injection10 = '${fparse cycle_length * 9}'
end_injection1 = '${fparse start_injection1 + inject_time}'
end_injection2 = '${fparse start_injection2 + inject_time}'
end_injection3 = '${fparse start_injection3 + inject_time}'
end_injection4 = '${fparse start_injection4 + inject_time}'
end_injection5 = '${fparse start_injection5 + inject_time}'
end_injection6 = '${fparse start_injection6 + inject_time}'
end_injection7 = '${fparse start_injection7 + inject_time}'
end_injection8 = '${fparse start_injection8 + inject_time}'
end_injection9 = '${fparse start_injection9 + inject_time}'
end_injection10 = '${fparse start_injection10 + inject_time}'
start_production1 = '${fparse end_injection1 + store_time}'
start_production2 = '${fparse end_injection2 + store_time}'
start_production3 = '${fparse end_injection3 + store_time}'
start_production4 = '${fparse end_injection4 + store_time}'
start_production5 = '${fparse end_injection5 + store_time}'
start_production6 = '${fparse end_injection6 + store_time}'
start_production7 = '${fparse end_injection7 + store_time}'
start_production8 = '${fparse end_injection8 + store_time}'
start_production9 = '${fparse end_injection9 + store_time}'
start_production10 = '${fparse end_injection10 + store_time}'
end_production1 = '${fparse start_production1 + produce_time}'
end_production2 = '${fparse start_production2 + produce_time}'
end_production3 = '${fparse start_production3 + produce_time}'
end_production4 = '${fparse start_production4 + produce_time}'
end_production5 = '${fparse start_production5 + produce_time}'
end_production6 = '${fparse start_production6 + produce_time}'
end_production7 = '${fparse start_production7 + produce_time}'
end_production8 = '${fparse start_production8 + produce_time}'
end_production9 = '${fparse start_production9 + produce_time}'
end_production10 = '${fparse start_production10 + produce_time}'
synctimes = '${start_injection1} ${end_injection1} ${start_production1} ${end_production1}
${start_injection2} ${end_injection2} ${start_production2} ${end_production2}
${start_injection3} ${end_injection3} ${start_production3} ${end_production3}
${start_injection4} ${end_injection4} ${start_production4} ${end_production4}
${start_injection5} ${end_injection5} ${start_production5} ${end_production5}
${start_injection6} ${end_injection6} ${start_production6} ${end_production6}
${start_injection7} ${end_injection7} ${start_production7} ${end_production7}
${start_injection8} ${end_injection8} ${start_production8} ${end_production8}
${start_injection9} ${end_injection9} ${start_production9} ${end_production9}
${start_injection10} ${end_injection10} ${start_production10} ${end_production10}'
#####################################
# Geometry in RZ coordinates
# borehole radius (m)
bh_r = 0.1
# model radius (m)
max_r = 1000
# aquifer thickness (m)
aq_thickness = 20
# cap thickness (m)
cap_thickness = 40
# injection region top and bottom (m). Note, the mesh is created with the aquifer in y = (-0.5 * aq_thickness, 0.5 * aq_thickness), irrespective of depth (depth only sets the insitu porepressure and temperature)
screen_top = '${fparse 0.5 * aq_thickness}'
screen_bottom = '${fparse -0.5 * aq_thickness}'
# number of elements in radial direction
num_r = 25
# number of elements across half height of aquifer
num_y_aq = 10
# number of elements across height of cap
num_y_cap = 8
# mesh bias in radial direction
bias_r = 1.22
# mesh bias in vertical direction in aquifer top
bias_y_aq_top = 0.9
# mesh bias in vertical direction in cap top
bias_y_cap_top = 1.3
# mesh bias in vertical direction in aquifer bottom
bias_y_aq_bottom = '${fparse 1.0 / bias_y_aq_top}'
# mesh bias in vertical direction in cap bottom
bias_y_cap_bottom = '${fparse 1.0 / bias_y_cap_top}'
depth_centre = '${fparse depth + aq_thickness/2}'
#####################################
# temperature at ground surface (degC)
temp0 = 20
# Vertical geothermal gradient (K/m). A positive number means temperature increases downwards.
geothermal_gradient = 20E-3
#####################################
# Gravity
gravity = -9.81
#####################################
half_aq_thickness = '${fparse aq_thickness * 0.5}'
half_height = '${fparse half_aq_thickness + cap_thickness}'
approx_screen_length = '${fparse screen_top - screen_bottom}'
# Thermal radius (note this is not strictly correct, it should use the bulk specific heat
# capacity as defined below, but it doesn't matter here because this is purely for
# defining the region of refined mesh)
th_r = '${fparse sqrt(inject_fluid_mass / 1000 * 4.12e6 / (approx_screen_length * 3.1416 * aq_specific_heat_cap * aq_density))}'
# radius of fine mesh
fine_r = '${fparse th_r * 2}'
bias_r_fine = 1
num_r_fine = '${fparse int(fine_r/1)}'
######################################
# aquifer properties
aq_porosity = 0.25
aq_hor_perm = 1E-11 # m^2
aq_ver_perm = 2E-12 # m^2
aq_density = 2650 # kg/m^3
aq_specific_heat_cap = 800 # J/Kg/K
aq_hor_thermal_cond = 3 # W/m/K
aq_ver_thermal_cond = 3 # W/m/K
aq_disp_parallel = 0 # m
aq_disp_perp = 0 # m
# Bulk volumetric heat capacity of aquifer:
aq_vol_cp = '${fparse aq_specific_heat_cap * aq_density * (1 - aq_porosity) + 4180 * 1000 * aq_porosity}'
# Thermal radius (correct version using bulk cp):
R_th = '${fparse sqrt(inject_fluid_mass * 4180 / (approx_screen_length * 3.1416 * aq_vol_cp))}'
aq_lambda_eff_hor = '${fparse aq_hor_thermal_cond + 0.3 * aq_disp_parallel * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_lambda_eff_ver = '${fparse aq_ver_thermal_cond + 0.3 * aq_disp_perp * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_hor_dry_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_dry_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
aq_hor_wet_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_wet_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
# cap-rock properties
cap_porosity = 0.25
cap_hor_perm = 1E-16 # m^2
cap_ver_perm = 1E-17 # m^2
cap_density = 2650 # kg/m^3
cap_specific_heat_cap = 800 # J/kg/K
cap_hor_thermal_cond = 3 # W/m/K
cap_ver_thermal_cond = 3 # W/m/K
cap_hor_dry_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_dry_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_hor_wet_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_wet_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
######################################
[Mesh]
coord_type = RZ
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = false
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomains = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
[Variables]
[porepressure]
[]
[temperature]
scaling = 1E-5
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = insitu_pressure
[]
[temperature]
type = FunctionIC
variable = temperature
function = insitu_temperature
[]
[]
[BCs]
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
[Controls]
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
[produce_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::produce_heat BCs::produce_fluid'
conditional_function = produce
implicit = false
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[insitu_pressure]
type = ParsedFunction
expression = '(y - ${depth_centre}) * 1000 * ${gravity} + 1E5' # approx insitu pressure in Pa
[]
[insitu_temperature]
type = ParsedFunction
expression = '${temp0} + (${depth_centre} - y) * ${geothermal_gradient}'
[]
[inject]
type = ParsedFunction
expression = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
[produce]
type = ParsedFunction
expression = 'if(t >= ${start_production1} & t < ${end_production1}, 1,
if(t >= ${start_production2} & t < ${end_production2}, 1,
if(t >= ${start_production3} & t < ${end_production3}, 1,
if(t >= ${start_production4} & t < ${end_production4}, 1,
if(t >= ${start_production5} & t < ${end_production5}, 1,
if(t >= ${start_production6} & t < ${end_production6}, 1,
if(t >= ${start_production7} & t < ${end_production7}, 1,
if(t >= ${start_production8} & t < ${end_production8}, 1,
if(t >= ${start_production9} & t < ${end_production9}, 1,
if(t >= ${start_production10} & t < ${end_production10}, 1, 0))))))))))'
[]
[injection_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '-${inject_fluid_mass}/(true_screen_area * ${inject_time})'
[]
[production_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '${produce_fluid_mass}/(true_screen_area * ${produce_time})'
[]
[heat_out_in_timestep]
type = ParsedFunction
symbol_names = 'dt heat_out'
symbol_values = 'dt heat_out_fromBC'
expression = 'dt*heat_out'
[]
[produced_T_time_integrated]
type = ParsedFunction
symbol_names = 'dt produced_T'
symbol_values = 'dt produced_T'
expression = 'dt*produced_T / ${produce_time}'
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[heat_flux_out]
outputs = none
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_output_file = water97_tabulated_modified.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water97_tabulated_modified.csv
[]
[]
[Materials]
[porosity_aq]
type = PorousFlowPorosityConst
porosity = ${aq_porosity}
block = aquifer
[]
[porosity_caps]
type = PorousFlowPorosityConst
porosity = ${cap_porosity}
block = caps
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '${aq_hor_perm} 0 0 0 ${aq_ver_perm} 0 0 0 0'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '${cap_hor_perm} 0 0 0 ${cap_ver_perm} 0 0 0 0'
[]
[aq_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = aquifer
density = ${aq_density}
specific_heat_capacity = ${aq_specific_heat_cap}
[]
[caps_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = caps
density = ${cap_density}
specific_heat_capacity = ${cap_specific_heat_cap}
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = aquifer
dry_thermal_conductivity = '${aq_hor_dry_thermal_cond} 0 0 0 ${aq_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${aq_hor_wet_thermal_cond} 0 0 0 ${aq_ver_wet_thermal_cond} 0 0 0 0'
[]
[caps_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = caps
dry_thermal_conductivity = '${cap_hor_dry_thermal_cond} 0 0 0 ${cap_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${cap_hor_wet_thermal_cond} 0 0 0 ${cap_ver_wet_thermal_cond} 0 0 0 0'
[]
[]
[Postprocessors]
[true_screen_area] # this accounts for meshes that do not match screen_top and screen_bottom exactly
type = AreaPostprocessor
boundary = injection_area
execute_on = 'initial'
outputs = 'none'
[]
[dt]
type = TimestepSize
[]
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
[heat_out_per_timestep]
type = FunctionValuePostprocessor
function = heat_out_in_timestep
execute_on = 'timestep_end'
outputs = 'none'
[]
[heat_out_cumulative]
type = CumulativeValuePostprocessor
postprocessor = heat_out_per_timestep
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[produced_T]
type = SideAverageValue
boundary = injection_area
variable = temperature
execute_on = 'initial timestep_end'
outputs = 'csv console'
[]
[produced_T_time_integrated]
type = FunctionValuePostprocessor
function = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'none'
[]
[produced_T_cumulative]
type = CumulativeValuePostprocessor
postprocessor = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = ${end_simulation}
timestep_tolerance = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
growth_factor = 2
[]
dtmax = 1
dtmin = 1e-5
# rough calc for fluid, |R| ~ V*k*1E6 ~ V*1E-5
# rough calc for heat, |R| ~ V*(lam*1E-3 + h*1E-5) ~ V*(1E3 + 1E-2)
# so scale heat by 1E-7 and go for nl_abs_tol = 1E-4, which should give a max error of
# ~1Pa and ~0.1K in the first metre around the borehole
nl_abs_tol = 1E-4
nl_rel_tol = 1E-5
[]
[Outputs]
sync_times = ${synctimes}
[ex]
type = Exodus
time_step_interval = 20
[]
[csv]
type = CSV
execute_postprocessors_on = 'initial timestep_end'
[]
[]
(modules/porous_flow/examples/ates/ates.i)
# Simulation designed to assess the recovery efficiency of a single-well ATES system
# Using KT stabilisation
# Boundary conditions: fixed porepressure and temperature at top, bottom and far end of model.
#####################################
flux_limiter = minmod # minmod, vanleer, mc, superbee, none
# depth of top of aquifer (m)
depth = 400
inject_fluid_mass = 1E8 # kg
produce_fluid_mass = ${inject_fluid_mass} # kg
inject_temp = 90 # degC
inject_time = 91 # days
store_time = 91 # days
produce_time = 91 # days
rest_time = 91 # days
num_cycles = 5 # Currently needs to be <= 10
cycle_length = '${fparse inject_time + store_time + produce_time + rest_time}'
end_simulation = '${fparse cycle_length * num_cycles}'
# Note: I have setup 10 cycles but you can set num_cycles less than 10.
start_injection1 = 0
start_injection2 = ${cycle_length}
start_injection3 = '${fparse cycle_length * 2}'
start_injection4 = '${fparse cycle_length * 3}'
start_injection5 = '${fparse cycle_length * 4}'
start_injection6 = '${fparse cycle_length * 5}'
start_injection7 = '${fparse cycle_length * 6}'
start_injection8 = '${fparse cycle_length * 7}'
start_injection9 = '${fparse cycle_length * 8}'
start_injection10 = '${fparse cycle_length * 9}'
end_injection1 = '${fparse start_injection1 + inject_time}'
end_injection2 = '${fparse start_injection2 + inject_time}'
end_injection3 = '${fparse start_injection3 + inject_time}'
end_injection4 = '${fparse start_injection4 + inject_time}'
end_injection5 = '${fparse start_injection5 + inject_time}'
end_injection6 = '${fparse start_injection6 + inject_time}'
end_injection7 = '${fparse start_injection7 + inject_time}'
end_injection8 = '${fparse start_injection8 + inject_time}'
end_injection9 = '${fparse start_injection9 + inject_time}'
end_injection10 = '${fparse start_injection10 + inject_time}'
start_production1 = '${fparse end_injection1 + store_time}'
start_production2 = '${fparse end_injection2 + store_time}'
start_production3 = '${fparse end_injection3 + store_time}'
start_production4 = '${fparse end_injection4 + store_time}'
start_production5 = '${fparse end_injection5 + store_time}'
start_production6 = '${fparse end_injection6 + store_time}'
start_production7 = '${fparse end_injection7 + store_time}'
start_production8 = '${fparse end_injection8 + store_time}'
start_production9 = '${fparse end_injection9 + store_time}'
start_production10 = '${fparse end_injection10 + store_time}'
end_production1 = '${fparse start_production1 + produce_time}'
end_production2 = '${fparse start_production2 + produce_time}'
end_production3 = '${fparse start_production3 + produce_time}'
end_production4 = '${fparse start_production4 + produce_time}'
end_production5 = '${fparse start_production5 + produce_time}'
end_production6 = '${fparse start_production6 + produce_time}'
end_production7 = '${fparse start_production7 + produce_time}'
end_production8 = '${fparse start_production8 + produce_time}'
end_production9 = '${fparse start_production9 + produce_time}'
end_production10 = '${fparse start_production10 + produce_time}'
synctimes = '${start_injection1} ${end_injection1} ${start_production1} ${end_production1}
${start_injection2} ${end_injection2} ${start_production2} ${end_production2}
${start_injection3} ${end_injection3} ${start_production3} ${end_production3}
${start_injection4} ${end_injection4} ${start_production4} ${end_production4}
${start_injection5} ${end_injection5} ${start_production5} ${end_production5}
${start_injection6} ${end_injection6} ${start_production6} ${end_production6}
${start_injection7} ${end_injection7} ${start_production7} ${end_production7}
${start_injection8} ${end_injection8} ${start_production8} ${end_production8}
${start_injection9} ${end_injection9} ${start_production9} ${end_production9}
${start_injection10} ${end_injection10} ${start_production10} ${end_production10}'
#####################################
# Geometry in RZ coordinates
# borehole radius (m)
bh_r = 0.1
# model radius (m)
max_r = 1000
# aquifer thickness (m)
aq_thickness = 20
# cap thickness (m)
cap_thickness = 40
# injection region top and bottom (m). Note, the mesh is created with the aquifer in y = (-0.5 * aq_thickness, 0.5 * aq_thickness), irrespective of depth (depth only sets the insitu porepressure and temperature)
screen_top = '${fparse 0.5 * aq_thickness}'
screen_bottom = '${fparse -0.5 * aq_thickness}'
# number of elements in radial direction
num_r = 25
# number of elements across half height of aquifer
num_y_aq = 10
# number of elements across height of cap
num_y_cap = 8
# mesh bias in radial direction
bias_r = 1.22
# mesh bias in vertical direction in aquifer top
bias_y_aq_top = 0.9
# mesh bias in vertical direction in cap top
bias_y_cap_top = 1.3
# mesh bias in vertical direction in aquifer bottom
bias_y_aq_bottom = '${fparse 1.0 / bias_y_aq_top}'
# mesh bias in vertical direction in cap bottom
bias_y_cap_bottom = '${fparse 1.0 / bias_y_cap_top}'
depth_centre = '${fparse depth + aq_thickness/2}'
#####################################
# temperature at ground surface (degC)
temp0 = 20
# Vertical geothermal gradient (K/m). A positive number means temperature increases downwards.
geothermal_gradient = 20E-3
#####################################
# Gravity
gravity = -9.81
#####################################
half_aq_thickness = '${fparse aq_thickness * 0.5}'
half_height = '${fparse half_aq_thickness + cap_thickness}'
approx_screen_length = '${fparse screen_top - screen_bottom}'
# Thermal radius (note this is not strictly correct, it should use the bulk specific heat
# capacity as defined below, but it doesn't matter here because this is purely for
# defining the region of refined mesh)
th_r = '${fparse sqrt(inject_fluid_mass / 1000 * 4.12e6 / (approx_screen_length * 3.1416 * aq_specific_heat_cap * aq_density))}'
# radius of fine mesh
fine_r = '${fparse th_r * 2}'
bias_r_fine = 1
num_r_fine = '${fparse int(fine_r/1)}'
######################################
# aquifer properties
aq_porosity = 0.25
aq_hor_perm = 1E-11 # m^2
aq_ver_perm = 2E-12 # m^2
aq_density = 2650 # kg/m^3
aq_specific_heat_cap = 800 # J/Kg/K
aq_hor_thermal_cond = 3 # W/m/K
aq_ver_thermal_cond = 3 # W/m/K
aq_disp_parallel = 0 # m
aq_disp_perp = 0 # m
# Bulk volumetric heat capacity of aquifer:
aq_vol_cp = '${fparse aq_specific_heat_cap * aq_density * (1 - aq_porosity) + 4180 * 1000 * aq_porosity}'
# Thermal radius (correct version using bulk cp):
R_th = '${fparse sqrt(inject_fluid_mass * 4180 / (approx_screen_length * 3.1416 * aq_vol_cp))}'
aq_lambda_eff_hor = '${fparse aq_hor_thermal_cond + 0.3 * aq_disp_parallel * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_lambda_eff_ver = '${fparse aq_ver_thermal_cond + 0.3 * aq_disp_perp * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_hor_dry_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_dry_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
aq_hor_wet_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_wet_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
# cap-rock properties
cap_porosity = 0.25
cap_hor_perm = 1E-16 # m^2
cap_ver_perm = 1E-17 # m^2
cap_density = 2650 # kg/m^3
cap_specific_heat_cap = 800 # J/kg/K
cap_hor_thermal_cond = 3 # W/m/K
cap_ver_thermal_cond = 3 # W/m/K
cap_hor_dry_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_dry_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_hor_wet_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_wet_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
######################################
[Mesh]
coord_type = RZ
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = false
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomains = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
[Variables]
[porepressure]
[]
[temperature]
scaling = 1E-5
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = insitu_pressure
[]
[temperature]
type = FunctionIC
variable = temperature
function = insitu_temperature
[]
[]
[BCs]
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
[Controls]
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
[produce_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::produce_heat BCs::produce_fluid'
conditional_function = produce
implicit = false
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[insitu_pressure]
type = ParsedFunction
expression = '(y - ${depth_centre}) * 1000 * ${gravity} + 1E5' # approx insitu pressure in Pa
[]
[insitu_temperature]
type = ParsedFunction
expression = '${temp0} + (${depth_centre} - y) * ${geothermal_gradient}'
[]
[inject]
type = ParsedFunction
expression = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
[produce]
type = ParsedFunction
expression = 'if(t >= ${start_production1} & t < ${end_production1}, 1,
if(t >= ${start_production2} & t < ${end_production2}, 1,
if(t >= ${start_production3} & t < ${end_production3}, 1,
if(t >= ${start_production4} & t < ${end_production4}, 1,
if(t >= ${start_production5} & t < ${end_production5}, 1,
if(t >= ${start_production6} & t < ${end_production6}, 1,
if(t >= ${start_production7} & t < ${end_production7}, 1,
if(t >= ${start_production8} & t < ${end_production8}, 1,
if(t >= ${start_production9} & t < ${end_production9}, 1,
if(t >= ${start_production10} & t < ${end_production10}, 1, 0))))))))))'
[]
[injection_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '-${inject_fluid_mass}/(true_screen_area * ${inject_time})'
[]
[production_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '${produce_fluid_mass}/(true_screen_area * ${produce_time})'
[]
[heat_out_in_timestep]
type = ParsedFunction
symbol_names = 'dt heat_out'
symbol_values = 'dt heat_out_fromBC'
expression = 'dt*heat_out'
[]
[produced_T_time_integrated]
type = ParsedFunction
symbol_names = 'dt produced_T'
symbol_values = 'dt produced_T'
expression = 'dt*produced_T / ${produce_time}'
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[heat_flux_out]
outputs = none
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_output_file = water97_tabulated_modified.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water97_tabulated_modified.csv
[]
[]
[Materials]
[porosity_aq]
type = PorousFlowPorosityConst
porosity = ${aq_porosity}
block = aquifer
[]
[porosity_caps]
type = PorousFlowPorosityConst
porosity = ${cap_porosity}
block = caps
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '${aq_hor_perm} 0 0 0 ${aq_ver_perm} 0 0 0 0'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '${cap_hor_perm} 0 0 0 ${cap_ver_perm} 0 0 0 0'
[]
[aq_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = aquifer
density = ${aq_density}
specific_heat_capacity = ${aq_specific_heat_cap}
[]
[caps_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = caps
density = ${cap_density}
specific_heat_capacity = ${cap_specific_heat_cap}
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = aquifer
dry_thermal_conductivity = '${aq_hor_dry_thermal_cond} 0 0 0 ${aq_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${aq_hor_wet_thermal_cond} 0 0 0 ${aq_ver_wet_thermal_cond} 0 0 0 0'
[]
[caps_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = caps
dry_thermal_conductivity = '${cap_hor_dry_thermal_cond} 0 0 0 ${cap_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${cap_hor_wet_thermal_cond} 0 0 0 ${cap_ver_wet_thermal_cond} 0 0 0 0'
[]
[]
[Postprocessors]
[true_screen_area] # this accounts for meshes that do not match screen_top and screen_bottom exactly
type = AreaPostprocessor
boundary = injection_area
execute_on = 'initial'
outputs = 'none'
[]
[dt]
type = TimestepSize
[]
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
[heat_out_per_timestep]
type = FunctionValuePostprocessor
function = heat_out_in_timestep
execute_on = 'timestep_end'
outputs = 'none'
[]
[heat_out_cumulative]
type = CumulativeValuePostprocessor
postprocessor = heat_out_per_timestep
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[produced_T]
type = SideAverageValue
boundary = injection_area
variable = temperature
execute_on = 'initial timestep_end'
outputs = 'csv console'
[]
[produced_T_time_integrated]
type = FunctionValuePostprocessor
function = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'none'
[]
[produced_T_cumulative]
type = CumulativeValuePostprocessor
postprocessor = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = ${end_simulation}
timestep_tolerance = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
growth_factor = 2
[]
dtmax = 1
dtmin = 1e-5
# rough calc for fluid, |R| ~ V*k*1E6 ~ V*1E-5
# rough calc for heat, |R| ~ V*(lam*1E-3 + h*1E-5) ~ V*(1E3 + 1E-2)
# so scale heat by 1E-7 and go for nl_abs_tol = 1E-4, which should give a max error of
# ~1Pa and ~0.1K in the first metre around the borehole
nl_abs_tol = 1E-4
nl_rel_tol = 1E-5
[]
[Outputs]
sync_times = ${synctimes}
[ex]
type = Exodus
time_step_interval = 20
[]
[csv]
type = CSV
execute_postprocessors_on = 'initial timestep_end'
[]
[]
(modules/porous_flow/examples/ates/ates.i)
# Simulation designed to assess the recovery efficiency of a single-well ATES system
# Using KT stabilisation
# Boundary conditions: fixed porepressure and temperature at top, bottom and far end of model.
#####################################
flux_limiter = minmod # minmod, vanleer, mc, superbee, none
# depth of top of aquifer (m)
depth = 400
inject_fluid_mass = 1E8 # kg
produce_fluid_mass = ${inject_fluid_mass} # kg
inject_temp = 90 # degC
inject_time = 91 # days
store_time = 91 # days
produce_time = 91 # days
rest_time = 91 # days
num_cycles = 5 # Currently needs to be <= 10
cycle_length = '${fparse inject_time + store_time + produce_time + rest_time}'
end_simulation = '${fparse cycle_length * num_cycles}'
# Note: I have setup 10 cycles but you can set num_cycles less than 10.
start_injection1 = 0
start_injection2 = ${cycle_length}
start_injection3 = '${fparse cycle_length * 2}'
start_injection4 = '${fparse cycle_length * 3}'
start_injection5 = '${fparse cycle_length * 4}'
start_injection6 = '${fparse cycle_length * 5}'
start_injection7 = '${fparse cycle_length * 6}'
start_injection8 = '${fparse cycle_length * 7}'
start_injection9 = '${fparse cycle_length * 8}'
start_injection10 = '${fparse cycle_length * 9}'
end_injection1 = '${fparse start_injection1 + inject_time}'
end_injection2 = '${fparse start_injection2 + inject_time}'
end_injection3 = '${fparse start_injection3 + inject_time}'
end_injection4 = '${fparse start_injection4 + inject_time}'
end_injection5 = '${fparse start_injection5 + inject_time}'
end_injection6 = '${fparse start_injection6 + inject_time}'
end_injection7 = '${fparse start_injection7 + inject_time}'
end_injection8 = '${fparse start_injection8 + inject_time}'
end_injection9 = '${fparse start_injection9 + inject_time}'
end_injection10 = '${fparse start_injection10 + inject_time}'
start_production1 = '${fparse end_injection1 + store_time}'
start_production2 = '${fparse end_injection2 + store_time}'
start_production3 = '${fparse end_injection3 + store_time}'
start_production4 = '${fparse end_injection4 + store_time}'
start_production5 = '${fparse end_injection5 + store_time}'
start_production6 = '${fparse end_injection6 + store_time}'
start_production7 = '${fparse end_injection7 + store_time}'
start_production8 = '${fparse end_injection8 + store_time}'
start_production9 = '${fparse end_injection9 + store_time}'
start_production10 = '${fparse end_injection10 + store_time}'
end_production1 = '${fparse start_production1 + produce_time}'
end_production2 = '${fparse start_production2 + produce_time}'
end_production3 = '${fparse start_production3 + produce_time}'
end_production4 = '${fparse start_production4 + produce_time}'
end_production5 = '${fparse start_production5 + produce_time}'
end_production6 = '${fparse start_production6 + produce_time}'
end_production7 = '${fparse start_production7 + produce_time}'
end_production8 = '${fparse start_production8 + produce_time}'
end_production9 = '${fparse start_production9 + produce_time}'
end_production10 = '${fparse start_production10 + produce_time}'
synctimes = '${start_injection1} ${end_injection1} ${start_production1} ${end_production1}
${start_injection2} ${end_injection2} ${start_production2} ${end_production2}
${start_injection3} ${end_injection3} ${start_production3} ${end_production3}
${start_injection4} ${end_injection4} ${start_production4} ${end_production4}
${start_injection5} ${end_injection5} ${start_production5} ${end_production5}
${start_injection6} ${end_injection6} ${start_production6} ${end_production6}
${start_injection7} ${end_injection7} ${start_production7} ${end_production7}
${start_injection8} ${end_injection8} ${start_production8} ${end_production8}
${start_injection9} ${end_injection9} ${start_production9} ${end_production9}
${start_injection10} ${end_injection10} ${start_production10} ${end_production10}'
#####################################
# Geometry in RZ coordinates
# borehole radius (m)
bh_r = 0.1
# model radius (m)
max_r = 1000
# aquifer thickness (m)
aq_thickness = 20
# cap thickness (m)
cap_thickness = 40
# injection region top and bottom (m). Note, the mesh is created with the aquifer in y = (-0.5 * aq_thickness, 0.5 * aq_thickness), irrespective of depth (depth only sets the insitu porepressure and temperature)
screen_top = '${fparse 0.5 * aq_thickness}'
screen_bottom = '${fparse -0.5 * aq_thickness}'
# number of elements in radial direction
num_r = 25
# number of elements across half height of aquifer
num_y_aq = 10
# number of elements across height of cap
num_y_cap = 8
# mesh bias in radial direction
bias_r = 1.22
# mesh bias in vertical direction in aquifer top
bias_y_aq_top = 0.9
# mesh bias in vertical direction in cap top
bias_y_cap_top = 1.3
# mesh bias in vertical direction in aquifer bottom
bias_y_aq_bottom = '${fparse 1.0 / bias_y_aq_top}'
# mesh bias in vertical direction in cap bottom
bias_y_cap_bottom = '${fparse 1.0 / bias_y_cap_top}'
depth_centre = '${fparse depth + aq_thickness/2}'
#####################################
# temperature at ground surface (degC)
temp0 = 20
# Vertical geothermal gradient (K/m). A positive number means temperature increases downwards.
geothermal_gradient = 20E-3
#####################################
# Gravity
gravity = -9.81
#####################################
half_aq_thickness = '${fparse aq_thickness * 0.5}'
half_height = '${fparse half_aq_thickness + cap_thickness}'
approx_screen_length = '${fparse screen_top - screen_bottom}'
# Thermal radius (note this is not strictly correct, it should use the bulk specific heat
# capacity as defined below, but it doesn't matter here because this is purely for
# defining the region of refined mesh)
th_r = '${fparse sqrt(inject_fluid_mass / 1000 * 4.12e6 / (approx_screen_length * 3.1416 * aq_specific_heat_cap * aq_density))}'
# radius of fine mesh
fine_r = '${fparse th_r * 2}'
bias_r_fine = 1
num_r_fine = '${fparse int(fine_r/1)}'
######################################
# aquifer properties
aq_porosity = 0.25
aq_hor_perm = 1E-11 # m^2
aq_ver_perm = 2E-12 # m^2
aq_density = 2650 # kg/m^3
aq_specific_heat_cap = 800 # J/Kg/K
aq_hor_thermal_cond = 3 # W/m/K
aq_ver_thermal_cond = 3 # W/m/K
aq_disp_parallel = 0 # m
aq_disp_perp = 0 # m
# Bulk volumetric heat capacity of aquifer:
aq_vol_cp = '${fparse aq_specific_heat_cap * aq_density * (1 - aq_porosity) + 4180 * 1000 * aq_porosity}'
# Thermal radius (correct version using bulk cp):
R_th = '${fparse sqrt(inject_fluid_mass * 4180 / (approx_screen_length * 3.1416 * aq_vol_cp))}'
aq_lambda_eff_hor = '${fparse aq_hor_thermal_cond + 0.3 * aq_disp_parallel * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_lambda_eff_ver = '${fparse aq_ver_thermal_cond + 0.3 * aq_disp_perp * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_hor_dry_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_dry_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
aq_hor_wet_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_wet_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
# cap-rock properties
cap_porosity = 0.25
cap_hor_perm = 1E-16 # m^2
cap_ver_perm = 1E-17 # m^2
cap_density = 2650 # kg/m^3
cap_specific_heat_cap = 800 # J/kg/K
cap_hor_thermal_cond = 3 # W/m/K
cap_ver_thermal_cond = 3 # W/m/K
cap_hor_dry_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_dry_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_hor_wet_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_wet_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
######################################
[Mesh]
coord_type = RZ
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = false
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomains = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
[Variables]
[porepressure]
[]
[temperature]
scaling = 1E-5
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = insitu_pressure
[]
[temperature]
type = FunctionIC
variable = temperature
function = insitu_temperature
[]
[]
[BCs]
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
[Controls]
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
[produce_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::produce_heat BCs::produce_fluid'
conditional_function = produce
implicit = false
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[insitu_pressure]
type = ParsedFunction
expression = '(y - ${depth_centre}) * 1000 * ${gravity} + 1E5' # approx insitu pressure in Pa
[]
[insitu_temperature]
type = ParsedFunction
expression = '${temp0} + (${depth_centre} - y) * ${geothermal_gradient}'
[]
[inject]
type = ParsedFunction
expression = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
[produce]
type = ParsedFunction
expression = 'if(t >= ${start_production1} & t < ${end_production1}, 1,
if(t >= ${start_production2} & t < ${end_production2}, 1,
if(t >= ${start_production3} & t < ${end_production3}, 1,
if(t >= ${start_production4} & t < ${end_production4}, 1,
if(t >= ${start_production5} & t < ${end_production5}, 1,
if(t >= ${start_production6} & t < ${end_production6}, 1,
if(t >= ${start_production7} & t < ${end_production7}, 1,
if(t >= ${start_production8} & t < ${end_production8}, 1,
if(t >= ${start_production9} & t < ${end_production9}, 1,
if(t >= ${start_production10} & t < ${end_production10}, 1, 0))))))))))'
[]
[injection_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '-${inject_fluid_mass}/(true_screen_area * ${inject_time})'
[]
[production_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '${produce_fluid_mass}/(true_screen_area * ${produce_time})'
[]
[heat_out_in_timestep]
type = ParsedFunction
symbol_names = 'dt heat_out'
symbol_values = 'dt heat_out_fromBC'
expression = 'dt*heat_out'
[]
[produced_T_time_integrated]
type = ParsedFunction
symbol_names = 'dt produced_T'
symbol_values = 'dt produced_T'
expression = 'dt*produced_T / ${produce_time}'
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[heat_flux_out]
outputs = none
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_output_file = water97_tabulated_modified.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water97_tabulated_modified.csv
[]
[]
[Materials]
[porosity_aq]
type = PorousFlowPorosityConst
porosity = ${aq_porosity}
block = aquifer
[]
[porosity_caps]
type = PorousFlowPorosityConst
porosity = ${cap_porosity}
block = caps
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '${aq_hor_perm} 0 0 0 ${aq_ver_perm} 0 0 0 0'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '${cap_hor_perm} 0 0 0 ${cap_ver_perm} 0 0 0 0'
[]
[aq_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = aquifer
density = ${aq_density}
specific_heat_capacity = ${aq_specific_heat_cap}
[]
[caps_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = caps
density = ${cap_density}
specific_heat_capacity = ${cap_specific_heat_cap}
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = aquifer
dry_thermal_conductivity = '${aq_hor_dry_thermal_cond} 0 0 0 ${aq_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${aq_hor_wet_thermal_cond} 0 0 0 ${aq_ver_wet_thermal_cond} 0 0 0 0'
[]
[caps_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = caps
dry_thermal_conductivity = '${cap_hor_dry_thermal_cond} 0 0 0 ${cap_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${cap_hor_wet_thermal_cond} 0 0 0 ${cap_ver_wet_thermal_cond} 0 0 0 0'
[]
[]
[Postprocessors]
[true_screen_area] # this accounts for meshes that do not match screen_top and screen_bottom exactly
type = AreaPostprocessor
boundary = injection_area
execute_on = 'initial'
outputs = 'none'
[]
[dt]
type = TimestepSize
[]
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
[heat_out_per_timestep]
type = FunctionValuePostprocessor
function = heat_out_in_timestep
execute_on = 'timestep_end'
outputs = 'none'
[]
[heat_out_cumulative]
type = CumulativeValuePostprocessor
postprocessor = heat_out_per_timestep
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[produced_T]
type = SideAverageValue
boundary = injection_area
variable = temperature
execute_on = 'initial timestep_end'
outputs = 'csv console'
[]
[produced_T_time_integrated]
type = FunctionValuePostprocessor
function = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'none'
[]
[produced_T_cumulative]
type = CumulativeValuePostprocessor
postprocessor = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = ${end_simulation}
timestep_tolerance = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
growth_factor = 2
[]
dtmax = 1
dtmin = 1e-5
# rough calc for fluid, |R| ~ V*k*1E6 ~ V*1E-5
# rough calc for heat, |R| ~ V*(lam*1E-3 + h*1E-5) ~ V*(1E3 + 1E-2)
# so scale heat by 1E-7 and go for nl_abs_tol = 1E-4, which should give a max error of
# ~1Pa and ~0.1K in the first metre around the borehole
nl_abs_tol = 1E-4
nl_rel_tol = 1E-5
[]
[Outputs]
sync_times = ${synctimes}
[ex]
type = Exodus
time_step_interval = 20
[]
[csv]
type = CSV
execute_postprocessors_on = 'initial timestep_end'
[]
[]
(modules/porous_flow/examples/ates/ates.i)
# Simulation designed to assess the recovery efficiency of a single-well ATES system
# Using KT stabilisation
# Boundary conditions: fixed porepressure and temperature at top, bottom and far end of model.
#####################################
flux_limiter = minmod # minmod, vanleer, mc, superbee, none
# depth of top of aquifer (m)
depth = 400
inject_fluid_mass = 1E8 # kg
produce_fluid_mass = ${inject_fluid_mass} # kg
inject_temp = 90 # degC
inject_time = 91 # days
store_time = 91 # days
produce_time = 91 # days
rest_time = 91 # days
num_cycles = 5 # Currently needs to be <= 10
cycle_length = '${fparse inject_time + store_time + produce_time + rest_time}'
end_simulation = '${fparse cycle_length * num_cycles}'
# Note: I have setup 10 cycles but you can set num_cycles less than 10.
start_injection1 = 0
start_injection2 = ${cycle_length}
start_injection3 = '${fparse cycle_length * 2}'
start_injection4 = '${fparse cycle_length * 3}'
start_injection5 = '${fparse cycle_length * 4}'
start_injection6 = '${fparse cycle_length * 5}'
start_injection7 = '${fparse cycle_length * 6}'
start_injection8 = '${fparse cycle_length * 7}'
start_injection9 = '${fparse cycle_length * 8}'
start_injection10 = '${fparse cycle_length * 9}'
end_injection1 = '${fparse start_injection1 + inject_time}'
end_injection2 = '${fparse start_injection2 + inject_time}'
end_injection3 = '${fparse start_injection3 + inject_time}'
end_injection4 = '${fparse start_injection4 + inject_time}'
end_injection5 = '${fparse start_injection5 + inject_time}'
end_injection6 = '${fparse start_injection6 + inject_time}'
end_injection7 = '${fparse start_injection7 + inject_time}'
end_injection8 = '${fparse start_injection8 + inject_time}'
end_injection9 = '${fparse start_injection9 + inject_time}'
end_injection10 = '${fparse start_injection10 + inject_time}'
start_production1 = '${fparse end_injection1 + store_time}'
start_production2 = '${fparse end_injection2 + store_time}'
start_production3 = '${fparse end_injection3 + store_time}'
start_production4 = '${fparse end_injection4 + store_time}'
start_production5 = '${fparse end_injection5 + store_time}'
start_production6 = '${fparse end_injection6 + store_time}'
start_production7 = '${fparse end_injection7 + store_time}'
start_production8 = '${fparse end_injection8 + store_time}'
start_production9 = '${fparse end_injection9 + store_time}'
start_production10 = '${fparse end_injection10 + store_time}'
end_production1 = '${fparse start_production1 + produce_time}'
end_production2 = '${fparse start_production2 + produce_time}'
end_production3 = '${fparse start_production3 + produce_time}'
end_production4 = '${fparse start_production4 + produce_time}'
end_production5 = '${fparse start_production5 + produce_time}'
end_production6 = '${fparse start_production6 + produce_time}'
end_production7 = '${fparse start_production7 + produce_time}'
end_production8 = '${fparse start_production8 + produce_time}'
end_production9 = '${fparse start_production9 + produce_time}'
end_production10 = '${fparse start_production10 + produce_time}'
synctimes = '${start_injection1} ${end_injection1} ${start_production1} ${end_production1}
${start_injection2} ${end_injection2} ${start_production2} ${end_production2}
${start_injection3} ${end_injection3} ${start_production3} ${end_production3}
${start_injection4} ${end_injection4} ${start_production4} ${end_production4}
${start_injection5} ${end_injection5} ${start_production5} ${end_production5}
${start_injection6} ${end_injection6} ${start_production6} ${end_production6}
${start_injection7} ${end_injection7} ${start_production7} ${end_production7}
${start_injection8} ${end_injection8} ${start_production8} ${end_production8}
${start_injection9} ${end_injection9} ${start_production9} ${end_production9}
${start_injection10} ${end_injection10} ${start_production10} ${end_production10}'
#####################################
# Geometry in RZ coordinates
# borehole radius (m)
bh_r = 0.1
# model radius (m)
max_r = 1000
# aquifer thickness (m)
aq_thickness = 20
# cap thickness (m)
cap_thickness = 40
# injection region top and bottom (m). Note, the mesh is created with the aquifer in y = (-0.5 * aq_thickness, 0.5 * aq_thickness), irrespective of depth (depth only sets the insitu porepressure and temperature)
screen_top = '${fparse 0.5 * aq_thickness}'
screen_bottom = '${fparse -0.5 * aq_thickness}'
# number of elements in radial direction
num_r = 25
# number of elements across half height of aquifer
num_y_aq = 10
# number of elements across height of cap
num_y_cap = 8
# mesh bias in radial direction
bias_r = 1.22
# mesh bias in vertical direction in aquifer top
bias_y_aq_top = 0.9
# mesh bias in vertical direction in cap top
bias_y_cap_top = 1.3
# mesh bias in vertical direction in aquifer bottom
bias_y_aq_bottom = '${fparse 1.0 / bias_y_aq_top}'
# mesh bias in vertical direction in cap bottom
bias_y_cap_bottom = '${fparse 1.0 / bias_y_cap_top}'
depth_centre = '${fparse depth + aq_thickness/2}'
#####################################
# temperature at ground surface (degC)
temp0 = 20
# Vertical geothermal gradient (K/m). A positive number means temperature increases downwards.
geothermal_gradient = 20E-3
#####################################
# Gravity
gravity = -9.81
#####################################
half_aq_thickness = '${fparse aq_thickness * 0.5}'
half_height = '${fparse half_aq_thickness + cap_thickness}'
approx_screen_length = '${fparse screen_top - screen_bottom}'
# Thermal radius (note this is not strictly correct, it should use the bulk specific heat
# capacity as defined below, but it doesn't matter here because this is purely for
# defining the region of refined mesh)
th_r = '${fparse sqrt(inject_fluid_mass / 1000 * 4.12e6 / (approx_screen_length * 3.1416 * aq_specific_heat_cap * aq_density))}'
# radius of fine mesh
fine_r = '${fparse th_r * 2}'
bias_r_fine = 1
num_r_fine = '${fparse int(fine_r/1)}'
######################################
# aquifer properties
aq_porosity = 0.25
aq_hor_perm = 1E-11 # m^2
aq_ver_perm = 2E-12 # m^2
aq_density = 2650 # kg/m^3
aq_specific_heat_cap = 800 # J/Kg/K
aq_hor_thermal_cond = 3 # W/m/K
aq_ver_thermal_cond = 3 # W/m/K
aq_disp_parallel = 0 # m
aq_disp_perp = 0 # m
# Bulk volumetric heat capacity of aquifer:
aq_vol_cp = '${fparse aq_specific_heat_cap * aq_density * (1 - aq_porosity) + 4180 * 1000 * aq_porosity}'
# Thermal radius (correct version using bulk cp):
R_th = '${fparse sqrt(inject_fluid_mass * 4180 / (approx_screen_length * 3.1416 * aq_vol_cp))}'
aq_lambda_eff_hor = '${fparse aq_hor_thermal_cond + 0.3 * aq_disp_parallel * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_lambda_eff_ver = '${fparse aq_ver_thermal_cond + 0.3 * aq_disp_perp * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_hor_dry_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_dry_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
aq_hor_wet_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_wet_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
# cap-rock properties
cap_porosity = 0.25
cap_hor_perm = 1E-16 # m^2
cap_ver_perm = 1E-17 # m^2
cap_density = 2650 # kg/m^3
cap_specific_heat_cap = 800 # J/kg/K
cap_hor_thermal_cond = 3 # W/m/K
cap_ver_thermal_cond = 3 # W/m/K
cap_hor_dry_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_dry_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_hor_wet_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_wet_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
######################################
[Mesh]
coord_type = RZ
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = false
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomains = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
[Variables]
[porepressure]
[]
[temperature]
scaling = 1E-5
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = insitu_pressure
[]
[temperature]
type = FunctionIC
variable = temperature
function = insitu_temperature
[]
[]
[BCs]
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
[Controls]
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
[produce_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::produce_heat BCs::produce_fluid'
conditional_function = produce
implicit = false
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[insitu_pressure]
type = ParsedFunction
expression = '(y - ${depth_centre}) * 1000 * ${gravity} + 1E5' # approx insitu pressure in Pa
[]
[insitu_temperature]
type = ParsedFunction
expression = '${temp0} + (${depth_centre} - y) * ${geothermal_gradient}'
[]
[inject]
type = ParsedFunction
expression = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
[produce]
type = ParsedFunction
expression = 'if(t >= ${start_production1} & t < ${end_production1}, 1,
if(t >= ${start_production2} & t < ${end_production2}, 1,
if(t >= ${start_production3} & t < ${end_production3}, 1,
if(t >= ${start_production4} & t < ${end_production4}, 1,
if(t >= ${start_production5} & t < ${end_production5}, 1,
if(t >= ${start_production6} & t < ${end_production6}, 1,
if(t >= ${start_production7} & t < ${end_production7}, 1,
if(t >= ${start_production8} & t < ${end_production8}, 1,
if(t >= ${start_production9} & t < ${end_production9}, 1,
if(t >= ${start_production10} & t < ${end_production10}, 1, 0))))))))))'
[]
[injection_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '-${inject_fluid_mass}/(true_screen_area * ${inject_time})'
[]
[production_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '${produce_fluid_mass}/(true_screen_area * ${produce_time})'
[]
[heat_out_in_timestep]
type = ParsedFunction
symbol_names = 'dt heat_out'
symbol_values = 'dt heat_out_fromBC'
expression = 'dt*heat_out'
[]
[produced_T_time_integrated]
type = ParsedFunction
symbol_names = 'dt produced_T'
symbol_values = 'dt produced_T'
expression = 'dt*produced_T / ${produce_time}'
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[heat_flux_out]
outputs = none
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_output_file = water97_tabulated_modified.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water97_tabulated_modified.csv
[]
[]
[Materials]
[porosity_aq]
type = PorousFlowPorosityConst
porosity = ${aq_porosity}
block = aquifer
[]
[porosity_caps]
type = PorousFlowPorosityConst
porosity = ${cap_porosity}
block = caps
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '${aq_hor_perm} 0 0 0 ${aq_ver_perm} 0 0 0 0'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '${cap_hor_perm} 0 0 0 ${cap_ver_perm} 0 0 0 0'
[]
[aq_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = aquifer
density = ${aq_density}
specific_heat_capacity = ${aq_specific_heat_cap}
[]
[caps_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = caps
density = ${cap_density}
specific_heat_capacity = ${cap_specific_heat_cap}
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = aquifer
dry_thermal_conductivity = '${aq_hor_dry_thermal_cond} 0 0 0 ${aq_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${aq_hor_wet_thermal_cond} 0 0 0 ${aq_ver_wet_thermal_cond} 0 0 0 0'
[]
[caps_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = caps
dry_thermal_conductivity = '${cap_hor_dry_thermal_cond} 0 0 0 ${cap_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${cap_hor_wet_thermal_cond} 0 0 0 ${cap_ver_wet_thermal_cond} 0 0 0 0'
[]
[]
[Postprocessors]
[true_screen_area] # this accounts for meshes that do not match screen_top and screen_bottom exactly
type = AreaPostprocessor
boundary = injection_area
execute_on = 'initial'
outputs = 'none'
[]
[dt]
type = TimestepSize
[]
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
[heat_out_per_timestep]
type = FunctionValuePostprocessor
function = heat_out_in_timestep
execute_on = 'timestep_end'
outputs = 'none'
[]
[heat_out_cumulative]
type = CumulativeValuePostprocessor
postprocessor = heat_out_per_timestep
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[produced_T]
type = SideAverageValue
boundary = injection_area
variable = temperature
execute_on = 'initial timestep_end'
outputs = 'csv console'
[]
[produced_T_time_integrated]
type = FunctionValuePostprocessor
function = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'none'
[]
[produced_T_cumulative]
type = CumulativeValuePostprocessor
postprocessor = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = ${end_simulation}
timestep_tolerance = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
growth_factor = 2
[]
dtmax = 1
dtmin = 1e-5
# rough calc for fluid, |R| ~ V*k*1E6 ~ V*1E-5
# rough calc for heat, |R| ~ V*(lam*1E-3 + h*1E-5) ~ V*(1E3 + 1E-2)
# so scale heat by 1E-7 and go for nl_abs_tol = 1E-4, which should give a max error of
# ~1Pa and ~0.1K in the first metre around the borehole
nl_abs_tol = 1E-4
nl_rel_tol = 1E-5
[]
[Outputs]
sync_times = ${synctimes}
[ex]
type = Exodus
time_step_interval = 20
[]
[csv]
type = CSV
execute_postprocessors_on = 'initial timestep_end'
[]
[]
(modules/porous_flow/examples/ates/ates.i)
# Simulation designed to assess the recovery efficiency of a single-well ATES system
# Using KT stabilisation
# Boundary conditions: fixed porepressure and temperature at top, bottom and far end of model.
#####################################
flux_limiter = minmod # minmod, vanleer, mc, superbee, none
# depth of top of aquifer (m)
depth = 400
inject_fluid_mass = 1E8 # kg
produce_fluid_mass = ${inject_fluid_mass} # kg
inject_temp = 90 # degC
inject_time = 91 # days
store_time = 91 # days
produce_time = 91 # days
rest_time = 91 # days
num_cycles = 5 # Currently needs to be <= 10
cycle_length = '${fparse inject_time + store_time + produce_time + rest_time}'
end_simulation = '${fparse cycle_length * num_cycles}'
# Note: I have setup 10 cycles but you can set num_cycles less than 10.
start_injection1 = 0
start_injection2 = ${cycle_length}
start_injection3 = '${fparse cycle_length * 2}'
start_injection4 = '${fparse cycle_length * 3}'
start_injection5 = '${fparse cycle_length * 4}'
start_injection6 = '${fparse cycle_length * 5}'
start_injection7 = '${fparse cycle_length * 6}'
start_injection8 = '${fparse cycle_length * 7}'
start_injection9 = '${fparse cycle_length * 8}'
start_injection10 = '${fparse cycle_length * 9}'
end_injection1 = '${fparse start_injection1 + inject_time}'
end_injection2 = '${fparse start_injection2 + inject_time}'
end_injection3 = '${fparse start_injection3 + inject_time}'
end_injection4 = '${fparse start_injection4 + inject_time}'
end_injection5 = '${fparse start_injection5 + inject_time}'
end_injection6 = '${fparse start_injection6 + inject_time}'
end_injection7 = '${fparse start_injection7 + inject_time}'
end_injection8 = '${fparse start_injection8 + inject_time}'
end_injection9 = '${fparse start_injection9 + inject_time}'
end_injection10 = '${fparse start_injection10 + inject_time}'
start_production1 = '${fparse end_injection1 + store_time}'
start_production2 = '${fparse end_injection2 + store_time}'
start_production3 = '${fparse end_injection3 + store_time}'
start_production4 = '${fparse end_injection4 + store_time}'
start_production5 = '${fparse end_injection5 + store_time}'
start_production6 = '${fparse end_injection6 + store_time}'
start_production7 = '${fparse end_injection7 + store_time}'
start_production8 = '${fparse end_injection8 + store_time}'
start_production9 = '${fparse end_injection9 + store_time}'
start_production10 = '${fparse end_injection10 + store_time}'
end_production1 = '${fparse start_production1 + produce_time}'
end_production2 = '${fparse start_production2 + produce_time}'
end_production3 = '${fparse start_production3 + produce_time}'
end_production4 = '${fparse start_production4 + produce_time}'
end_production5 = '${fparse start_production5 + produce_time}'
end_production6 = '${fparse start_production6 + produce_time}'
end_production7 = '${fparse start_production7 + produce_time}'
end_production8 = '${fparse start_production8 + produce_time}'
end_production9 = '${fparse start_production9 + produce_time}'
end_production10 = '${fparse start_production10 + produce_time}'
synctimes = '${start_injection1} ${end_injection1} ${start_production1} ${end_production1}
${start_injection2} ${end_injection2} ${start_production2} ${end_production2}
${start_injection3} ${end_injection3} ${start_production3} ${end_production3}
${start_injection4} ${end_injection4} ${start_production4} ${end_production4}
${start_injection5} ${end_injection5} ${start_production5} ${end_production5}
${start_injection6} ${end_injection6} ${start_production6} ${end_production6}
${start_injection7} ${end_injection7} ${start_production7} ${end_production7}
${start_injection8} ${end_injection8} ${start_production8} ${end_production8}
${start_injection9} ${end_injection9} ${start_production9} ${end_production9}
${start_injection10} ${end_injection10} ${start_production10} ${end_production10}'
#####################################
# Geometry in RZ coordinates
# borehole radius (m)
bh_r = 0.1
# model radius (m)
max_r = 1000
# aquifer thickness (m)
aq_thickness = 20
# cap thickness (m)
cap_thickness = 40
# injection region top and bottom (m). Note, the mesh is created with the aquifer in y = (-0.5 * aq_thickness, 0.5 * aq_thickness), irrespective of depth (depth only sets the insitu porepressure and temperature)
screen_top = '${fparse 0.5 * aq_thickness}'
screen_bottom = '${fparse -0.5 * aq_thickness}'
# number of elements in radial direction
num_r = 25
# number of elements across half height of aquifer
num_y_aq = 10
# number of elements across height of cap
num_y_cap = 8
# mesh bias in radial direction
bias_r = 1.22
# mesh bias in vertical direction in aquifer top
bias_y_aq_top = 0.9
# mesh bias in vertical direction in cap top
bias_y_cap_top = 1.3
# mesh bias in vertical direction in aquifer bottom
bias_y_aq_bottom = '${fparse 1.0 / bias_y_aq_top}'
# mesh bias in vertical direction in cap bottom
bias_y_cap_bottom = '${fparse 1.0 / bias_y_cap_top}'
depth_centre = '${fparse depth + aq_thickness/2}'
#####################################
# temperature at ground surface (degC)
temp0 = 20
# Vertical geothermal gradient (K/m). A positive number means temperature increases downwards.
geothermal_gradient = 20E-3
#####################################
# Gravity
gravity = -9.81
#####################################
half_aq_thickness = '${fparse aq_thickness * 0.5}'
half_height = '${fparse half_aq_thickness + cap_thickness}'
approx_screen_length = '${fparse screen_top - screen_bottom}'
# Thermal radius (note this is not strictly correct, it should use the bulk specific heat
# capacity as defined below, but it doesn't matter here because this is purely for
# defining the region of refined mesh)
th_r = '${fparse sqrt(inject_fluid_mass / 1000 * 4.12e6 / (approx_screen_length * 3.1416 * aq_specific_heat_cap * aq_density))}'
# radius of fine mesh
fine_r = '${fparse th_r * 2}'
bias_r_fine = 1
num_r_fine = '${fparse int(fine_r/1)}'
######################################
# aquifer properties
aq_porosity = 0.25
aq_hor_perm = 1E-11 # m^2
aq_ver_perm = 2E-12 # m^2
aq_density = 2650 # kg/m^3
aq_specific_heat_cap = 800 # J/Kg/K
aq_hor_thermal_cond = 3 # W/m/K
aq_ver_thermal_cond = 3 # W/m/K
aq_disp_parallel = 0 # m
aq_disp_perp = 0 # m
# Bulk volumetric heat capacity of aquifer:
aq_vol_cp = '${fparse aq_specific_heat_cap * aq_density * (1 - aq_porosity) + 4180 * 1000 * aq_porosity}'
# Thermal radius (correct version using bulk cp):
R_th = '${fparse sqrt(inject_fluid_mass * 4180 / (approx_screen_length * 3.1416 * aq_vol_cp))}'
aq_lambda_eff_hor = '${fparse aq_hor_thermal_cond + 0.3 * aq_disp_parallel * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_lambda_eff_ver = '${fparse aq_ver_thermal_cond + 0.3 * aq_disp_perp * R_th * aq_vol_cp / (inject_time * 60 * 60 * 24)}'
aq_hor_dry_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_dry_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
aq_hor_wet_thermal_cond = '${fparse aq_lambda_eff_hor * 60 * 60 * 24}' # J/day/m/K
aq_ver_wet_thermal_cond = '${fparse aq_lambda_eff_ver * 60 * 60 * 24}' # J/day/m/K
# cap-rock properties
cap_porosity = 0.25
cap_hor_perm = 1E-16 # m^2
cap_ver_perm = 1E-17 # m^2
cap_density = 2650 # kg/m^3
cap_specific_heat_cap = 800 # J/kg/K
cap_hor_thermal_cond = 3 # W/m/K
cap_ver_thermal_cond = 3 # W/m/K
cap_hor_dry_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_dry_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_hor_wet_thermal_cond = '${fparse cap_hor_thermal_cond * 60 * 60 * 24}' # J/day/m/K
cap_ver_wet_thermal_cond = '${fparse cap_ver_thermal_cond * 60 * 60 * 24}' # J/day/m/K
######################################
[Mesh]
coord_type = RZ
[aq_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top_fine]
type = StitchedMeshGenerator
inputs = 'aq_top_fine cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom_fine]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r_fine}
xmin = ${bh_r}
xmax = ${fine_r}
bias_x = ${bias_r_fine}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom_fine]
type = StitchedMeshGenerator
inputs = 'aq_bottom_fine cap_bottom_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = false
[]
[aq_and_cap_fine]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom_fine aq_and_cap_top_fine'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_top}
ny = ${num_y_aq}
ymin = 0
ymax = ${half_aq_thickness}
[]
[cap_top]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_top}
ny = ${num_y_cap}
ymax = ${half_height}
ymin = ${half_aq_thickness}
[]
[aq_and_cap_top]
type = StitchedMeshGenerator
inputs = 'aq_top cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_aq_bottom}
ny = ${num_y_aq}
ymax = 0
ymin = -${half_aq_thickness}
[]
[cap_bottom]
type = GeneratedMeshGenerator
dim = 2
nx = ${num_r}
xmin = ${fine_r}
xmax = ${max_r}
bias_x = ${bias_r}
bias_y = ${bias_y_cap_bottom}
ny = ${num_y_cap}
ymin = -${half_height}
ymax = -${half_aq_thickness}
[]
[aq_and_cap_bottom]
type = StitchedMeshGenerator
inputs = 'aq_bottom cap_bottom'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
[]
[aq_and_cap]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_bottom aq_and_cap_top'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'top bottom'
[]
[aq_and_cap_all]
type = StitchedMeshGenerator
inputs = 'aq_and_cap_fine aq_and_cap'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left'
[]
[aquifer]
type = ParsedSubdomainMeshGenerator
input = aq_and_cap_all
combinatorial_geometry = 'y >= -${half_aq_thickness} & y <= ${half_aq_thickness}'
block_id = 1
[]
[top_cap]
type = ParsedSubdomainMeshGenerator
input = aquifer
combinatorial_geometry = 'y >= ${half_aq_thickness}'
block_id = 2
[]
[bottom_cap]
type = ParsedSubdomainMeshGenerator
input = top_cap
combinatorial_geometry = 'y <= -${half_aq_thickness}'
block_id = 3
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<=${bh_r}*1.000001 & y >= ${screen_bottom} & y <= ${screen_top}'
included_subdomains = 1
new_sideset_name = 'injection_area'
input = 'bottom_cap'
[]
[rename]
type = RenameBlockGenerator
old_block = '1 2 3'
new_block = 'aquifer caps caps'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 ${gravity} 0'
[]
[Variables]
[porepressure]
[]
[temperature]
scaling = 1E-5
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
fp = tabulated_water
stabilization = KT
flux_limiter_type = ${flux_limiter}
use_displaced_mesh = false
temperature_unit = Celsius
pressure_unit = Pa
time_unit = days
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = insitu_pressure
[]
[temperature]
type = FunctionIC
variable = temperature
function = insitu_temperature
[]
[]
[BCs]
[outer_boundary_porepressure]
type = FunctionDirichletBC
preset = true
variable = porepressure
function = insitu_pressure
boundary = 'bottom right top'
[]
[outer_boundary_temperature]
type = FunctionDirichletBC
preset = true
variable = temperature
function = insitu_temperature
boundary = 'bottom right top'
[]
[inject_heat]
type = FunctionDirichletBC
variable = temperature
function = ${inject_temp}
boundary = 'injection_area'
[]
[inject_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = injection_rate_value
[]
[produce_heat]
type = PorousFlowSink
variable = temperature
boundary = injection_area
flux_function = production_rate_value
fluid_phase = 0
use_enthalpy = true
save_in = heat_flux_out
[]
[produce_fluid]
type = PorousFlowSink
variable = porepressure
boundary = injection_area
flux_function = production_rate_value
[]
[]
[Controls]
[inject_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::inject_heat BCs::inject_fluid'
conditional_function = inject
implicit = false
execute_on = 'initial timestep_begin'
[]
[produce_on]
type = ConditionalFunctionEnableControl
enable_objects = 'BCs::produce_heat BCs::produce_fluid'
conditional_function = produce
implicit = false
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[insitu_pressure]
type = ParsedFunction
expression = '(y - ${depth_centre}) * 1000 * ${gravity} + 1E5' # approx insitu pressure in Pa
[]
[insitu_temperature]
type = ParsedFunction
expression = '${temp0} + (${depth_centre} - y) * ${geothermal_gradient}'
[]
[inject]
type = ParsedFunction
expression = 'if(t >= ${start_injection1} & t < ${end_injection1}, 1,
if(t >= ${start_injection2} & t < ${end_injection2}, 1,
if(t >= ${start_injection3} & t < ${end_injection3}, 1,
if(t >= ${start_injection4} & t < ${end_injection4}, 1,
if(t >= ${start_injection5} & t < ${end_injection5}, 1,
if(t >= ${start_injection6} & t < ${end_injection6}, 1,
if(t >= ${start_injection7} & t < ${end_injection7}, 1,
if(t >= ${start_injection8} & t < ${end_injection8}, 1,
if(t >= ${start_injection9} & t < ${end_injection9}, 1,
if(t >= ${start_injection10} & t < ${end_injection10}, 1, 0))))))))))'
[]
[produce]
type = ParsedFunction
expression = 'if(t >= ${start_production1} & t < ${end_production1}, 1,
if(t >= ${start_production2} & t < ${end_production2}, 1,
if(t >= ${start_production3} & t < ${end_production3}, 1,
if(t >= ${start_production4} & t < ${end_production4}, 1,
if(t >= ${start_production5} & t < ${end_production5}, 1,
if(t >= ${start_production6} & t < ${end_production6}, 1,
if(t >= ${start_production7} & t < ${end_production7}, 1,
if(t >= ${start_production8} & t < ${end_production8}, 1,
if(t >= ${start_production9} & t < ${end_production9}, 1,
if(t >= ${start_production10} & t < ${end_production10}, 1, 0))))))))))'
[]
[injection_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '-${inject_fluid_mass}/(true_screen_area * ${inject_time})'
[]
[production_rate_value]
type = ParsedFunction
symbol_names = true_screen_area
symbol_values = true_screen_area
expression = '${produce_fluid_mass}/(true_screen_area * ${produce_time})'
[]
[heat_out_in_timestep]
type = ParsedFunction
symbol_names = 'dt heat_out'
symbol_values = 'dt heat_out_fromBC'
expression = 'dt*heat_out'
[]
[produced_T_time_integrated]
type = ParsedFunction
symbol_names = 'dt produced_T'
symbol_values = 'dt produced_T'
expression = 'dt*produced_T / ${produce_time}'
[]
[]
[AuxVariables]
[density]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[heat_flux_out]
outputs = none
[]
[]
[AuxKernels]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_output_file = water97_tabulated_modified.csv
# Comment out the fp parameter and uncomment below to use the newly generated tabulation
# fluid_property_file = water97_tabulated_modified.csv
[]
[]
[Materials]
[porosity_aq]
type = PorousFlowPorosityConst
porosity = ${aq_porosity}
block = aquifer
[]
[porosity_caps]
type = PorousFlowPorosityConst
porosity = ${cap_porosity}
block = caps
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '${aq_hor_perm} 0 0 0 ${aq_ver_perm} 0 0 0 0'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '${cap_hor_perm} 0 0 0 ${cap_ver_perm} 0 0 0 0'
[]
[aq_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = aquifer
density = ${aq_density}
specific_heat_capacity = ${aq_specific_heat_cap}
[]
[caps_internal_energy]
type = PorousFlowMatrixInternalEnergy
block = caps
density = ${cap_density}
specific_heat_capacity = ${cap_specific_heat_cap}
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = aquifer
dry_thermal_conductivity = '${aq_hor_dry_thermal_cond} 0 0 0 ${aq_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${aq_hor_wet_thermal_cond} 0 0 0 ${aq_ver_wet_thermal_cond} 0 0 0 0'
[]
[caps_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
block = caps
dry_thermal_conductivity = '${cap_hor_dry_thermal_cond} 0 0 0 ${cap_ver_dry_thermal_cond} 0 0 0 0'
wet_thermal_conductivity = '${cap_hor_wet_thermal_cond} 0 0 0 ${cap_ver_wet_thermal_cond} 0 0 0 0'
[]
[]
[Postprocessors]
[true_screen_area] # this accounts for meshes that do not match screen_top and screen_bottom exactly
type = AreaPostprocessor
boundary = injection_area
execute_on = 'initial'
outputs = 'none'
[]
[dt]
type = TimestepSize
[]
[heat_out_fromBC]
type = NodalSum
variable = heat_flux_out
boundary = injection_area
execute_on = 'initial timestep_end'
outputs = 'none'
[]
[heat_out_per_timestep]
type = FunctionValuePostprocessor
function = heat_out_in_timestep
execute_on = 'timestep_end'
outputs = 'none'
[]
[heat_out_cumulative]
type = CumulativeValuePostprocessor
postprocessor = heat_out_per_timestep
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[produced_T]
type = SideAverageValue
boundary = injection_area
variable = temperature
execute_on = 'initial timestep_end'
outputs = 'csv console'
[]
[produced_T_time_integrated]
type = FunctionValuePostprocessor
function = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'none'
[]
[produced_T_cumulative]
type = CumulativeValuePostprocessor
postprocessor = produced_T_time_integrated
execute_on = 'timestep_end'
outputs = 'csv console'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = ${end_simulation}
timestep_tolerance = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
growth_factor = 2
[]
dtmax = 1
dtmin = 1e-5
# rough calc for fluid, |R| ~ V*k*1E6 ~ V*1E-5
# rough calc for heat, |R| ~ V*(lam*1E-3 + h*1E-5) ~ V*(1E3 + 1E-2)
# so scale heat by 1E-7 and go for nl_abs_tol = 1E-4, which should give a max error of
# ~1Pa and ~0.1K in the first metre around the borehole
nl_abs_tol = 1E-4
nl_rel_tol = 1E-5
[]
[Outputs]
sync_times = ${synctimes}
[ex]
type = Exodus
time_step_interval = 20
[]
[csv]
type = CSV
execute_postprocessors_on = 'initial timestep_end'
[]
[]