https://mooseframework.inl.gov
kEpsilonViscosityAux.C
Go to the documentation of this file.
1 //* This file is part of the MOOSE framework
2 //* https://mooseframework.inl.gov
3 //*
4 //* All rights reserved, see COPYRIGHT for full restrictions
5 //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
6 //*
7 //* Licensed under LGPL 2.1, please see LICENSE for details
8 //* https://www.gnu.org/licenses/lgpl-2.1.html
9 
10 #include "kEpsilonViscosityAux.h"
11 #include "NavierStokesMethods.h"
12 #include "NonlinearSystemBase.h"
13 #include "libmesh/nonlinear_solver.h"
14 
15 registerMooseObject("NavierStokesApp", kEpsilonViscosityAux);
16 
19 {
21  params.addClassDescription(
22  "Calculates the turbulent viscosity according to the k-epsilon model.");
23  params.addRequiredParam<MooseFunctorName>("u", "The velocity in the x direction.");
24  params.addParam<MooseFunctorName>("v", "The velocity in the y direction.");
25  params.addParam<MooseFunctorName>("w", "The velocity in the z direction.");
26  params.addRequiredParam<MooseFunctorName>(NS::TKE, "Coupled turbulent kinetic energy.");
27  params.addRequiredParam<MooseFunctorName>(NS::TKED,
28  "Coupled turbulent kinetic energy dissipation rate.");
29  params.addRequiredParam<MooseFunctorName>(NS::density, "Density");
30  params.addRequiredParam<MooseFunctorName>(NS::mu, "Dynamic viscosity.");
31  params.addParam<Real>("C_mu", "Coupled turbulent kinetic energy closure.");
32  params.addParam<Real>("mu_t_ratio_max", 1e5, "Maximum allowable mu_t_ratio : mu/mu_t.");
33  params.addParam<std::vector<BoundaryName>>(
34  "walls", {}, "Boundaries that correspond to solid walls.");
35  params.addParam<bool>("bulk_wall_treatment", false, "Activate bulk wall treatment.");
36  MooseEnum wall_treatment("eq_newton eq_incremental eq_linearized neq", "eq_newton");
37  params.addParam<MooseEnum>("wall_treatment",
38  wall_treatment,
39  "The method used for computing the wall functions."
40  "'eq_newton', 'eq_incremental', 'eq_linearized', 'neq'");
41  MooseEnum scale_limiter("none standard", "standard");
42  params.addParam<MooseEnum>("scale_limiter",
43  scale_limiter,
44  "The method used to limit the k-epsilon time scale."
45  "'none', 'standard'");
46  params.addParam<bool>("newton_solve", false, "Whether a Newton nonlinear solve is being used");
47  params.addParamNamesToGroup("newton_solve", "Advanced");
48 
49  return params;
50 }
51 
53  : AuxKernel(params),
54  _dim(_subproblem.mesh().dimension()),
55  _u_var(getFunctor<Real>("u")),
56  _v_var(params.isParamValid("v") ? &(getFunctor<Real>("v")) : nullptr),
57  _w_var(params.isParamValid("w") ? &(getFunctor<Real>("w")) : nullptr),
58  _k(getFunctor<Real>(NS::TKE)),
59  _epsilon(getFunctor<Real>(NS::TKED)),
60  _rho(getFunctor<Real>(NS::density)),
61  _mu(getFunctor<Real>(NS::mu)),
62  _C_mu(getParam<Real>("C_mu")),
63  _mu_t_ratio_max(getParam<Real>("mu_t_ratio_max")),
64  _wall_boundary_names(getParam<std::vector<BoundaryName>>("walls")),
65  _bulk_wall_treatment(getParam<bool>("bulk_wall_treatment")),
66  _wall_treatment(getParam<MooseEnum>("wall_treatment").getEnum<NS::WallTreatmentEnum>()),
67  _scale_limiter(getParam<MooseEnum>("scale_limiter")),
68  _newton_solve(getParam<bool>("newton_solve"))
69 {
70 }
71 
72 void
74 {
75  if (!_wall_boundary_names.empty())
76  {
82  }
83 }
84 
85 Real
87 {
88  // Convenient Arguments
89  const Elem & elem = *_current_elem;
90  const auto elem_arg = makeElemArg(_current_elem);
91  const Moose::StateArg state = determineState();
92  const auto rho = _rho(makeElemArg(_current_elem), state);
93  const auto mu = _mu(makeElemArg(_current_elem), state);
94  const auto nu = mu / rho;
95 
96  // Determine if the element is wall bounded
97  // and if bulk wall treatment needs to be activated
98  const bool wall_bounded = _wall_bounded.find(_current_elem) != _wall_bounded.end();
99  Real mu_t;
100 
101  // Computing wall value for near-wall elements if bulk wall treatment is activated
102  // bulk_wall_treatment should only be used for very coarse mesh problems
103  if (wall_bounded && _bulk_wall_treatment)
104  {
105  // Computing wall value for turbulent dynamic viscosity
106  const auto & elem_distances = _dist[&elem];
107  const auto min_wall_distance_iterator =
108  (std::min_element(elem_distances.begin(), elem_distances.end()));
109  const auto min_wall_dist = *min_wall_distance_iterator;
110  const size_t minIndex = std::distance(elem_distances.begin(), min_wall_distance_iterator);
111  const auto loc_normal = _face_infos[&elem][minIndex]->normal();
112 
113  // Getting y_plus
114  RealVectorValue velocity(_u_var(elem_arg, state));
115  if (_v_var)
116  velocity(1) = (*_v_var)(elem_arg, state);
117  if (_w_var)
118  velocity(2) = (*_w_var)(elem_arg, state);
119 
120  // Compute the velocity and direction of the velocity component that is parallel to the wall
121  const auto parallel_speed =
122  NS::computeSpeed<Real>(velocity - velocity * loc_normal * loc_normal);
123 
124  // Switch for determining the near wall quantities
125  // wall_treatment can be: "eq_newton eq_incremental eq_linearized neq"
126  Real y_plus = 0;
127  Real mut_log; // turbulent log-layer viscosity
128  Real mu_wall; // total wall viscosity to obtain the shear stress at the wall
129 
131  {
132  // Full Newton-Raphson solve to find the wall quantities from the law of the wall
133  const auto u_tau = NS::findUStar<Real>(mu, rho, parallel_speed, min_wall_dist);
134  y_plus = min_wall_dist * u_tau * rho / mu;
135  mu_wall = rho * Utility::pow<2>(u_tau) * min_wall_dist / parallel_speed;
136  mut_log = mu_wall - mu;
137  }
139  {
140  // Incremental solve on y_plus to get the near-wall quantities
141  y_plus = NS::findyPlus<Real>(mu, rho, std::max(parallel_speed, 1e-10), min_wall_dist);
142  mu_wall = mu * (NS::von_karman_constant * y_plus /
143  std::log(std::max(NS::E_turb_constant * y_plus, 1 + 1e-4)));
144  mut_log = mu_wall - mu;
145  }
147  {
148  // Linearized approximation to the wall function to find the near-wall quantities faster
149  const Real a_c = 1 / NS::von_karman_constant;
150  const Real b_c = 1 / NS::von_karman_constant *
151  (std::log(NS::E_turb_constant * std::max(min_wall_dist, 1.0) / mu) + 1.0);
152  const Real c_c = parallel_speed;
153 
154  const auto u_tau = (-b_c + std::sqrt(std::pow(b_c, 2) + 4.0 * a_c * c_c)) / (2.0 * a_c);
155  y_plus = min_wall_dist * u_tau * rho / mu;
156  mu_wall = rho * Utility::pow<2>(u_tau) * min_wall_dist / parallel_speed;
157  mut_log = mu_wall - mu;
158  }
160  {
161  // Assign non-equilibrium wall function value
162  y_plus = min_wall_dist * std::sqrt(std::sqrt(_C_mu) * _k(elem_arg, state)) * rho / mu;
163  mu_wall = mu * (NS::von_karman_constant * y_plus /
164  std::log(std::max(NS::E_turb_constant * y_plus, 1 + 1e-4)));
165  mut_log = mu_wall - mu;
166  }
167  else
168  mooseAssert(false, "For `kEpsilonViscosityAux` , wall treatment should not reach here");
169 
170  if (y_plus <= 5.0)
171  // sub-laminar layer
172  mu_t = 0.0;
173  else if (y_plus >= 30.0)
174  // log-layer
175  mu_t = std::max(mut_log, NS::mu_t_low_limit);
176  else
177  {
178  // buffer layer
179  const auto blending_function = (y_plus - 5.0) / 25.0;
180  // the blending depends on the mut_log at y+=30
181  const auto mut_log = mu * (NS::von_karman_constant * 30.0 /
182  std::log(std::max(NS::E_turb_constant * 30.0, 1 + 1e-4)) -
183  1.0);
184  mu_t = std::max(blending_function * mut_log, NS::mu_t_low_limit);
185  }
186  }
187  else
188  {
189  Real time_scale;
190  if (_scale_limiter == "standard")
191  {
192  time_scale = std::max(_k(elem_arg, state) / _epsilon(elem_arg, state),
193  std::sqrt(nu / _epsilon(elem_arg, state)));
194  }
195  else
196  {
197  time_scale = _k(elem_arg, state) / _epsilon(elem_arg, state);
198  }
199  // For newton solvers, epsilon might not be bounded
200  if (_newton_solve)
201  time_scale = _k(elem_arg, state) / std::max(NS::epsilon_low_limit, _epsilon(elem_arg, state));
202 
203  const Real mu_t_nl = _rho(elem_arg, state) * _C_mu * _k(elem_arg, state) * time_scale;
204  mu_t = mu_t_nl;
205  if (_newton_solve)
206  mu_t = std::max(mu_t, NS::mu_t_low_limit);
207  }
208  // Turbulent viscosity limiter
209  return std::min(mu_t, _mu_t_ratio_max * mu);
210 }
std::unordered_set< const Elem * > _wall_bounded
virtual void initialSetup() override
static constexpr Real von_karman_constant
Definition: NS.h:201
static const std::string mu_t
Definition: NS.h:125
const Moose::Functor< Real > & _mu
Dynamic viscosity.
void addParam(const std::string &name, const std::initializer_list< typename T::value_type > &value, const std::string &doc_string)
const Moose::Functor< Real > & _rho
Density.
Computes the turbuent viscosity for the k-Epsilon model.
const bool _bulk_wall_treatment
If the user wants to enable bulk wall treatment.
Moose::StateArg determineState() const
MeshBase & mesh
static const std::string density
Definition: NS.h:33
static const std::string TKE
Definition: NS.h:176
WallTreatmentEnum
Wall treatment options.
Definition: NS.h:182
SubProblem & _subproblem
template Real findUStar< Real >(const Real &mu, const Real &rho, const Real &u, const Real dist)
void getWallBoundedElements(const std::vector< BoundaryName > &wall_boundary_name, const FEProblemBase &fe_problem, const SubProblem &subproblem, const std::set< SubdomainID > &block_ids, std::unordered_set< const Elem *> &wall_bounded)
Map marking wall bounded elements The map passed in wall_bounded_map gets cleared and re-populated...
virtual const std::set< SubdomainID > & blockIDs() const
const Moose::Functor< Real > & _epsilon
Turbulent kinetic energy dissipation rate.
const Moose::Functor< Real > & _u_var
x-velocity
const Moose::Functor< Real > & _k
Turbulent kinetic energy.
void addRequiredParam(const std::string &name, const std::string &doc_string)
FEProblemBase & _c_fe_problem
Moose::ElemArg makeElemArg(const Elem *elem, bool correct_skewnewss=false) const
template Real findyPlus< Real >(const Real &mu, const Real &rho, const Real &u, Real dist)
NS::WallTreatmentEnum _wall_treatment
Method used for wall treatment.
static const std::string mu
Definition: NS.h:123
const bool _newton_solve
Whether we are using a newton solve.
std::map< const Elem *, std::vector< const FaceInfo * > > _face_infos
void getWallDistance(const std::vector< BoundaryName > &wall_boundary_name, const FEProblemBase &fe_problem, const SubProblem &subproblem, const std::set< SubdomainID > &block_ids, std::map< const Elem *, std::vector< Real >> &dist_map)
Map storing wall ditance for near-wall marked elements The map passed in dist_map gets cleared and re...
std::map< const Elem *, std::vector< Real > > _dist
virtual Real computeValue() override
kEpsilonViscosityAux(const InputParameters &parameters)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const MooseEnum _scale_limiter
Method used to limit the k-e time scale.
static constexpr Real E_turb_constant
Definition: NS.h:202
const std::vector< BoundaryName > & _wall_boundary_names
Wall boundaries.
static const std::string TKED
Definition: NS.h:177
const Elem *const & _current_elem
void addClassDescription(const std::string &doc_string)
void getElementFaceArgs(const std::vector< BoundaryName > &wall_boundary_name, const FEProblemBase &fe_problem, const SubProblem &subproblem, const std::set< SubdomainID > &block_ids, std::map< const Elem *, std::vector< const FaceInfo *>> &face_info_map)
Map storing face arguments to wall bounded faces The map passed in face_info_map gets cleared and re-...
static InputParameters validParams()
static const std::string velocity
Definition: NS.h:45
registerMooseObject("NavierStokesApp", kEpsilonViscosityAux)
template Real computeSpeed< Real >(const libMesh::VectorValue< Real > &velocity)
static constexpr Real mu_t_low_limit
Definition: NS.h:204
static InputParameters validParams()
const Moose::Functor< Real > * _w_var
z-velocity
MooseUnits pow(const MooseUnits &, int)
static constexpr Real epsilon_low_limit
Definition: NS.h:206
const Real _C_mu
C-mu closure coefficient.
const Moose::Functor< Real > * _v_var
y-velocity
void addParamNamesToGroup(const std::string &space_delim_names, const std::string group_name)