Go to the source code of this file.
Namespaces | |
| PolynomialQuadrature | |
| Polynomials and quadratures based on defined distributions for Polynomial Chaos. | |
Functions | |
| std::unique_ptr< const Polynomial > | PolynomialQuadrature::makePolynomial (const Distribution *dist) |
| Real | PolynomialQuadrature::legendre (const unsigned int order, const Real x, const Real lower_bound=-1.0, const Real upper_bound=1.0) |
| Legendre polynomial of specified order. More... | |
| Real | PolynomialQuadrature::hermite (const unsigned int order, const Real x, const Real mu=0.0, const Real sig=1.0) |
| Hermite polynomial of specified order. More... | |
| void | PolynomialQuadrature::gauss_legendre (const unsigned int order, std::vector< Real > &points, std::vector< Real > &weights, const Real lower_bound, const Real upper_bound) |
| Generalized formula for any polynomial order. More... | |
| void | PolynomialQuadrature::gauss_hermite (const unsigned int order, std::vector< Real > &points, std::vector< Real > &weights, const Real mu, const Real sig) |
| Generalized formula for any polynomial order. More... | |
| void | PolynomialQuadrature::clenshaw_curtis (const unsigned int order, std::vector< Real > &points, std::vector< Real > &weights) |
| template<> | |
| void | dataStore (std::ostream &stream, std::unique_ptr< const PolynomialQuadrature::Polynomial > &ptr, void *context) |
| template<> | |
| void | dataLoad (std::istream &stream, std::unique_ptr< const PolynomialQuadrature::Polynomial > &ptr, void *context) |
| void dataLoad | ( | std::istream & | stream, |
| std::unique_ptr< const PolynomialQuadrature::Polynomial > & | ptr, | ||
| void * | context | ||
| ) |
Definition at line 578 of file PolynomialQuadrature.C.
| void dataStore | ( | std::ostream & | stream, |
| std::unique_ptr< const PolynomialQuadrature::Polynomial > & | ptr, | ||
| void * | context | ||
| ) |
Definition at line 569 of file PolynomialQuadrature.C.
Referenced by PolynomialQuadrature::Legendre::store(), and PolynomialQuadrature::Hermite::store().
1.8.14