www.mooseframework.org
PeacemanBorehole.C
Go to the documentation of this file.
1 //* This file is part of the MOOSE framework
2 //* https://www.mooseframework.org
3 //*
4 //* All rights reserved, see COPYRIGHT for full restrictions
5 //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
6 //*
7 //* Licensed under LGPL 2.1, please see LICENSE for details
8 //* https://www.gnu.org/licenses/lgpl-2.1.html
9 
10 #include "PeacemanBorehole.h"
11 #include "RotationMatrix.h"
12 
13 #include <fstream>
14 
17 {
19  params.addRequiredParam<FunctionName>(
20  "character",
21  "If zero then borehole does nothing. If positive the borehole acts as a sink "
22  "(production well) for porepressure > borehole pressure, and does nothing "
23  "otherwise. If negative the borehole acts as a source (injection well) for "
24  "porepressure < borehole pressure, and does nothing otherwise. The flow rate "
25  "to/from the borehole is multiplied by |character|, so usually character = +/- "
26  "1, but you can specify other quantities to provide an overall scaling to the "
27  "flow if you like.");
28  params.addRequiredParam<Real>("bottom_pressure", "Pressure at the bottom of the borehole");
30  "unit_weight",
31  "(fluid_density*gravitational_acceleration) as a vector pointing downwards. "
32  "Note that the borehole pressure at a given z position is bottom_pressure + "
33  "unit_weight*(p - p_bottom), where p=(x,y,z) and p_bottom=(x,y,z) of the "
34  "bottom point of the borehole. If you don't want bottomhole pressure to vary "
35  "in the borehole just set unit_weight=0. Typical value is = (0,0,-1E4)");
36  params.addRequiredParam<std::string>(
37  "point_file",
38  "The file containing the borehole radii and coordinates of the point sinks "
39  "that approximate the borehole. Each line in the file must contain a "
40  "space-separated radius and coordinate. Ie r x y z. The last point in the "
41  "file is defined as the borehole bottom, where the borehole pressure is "
42  "bottom_pressure. If your file contains just one point, you must also specify "
43  "the borehole_length and borehole_direction. Note that you will get "
44  "segementation faults if your points do not lie within your mesh!");
45  params.addRequiredParam<UserObjectName>(
46  "SumQuantityUO",
47  "User Object of type=RichardsSumQuantity in which to place the total "
48  "outflow from the borehole for each time step.");
49  params.addParam<Real>("re_constant",
50  0.28,
51  "The dimensionless constant used in evaluating the borehole effective "
52  "radius. This depends on the meshing scheme. Peacemann "
53  "finite-difference calculations give 0.28, while for rectangular finite "
54  "elements the result is closer to 0.1594. (See Eqn(4.13) of Z Chen, Y "
55  "Zhang, Well flow models for various numerical methods, Int J Num "
56  "Analysis and Modeling, 3 (2008) 375-388.)");
57  params.addParam<Real>("well_constant",
58  -1.0,
59  "Usually this is calculated internally from the element geometry, the "
60  "local borehole direction and segment length, and the permeability. "
61  "However, if this parameter is given as a positive number then this "
62  "number is used instead of the internal calculation. This speeds up "
63  "computation marginally. re_constant becomes irrelevant");
64  params.addRangeCheckedParam<Real>(
65  "borehole_length",
66  0.0,
67  "borehole_length>=0",
68  "Borehole length. Note this is only used if there is only one point in the point_file.");
69  params.addParam<RealVectorValue>(
70  "borehole_direction",
71  RealVectorValue(0, 0, 1),
72  "Borehole direction. Note this is only used if there is only one point in the point_file.");
73  params.addClassDescription("Approximates a borehole in the mesh using the Peaceman approach, ie "
74  "using a number of point sinks with given radii whose positions are "
75  "read from a file");
76  return params;
77 }
78 
80  : DiracKernel(parameters),
81  _re_constant(getParam<Real>("re_constant")),
82  _well_constant(getParam<Real>("well_constant")),
83  _borehole_length(getParam<Real>("borehole_length")),
84  _borehole_direction(getParam<RealVectorValue>("borehole_direction")),
85  _point_file(getParam<std::string>("point_file")),
86  _character(getFunction("character")),
87  _p_bot(getParam<Real>("bottom_pressure")),
88  _unit_weight(getParam<RealVectorValue>("unit_weight")),
89  _total_outflow_mass(
90  const_cast<RichardsSumQuantity &>(getUserObject<RichardsSumQuantity>("SumQuantityUO")))
91 {
92  // zero the outflow mass
94 
95  // open file
96  std::ifstream file(_point_file.c_str());
97  if (!file.good())
98  mooseError("Error opening file '" + _point_file + "' from a Peaceman-type Borehole.");
99 
100  // construct the arrays of radius, x, y and z
101  std::vector<Real> scratch;
102  while (parseNextLineReals(file, scratch))
103  {
104  if (scratch.size() >= 2)
105  {
106  _rs.push_back(scratch[0]);
107  _xs.push_back(scratch[1]);
108  if (scratch.size() >= 3)
109  _ys.push_back(scratch[2]);
110  else
111  _ys.push_back(0.0);
112  if (scratch.size() >= 4)
113  _zs.push_back(scratch[3]);
114  else
115  _zs.push_back(0.0);
116  }
117  }
118 
119  file.close();
120 
121  const int num_pts = _zs.size();
122  _bottom_point(0) = _xs[num_pts - 1];
123  _bottom_point(1) = _ys[num_pts - 1];
124  _bottom_point(2) = _zs[num_pts - 1];
125 
126  // construct the line-segment lengths between each point
127  _half_seg_len.resize(std::max(num_pts - 1, 1));
128  for (unsigned int i = 0; i + 1 < _xs.size(); ++i)
129  {
130  _half_seg_len[i] =
131  0.5 * std::sqrt(std::pow(_xs[i + 1] - _xs[i], 2) + std::pow(_ys[i + 1] - _ys[i], 2) +
132  std::pow(_zs[i + 1] - _zs[i], 2));
133  if (_half_seg_len[i] == 0)
134  mooseError("Peaceman-type borehole has a zero-segment length at (x,y,z) = ",
135  _xs[i],
136  " ",
137  _ys[i],
138  " ",
139  _zs[i],
140  "\n");
141  }
142  if (num_pts == 1)
144 
145  // construct the rotation matrix needed to rotate the permeability
146  _rot_matrix.resize(std::max(num_pts - 1, 1));
147  for (unsigned int i = 0; i + 1 < _xs.size(); ++i)
148  {
149  const RealVectorValue v2(_xs[i + 1] - _xs[i], _ys[i + 1] - _ys[i], _zs[i + 1] - _zs[i]);
151  }
152  if (num_pts == 1)
154 }
155 
156 bool
157 PeacemanBorehole::parseNextLineReals(std::ifstream & ifs, std::vector<Real> & myvec)
158 // reads a space-separated line of floats from ifs and puts in myvec
159 {
160  std::string line;
161  myvec.clear();
162  bool gotline(false);
163  if (getline(ifs, line))
164  {
165  gotline = true;
166 
167  // Harvest floats separated by whitespace
168  std::istringstream iss(line);
169  Real f;
170  while (iss >> f)
171  {
172  myvec.push_back(f);
173  }
174  }
175  return gotline;
176 }
177 
178 void
180 {
181  // This function gets called just before the DiracKernel is evaluated
182  // so this is a handy place to zero this out.
184 
185  // Add point using the unique ID "i", let the DiracKernel take
186  // care of the caching. This should be fast after the first call,
187  // as long as the points don't move around.
188  for (unsigned int i = 0; i < _zs.size(); i++)
189  addPoint(Point(_xs[i], _ys[i], _zs[i]), i);
190 }
191 
192 Real
194  const RealTensorValue & rot,
195  const Real & half_len,
196  const Elem * ele,
197  const Real & rad)
198 // Peaceman's form for the borehole well constant
199 {
200  if (_well_constant > 0)
201  return _well_constant;
202 
203  // rot_perm has its "2" component lying along the half segment
204  // we want to determine the eigenvectors of rot(0:1, 0:1), since, when
205  // rotated back to the original frame we will determine the element
206  // lengths along these directions
207  const RealTensorValue rot_perm = (rot * perm) * rot.transpose();
208  const Real trace2D = rot_perm(0, 0) + rot_perm(1, 1);
209  const Real det2D = rot_perm(0, 0) * rot_perm(1, 1) - rot_perm(0, 1) * rot_perm(1, 0);
210  const Real sq = std::sqrt(std::max(0.25 * trace2D * trace2D - det2D,
211  0.0)); // the std::max accounts for wierdo precision loss
212  const Real eig_val1 = 0.5 * trace2D + sq;
213  const Real eig_val2 = 0.5 * trace2D - sq;
214  RealVectorValue eig_vec1, eig_vec2;
215  if (sq > std::abs(trace2D) * 1E-7) // matrix is not a multiple of the identity (1E-7 accounts for
216  // precision in a crude way)
217  {
218  if (rot_perm(1, 0) != 0)
219  {
220  eig_vec1(0) = eig_val1 - rot_perm(1, 1);
221  eig_vec1(1) = rot_perm(1, 0);
222  eig_vec2(0) = eig_val2 - rot_perm(1, 1);
223  eig_vec2(1) = rot_perm(1, 0);
224  }
225  else if (rot_perm(0, 1) != 0)
226  {
227  eig_vec1(0) = rot_perm(0, 1);
228  eig_vec1(1) = eig_val1 - rot_perm(0, 0);
229  eig_vec2(0) = rot_perm(0, 1);
230  eig_vec2(1) = eig_val2 - rot_perm(0, 0);
231  }
232  else // off diagonal terms are both zero
233  {
234  eig_vec1(0) = 1;
235  eig_vec2(1) = 1;
236  }
237  }
238  else // matrix is basically a multiple of the identity
239  {
240  eig_vec1(0) = 1;
241  eig_vec2(1) = 1;
242  }
243 
244  // finally, rotate these to original frame and normalise
245  eig_vec1 = rot.transpose() * eig_vec1;
246  eig_vec1 /= std::sqrt(eig_vec1 * eig_vec1);
247  eig_vec2 = rot.transpose() * eig_vec2;
248  eig_vec2 /= std::sqrt(eig_vec2 * eig_vec2);
249 
250  // find the "length" of the element in these directions
251  // TODO - probably better to use variance than max&min
252  Real max1 = eig_vec1 * ele->point(0);
253  Real max2 = eig_vec2 * ele->point(0);
254  Real min1 = max1;
255  Real min2 = max2;
256  Real proj;
257  for (unsigned int i = 1; i < ele->n_nodes(); i++)
258  {
259  proj = eig_vec1 * ele->point(i);
260  max1 = (max1 < proj) ? proj : max1;
261  min1 = (min1 < proj) ? min1 : proj;
262 
263  proj = eig_vec2 * ele->point(i);
264  max2 = (max2 < proj) ? proj : max2;
265  min2 = (min2 < proj) ? min2 : proj;
266  }
267  const Real ll1 = max1 - min1;
268  const Real ll2 = max2 - min2;
269 
270  const Real r0 = _re_constant *
271  std::sqrt(std::sqrt(eig_val1 / eig_val2) * std::pow(ll2, 2) +
272  std::sqrt(eig_val2 / eig_val1) * std::pow(ll1, 2)) /
273  (std::pow(eig_val1 / eig_val2, 0.25) + std::pow(eig_val2 / eig_val1, 0.25));
274 
275  const Real effective_perm = std::sqrt(det2D);
276 
277  const Real halfPi = acos(0.0);
278 
279  if (r0 <= rad)
280  mooseError("The effective element size (about 0.2-times-true-ele-size) for an element "
281  "containing a Peaceman-type borehole must be (much) larger than the borehole radius "
282  "for the Peaceman formulation to be correct. Your element has effective size ",
283  r0,
284  " and the borehole radius is ",
285  rad,
286  "\n");
287 
288  return 4 * halfPi * effective_perm * half_len / std::log(r0 / rad);
289 }
const Real _well_constant
well constant
const RealVectorValue _borehole_direction
borehole direction. Note this is only used if there is only one borehole point
Sums into _total This is used, for instance, to record the total mass flowing into a borehole...
const Real _re_constant
borehole constant
void addParam(const std::string &name, const std::initializer_list< typename T::value_type > &value, const std::string &doc_string)
PeacemanBorehole(const InputParameters &parameters)
Real wellConstant(const RealTensorValue &perm, const RealTensorValue &rot, const Real &half_len, const Elem *ele, const Real &rad)
Calculates Peaceman&#39;s form of the borehole well constant Z Chen, Y Zhang, Well flow models for variou...
std::vector< Real > _rs
radii of the borehole
void addPoint(const Elem *elem, Point p, unsigned id=libMesh::invalid_uint)
bool parseNextLineReals(std::ifstream &ifs, std::vector< Real > &myvec)
reads a space-separated line of floats from ifs and puts in myvec
ADRealEigenVector< T, D, asd > sqrt(const ADRealEigenVector< T, D, asd > &)
std::vector< Real > _xs
x points of the borehole
std::vector< Real > _ys
y points of the borehole
static InputParameters validParams()
Creates a new PeacemanBorehole This reads the file containing the lines of the form radius x y z that...
void addRequiredParam(const std::string &name, const std::string &doc_string)
ADRealEigenVector< T, D, asd > abs(const ADRealEigenVector< T, D, asd > &)
TensorValue< Real > RealTensorValue
Real f(Real x)
Test function for Brents method.
void zero()
sets _total = 0
RichardsSumQuantity & _total_outflow_mass
This is used to hold the total fluid flowing into the borehole Hence, it is positive for production w...
GenericRealTensorValue< is_ad > rotVecToZ(GenericRealVectorValue< is_ad > vec)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const Real _borehole_length
borehole length. Note this is only used if there is only one borehole point
virtual void addPoints()
Add Dirac Points to the borehole.
const std::string _point_file
File defining the geometry of the borehole.
void mooseError(Args &&... args) const
void addClassDescription(const std::string &doc_string)
Point _bottom_point
the bottom point of the borehole (where bottom_pressure is defined)
void addRangeCheckedParam(const std::string &name, const T &value, const std::string &parsed_function, const std::string &doc_string)
std::vector< RealTensorValue > _rot_matrix
rotation matrix used in well_constant calculation
std::vector< Real > _half_seg_len
0.5*(length of polyline segments between points)
std::vector< Real > _zs
z points of borehole
MooseUnits pow(const MooseUnits &, int)
static InputParameters validParams()