14 #include <Eigen/Dense> 29 virtual void train()
override;
const StochasticTools::GaussianProcess::GPOptimizerOptions _optimization_opts
Struct holding parameters necessary for parameter tuning.
const std::vector< Real > & _sampler_row
Data from the current sampler row.
virtual void train() override
const StochasticTools::GaussianProcess & gp() const
RealEigenMatrix & _training_params
Paramaters (x) used for training, along with statistics.
bool _do_tuning
Flag to toggle hyperparameter tuning/optimization.
virtual void postTrain() override
StochasticTools::GaussianProcess & gp()
GaussianProcessTrainer(const InputParameters ¶meters)
static InputParameters validParams()
const std::vector< Real > & _predictor_row
Data from the current predictor row.
Eigen::Matrix< Real, Eigen::Dynamic, Eigen::Dynamic > RealEigenMatrix
virtual void preTrain() override
This is the main trainer base class.
bool _standardize_data
Switch for training data(y) standardization.
std::vector< std::vector< Real > > _data_buffer
Data (y) used for training.
RealEigenMatrix _training_data
Data (y) used for training.
const InputParameters & parameters() const
StochasticTools::GaussianProcess & _gp
Gaussian process handler responsible for managing training related tasks.
std::vector< std::vector< Real > > _params_buffer
Parameters (x) used for training – we'll allgather these in postTrain().
bool _standardize_params
Switch for training param (x) standardization.