- blockBlocks (subdomains) that this Physics is active on.
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:Blocks (subdomains) that this Physics is active on.
- energy_wall_boundariesWall boundaries to apply energy boundary conditions on. If not specified, the flow equation Physics wall boundaries will be used
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:Wall boundaries to apply energy boundary conditions on. If not specified, the flow equation Physics wall boundaries will be used
- fluid_temperature_variableT_fluidName of the fluid temperature variable
Default:T_fluid
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:Name of the fluid temperature variable
- initial_enthalpyInitial value of the enthalpy variable, only to be used when solving for enthalpy
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:Initial value of the enthalpy variable, only to be used when solving for enthalpy
- initial_temperature300The initial temperature, assumed constant everywhere
Default:300
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:The initial temperature, assumed constant everywhere
- solve_for_enthalpyFalseWhether to solve for the enthalpy or the temperature of the fluid
Default:False
C++ Type:bool
Controllable:No
Description:Whether to solve for the enthalpy or the temperature of the fluid
- transientsame_as_problemWhether the physics is to be solved as a transient
Default:same_as_problem
C++ Type:MooseEnum
Controllable:No
Description:Whether the physics is to be solved as a transient
- verboseFalseFlag to facilitate debugging a Physics
Default:False
C++ Type:bool
Controllable:No
Description:Flag to facilitate debugging a Physics
Navier Stokes Fluid Heat Transfer / WCNSLinearFVFluidHeatTransferPhysics
Define the Navier Stokes weakly-compressible energy equation
Equation
This Physics object creates the kernels and boundary conditions to solve the advection-diffusion equation for the fluid temperature. For free flow in a non-porous media:
Porous medium treatment is not implemented for the linear finite volume discretization yet.
where:
is the fluid specific enthalpy
is the fluid density
is the fluid temperature
\mathbf{v} is the advecting velocity (clean flow)
the fluid effective thermal conductivity
is the source term, corresponding to energy deposited directly in the fluid
is the ambient convection volumetric heat transfer coefficient
is the ambient temperature
The kernels created for flow in a non-porous medium are:
LinearFVEnergyAdvection for advection
LinearFVDiffusion for diffusion
LinearFVSource for the energy source term
LinearFVVolumetricHeatTransfer for the volumetric ambient convection term, if present
Automatically defined variables
The WCNSLinearFVFluidHeatTransferPhysics
automatically sets up the variables which are necessary for solving the energy transport equation:
Fluid temperature:
(moose/modules/navier_stokes/include/base/NS.h)static const std::string T_fluid = "T_fluid";
For the default names of other variables used in this action, visit this site.
Automatically defined functors / materials
The following functor materials are defined:
INSFVEnthalpyFunctorMaterial to define functors to compute the specific enthalpy and its time derivative
Coupling with other Physics
The enthalpy advection equation can be solved concurrently with the flow equations by combining both the WCNSLinearFVFluidHeatTransferPhysics
and the Navier Stokes Flow Segregated / WCNSLinearFVFlowPhysics using the "coupled_flow_physics" parameter.
Input Parameters
- active__all__ If specified only the blocks named will be visited and made active
Default:__all__
C++ Type:std::vector<std::string>
Controllable:No
Description:If specified only the blocks named will be visited and made active
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- define_variablesTrueWhether to define variables if the variables with the specified names do not exist. Note that if the variables are defined externally from the Physics, the initial conditions will not be created in the Physics either.
Default:True
C++ Type:bool
Controllable:No
Description:Whether to define variables if the variables with the specified names do not exist. Note that if the variables are defined externally from the Physics, the initial conditions will not be created in the Physics either.
- ghost_layers2Number of layers of elements to ghost near process domain boundaries
Default:2
C++ Type:unsigned short
Controllable:No
Description:Number of layers of elements to ghost near process domain boundaries
- inactiveIf specified blocks matching these identifiers will be skipped.
C++ Type:std::vector<std::string>
Controllable:No
Description:If specified blocks matching these identifiers will be skipped.
Advanced Parameters
- ambient_convection_alphaThe heat exchange coefficients for each block in 'ambient_convection_blocks'. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:std::vector<MooseFunctorName>
Unit:(no unit assumed)
Controllable:No
Description:The heat exchange coefficients for each block in 'ambient_convection_blocks'. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- ambient_convection_blocksThe blocks where the ambient convection is present.
C++ Type:std::vector<std::vector<SubdomainName>>
Controllable:No
Description:The blocks where the ambient convection is present.
- ambient_temperatureThe ambient temperature for each block in 'ambient_convection_blocks'. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:std::vector<MooseFunctorName>
Unit:(no unit assumed)
Controllable:No
Description:The ambient temperature for each block in 'ambient_convection_blocks'. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Volumetric Heat Convection Parameters
- coupled_flow_physicsWCNSFVFlowPhysics generating the velocities
C++ Type:PhysicsName
Controllable:No
Description:WCNSFVFlowPhysics generating the velocities
- coupled_turbulence_physicsTurbulence Physics coupled with this Physics
C++ Type:PhysicsName
Controllable:No
Description:Turbulence Physics coupled with this Physics
Coupled Physics Parameters
- dont_create_aux_kernelsFalseWhether to skip the 'add_aux_kernel' task
Default:False
C++ Type:bool
Controllable:No
Description:Whether to skip the 'add_aux_kernel' task
- dont_create_aux_variablesFalseWhether to skip the 'add_aux_variable' task
Default:False
C++ Type:bool
Controllable:No
Description:Whether to skip the 'add_aux_variable' task
- dont_create_bcsFalseWhether to skip the 'add_bc' task for each boundary condition type
Default:False
C++ Type:bool
Controllable:No
Description:Whether to skip the 'add_bc' task for each boundary condition type
- dont_create_correctorsFalseWhether to skip the 'add_correctors' task
Default:False
C++ Type:bool
Controllable:No
Description:Whether to skip the 'add_correctors' task
- dont_create_functionsFalseWhether to skip the 'add_function' task
Default:False
C++ Type:bool
Controllable:No
Description:Whether to skip the 'add_function' task
- dont_create_icsFalseWhether to skip the 'add_ic' task
Default:False
C++ Type:bool
Controllable:No
Description:Whether to skip the 'add_ic' task
- dont_create_kernelsFalseWhether to skip the 'add_kernel' task for each kernel type
Default:False
C++ Type:bool
Controllable:No
Description:Whether to skip the 'add_kernel' task for each kernel type
- dont_create_materialsFalseWhether to skip the 'add_material' task for each material type
Default:False
C++ Type:bool
Controllable:No
Description:Whether to skip the 'add_material' task for each material type
- dont_create_postprocessorsFalseWhether to skip the 'add_postprocessors' task
Default:False
C++ Type:bool
Controllable:No
Description:Whether to skip the 'add_postprocessors' task
- dont_create_solver_variablesFalseWhether to skip the 'add_variable' task
Default:False
C++ Type:bool
Controllable:No
Description:Whether to skip the 'add_variable' task
- dont_create_user_objectsFalseWhether to skip the 'add_user_object' task. This does not apply to UserObject derived classes being created on a different task (for example: postprocessors, VPPs, correctors)
Default:False
C++ Type:bool
Controllable:No
Description:Whether to skip the 'add_user_object' task. This does not apply to UserObject derived classes being created on a different task (for example: postprocessors, VPPs, correctors)
- dont_create_vectorpostprocessorsFalseWhether to skip the 'add_vectorpostprocessors' task
Default:False
C++ Type:bool
Controllable:No
Description:Whether to skip the 'add_vectorpostprocessors' task
Reduce Physics Object Creation Parameters
- energy_advection_interpolationupwindThe numerical scheme to use for interpolating energy/temperature, as an advected quantity, to the face.
Default:upwind
C++ Type:MooseEnum
Controllable:No
Description:The numerical scheme to use for interpolating energy/temperature, as an advected quantity, to the face.
- energy_face_interpolationaverageThe numerical scheme to interpolate the temperature/energy to the face (separate from the advected quantity interpolation).
Default:average
C++ Type:MooseEnum
Controllable:No
Description:The numerical scheme to interpolate the temperature/energy to the face (separate from the advected quantity interpolation).
- energy_two_term_bc_expansionTrueIf a two-term Taylor expansion is needed for the determination of the boundary valuesof the temperature/energy.
Default:True
C++ Type:bool
Controllable:No
Description:If a two-term Taylor expansion is needed for the determination of the boundary valuesof the temperature/energy.
- system_namesenergy_system Name of the solver system(s) for the variables. If a single name is specified, that system is used for all solver variables.
Default:energy_system
C++ Type:std::vector<SolverSystemName>
Controllable:No
Description:Name of the solver system(s) for the variables. If a single name is specified, that system is used for all solver variables.
- use_nonorthogonal_correctionTrueWhether to use a non-orthogonal correction. This can potentially slow down convergence , but reduces numerical dispersion on non-orthogonal meshes. Can be safely turned off on orthogonal meshes.
Default:True
C++ Type:bool
Controllable:No
Description:Whether to use a non-orthogonal correction. This can potentially slow down convergence , but reduces numerical dispersion on non-orthogonal meshes. Can be safely turned off on orthogonal meshes.
Numerical Scheme Parameters
- energy_inlet_functorsFunctions for fixed-value boundaries in the energy equation. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:std::vector<MooseFunctorName>
Unit:(no unit assumed)
Controllable:No
Description:Functions for fixed-value boundaries in the energy equation. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- energy_inlet_typesTypes for the inlet boundaries for the energy equation.
C++ Type:MultiMooseEnum
Controllable:No
Description:Types for the inlet boundaries for the energy equation.
Inlet Boundary Conditions Parameters
- energy_wall_functorsFunctions for Dirichlet/Neumann boundaries in the energy equation. For wall types requiring multiple functions, the syntax is
: :... So, 'convection' types are ' : '. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number. C++ Type:std::vector<MooseFunctorName>
Unit:(no unit assumed)
Controllable:No
Description:Functions for Dirichlet/Neumann boundaries in the energy equation. For wall types requiring multiple functions, the syntax is
: :... So, 'convection' types are ' : '. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number. - energy_wall_typesTypes for the wall boundaries for the energy equation.
C++ Type:MultiMooseEnum
Controllable:No
Description:Types for the wall boundaries for the energy equation.
Wall Boundary Conditions Parameters
- external_heat_sourceThe name of a functor which contains the external heat source for the energy equation. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The name of a functor which contains the external heat source for the energy equation. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- external_heat_source_coeff1Multiplier for the coupled heat source term.
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Multiplier for the coupled heat source term.
Heat Source Parameters
- fpFluid properties userobject
C++ Type:UserObjectName
Controllable:No
Description:Fluid properties userobject
- specific_heatcpThe name of the specific heat. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:cp
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The name of the specific heat. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- thermal_conductivityk The name of the fluid thermal conductivity for each block. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Default:k
C++ Type:std::vector<MooseFunctorName>
Unit:(no unit assumed)
Controllable:No
Description:The name of the fluid thermal conductivity for each block. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- thermal_conductivity_blocksThe blocks where the user wants define different thermal conductivities.
C++ Type:std::vector<std::vector<SubdomainName>>
Controllable:No
Description:The blocks where the user wants define different thermal conductivities.
- use_external_enthalpy_materialFalseTo indicate if the enthalpy material is set up outside of the action.
Default:False
C++ Type:bool
Controllable:No
Description:To indicate if the enthalpy material is set up outside of the action.
Material Properties Parameters
- initial_from_file_timestepLATESTGives the time step number (or "LATEST") for which to read the Exodus solution
Default:LATEST
C++ Type:std::string
Controllable:No
Description:Gives the time step number (or "LATEST") for which to read the Exodus solution
- initialize_variables_from_mesh_fileFalseDetermines if the variables that are added by the action are initializedfrom the mesh file (only for Exodus format)
Default:False
C++ Type:bool
Controllable:No
Description:Determines if the variables that are added by the action are initializedfrom the mesh file (only for Exodus format)